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Abstract 

neme recognition which is characterized by two important properties: 
1.) Using a 3 layer arrangement of simple computing units, it can rep- 
resent arbitrary nonlinear decision surfaces. The TDNN learns these 
decision surfaces automatically using error back-propagatioii[l]. 2.) 

he time-delay arrangement enables the network to discover acoustic- 
honetic features and the temporal relationships between them inde- 
endent of position in time and hence not blurred by temporal shifts 

in the input. For comparison, several discrete Hidden Markov Mod- 
els (HMM) were trained to perform the same task, i.e., the speaker- 
dependent recognition of the phonemes "B", "D", and "G" extracted 

We show that the TDNN "invented" well-known acoustic-phonetic 

to the same concept. 

1 Introduction 
In recent years, the advent of new learning procedures and the avail- 
ability of high speed parallel supercomputers have given rise t o  a re- 
newed interest in connectionist models of intelligence[l]. These mod- 
els are particularly interesting for cognitive tasks that require massive 
constraint satisfaction, i.e., the parallel evaluation of many clues and 

r interpretation in the light of numerous interrelated con- 
ause of the far-reaching implications t o  speech recogni- 
etworks have recently been compared with other pattern 

recognition classifiers[2] and explored as alternative to other speech 
recognition techniques (see [2,3] for review). Some of these studies re- 
port very incouraging performance results[4], but others show neural 
nets as underperforming existing techniques. One possible explana- 

mixed comparative performance results so far might be 
given by the inability of many neural network architectures to deal 
properly with the dynamic nature of speech. Various solutions t o  this 
problem, however, are now beginning to emerge[5,6,7,8] and continued 
work in this area is likely to lead to more powerful speech recognition 
systems in the future. 

To capture the dynamic nature of speech a network must be  able 
to 1.) represent temporal relationships between acoustic events, while 
a t  the same time 2 ) provide for rnvanance under translatron in time. 
The specific movement of a formant in time, for example, is an im- 
portant cue to determining the identity of a voiced stop, but it is 
irrelevant whether the same set of events occurs a little sooner or 
later in the course of time. Without translation invariance a neural 
net requires precise segmentation, to allgn the input pattern properly. 
Since this is not always possible in practice, learned features tend 
to get blurred (in order to accommodate slight misalignments) and 
their performance deteriorates. In the present paper, we describe a 
Time Delay Neural Network (TDNN), which addresses both of these 

s3.3 

aspects. We demonstrate through extensive performance evaluation 
that superior recognition results can be achieved. 

2 Time Delay Neural Networks 
To be useful for speec feed forward neural net- 
work must have a n  it should have multiple 
layers and sufficien units in each of these 
layers. This is to 11 have the  ability t o  
learn complex non Second, the network 
should have the ab ips between events in 
time. These events , b u t  might also be the 
output of higher level feature detectors. Third, the actual features or 
abstractions learned by the network should be invariant under transla- 
tion in time. Fourth the learning procedure should not require precise 

amount of tra' 
training data by ex 

hat the network is forced t o  encode the 
egularity. In the following, we describe a 

of phonemes, in particular, the voiced 
stops "B", "D" an 

The basic unit used in many neural networks computes the 
ted sum of its inputs and then passes this sum through a non 
function, most commonly a threshold or sigmoid fnnction[2,1] 
TDNN, this basic unit is modified by introducing delays D1 

J inputs of such a unit now will b 
e for each delay and one for the undela 
16, for example, 48 weights will be nee 

to compute the weighted sum of the 16 inputs, with each input now 

Figure 1. A Time Delay Neural Network (TDNN) unit 
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measured a t  three different points in time. In this way a TDNN unit 
has the ability to relate and compare current input with the past his- 
tory of events. The sigmoid function was chosen as the non-linear 
output function F due to its convenient mathematical properties[l,9]. 

For the recognition of phonemes, a three layer net is constructed. 
Its overall architecture and a typical set of activities in the units are 
shown in Fig.2. 

At the lowest level, 16 melscale spectral coefficients serve as input 
to the network. Input speech, sampled a t  12 kIIz, was hamming 
windowed and a 256-point F F T  computed every 5 msec. hfelscale 
coefficients were computed from the power spectrum[3] and adjacent 
coefficients in time collapsed resulting in an overall 10 msec frame rate. 
The coefficients of an input token (in this case 15 frames of speech 
centered around the hand labeled vowel onset) were then normalized 
to lie between -1.0 and $1.0 with the average a t  0.0. Fig.2 shows 
the resulting coefficients for the speech token "DA" as input to the 
network, where positive values are shown as black and negative values 
as grey squares. 

This input layer is then fully interconnected to a layer of 8 time 
delay hidden units, where J = 16 and N = 2 (i.e., 16 coefficients 
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Figure 2: The TDNN architecture (input: " D A )  
over three frames with time delay 0,  1 and 2). An alternative way 
of seeing this is depicted in Fig.2. I t  shows the inputs to these time 
delay units expanded out spatially into a 3 frame window, which is 
passed over the input spectrogram. Each unit in the first hidden layer 
now receives input (via 48 weighted connections) from the coefficients 
in the 3 frame window. The particular delay choices were motivated 
by earlier studies[3]. 

In the second hidden layer, each of 3 TDNN units looks a t  a 5 
frame window of activity levels in hidden layer 1 (i.e., J = 8, N = 
4). The choice of a larger 5 frame window in this layer was motivated 
by the intuition that higher level units should learn to make decisions 
over a wider range in time based on more local abstractions a t  lower 
levels. 

Finally, the output is obtained by integrating (summing) the ev- 
idence from each of the 3 units in hidden layer 2 over time and con- 
necting it to its pertinent output unit (shown in Fig.2 over 9 frames 
for the " D  output unit). In practice, this summation is implemented 
simply as another TDNN unit which has fixed equal weights to a row 
of unit firings over time in hidden layer 2. 

When the TDNN has learned its internal representation, it per- 
forms recognition by passing input speech over the TDNN units. In 
terms of the illustration of Fig.2 this is equivalent t o  passing the time 

delay windows over the lower level units' firing patterns. At the lowest 
level, these firing patterns simply consist of the sensory input, i.e., the 
spectral coefficients. 

Each TDNN unit outlined in this section has the ability to encode 
temporal relationships within the range of the N delays. Higher layers 
can attend to larger time spans, so local short duration features will be 
formed a t  the lower layer and more complex longer duration features 
at the higher layer. The learning procedure ensures that each of the 
units in each layer has its weights adjusted in a way that improves 
the network's overall performance. 

2.2 Learning in a TDNN 
Several learning techniques exist for optimization of neural net- 
works[l,%]. For the present network we adopt the Back-propagation 
Learning Procedure[l,9]. This procedure iteratively adjusts all the 
weights in the network so as to decrease the error obtained a t  its 
output units. To arrive a t  a translation invariant network, we need 
to ensure during learning that the network is exposed to sequences 
of patterns and that it is allowed (or encouraged) to learn about the 
most powerful cues and sequences of cues among them. Conceptually, 
the back-propagation procedure is applied to speech patterns that are 
stepped through in time. An equivalent way of achieving this result 
is to use a spatially expanded input pattern, i.e., a spectrogram plus 
some constraints on the weights. Each collection of TDNN-units de- 
scribed above is duplicated for each one frame shift in time. In this 
way the whole history of activities is available at once. Since the 
shifted copies of the TDNN-units are mere duplicates and are to look 
for the same acoustic event, the weights of the corresponding connec- 
tions in the time shifted copies must be constrained to be the same. To 
realize this, we first apply the regular back-propagation forward and 
backward pass to all time shifted copies as if they were separate events. 
This yields different error derivatives for corresponding (time shifted) 
connections. Rather than changing the weights on time-shifted con- 
nections separately, however, we actually update each weight on cor- 
responding connections by the same value, namely by the  average of 
all corresponding time-delayed weight changes'. Fig.2 illustrates this 
by showing in each layer only two connections that are linked to (con- 
strained to have the same value as) their time shifted neighbors. Of 
course, this applies to all connections and all time shifts. In this way, 
the network is forced to discover useful acoustic-phonetic features in 
the input, regardless of when in time they actually occurred. This is 
an important property, as it makes the network independent of error- 
prone preprocessing algorithms, that  otherwise would be needed for 
time alignment and/or segmentation. 

The procedure described here is computationally rather expensive, 
due to the many iterations necessary for learning a complex multi- 
dimensional weight space and the number of learning samples. In 
our case, about 800 learning samples were used and between 20,000 
and 50,000 iterations (step-size 0.002, momentum 0.1) of the back- 
propagation loop were run over all training samples. For greater 
learning speed, simulations were run on a 4 processor Alliant super- 
computer and a staged learning strategy[3] mas used. Learning still 
took about 4 days, but additional substantial increases in learning 
speed are possible[3]. Of course, this high computational cost ap- 
plies only to learning. Recognition can easily be run in better than 
real-time 

3 Hidden Markov Models 
As an alternative recognition approach we have implemented seve- 
ral Hidden Markov Models (HMM) aimed at phoneme recognition. 
Hh'IMs are currently the most successful and promising approach 
[10,11,12] in speech recognition as they have been successfully ap- 
plied to the whole spectrum of recognition tasks. HMhls' success is 

'Note that in the experiments reported below these wejght changes were actu- 
ally carried out &er presentation of all training samples[9]. 



ir ability to cope with the variability in speech by 
modeling The HhiMs developed in our laboratory 
eme recognition, more specifically the voiced stops 
. More detail including results from experiments 
these models are given elsewhere[l3,3] and we will 

restrict ourselves to a brief description of our best configuration. 
The acoustic front end for Hidden Markov Modeling is typically a 

vector quantizer that classlfies sequences of short-time spectra. Input 
speech was sampled at 12kH2, preemphasized by (1 - 0.97 z-’) and 
windowed using a 256-point Hamming window every 3 msec. Then 
a 12-order LPC analysis was carried out A codebook of 256 LPC 

from 216 phonetically balanced 
e Weighted Likelihood Ratio augmented with power values 
31 was used as LPC distance measure for vector quantiza- 
HMM with four states and six transitions (the last state 
selfloop) was used in this study. The HMM probability 
e tramed using vector sequences of phonemes according to 
d-backward algorithm[lO]. The vector sequences for ”B” ,  
G include a consonant part and five frames of the follow- 

I. This is to model important transient informations, such 
nt movement and has lead to improvements over context in- 
models [13] The HMM was trained until convergence using 

50 phoneme tokens of vector sequences per speaker and pho- 
Typically, about 10 to 20 learning Iterations were required 

about one hour on a VAX 8700 
Floor values were set on the output probabilities to avoid errors caused 
by zero-probabilities. We have experimented with composite models, 

re trained using a combination of context-independent and 
endent probability values[l2], but in our case no signifi- 

4 Recognition Experiments 
We now turn to an experimental evaluation of the two techniques 
described in the previous sections. To provide a good framework 
for comparison, the same experimental conditions were given t o  both 
methods For both, the same training data was used and both were 
tested on the same testing database as described below. 

Experimental Conditions 
evaluation, we have used a large vocabulary database 
Japanese words[3]. These words were uttered in isola- 
le native Japanese speakers (MAU, MHT and MNM, 
nnouncers). All utterances were recorded in a sound 
digitized at a 12 kHz sampling rate The database 

to a training set and a testing set of 2620 utterances 

he phoneme recognition task chosen for this experiment was the 
nition of the voiced stops, i e , the phonemes ”B”,  ”D” and ”G”.  

The actual tokens were extracted from the utterances using manually 
selected acoustic-phonetic labels provided with the database[3] Both 

and the HMMs, were trained and 

tabase, no preselection of tokens was performed. All to- 
f the three voiced stops were included. Since 
were extracted from entire utterances and not 
nificant amount of acoustic variability is intro- 
c context and the token’s position within the 
our recognition algorithms. are only given the 
a token and must find their own ways of repre- 
tions of speech. Since recognition results based 
are not meaningful, we report in the following 

, i e., from performance evaluation 

tic tokens were extracted 

er the separate testing data set 

’In Japanese, for example, a “G” is nasalzed, when it occurs embedded in a n  
utterance, but not in utterance irutial position[3]. 
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4.2 Results 
Table 1 shows the results from th  
above. As can be seen, for all th  
siderable performance improvemen 
all three speakers, the error rate is r 
than four fold reduction in error. 

ion experiments described 
, the TDNN yields con- 

ur HMM. Averaged over 
om 6.3% to 1.5%, a more 

1 ‘ I  

Figure 3: Scatter plots showing log probabilities/activation levels for 

using an HMM (left) and A TDNN 

s of a TDNN have a tendency to 
een from the cluster of dots in the 
r plots Most output units tend t o  

to improve recognition 
speaker h4AU’s tokens 
than 0 5 and those 

f one were to eliminate among 
highest activation level is less 

more closely competing 
the scatter plots; see[3] 

d be rejected, while the 
remaining substitu 

4.3 The Learned In presentations of a 

found in 131. Fig 2 and the 
of a ”D” out of two differe 

fires strongly, despite tl 
considerably from each ot 

of Fig 4 show two typical instances 
tic contexts (”DA” and ”DO”, re- 

y the internal firings in these 
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Figure 4: TDNN activation patterns for centered and misaligned (30 
msec) "DO" 
two cases we can see that the network has learned to use alternate 
internal representations to link variations in the sensory input t o  the 
same higher level concepts. A good example is given by the firings 
of the third and fourth hidden unit in the first layer above the input 
layer. As can be seen from Fig.4 and Fig.2, the fourth hidden unit 
fires particularly strongly after vowel onset in the case oE"DO", while 
the third unit shows stronger activation after vowel onset in the case 
of "DA" (see rows pointed to by the filled arrows). The connection 
strengths of only these two hidden units are displayed on grey back- 
ground on the left of Fig.4 and show the significance of these different 
firing patterns (here, white and black blobs represent positive and neg- 
ative weights, respectively, and the magnitude of a weight is indicated 
by the size of the blob). The time delays are displayed spatially as a 3 
frame window of 16 spectral coefficients. Conceptually, the weights in 
this window form a moving acoustic-phonetic feature detector, that  
fires when the pattern for which it is specialized is encountered in the 
input speech. Thus, hidden unit number 4 has  learned to fire when a 
falling (or rising) second formant starting a t  around 1600 Hz is found 
in the input. As can be seen in Fig.4, this is the case for "DO" after 
voicing onset. In the case of"DA" (see Fig.2) in turn,  the second for- 
mant does not fall significantly, and hidden unit 3 fires instead. The 
connection strengths for TDNN-unit 3 shown in Fig.4 show that this 
unit has learned to look for a steady (or only slightly falling) second 
formant starting at about 1600 Hz. The connections in the second 
and third layer then link the different firing patterns observed in the 
first hidden layer into one and the same decision. Another interesting 
feature can be seen in the bottom hidden unit in hidden layer number 
1 (see activation patterns in Fig.2 and Fig.4, and [3] for weights). This 
unit has learned to take on the role of finding the segment boundary 
of the voiced stop. It does so in reverse polarity, i.e., it is always on 
except when the vowel onset of the voiced stop is encountered (see 
unfilled arrows in Fig.4 and Fig.2). Indeed, the higher layer TDNN- 
units subsequently use this "segmenter" to base the final decision on 
the occurrence of the right lower features at the right point in time. 
The right side of Fig.4, finally, demonstrates the shift-invariance of 
the network. Here the same token "DO" is misaligned by 30 msec. 
Despite the gross misalignment, the correct result was obtained reli- 
ably. The hidden units' feature detectors do indeed fire according to 
the events in the input speech, and are not negatively affected by the 
relative shift with respect to the input units. 

5 Conclusion 
We have presented a Time Delay Neural Network for phoneme recog- 

nition. By use of two hidden layers in addition to an input and output 
layer it is capable of representing complex non-linear decision surfaces. 
Three important properties of the TDNNs have been observed. First, 
our TDNN was able to invent without human interference meaningful 
linguistic abstractions in time and frequency such as formant tracking 
and segmentation. Second, we have demonstrated that it has learned 
to form alternate representations linking different acoustic events with 
the same higher level concept. In this fashion it can implement trading 
relations between lower level acoustic events leading t o  robust recogni- 
tion performance despite considerable variability in the input speech. 
Third, we have seen that the network is translation-invariant and does 
not rely on precise alignment or segmentation of the input. We have 
compared the TDNN's performance with the best of our HMR4s on a 
speaker-dependent phoneme recognition task. The TDNN achieved a 
recognition of 96.5% compared t o  93.7% for the HMM, i.e., a fourfold 
reduction in error. 
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