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Kohonen Maps 

   Central question: 
   Can we find a lower-dimensional representation of the data which 

preserves the relations between patterns in the input? 
   Method: 

   Unsupervised competitive learning in a two-dimensional neural network 
   Results: 

   Line, square, or cube providing a mapping of the data 
   Emphasis on visual presentation of data 
   Applications in classification, automatic control, image and speech 

processing 
   Do there exist other methods for doing this? 
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DEMO 1 
Dutch-English Word Mapping 
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PRINCIPAL COMPONENTS 
ANALYSIS 
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Motivating Example 

  Consider hundreds of 100x100-pixel images 
variable in displacement, scale, and rotation 
(latent variables) 

  Dimension of latent variables much smaller than 
image dimension 

  How to recover latent variables? 
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Illustration
Theory

Algorithm

Continuous Latent Variables

“True” latent variable is the displacement, scale and rotation.

Affect is approximately linear if the rotation is small.

Note dimensions of the latent variables (4) much smaller than
dimensions of the image (10000).

Can we reconstruct the latent variables from the copies? One copy?
Several?

Buntine K-Means
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Curse of Dimensionality 

   Consider p-dimensional unit hypercube containing observations 
   Suppose a neighborhood capturing a fraction r of observations 

   i.e. a fraction r of the unit volume 
   Expected edge length will be e(r)=r1/p 

   In ten dimensions: 
   e10(0.01)=0.63 
   e10(0.1)=0.80 
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Curse of Dimensionality 

  Distance functions lose 
their usefulness in high 
dimensionality 
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Principal Components Analysis 

   Invented by Karl Pearson in 1901 
   Also known as: 

   Karhunen-Loève transform in information theory 
   Hotelling transform in image analysis 
   Latent Semantic Analysis in text processing 

   Linear transformation to a new coordinate system  
   New variables -- principal components 

   linear functions of the original variables 
   Uncorrelated 
   Greatest variance by any projection of the data comes to lie 

on the first coordinate 
   Second greatest variance on the second coordinate etc. 
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Principal Components Analysis 

   Aims 
1.  Find a set of K orthogonal vectors in data space accounting for as 

much of the data’s variance as possible 
2.  Projection of data from original D-dim space to K-dim space 

spanned by these vectors 
3.  Retain as much of the intrinsic information in the data as possible 

   Results 
   Typically M<<N  reduced data much easier to handle in 

searching for clusters 
   Guarantees in terms of minimizing least squares error in the 

new approximation 
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Why preserve variance of data? 

   Selecting for vectors spanning the data in the directions of highest 
variance 

   Equivalent to maximizing the information content of output projection 
where it has a gaussian distribution 

   Information Theory 
   Shannon entropy quantifies the expected value of information contained in 

a message 

   Which for a gaussian is: 

   Entropy or information content depends on variance of data 
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Example 
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Derivation 

   Consider N data points x1,…,xN in RD 
   D x N matrix X 

   We wish to find an orthogonal linear mapping onto a lower dimensional 
subspace RK: RD RK such that the variance in of the data in the new 
space is maximal 

   Mapping given by D x K matrix U with UTU = Ik  
   Columns of U are orthogonal and have unit length 

   Mapping is given as y = UTxn
 

   Mean of projected data given by  
   Variance of projected data is: 

   Total variance: 

Neuronale Netze - Prof. Waibel 

U
T
x

1

N
U

T
x
n
!U

T
x( )

n

" U
T
x
n
!U

T
x( )

T

=U
T
SU S =

1

N
x
n
! x( )

n

" x
n
! x( )

T

trace U
T
SUU

T
SU( ) 1( )



Institut für Anthropomatik, Interactive Systems Lab 

Derivation (Cont.’d) 

   We can also find the projection U onto RK s.t. the mean squared 
distance between data and its projection back from the new space is 
minimum 

   Center the data first by subtracting a matrix of columns of means 
   Then minimize: 

   This measure is equivalent to: 

   Using trace(AB) = trace(BA) and UUT being idempotent 
   Thus maximize 
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PCA Algorithm (Informal) 

  First principal component u1 taken along direction 
of maximum variance 

  Second principal component u2 lies in 
subspaceperpendicular to the first 
   Taken as direction of maximum variance in this 

subspace 
  Third principal component taken in direction of 

max. variance in subspace perpendicular to both 
u1 and u2 
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PCA Algorithm 

   Computation of principal components ui 
   The minimization of (1) and maximization of (2) are equivalent to setting 

the principal components to the K eigenvectors corresponding to the K 
largest eigenvalues of the sample covariance matrix S 

   For centered data this reduces to finding the eigenvectors of C: 
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PCA Algorithm Proof 
   Proof for kth principal component: 

   Variance along direction of a unit vector x: 

   Where xα is the component of x along the eigenvector cα belonging to the 
eigenvalue λα of C 

   Take eigenvalues in decreasing order: 
   λ1≥λ2≥…≥λN  where λ1=λmax 

   Assume princpal components 1 to k-1 are along the first k-1 eigenvector 
directions (Induction) 

   uk is constrained to be perpendicular to these directions 
   Therefore x1…xk-1 = 0 
   Maximize σx

2 subject to this condition with |x|=1 and thus Σαxα2=1 

   Therefore the kth principal component is along the kth eigenvector 
   Further, σx

2=λk when x is along uk 
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Time for computation 

  Principal computational cost is from computation of 
eigenvectors 

  We could compute a full singular value 
decomposition (SVD) giving all eigenvectors 
   ~O(D3) 

  We could iteratively calculate each next largest  
eigenvector: 
   ~O(KD2) 
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DEMO 2 
Dimensionality Reduction with PCA 
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K-MEANS CLUSTERING 
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Cluster Analysis 

  Group collections of objects into subsets such that those 
within each cluster are more closely related to one another 
than objects assigned to different clusters 

   Used to form descriptive statistics 
   Ascertain whether or not data consists of a set of distinct 

subgroups 

   Depends on notion of degree of similarity between objects 
   i.e. a way to find similarities in data 
   Types of clustering algorithms*: 

   Combinatorial 
   Mixture Modeling 
   Mode seekers 
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Combinatorial Clustering 

   Assume N observations x1,…xN 

   Suppose a fixed number of clusters K < N 
   Each cluster assigned a label: k in {1, … , N} 
   (Typically) each observation belongs to only one cluster 

   This implies a mapping k=C(i) 
   We seek the mapping C*(i) that minimizes a loss function based on 

dissimilarities 

   Aim is to partition the data into K clusters 
   Result is a partitioning of the data space into Voronoi cells 
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Loss Functions for Clustering 

   Within-cluster or intra-class scatter 
   Characterizes closeness of 

observations within the same 
cluster 

   Total scatter: 

   Decomposes to:  

   Interclass scatter: 

   Minimize W(C) is equivalent to 
maximizing B(C) 
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508 14. Unsupervised Learning

required goal (details below), based on the dissimilarities d(xi, xi′) between
every pair of observations. These are specified by the user as described
above. Generally, the encoder C(i) is explicitly delineated by giving its
value (cluster assignment) for each observation i. Thus, the “parameters”
of the procedure are the individual cluster assignments for each of the N
observations. These are adjusted so as to minimize a “loss” function that
characterizes the degree to which the clustering goal is not met.

One approach is to directly specify a mathematical loss function and
attempt to minimize it through some combinatorial optimization algorithm.
Since the goal is to assign close points to the same cluster, a natural loss
(or “energy”) function would be

W (C) =
1

2

K∑

k=1

∑

C(i)=k

∑

C(i′)=k

d(xi, xi′). (14.28)

This criterion characterizes the extent to which observations assigned to
the same cluster tend to be close to one another. It is sometimes referred
to as the “within cluster” point scatter since
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or
T = W (C) + B(C),

where dii′ = d(xi, xi′). Here T is the total point scatter, which is a constant
given the data, independent of cluster assignment. The quantity
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is the between-cluster point scatter. This will tend to be large when obser-
vations assigned to different clusters are far apart. Thus one has

W (C) = T − B(C)

and minimizing W (C) is equivalent to maximizing B(C).
Cluster analysis by combinatorial optimization is straightforward in prin-

ciple. One simply minimizes W or equivalently maximizes B over all pos-
sible assignments of the N data points to K clusters. Unfortunately, such
optimization by complete enumeration is feasible only for very small data
sets. The number of distinct assignments is (Jain and Dubes, 1988)

S(N,K) =
1

K!

K∑

k=1

(−1)K−k

(
K

k

)
kN . (14.30)

For example, S(10, 4) = 34, 105 which is quite feasible. But, S(N,K) grows
very rapidly with increasing values of its arguments. Already S(19, 4) "
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K-means algorithm (Lloyd’s Algorithm) 

   Finding C*(i) by enumeration is too time-consuming 
   Instead use iterative greedy descent 

   Convergence to a local optima 
   Dissimilarity measure  

   Choose Euclidean distance: 

   Minimize 

   Where:  
   i.e. minimize W(C) by assigning observations to clusters to minimize 

average dissimilarity of observations from cluster mean 
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14.3 Cluster Analysis 509

1010, and most clustering problems involve much larger data sets than
N = 19. For this reason, practical clustering algorithms are able to examine
only a very small fraction of all possible encoders k = C(i). The goal is to
identify a small subset that is likely to contain the optimal one, or at least
a good suboptimal partition.

Such feasible strategies are based on iterative greedy descent. An initial
partition is specified. At each iterative step, the cluster assignments are
changed in such a way that the value of the criterion is improved from
its previous value. Clustering algorithms of this type differ in their pre-
scriptions for modifying the cluster assignments at each iteration. When
the prescription is unable to provide an improvement, the algorithm ter-
minates with the current assignments as its solution. Since the assignment
of observations to clusters at any iteration is a perturbation of that for the
previous iteration, only a very small fraction of all possible assignments
(14.30) are examined. However, these algorithms converge to local optima
which may be highly suboptimal when compared to the global optimum.

14.3.6 K-means

The K-means algorithm is one of the most popular iterative descent clus-
tering methods. It is intended for situations in which all variables are of
the quantitative type, and squared Euclidean distance

d(xi, xi′) =
p∑

j=1

(xij − xi′j)
2 = ||xi − xi′ ||2

is chosen as the dissimilarity measure. Note that weighted Euclidean dis-
tance can be used by redefining the xij values (Exercise 14.1).

The within-point scatter (14.28) can be written as

W (C) =
1

2

K∑

k=1

∑

C(i)=k

∑

C(i′)=k

||xi − xi′ ||2

=
K∑

k=1

Nk

∑

C(i)=k

||xi − x̄k||2, (14.31)

where x̄k = (x̄1k, . . . , x̄pk) is the mean vector associated with the kth clus-

ter, and Nk =
∑N

i=1 I(C(i) = k). Thus, the criterion is minimized by
assigning the N observations to the K clusters in such a way that within
each cluster the average dissimilarity of the observations from the cluster
mean, as defined by the points in that cluster, is minimized.

An iterative descent algorithm for solving
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K-means algorithm (Cont.’d) 

   Minimize W(C) with respect to class assignement C(i) and means 
   Perform cyclic descent: 

1.  Fix means, optimize W(C) w.r.t. C(i) 
2.  Fix C(i), minimize W(C) w.r.t. means 
3.  Repeat until no change in class assignment or means 

   Lloyd’s Algorithm: 
1.  Classify: Assign each observation i  to the nearest mean: 

2.  Recenter: For each class k, compute a new centroid as the mean of the 
updated class assignments: 

3.  Repeat until stopping criteria fulfilled 
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DEMO 3 
K-Means 

Neuronale Netze - Prof. Waibel 



Institut für Anthropomatik, Interactive Systems Lab 

DEMO 3B 
K-Means Matlab Demo 
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Analysis 
Figure 6 – Mélange de deux gaussiennes concentriques
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Figure 7 – Classification par l’algorithme CEMI (initialisation avec loi uniforme)
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   K-means seeks to make the size of each cluster 
approximately the same  

  Membership based on location of centroids 
   Number of centers fixed in advance – what number? 

   Minimize Schwarz Criterion: W(C)+λmklog(R) 

également, toujours avec l’exemple de l’algorithme CEMIV, que la diminution de perfor-
mance entre le cas volumes semblables et le cas volumes très différents est d’autant plus
faible que les proportions sont très différentes.

–

Classification par algorithme Kmeans - illustration
On visualise des exemples de classification par algorithme kmeans,

!!" !!# !" # " !# !" $# $"
!!#

!"

#

"

!#

!"

$#

(a) Chevauchement faible

!!" !# " # !" !# $" $# %"
!!#

!!"

!#

"

#

!"

!#

(b) Chevauchement moyen

!!" !#$ !#" !$ " $ #" #$
!#$

!#"

!$

"

$

#"

%

&

(c) Chevauchement fort

Figure 17 – Quatre exemples de classification par algorithme Kmeans - chevauchement faible
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Convergence 

   Theorem: During the course of the k-means algorithm, the 
loss function monotonically decreases 

   Proof 
   Let µ1

(t),…, µk
(t) be the k centroids at iteration t 

   Let C1
(t),…,Ck

(t) be the clusters at iteration t 
   Step 1 assigns each data point to its closest center, therefore: 

   loss(C1
(t+1),…,Ck

(t+1); µ1
(t),…, µk

(t)) ≤ loss(C1
(t),…,Ck

(t); µ1
(t),…, µk

(t))  
   Step 2 re-centers the data at its mean, giving another reduction in 

loss: 
   Because loss(C;µ) = loss(C;mean(C)) + |C|||µ-mean(C)||2 

   loss(C1
(t+1),…,Ck

(t+1); µ1
(t+1),…, µk

(t+1)) ≤loss(C1
(t+1),…,Ck

(t+1); µ1
(t),…, µk

(t))  
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Extension – Fuzzy K-Means 

  Developed by Dunn in 
1973 

  Continuous degrees of 
belonging to classes 

  Minimize fuzzy intra-
class distances 

   Algorithm*: 
1.  Choose initial cluster 

prototypes 
2.  Compute degree of 

membership for all x in all 
clusters k: 

3.  Compute new centers 

4.  Repeat 2 & 3 
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DEMO 4 
Fuzzy k-means 
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GMM vs K-Means 

  Replace means (centroids) with gaussian mixtures 
   (µk,Σk) 

  Expectation-maximization algorithm for training 
   Similar to k-means algorithm 
   Solve problem with hidden information 

  Classification may be done by assigning sample to 
closest mean 

  No strict sense of cluster membership 
  K-means equivalent to using spherical covariance 

matrices of equal size for centroid 
  K-means could be used to initialize clusters for GMM 
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EM Algorithm for GMM 

   Coordinate ascent 
   Related idea of partial membership (think fuzzy k-means) (class 

membership probability) 
   Intialization: Assume initial  

p(k|i)(0), µk
(0), and Σk

(0) 

   E-Step: Update membership probabilities 

   M-Step: Update Gaussians and prior probabilites 
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GMM Example 
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VECTOR QUANTIZATION 
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Vector Quantization (VQ) 

  VQ Theory: 
   Approximate the data space with a smaller number of 

vectors  
   Categorize a set of input vectors x into M classes 
   Each class has an associated prototype vector 

   Set of all prototype vectors is called a codebook 
   Represent any vector by its class 

   Finding appropriate class: 
   Identify nearest prototype vector 

   Similar to competitive learning: 
   Ui are prototype vectors 
   Find class by winner: 
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Applications of VQ 

  Multimedia 
compression for 
storage and 
transmission 

  Dimensionality 
reduction 

  Classification 
   Ex.: Tokenization of 

speech frames 

Encoder-Decoder Model 
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Encoder 

Input vector 
x 

Reconstructed Vector 
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Decoder 

Code 
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Basic VQ Training and Classification 
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Clustering 
Algorithm 
(k-means) 

Codebook 
M=2B 

vectors 

Quantizer 

Training 
vectors 

(v1, v2, …, vL) 

d( . , . ) 

d( . , . ) 

Input vectors Codebook 
indices 
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Voronoi Regions 
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Derivation of VQ Algorithm 

   Distortion measures d 
1.  Most common is squared-error: 

2.  Itakura, Saito, and Chaffee 

   Optimality 
   Let X = (X0, … , Xk) 
   Expected distortion with respect to underlying distribution: 

   D(q) = E{ d(X,q(X)) } 
   Given quantizer q with codebook vectors U = { ui ; i=1, …, M } yielding a 

partition S = { Si ; i= 1, …, M } 

   N-level quantizer is optimal if it minimizes the expected distortion 
   Result is k-means algorithm 
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Iterative VQ Algorithm 

   Can design M-vector codebook in 
stages 

   Procedure 
   First a 1-vector codebook 
   Split to initialize search for 2-

vector 
   Continue splitting until M-vector 

codebook 
   Algorithm 

1.  Design a 1-vector codebook U1 = 
u1 

2.  Double size of codebook by 
splitting Un according to the rule: 
1.  Un

+=Un(1+ε) 
2.  Un

-=Un(1-ε) 
3.  Use the K-means algorithm to 

get the best centroids for the two 
codebooks 

4.  Merge Un
+ and Un

- to make Un+1
 

5.  Repeat steps  2 through 4 
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Find Centroid 

Split each centroid 
D’=0 

Classify 
vectors 

Find centroids 

Compute D 

D’=D 

D-D’<δ 

m<M m=1 

YES NO 

NO 

STOP 

YES 
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Supervised SOM 

  SOM is typically an unsupervised process 
  Classification accuracy can be improved if class 

information used in the learning phase: 
  Form input vectors of two parts: 

   xs the data 
   xu the class information 
   x = [ xs

T , xu
T ]T then used as input to SOM 

  Enhanced class-separation 
  Recognition phase: 

  Only the xs part is compared with weights 
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LEARGNING VECTOR 
QUANTIZATION 
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Learning Vector Quantization 

   Kohonen suggested a supervised form of VQ called LVQ 
   Class of related algorithms: LVQ1, LVQ2, LVQ3, and 

OLVQ 
   VQ and SOM are unsupervised clustering and learning 
   LVQ uses supervised learning, but with no spatial order of 

codebook vectors 
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Optimal Decision 

  Optimal decision discussed in framework of Bayes theory 
of probability 

   Assume all samples of x are derived from a finite set of 
classes { Sk } with overlapping distributions 

   P(Sk) : a priori  probability of classes Sk 

   p(x | x in Sk) : conditional prob. Density of x on Sk 

   Discriminant functions: 

   Rate of misclassification minimized if a sample x is 
classified by: 
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LVQ Approach 

  Approach: 
  We assign a subset of codebook vectors to each 

class Sk 
  Then we search for the codebook vector mi closest 

to x 
  x is classified as same class as closest mi 
  Only codebook vectors near edge of class borders 

are important 
  A good approximation of p(x | x in Sk) is not necessary 

everywhere 
  Place the mi into signal space to minimize average 

expected misclassification probability 

Neuronale Netze - Prof. Waibel 



Institut für Anthropomatik, Interactive Systems Lab 

LVQ1 

   Assume several codebook vectors assigned to each class of x values 
and that x is assigned the class of the nearest mi 

   Let the index of the winning codebook vector c be: 

   Let x(t) be an input sample 
   Let mi(t) be the sequential values of the mi in the discrete-time domain 
   Start with properly defined initial values 
   Apply reward-punishment 

learning rule for each x: 
   Samples applied 

cyclically 
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LVQ1 – Derivation 

  Assume we want to 
approximate a density 
function f(x) with the LVQ 

  Let optimal decision 
(Bayesian) borders be 
defined by equations (I) 
and (II) (previous slide) 
   These borders divide 

signal space into class 
regions Bk s.t. 
misclassification is 
minimized 

   f(x) has the form: 
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LVQ1 – Derivation 

   Use VQ to define point density of m approximating f(x)  
   Optimal values found by minimizing average expected quantization 

error E 

   Only winner should be updated: 
   Gradient step: 

   Replace f(x) with p(x) 
   With some derivation: 

   Where r is the runner-up class 
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LVQ1 – Derivation 

   Rewrite α(t)=2λ: 

   Notes: 
   In (III) the « punishment » correction made every time x miscalssified 
   In (IV) it is made only if x is in the runner-up class 
   If x in neither class, no change is made 
   LVQ2 and LVQ3 are closer to (IV) than LVQ1 
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OLVQ1 

   Determine the optimal learning correction factor α(t) for fastest 
convergence 

   Derivation 
   Express (III) in the form 
   mc(t+1) = [ 1 – s(t)αc(t) ]mc(t)+s(t)αc(t)x(t) 

   where s(t)=+1 if classification is correct, and s(t)=-1 if incorrect 
   mc(t+1) contains a trace of x(t) 
   Traces of earlier x(t) are contained in the term mc(t) 
   Magnitude of last trace of x(t) scaled by factor αc(t) 
   During this step the trace of x(t-1) has become scaled down by 

[ 1 – s(t)αc(t) ] αc(t-1) 
   Stipulate identical scaling: αc(t) = [ 1 – s(t)αc(t) ] αc(t-1) 
   Hold for all t, induction: all traces collected up to time t of earlier x(t) will be 

saceld by an equal amount at the end 
   Optimal values of α(t) determined by recursion: 
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LVQ2 

   Differentially shift the decision borders toward the Bayesian 
limits 

   Identical classification decision with LVQ1 
   Difference(s): 

1.  Two codebook vectors mi and mj updated simultaneously 
1.  mi and mj are nearest neighbors of x 

2. x must fall into a « window » defined around midplane of mi and mj 
   Assume di and dj are Euclidean distances of x from mi and mj 
   x falls in a window w if 

   Window of 0.2 to 0.3 is recommended 
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LVQ2.1 

   Improvement over LVQ2 
   Allows either mi or mj to be the closes codebook vector 

   Where:  
   mi and mj are the two closest codebook vectors to x, 
   x and mj belong to the same class 
   x and mi belong to different classes 
   x must fall into the ‘window’ 
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LVQ3 

   Improvement over LVQ2 
   Introduce correction to ensure that mi continue approximating the class 

distributions (f(x)), at least roughly 
   Algorithm: 

   Where: 
   mi and mj are the two closest codebook vectors to x 
   x and mj belong to the same class 
   x and mi belong to different classes 
   x falls into the window 
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Differences between LVQ1, LVQ2, and LVQ3 

   LVQ1 and LVQ3 are more robust 
   Codebook vectors assume stationary values over extended 

learning periods 

   LVQ1 can be optimized for quick convergence 
   LVQ2: Relative distances of codebook vectors from class 

borders optimized 
   No guarantee of optimal vector placement to describe forms of 

class distributions 
   Therefore use a small value of learning rate and limited number of 

training steps 
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Initialization of Codebook Vectors 

   Iterative assignment 
   Due to fact that class distributions are unknown 
   Final placement of codebook vectors not known until end of learning 
   Distance and optimal numbers cannot be pre-determined 

   Practical step: 
   Start with same number of codebook vectors in each class 
   Upper limit to total number of codebook vectors: time and compute power 

available 
   Determine min. number for codebook vectors per class: 

   Medians of shortest distances between codebook vectors should be 
somewhat smaller than the standard deviations of input samples in all 
respective classes 

   Initial values of codebook vectors: 
   Use first samples of training data picked from respective classes 
   These samples must pass a K-Nearest-Neighbor test of tentaive 

classification 
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Learning & Stopping 

Optimal Learning 
   Begin learning with OLVQ1 

for fast convergence 
   # steps: ~30 to 50 times total 

number of codebook vectors 

   Continue with other 
algorithms with a low initial 
learning rate 

Stopping Rule 
   NN algorithms may 

« overlearn » 
   Over-specialization to the 

data 
   As with NN: 
   Divide data into training, 

validation, and test sets 
   Test against validation set 

after every training iteration 
   Stop training using some 

heuristic on the performance 
on the validation set 
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SUMMARY 
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Summary 

  SOM 
   Dimensionality Reduction 
   Spatial Representation 
   Unsupervised Competitive 

Learning 

  PCA 
   Dimensionality Reduction 
   Spatial Representation 

  VQ 
   Uses K-Means algorithm 
   Finding prototypes from 

data 

  K-Means 
   Constrained case of EM 

algorithm for GMM 
  Supervised SOM 

   Unsupervised learning 
using labels 

  LVQ 
   Supervised learning 

for VQ 
   Finding prototypes from 

data 
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APPLICATIONS 
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Application: Transcription of Continuous 
Speech 

   Computation of Short-time Cepstrum 
   Elimination of peaks due to harmonics 

   Conversion of Cepstra to Quasiphonemes 
   LVQ 

   Used to assign an acoustic label every 10ms 
   Correct for coarticulation effects 

   Use context-depended quasiphoneme grammar 
   DFC --- Dynamically Focusing Context 

   Merge quasiphones to phonemes / Decoding Quasiphone Sequences into 
Phones 
   Voting 

   Consider n successive labels 
   Determine meta-label by majority of these n labels 
   Label the n labels with this meta-label 
   Heuristic rules to ensure no overlap of decision, proper number of phonemes 

   HMM 
   Dynamically Expanding Context 

   Symbolic method for correcting phonemic errors and translate phonemes to 
orthographic text 
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Application: Transcription of Continuous 
Speech 
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Cepstrum LVQ 

DFC Voting DEC 

HMM 

   Results: 
   Three Finnish speakers 
   Four repetitions of a set of 311 words 

   Three repetitions for training, one for testing (leave-one-out principal) 
   95.6% Correctness 
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Application: VQ For Speech Compression 

  Assume we require a 
codebook with about 
1024 unique spectral 
vectors 
   25 variants for each of the 

40 basic speech units 
   Need 10-bit number to 

represent an arbitrary 
spectral vector 

  Assume a rate of 100 
spectral vectors per 
seond 

  Then a total bit rate of 
1000 bps is required to 
transmit a speech 
signal 

  This is about 1/16th the 
rate for a non-
compressed signal 

  VQ Representation of 
speech can be very 
efficient 
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Application: VQ for Speech Compression 

Advantages 
   Reduced storage space 
   Reduced computation for 

determining spectral 
similarity (lookup table) 

   Recognition through 
discrete representation 
possible 

Disadvantages 
   Inherent spectral distortion 

   Quantization error 
decreases with size of 
codebook 

   Storage for codebook 
vectors is often non-trivial 
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Application: Spoken Language Identification 

  Design a system for 
identifying the language 
of a clip of speech 
based on prior 
examples of languages 

  Supervised learning: 
train classifier with 
speech representing 
two or more languages 

  Tokenize speech (VQ) 
  Create « spoken 

documents » 
  Use text categorization 

techniques to classify 
each document (PCA) 
   Projection into lower-

dimensional « concept 
space » 

  Classification 
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Example Application: Spoken Language 
Identification 
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Classification (ANN) 
Determine language of testing documents 

LSA  (PCA) 
Create “spoken documents,” use SVD to project data into “concept space” 

Tokenization (VQ) 
Convert speech clips to sequences of symbols 

Data Collection 
Divide speech data into training and testing, create speech clips 
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Example Application: Spoken Language 
Identification 

   Division of data into training and testing set 
   Creation of spoken documents 

   Creation of 30-second clips (documents) 
   45 millisecond frames 
   Computation of linear prediction coefficients (LPC) cepstrum 
   6-bit VQ: 64 centroids  64 symbols 

   K-means clustering on 5 minutes of randomly selected speech from each language 
   Computation of symbolic co-occurrence statistics 

   4094 Bigrams 
   Term document matrix 

   Training: 4094x1400 
   Testing: 4094x400 
   Weighting 

   Principal Components Analysis  projection into concept space 
   Reduces noise and sparsity 
   Eases comparisons 

   Training of classifiers and testing 
   Artificial Neural Network, K-nearest neighbor, Mean-similarity 
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