
On-line Recognition of Handwritten
Mathematical Symbols

Bachelor’s Thesis of

Martin Thoma

At the Department of Informatics
Institute for Anthropomatics and Robotics (IAR)

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

School of Computer Science
Interactive Systems Lab (ISL)

Carnegie Mellon University (CMU)
Pittsburgh, United States

Reviewer: Prof. Dr. Alexander Waibel
Second reviewer: Dr. Sebastian Stüker
Advisor: Kevin Kilgour
Second advisor: Prof. Dr. Florian Metze

Duration: June 2014 – November 2014

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, 07.11.2014

. .
(Martin Thoma)

Acknowledgement

Daniel Kirsch published the data collected with Detexify under the ODbL.1 This dataset
made it possible to evaluate many algorithms. Thank you Daniel!

My advisors Kevin Kilgour and Sebastian Stüker told me to make use of GPUs which
boosted neural network training a lot. Thank you!

The StackExchange community helped me with very specific questions I had when I got
problems with my implementation (StackOverflow) or regarding LATEX (tex.stackexchange).
Especially David Carlisle, Enrico Gregorio and percusse helped me to understand how
LATEX works, to get some of the diagrams to compile and helped me with a formulation in
the introduction. Thank you!

Lara Martin and Anna Blomley helped me to notably improve the language in the first
two chapters and the last chapter. It is now much easier to read and sounds much better.
Additionally, I’ve learned a little bit about punctuation. Thank you, Lara and Anna!

The Baden-Württemberg Stiftung and interACT gave me the great possibility to write
this bachelor’s thesis at Carnegie Mellon University. Thank you!

1https://github.com/kirel/detexify-data

v

https://github.com/kirel/detexify-data

vi

This work can be cited the following way:

@Misc{Thoma:2014,

Title = {On-line Recognition of Handwritten Mathematical Symbols},

Author = {Martin Thoma},

Month = {11},

Year = {2014},

School = Karlsruhe Institute of Technology,

Address = "Karlsruhe, Germany",

Type = "{B.S. Thesis}"

Keywords = {handwriting recognition; on-line; machine learning;

artificial neural networks; mathematics; classification;

supervised learning; MLP; multilayer perceptrons; hwrt;

write-math},

Timestamp = {2014.06.07},

Url = {http://martin-thoma.com/write-math}

}

A DVD with a digital version of this bachelor’s thesis and the source code as well as the
used data is part of this work.

vi

Abstract

Finding the name of an unknown symbol is often hard, but writing the symbol is easy.
This bachelor’s thesis presents multiple systems that use the pen trajectory to classify
handwritten symbols. Five preprocessing steps, one data multiplication algorithm, five
features and five variants for multilayer Perceptron training were evaluated using 166 898
recordings which were collected with two crowdsourcing projects. The evaluation results
of these 21 experiments were used to create an optimized recognizer which has a TOP1
error of less than 17.5 % and a TOP3 error of 4.0 %. This is improvement of 18.5 % for
the TOP1 error and 29.7 % for the TOP3 error.

vii

Contents

1. Introduction 1
1.1. Symbols, Glyphs and LATEX Codes . 2
1.2. MathML and LATEX . 2
1.3. Steps in Handwriting Recognition . 3
1.4. Limitations of Single-Symbol Recognition 3

2. Related Work 5

3. Domain Specific Classification Steps 7
3.1. Data . 7

3.1.1. Choice of Symbols . 9
3.1.2. Problems . 10
3.1.3. Data Cleansing . 12

3.2. Preprocessing . 13
3.2.1. Normalization: Scaling, Shifting and Resampling 13
3.2.2. Noise Reduction . 14
3.2.3. Order of Preprocessing Steps . 17

3.3. Data Multiplication . 18
3.4. Features . 18

3.4.1. Local Features . 18
3.4.2. Global Features . 19

4. Domain Independent Classification Steps 21
4.1. Feature Enhancement . 21
4.2. Greedy Time Warping . 22
4.3. The Perceptron Algorithm . 22
4.4. Multilayer Perceptron . 24

4.4.1. Notation . 25
4.4.2. Activation Functions . 26
4.4.3. Evaluation . 26
4.4.4. Supervised Training with Gradient Descent 27
4.4.5. Batch, Mini-Batch and Stochastic Gradient Descent 28
4.4.6. Momentum . 28
4.4.7. Newbob Training . 28
4.4.8. Denoising Auto-encoder . 29
4.4.9. Pretraining . 29
4.4.10. Regularization . 29

5. Implementation 31
5.1. write-math.com . 31
5.2. Handwriting Recognition Toolkit . 32
5.3. Experiments . 34

ix

x Contents

5.4. Neural Network Implementation . 34

6. Evaluation 37
6.1. Influence of Random Weight Initialization 38
6.2. Preprocessing Algorithms . 38

6.2.1. Scale and Shift . 38
6.2.2. Wild Point Filter . 40
6.2.3. Stroke Connect . 40
6.2.4. Weighted Average Smoothing . 42
6.2.5. Douglas-Peucker Smoothing . 42

6.3. Data Multiplication . 43
6.4. Features . 43

6.4.1. Re-curvature . 44
6.4.2. Stroke Center Point . 45
6.4.3. Ink . 45
6.4.4. Stroke Count . 46
6.4.5. Aspect Ratio . 46

6.5. System A: Greedy Time Warping . 47
6.6. System B: Multilayer Perceptrons . 47

6.6.1. Baseline Testing . 47
6.6.2. Execution Time . 48
6.6.3. Learning Rate . 48
6.6.4. Momentum . 50
6.6.5. Pretraining . 50
6.6.6. Newbob Training . 51

6.7. Optimized Recognizer . 53
6.8. User Interviews . 54
6.9. Evaluation Summary . 54

7. Conclusion 57
7.1. Summary . 57
7.2. Future Work . 58

Bibliography 59

Glossary 65

Appendix 67
A. Algorithms . 67
B. Tables . 71

B.1. Evaluated Symbols . 77
B.2. Evaluation Results . 81

C. Figures . 85
C.1. Scatterplots of Features . 85

D. Creative Users . 86
E. Raw Data Example . 87
F. HWRT Handbook . 90
G. Website . 92

x

1. Introduction

Euclid’s Elements is one of the oldest mathematical texts that is still available. It was
written in 300 BC by the ancient Greek mathematician Euclid. At that time, it was not
possible to replicate information fast. Since a person had to copy the book by hand, its
creation was relatively simple regarding the technology being used, but it was difficult to
spread information.

The invention of the printing press changed this, and in 1482, Euclid’s Elements was first
set in type. By using a plate, ink, and a press, one could easily make hundreds of copies.
However, the creation of the plate was difficult. It was made with a combination of movable
metal types that could be reused for other texts and wooden templates for formulas and
drawings. In summary, it can be said that the printing press made it easy to replicate
information once the plate was created, but creating it was hard.

The creation of the original text became easier with the invention and evolution of com-
puters, and the possibilities for replication became cheaper and more effective. With
computers, one can easily restructure chapters with just a few keystrokes. Words, and
even whole paragraphs, can simply be inserted or deleted wherever the author wants.
Modern, low-priced printers can easily print 20 pages per minute, and the Internet can
be used to spread information on a scale that was unimaginable before. TEX, a language
that allows typesetting of almost arbitrary content was initially released by Donald Knuth
in 1978. It got extended by LATEX and is still available for free. It offers to people the
possibility, not only to create texts themselves, but also typeset them to a high standard
without knowledge of typesetting algorithms.
Despite all of this progress, there is still a lot of potential to improve the process of writ-
ing. LATEX code is written using a keyboard in a combination of Latin script and special
characters like {, }, and \ to form commands such as \begin{equation} or \alpha. One
tedious task that all people learning LATEX have to do to find the code for the symbol
they want to write. This can be done by looking in symbol tables. However, as touch
devices become ubiquitous, systems can be created to let users write a symbol, record it,
and output the LATEX command of the recognized symbol. This task of finding a proper
textual representation of a given handwritten symbol is called handwriting recognition
(HWR). If the recognition software only uses the pixel image of the recording, it is called
off-line HWR. On-line HWR can use information from how the symbols were written,
which includes the pen trajectory.

On-line HWR can use techniques of off-line HWR, but studies have shown that on-line
information notably improves recognition rates and simplifies algorithms [BN72, GAC+91].

1

2 1. Introduction

This thesis is about on-line HWR. The type of machine learning task is a classification
task, meaning that the set of symbols which should be recognized is provided.

1.1. Symbols, Glyphs and LATEX Codes

A symbol is an atomic semantic entity which has exactly one visual appearance when it is
handwritten. Examples of symbols are: α,∝, ·, x,

´

, σ, . . . 1

While a symbol is a single semantic entity with a given visual appearance, a glyph is a
single typesetting entity. Symbols, glyphs and LATEX commands do not relate:

• Two different symbols might have the same glyph. For example, the symbols \sum

and \Sigma both render to Σ, but they have different semantics and hence they are
different symbols. Other symbols that have the same or similar glyphs can be found
in table B.2.

• Two different glyphs might correspond to the same semantic entity. An example is
\varphi (ϕ) and \phi (φ): Both represent the small Greek letter “phi”, but they
exist in two different variants. Hence \varphi and \phi are two different symbols.

• Examples for different LATEX commands that represent the same symbol are \alpha

(α) and \upalpha (α): Both have the same semantics and are hand-drawn the same
way. This is the case for all \up variants of Greek letters.

It is also worth noting that LATEX commands are neither always glyphs nor always single
symbols. The LATEX command \ll renders to �, which are two symbols. More examples
of LATEX commands that generate two or more symbols can be found in table 3.1 on page 9.

1.2. MathML and LATEX

The task of symbol recognition is independent of the recognized symbol’s output language
as long as the output language is powerful enough.

Both MathML and LATEX can be used to express a lot of formulas. The difference between
them is how they were meant to be used. LATEX was developed as an input language, that
is, people should be able to easily write what they want to express. MathML, on the other
hand, is an XML format and hence is easier for programs to parse.

Converters can transform one format into the other. A simple LATEX-to-MathML converter
can be found at http://www.mathtowebonline.com and a MathML-to-LATEX converter is
given by XSLT at http://code.google.com/p/web-xslt/source/browse/trunk/pmml2tex/.

LATEX is used in this bachelor’s thesis because it is easier to read. One can expect readers
to understand the LATEX command \varphi but not the Unicode code point \u03C6. As
one aim of this bachelor’s thesis is to provide a symbol recognition system that can be used
to find the code for a hand-drawn symbol, the semantically meaningful output \varphi is
of higher use for the user than \u03C6.

Also, LATEX can be used to express any mathematical formula due to its powerful extension
system. Every common symbol can be expected to be in at least one package, as LATEX
has been around for over 30 years now and — as shown by submissions to arxiv.org —
is still used a lot.

A notable downside of LATEX is that parsing it is hard. Even simple tasks — like checking
if a symbol appears in the rendered output of a given text — is not trivial with LATEX.

1The first symbol is an \alpha, the second one is a \propto.

2

http://www.mathtowebonline.com
http://code.google.com/p/web-xslt/source/browse/trunk/pmml2tex/
arxiv.org

1.3. Steps in Handwriting Recognition 3

1.3. Steps in Handwriting Recognition

One possible way in which handwriting recognizers can work is by performing the following
steps in order to recognize characters, symbols, or words. Not every recognizer uses all of
these steps.

1. Preprocessing: Recorded data is never perfect. Devices have errors and people
make mistakes while using devices. To tackle these problems there are preprocessing
algorithms to clean the data. The preprocessing algorithms can also remove unnec-
essary variations of the data that do not help classify but hide what is important.
Having slightly different sizes of the same symbol is an example of such a variation.
Nine preprocessing algorithms that clean or normalize recordings are explained in
section 3.2.

2. Data multiplication: Learning algorithms need lots of data to learn internal pa-
rameters. If there is not enough data available, domain knowledge can be considered
to create new artificial data from the original data. Ideas for data multiplication in
the domain of on-line handwriting recognition can be found in section 3.3.

3. Segmentation: The task of formula recognition can eventually be reduced to the
task of symbol recognition combined with symbol placement. Before symbol recog-
nition can be done, the formula has to be segmented. As this bachelor’s thesis is
only about single-symbol recognition, this step was not evaluated.

4. Feature computation: A feature is high-level information derived from the raw
data after preprocessing. Some systems like Detexify, which was presented in [Kir10],
simply take the result of the preprocessing step, but many compute new features.
This might have the advantage that less training data is needed since the developer
can use knowledge about handwriting to compute highly discriminative features.
Various features are explained in section 3.4.

5. Feature enhancement: Applying principal component analysis (PCA), linear dis-
criminant analysis (LDA), or feature standardization might change the features in
ways that improve the performance of learning algorithms. Section 4.1 describes
feature standardization.

After these steps, we are faced with a classification learning task which consists of two
parts:

1. Learning parameters for a given classifier. This process is also called training.

2. Classifying new recordings, sometimes called evaluation. This should not be con-
fused with the evaluation of the classification performance which is done for multiple
topologies, preprocessing queues, and features in Chapter 6.

Two fundamentally different systems for classification of time series data were evaluated.
One uses greedy time warping, which has a very easy, fast learning algorithm which only
stores some of the seen training examples. The other one is based on neural networks,
taking longer to train, but is much faster in recognition and also leads to better recognition
results.

1.4. Limitations of Single-Symbol Recognition

The recognition capabilities of single-symbol classifiers have some limitations that multi-
symbol classifiers do not have. There are symbols such as the multiplication dot “·” versus
the point “.”, or zero “0” versus the capital and the small Latin letter “O” and “o” which

3

4 1. Introduction

can be distinguished by context and the availability of a baseline, but are extremely hard if
not impossible, to distinguish without context. For example, a preceding “1” can indicate
if the current symbol is a “0” or an “O”. More examples of symbols that look identical
without context are given in table B.2.

As the design of write-math.com was set up without a ruled writing space, it is impossible
to distinguish symbols that only differ in size or their relative position to a baseline. A
baseline, and some context in terms of size and position, could have been established with
a user interface like the one shown in figure 1.1. However, this was not done for two
reasons: On the one hand, most data which was used is from the Detexify project which
has neither this kind of single-symbol context nor a baseline. On the other hand, users
with mobile devices should not be forced to write at an uncomfortably small size.

g A
Draw here

Figure 1.1.: An example of how the user interface for single-symbol recognition could be
designed. The advantage of this design over a simple empty box is that it gives the user
some context as to how big he should write and where the baseline is. This information
could later be used by a recognizer to distinguish “·” from “.” or “o” from “O”.

4

http://write-math.com

2. Related Work

On-line handwriting recognition has been a field of study since T. L. Dimond developed
a device for reading handwritten characters in 1958 [Dim58]. In the past 56 years, tech-
nology changed a lot. Computers went down in size from hundreds of square meters to
less than half a square meter. The energy consumption and the weight were also notably
reduced. At the same time, computing power grew exponentially. Computers became
available for everybody. Multi-core processors started to spread in the early 2000s, and
more data than ever were produced and stored in the world wide web. Graphics process-
ing unit (GPU)-accelerated computing became usable with the Compute Unified Device
Architecture (CUDA) platform, which was initially released in 2007, boosting the prac-
tical capabilities of neural networks. Combined with the enormous amount of data that
is available through the Internet and services like Amazon Mechanical Turk, it becomes
possible to design systems which learn from large amounts of data.

Meanwhile, there was also progress in the field of on-line handwritten mathematical for-
mulas:

In 1966, G. F. Groner proposed a real-time recognizer that made use of a tablet that had a
time-resolution of 4 ms and an accuracy of about 0.1 mm [Gro66]. The system recognized
symbols by comparing sequences of the directions of strokes with labeled training data
and applying manually-designed tests to features. His system was capable of recognizing
53 symbols, but only 52 symbols were used in the evaluation. The evaluation showed that
the average recognition rate was at 87 %, but the users were instructed on how to use
the system before the evaluation was done. This implies that the way users entered the
symbols was perhaps not always the way they would normally write.

In the following years, a lot of work was done in cursive handwriting recognition. Jaeger,
Manke, and Waibel described in [JMW00, JMRW01] a system that uses a multi-state time
delay neural network (TDNN), which achieved recognition rates of over 90 % with context
bitmaps for individual lowercase letters (a–z), individual uppercase letters (A–Z), or digits
(0–9). Context bitmaps show a 3× 3 bitmap of the proximity of a point.

One of the early works done in on-line handwriting recognition for mathematical formulas
is [BH84]. Their system used a combination of sequence vectors and a feature that was
the ratio of the distance from the starting point to the end point and the symbol height.
Only 35 different symbols were evaluated. With those settings, a recognition rate of 93 %
was achieved.

5

6 2. Related Work

In 1998, A. Kosmala and G. Rigoll designed a system for on-line mathematical handwriting
recognition which was trained to recognize 100 different symbols [KR98]. This included
the 52 lowercase and uppercase letters, 23 mathematical symbols, 11 lower-case Greek
letters, and 6 parentheses. The system was designed to recognize complete formulas,
although the symbols of the formula had to be drawn in a predefined order. It applied
hidden Markov models (HMMs) for symbol segmentation. The data was resampled, but
no other preprocessing was described. A sampled bitmap was used as a feature, as well
as on-line features like the writing direction. One-hundred common mathematical and
physical formulas were used as a training set, and 30 additional formulas as a test set.
They claimed to get recognition rates of 96.3 %. However, this seems to be very high
since in the Competition on Recognition of Online Handwritten Mathematical Expressions
(CROHME) from 2013, the best team achieved recognition rates of 60.36 % and the second
best team achieved recognition rates of 23.40 % as documented in [MVGZ+13]. The first
two competitions, [MVGK+12] and [MVGK+11], also did not receive any submissions that
had recognition rates over 65 %.

Daniel Kirsch used over 1000 symbols in his diploma thesis [Kir10]. He evaluated a very
simple recognition system called Detexify which was — and still is, at the time of this work
— accessible through the web.1 Many people can use the recognition system as nothing
else than a browser and internet access is required, while providing a huge number of
symbols that can get classified. However, in his evaluation, Kirsch used only a randomly-
chosen subset of 100 symbols. He claimed to get a TOP1 error of 26.12 % and a TOP3
error of less than 10 % with standard dynamic time warping (DTW) and other variants of
DTW.

The aim of this work is to build a recognition system that is as accessible as Detexify, but
is faster, can recognize more symbols, and has a higher recognition rate. The presented
system is able to classify 369 symbols. Furthermore, this work contributes to the first
publicly-available dataset for on-line handwriting recognition, with more than 166 898
recordings. This will help to make experiments and different classifiers comparable. The
symbol classifier A (see section 4.2) can be tested on write-math.com, and the comparably
better classifier B (see section 6.7) is currently not publicly available but is planned to be
released in the near future.

1http://detexify.kirelabs.org/

6

write-math.com
http://detexify.kirelabs.org/

3. Domain Specific Classification Steps

Taking a close look at the collected data might give relevant insights into problems one has
to deal with and eventually imagine preprocessing steps that can reduce those problems.
It could also lead to ideas for features that are invariant to variations that occur in the
dataset.

This chapter explains classification steps that are specific for on-line HWR, whereas the
next chapter explains the rather domain independent task of classification of time series
data.

3.1. Data

The data that was used for all experiments was collected with write-math.com and detex-
ify.kirelabs.org (see [Kir10]). write-math.com is a website designed by me for this bache-
lor’s thesis whereas Detexify was created by Daniel Kirsch. Both websites use HTML and
JavaScript to gather data and both websites store the same data, but in a slightly different
data format.

write-math.com makes use of HTML5 canvas elements. Those elements can be used in
combination with JavaScript to track fingers or a mouse cursor touching the canvas, moving
and lifting. Every point is specified by two integer coordinates (x, y). The origin (0, 0) is
at the upper left corner of the rectangular canvas element and x values get bigger to the
right and y values get bigger to the bottom. Figure 3.1a shows such an HTML5 canvas
plane. JavaScript asynchronously triggers events that contain the information where on
the canvas the cursor or finger currently is. Those points are called control points in
the following. For the mouse, the information if the mouse button is currently pressed
down is also available. So when the position is recorded, the stroke-wise segmentation
is automatically given for both, mouse and fingers. A list of such user generated control
points together with the information which points belong to the same stroke and the
information when the point was recorded is called a recording. An example of a recording
is figure 3.1b.

91.93 % of the 166 898 recordings that were used in the evaluation were collected by De-
texify. The recordings are stored in JSON format as a list of strokes. Each stroke consists
of tuples (x(t), y(t), t) where x and y are canvas coordinates and t is a timestamp given in
milliseconds since 1970. An example of a recording in JSON format is in section E.

7

http://write-math.com
http://detexify.kirelabs.org/classify.html
http://detexify.kirelabs.org/classify.html
http://write-math.com

8 3. Domain Specific Classification Steps

x

y
(0, 0)

(0, 1)

(0, 2)

(0, 3)

(0, 4)

(0, 5)

(1, 0)

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(1, 5)

(2, 0)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(2, 5)

(3, 0)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

(3, 5)

(4, 0)

(4, 1)

(4, 2)

(4, 3)

(4, 4)

(4, 5)

(5, 0)

(5, 1)

(5, 2)

(5, 3)

(5, 4)

(5, 5)

(a) HTML5 canvas plane

0

10

14
15 25

30

31

40

41 51 61
68

(b) Recorded sequence of points

Figure 3.1.: On the left side is an HTML5 canvas plane. Each coordinate (x, y) ∈ N2
0 is

one pixel. Every coordinate has to be non-negative and an integer. On the right side is
a visualization of a recording after preprocessing steps that reduced the number of points.
The small and the large points are the control points. The large points are points with an
annotation which indicates the order in which the points were recorded. Point 0 is the first
point that was recorded, point 68 is the last one. Points of one stroke were connected with
straight lines. Figure 3.1b has 4 strokes in total.

The time resolution between points as well as the resolution of the recording depends on
the device that was used. However, most recordings have a time resolution of about 20 ms
and are within a bounding box of a 250 px×250 px square. Figure 3.2 shows how the time
between control points is spread amongst the analyzed data. It shows that one can expect
a time resolution of 50 ms and should eventually treat control points of one stroke that
take longer as errors.

166 898 recordings were collected for the 369 classes which were tested.1

0.0 5.0 10 15 20 25 30 35 40 45 ∞0

14K

28K

42K

56K

70K

4,
21

7

33
,6
18

70
,7
89

52
,9
14

34
,7
16

13
,8
84

5,
25

9

2,
18

8

1,
16

2

65
6

1,
48

0

Average time between control points of a stroke in ms

N
u
m
b
er

of
st
ro
ke
s

Figure 3.2.: More than 98 % of all time values between two control points of the same stroke
are less than 35 ms. More than 73 % are captured faster than in 20 ms.

1Links to those recordings and more are available at martin-thoma.com/write-math.

8

http://martin-thoma.com/write-math

3.1. Data 9

3.1.1. Choice of Symbols

The choice of symbols which the classifier was trained to recognize was directly influenced
by the number of obtained recordings per symbol. None of the 431 symbols with less than
50 recordings were evaluated, although some of them are used in mathematical formulas.

The following symbols or groups of symbols were then removed from the remaining set of
680 symbols:

• Symbols that don’t fit in the context of this work:

– Text mode-only symbols: \MVAt (@), @, \textsurd (√), . . .

– Image-like symbols: \Bat (ý), \Mundus (m)

• LATEX commands that are not symbols as defined before:

– “\big. . . ” variants: \bigoplus (
⊕

), \bigstar (F), \bigcup (
⋃

) . . .

– “\Up” and“\up”variants of Greek letters: \Upsigma (Σ), \uppi (π), \uplambda
(λ), . . .

– “\thick” variants: \thicksim (∼), \thickapprox (≈)

– \dotsb (· · ·), but \dots was evaluated

– \cdotp (·) because it is the same as \cdot (·), except that it is used for punc-
tuation whereas \cdotp is used for the binary math operator.

– \ocircle (}) because it is the same as the included symbol \circledcirc (}).

– Multiple-symbol LATEX commands like \ll (�) as shown in table 3.1. In a
multiple-symbol classifier, these symbol sequences could be detected and re-
placed in a post-classification step.

Search Replace
LATEX Rendered LATEX Rendered

\int\int
´ ´

\iint
˜

\int\int\int
´ ´ ´

\iiint
˝

\int\int\int\int
´ ´ ´ ´

\iiiint
ˇ

<< << \ll �
<<< <<< \lll ≪
>> >> \gg �
>>> >>> \ggg ≫
\int\cdots\int

´

· · ·
´

\dotsint
¯

Table 3.1.: The single-symbol LATEX commands shown above have a pendant which renders
to multiple symbols. A multiple-symbol classifier could search for those recognized patterns
and replace them by a single LATEX command in order to get a better typesetted version
of the text. That reduces the number of classes such a multiple-symbol classifier has to be
able to recognize.

All symbols that were used to evaluate the algorithms are listed in tables B.10 to B.18.
This includes:

a− z Small letters α− ω Small Greek letter →, ←, ⇒, ⇐, ⇔, . . .
A− Z Capital letters A− Ω Capital Greek letters =, ∼, ≡, ≈, . . .
0− 9 Digits +, −, ·, √, ∪, ∩, . . . ⊕, ?, . . .

9

10 3. Domain Specific Classification Steps

(a) ID 288612 (∈) (b) ID 291939 (∀) (c) ID 282212 (|=) (d) ID 262502 (Π)

Figure 3.3.: Examples for missing strokes (problem D2). The classification was added by
the user who created the recording. It is not possible to tell if the captured single point was
the last or the first point of a stroke.

(a) ID 258177 (b) ID 270115 (c) ID 286813 (d) ID 249024

Figure 3.4.: Examples for too long strokes (problem D3) that users probably did not want
to make that long.

3.1.2. Problems

As the data was collected via crowdsourcing it has errors. Human classification errors
are only a problem for model training; a model trained with these might make the same
error as humans made before. Four different types of human classification errors can be
distinguished:

H1 Confusion: Recordings were classified wrong, but the correct class looks similar to
the chosen class, e.g. ε, ε and ∈.

H2 Creativity : Drawings that should not have been entered in the first place were arbi-
trarily classified by the user. Some examples are shown in figure D.3.

H3 Cherry-Picking : Drawings of complete formulas were entered and classified as a class
of a single symbol of that formula.

H4 Manipulation: Obviously wrong classified symbols, e.g. ε that gets classified as α.

Additionally to those human classification errors, there are errors that are caused by the
device or the human who uses it while drawing. Those errors should be considered in
preprocessing:

D1 Wild points: Points that appear randomly anywhere on the drawing plane.

D2 Missing strokes: The user drew a stroke, but only the first point or the last point was
captured. This might happen more often when the user tries to draw small strokes
with his fingers. Examples are shown in figure 3.3.

This problem could be confused with problem D1.

D3 Too long strokes: The user made a stroke much longer than he wanted to. Examples
are shown in figure 3.4.

D4 Hooks: At the beginning or end of a stroke the user makes a hook, which he did not
want to make. Examples are shown in figure 3.5.

D5 Interrupted strokes: Although the user drew one stroke, the stroke is interrupted and
thus recorded as multiple strokes. See figure 3.9a on page 16 for an example.

10

3.1. Data 11

(a) ID 8350 (b) ID 11387

Figure 3.5.: Examples for hooks at the end or the beginning of a stroke that should not be
there (problem D4).

0 20 40 60 80 100 120 140 160 180 200 220 240 260

0

1,000

2,000

3,000

4,000

5,000

ABCDEFGHIJKLMNOPQRSTUVWXYZ→0123456789 παβ
∑
σabcdefghijklmnopqrsuvwxyzΣγΓδ∆ζηθΘεει κκλ

Λ

µνξΞΠρ%τφΦϕχΨωΩ

∂
´

· ≤

≥

<>⊂⊃
⊆

⊇

∝

−+R$–. . .†̋&
#

%

X

r§q∪ ⊕
×
∗

/

⊗

.�±÷
•\]∩∓u∨ �t∧◦	?oZ}n �

�
o

~
C
∏∐

¸

parr&
ffl

!‚

≈

≡

6≡

⊥�_≺�./
��|̀a |=∼ .

=‖'v(
t

∴∵
G

4

∝ �-

2

v
 6=

>
≷.&6E

I
,⇓↓

⇒
↪→

⇐⇒

↘7−→←

=⇒

⇐−→

⇔
7→

↔↗
⇀

	 ��⇒ y
�

;

9�←[� ϑ $⊥∀3>̀~∈
notin

℘∃=
<

@

〈

〉debc[]|
‖

/ JK...
. . .

ℵ∞′∠♦]\ ∅∇[♣♥¬4
√
�̂O

�

♦∅M. .
.

ABCDEFG HLMNOPRSTUXZX1CS

☼
QNZH ´

mean recording time in s

st
an

da
rd

de
vi

at
io

n
in

s

Figure 3.6.: Mean and standard deviation of the recording time of symbols in seconds.
Almost every symbol has a recording time of less than 20 s and a standard deviation of
less than 500 s. The high standard deviation indicates that there are some recordings with
extremely wrong timestamps. Some recordings have a huge gap between two subsequent
control points. The points seemed to be still in order, but the data looked as if the system
clock was changed while the symbol was drawn.

D6 Multiple drawn strokes: Some people draw strokes twice. This introduces new vari-
ants how symbols can be drawn. See figure 3.9d on page 16 for an example.

D7 Wrong timestamps: Some of the data seems to have the wrong time. It seems highly
unlikely that users took over 10 minutes to draw a single symbol, yet alone over a
day. A plot for which the mean recording time and the standard deviation of every
symbol is shown in figure 3.6 and the four most extreme values in table 3.2.

Other problematic user actions are:

O1 Filling areas: Filling areas produces a lot of points. But the order and the number
of those points is arbitrary in contrast to many — eventually all — other strokes.
See figure 3.9b on page 16 as an example for a recording with a filled area.

O2 Strengthened strokes: Sometimes users want to “strengthen” strokes. As with prob-
lem O1, the number of those strengthening points might vary a lot even for a single
user. See figure 3.9c on page 16 as an example for a recording with a strengthened
stroke.

11

12 3. Domain Specific Classification Steps

Symbol Mean std deviation Symbol Mean std deviation

\boxdot 2864 ms 31.76 · 106 \nsubseteq 1994 ms 26.86 · 106

\subsetneq 1199 ms 18.27 · 106 \psi 324 ms 7.04 · 106

Table 3.2.: Mean and standard deviation of the recording time in milliseconds of symbols
that are not shown in figure 3.6.

Figure 3.7.: ∇ written by the user “Marienkaefer”. It is an example where the user expects

the system to recognize something different than the closest LATEX pendant
→
∇.

All recordings that suffered from problems problems H1 to H4 were excluded from the
evaluated dataset. For problem H2, the recording was additionally marked as an image
or as a member of the “trash” class. The trash class was neither used for training nor for
evaluation, but it could be used in future to detect if a user wants to delete a recording he
just drew.

Recordings that were multiple symbols (problem H3) were additionally annotated with
the number of symbols for future complete formula recognition.

Problems D1 to D5 are covered by automatic methods which are explained in section 3.2.
Problem D7 was ignored.

One reason why problem H1 (symbol confusion) and problem H4 (manipulation) are very
difficult to note and to resolve is that users might write something different when they use
handwriting compared to what they use in printed text. One example is the following: In

physics, it seems to be common to write
→
∇ in handwritten text, but use ∇ in LATEX. In

that case, the classifier should recognize figure 3.7 as ∇, although the appearance is closer

to
→
∇.

3.1.3. Data Cleansing

The data was collected by crowdsourcing. There were no restrictions and everybody could
enter data anonymously. In the case of Detexify, where over 91.93 % of the data comes
from, this happened over 4 years.

This means a lot of the data is classified wrong.

In the case of the test set, all recordings were checked manually. But there is too much
data to manually check all recordings. So different techniques were used to automatically
find suspicious recordings.

The greedy time warping classifier, which is explained in section 4.2, was used to find
recordings with a high distance within all recordings a single symbol. The distance of
every recording to every other recording of the same symbol was measured. This means

12

3.2. Preprocessing 13

when a symbol had n recordings, there were n · (n − 1) time warpings done. Then the
recordings were ordered descending by distance. They were reviewed until at least 10
recordings in a row were classified correct.

The global features were used to find outliers. For every global feature in section 3.4,
the mean and the standard deviation of every symbol was calculated. The symbols with
highest standard deviation were examined. For those symbols, the recordings were ordered
descending and reviewed until at least 10 recordings in a row were classified correct.

Neural network classifiers were trained and the errors they made were examined for mis-
classified recordings.

All results in chapter 6 were obtained after the data cleansing steps.

3.2. Preprocessing

Preprocessing in symbol recognition is done to improve the quality and expressive power of
the data. It should make follow-up tasks like segmentation and feature extraction easier,
more effective or faster. It does so by resolving errors in the input data, reducing duplicate
information and removing irrelevant information.

3.2.1. Normalization: Scaling, Shifting and Resampling

Scaling — which is also called size normalization — is done by many handwriting recog-
nition systems, but the way in which size normalization is done varies.
Single-symbol recognizers such as the one presented in [Kir10] scale the data points to fit
into a unit square while keeping their aspect ratio. To do so, the bounding box of the
symbol is taken and everything is scaled according to this bounding box. Afterwards, the
points are shifted to the [0, 1] × [0, 1] unit square. It was shown in [HZK09, Kir10] that
this kind of preprocessing notably boosts classification accuracy.
[GAC+91] shifts the symbol to [−1, 1]× [−1, 1]. That might be better for the training of
neural networks as it might lead to a mean feature value of 0 (see section 4.1 for more
information).
An algorithm that does scaling and shifting to [−0.5, 0.5] × [−0.5, 0.5] while keeping the
aspect ratio is given in pseudocode on page 68. Three implementation variants of the scale
and shift algorithm are explained and evaluated on page 38.

Everything that makes the recording artificially bigger makes scaling less effective. That
includes wild points (problem D1) and hooks (problem D4). Algorithms that can deal
with those problems are described in section 3.2.2.

Another method to normalize data is resampling. This is called stroke length normalization
in [TSW90]. [GAC+91] resampled characters and digits to 81 points each, where different
strokes were connected by “pen-up” segments. They resampled to get points regularly
spaced in arc length, not in time. [JMRW01] also resampled the points to be equidistant
in space, but they used a distance of corpus height

13 . They found an improvement of 5 % with
this preprocessing step. [SGH94] also resampled data to get points regularly spaced in arc
length, but they encoded speed as an extra feature. A simple resampling algorithm that
interpolates strokes linearly and spaces points equidistant in time for a fixed number of
points. Algorithm 2 on page 67 shows this simple resampling algorithm in pseudocode.

13

14 3. Domain Specific Classification Steps

(a) Raw data ID 149550 (b) Raw data ID 138361

Figure 3.8.: Examples of recordings with a dot over the symbol. It is not possible to tell if
that is a wild point or a decoration which was intended by the user.

3.2.2. Noise Reduction

The following list of noise reduction techniques was created by [TSW90] and is still up-to-
date.

• Dot reduction reduces dots to single points. Sometimes multiple points get recorded
although the user wanted to make only a single point, e.g. for one of the following

symbols: ·, ., . . . ,
...,

. . ., i, ∴, ∵. This can be detected by calculating the maximum
distance d two points in a stroke have. If d is smaller than a threshold, then it is a
single point. In that case all points of the stroke get reduced to a single dot. This
dot could be the center of mass of all points in the stroke. The algorithm can be
found in pseudocode on page 68.

• Dehooking is the removal of hooks (see problem D4) which the author did not want
to write. Hooks appear sometimes at the beginning or the end of strokes. Examples
can be seen in figure 3.5. An algorithm for dehooking is described in [HZK09].

• Filtering is the process of removing points by some criteria. Those criteria include:

– Duplicate points as applied in [HZK09, GP93],

– Enforcing a minimal distance between consecutive points [TSW90].

– Maximum velocity / acceleration [Tap87]

– Enforcing a minimal change in direction [TSW90].

Occasionally occuring control points that were generated by device errors are one
reason to apply a filtering preprocessing step. Those points are also called wild points
(problem D1). Filtering wild points might be difficult for humans when the points
could also be decorations as shown in figure 3.8.

One way to detect wild points is by measuring the speed from the last point to the
wild point. If that speed is too high, it can be assumed that it is a wild point.

• Smoothing can be done in at least two ways. An approach that was used quite
often is applying a weighted average [Gro66, Tap87, Ara83]. Algorithm 6 describes
in pseudocode how weighted average smoothing can be implemented.

It takes three weighting parameters θ1, θ2, θ3 ∈ [0, 1] and recalculates the point co-
ordinates of every point pi except the first point p1 and the last point pn like this:

14

3.2. Preprocessing 15

p′i ← θ1 · pi−1 + θ2 · pi + θ3 · pi+1

Another way to do smoothing would be to reduce the number of points with the
Douglas-Peucker algorithm to the most relevant ones and then interpolate those
points. The Douglas-Peucker stroke simplification algorithm is usually used in car-
tography to simplify the shape of roads. The Douglas-Peucker algorithm works
recursively to find a subset of control points of a stroke that is simpler and still
similar to the original shape. The algorithm adds the first and the last point p1 and
pn of a stroke to the simplified set of points S. Then it searches the control point pi
in between that has maximum distance from the line p1pn. If this distance is above
a threshold ε, the point pi is added to S. Then the algorithm gets applied to p1pi
and pipn recursively. Pseudocode of this algorithm is on page 69. It is described as
“Algorithm 1” in [VW90] with a different notation.

• Connecting strokes should be done if problem D5 (see page 10) occurs. This
can be detected by measuring the distance between the end of one stroke and the
beginning of the next stroke. If this distance is below a threshold, then the strokes
are connected.
[GP93] describes that such maliciously disconnected components can get detected
by observing angular continuity and the shortness of distance between two strokes.
The distance between two consecutive strokes (si, si+1) is calculated by measuring
the euclidean distance from the last point of si to the first point of si+1. As this
error seems just to split strokes, but not miss any control point, it might result in
control points of subsequent strokes being very close. So one could also use only the
distance and a distance threshold to determine if two strokes should be connected.

• Deskewing corrects character slant. Although this technique was applied by some
authors [BS89, GP93, HBT94], it seems not to be applicable to the domain of math-
ematical handwriting, because on the one hand symbols might occur in variations
with slant, like→ and↗. On the other hand it is questionable if slant is as consistent
with symbols as it is with cursive handwriting.

15

16 3. Domain Specific Classification Steps

(a) Interrupted stroke (b) Filled area

(c) Strengthened stroke (d) Multiple stroke drawing

Figure 3.9.: Every image shows a recording after scaling and shifting by visualizing the
stored points and connecting them with a straight line. Points and the lines between them
are colored with the same color if they belong to the same stroke and otherwise with a
different color.

16

3.2. Preprocessing 17

3.2.3. Order of Preprocessing Steps

There are multiple dependencies regarding the order in which the mentioned preprocessing
steps should be executed:

• Duplicate point removal is dot reduction with any minimum distance > 0.

• Dot reduction should be done before wild point filtering is done, because multiple
points might get reduced to a single dot. Hence wild point detection might improve,
because the reduced dot is isolated a little bit more.

• The scaling step depends on the size of the bounding box. As wild point removal
and smoothing could change that size, those two algorithms should be applied before
smoothing gets applied.

• Everything that changes the number of points should be done before resampling.
That includes (wild) point filtering and smoothing.

Those dependencies and the preprocessing parameters are visualized in figure 3.10.

Table B.1 lists all presented preprocessing algorithms with the range of their parameters.

dot reduction

duplicate point removal

wild point filter scale shift

stroke connect

resample

dehook smooth

deskew
Min distance
threshold

Min distance
threshold

Max angle
threshold

Size

Max speed
threshold pointslinear / cubic

resample com-
plete / resam-
ple linewise

Multiple
algorithms

Parameter Noise reduction Normalization Not analyzed

Figure 3.10.: It makes sense to order the application of preprocessing algorithms — if
they are applied at all — as shown in the diagram. The noise reduction algorithms are
yellow, normalization algorithms are blue, green are parameter. Smoothing has too many
variants and parameters to show them all in this diagram. Deskewing was not analyzed
and is very likely not applicable in the domain of on-line handwritten recognition of single
mathematical symbols. Duplicate points removal is only a special variant of dot reduction.

17

18 3. Domain Specific Classification Steps

3.3. Data Multiplication

Obtaining a lot of original data can be difficult. Although projects like Amazon Mechanical
Turk might help, one could eventually still see the need of more data. One way to get
more data and to make the classifier invariant to some transformations is by giving“virtual
examples” that incorporate those invariances [SBV96]. That means domain knowledge is
used to artificially generate more data from original data.

For on-line handwriting recognition, invariant transformations could be

• Rotation by a maximum degree in the range of (−22.5°, 22.5°) as symbols like →
and ↗ are already transformations of 45°. The rotation center could be the center
of mass (arithmetic mean of coordinates)

• Small random movements of single points independently from other points. However,
this has to be used very carefully because of symbols like →, and where those
movements could easily lead to recordings that cannot be distinguished.

• Scaling with or without respect to the aspect ratio. This might also have side effects
like π and Π or �, → and −→.

Other variations like scaling with respect to the aspect ratio or shifting do only make sense
when the preprocessing algorithm that removes those invariances is not used. The use of
data multiplication algorithms can break invariances created by preprocessing steps. An
example is that after applying a scaling algorithm, one expects all recordings to have the
same bounding box size. However, after a recording was rotated that is no longer the
case.

3.4. Features

A number of different features have been suggested for on-line handwriting recognition.
They can be grouped into local features and global features. Local features apply to a
given point on the drawing plane and sometimes even only to point on the drawn curve
whereas global features apply to a complete stroke or even the complete recording.

3.4.1. Local Features

The following local features were used for on-line handwriting recognition. However, most
features were used as part of a bigger system without evaluating the effect of the single
feature.

• Coordinates of the current point are used by [GAC+91].

• Speed has been used by [SGH94], but [KR98, KRLP99] suggest that speed is a bad
feature, because they think that speed is “highly inconsistent”.

• Binary pen pressure has been used by [KR98, KRLP99, SGH94, MFW94, GAC+91].

• Direction has been used by [MFW95, HK06]. The direction at the point i can be
described by the vector (cos θ(i), sin θ(i)) as described in [GAC+91]:

cos θ(i) =
∆x(i)

∆s(i)
(3.1)

sin θ(i) =
∆y(i)

∆s(i)
(3.2)

18

3.4. Features 19

where

∆x(i) = x(i+1) − x(i−1) (3.3)

∆y(i) = y(i+1) − x(i−1) (3.4)

∆s(i) =

√
(∆x(i))2 + (∆y(i))2 (3.5)

• Curvature has been used by [Gro66, MFW95, SGH94, GAC+91]. It is calculated
in [GAC+91] by the angle of two neighboring lines like this:

ϕ(i) = θ(i+ 1)− θ(i− 1) (3.6)

cosϕ(i) = cos θ(i− 1) · cos θ(i+ 1) (3.7)

+ sin θ(i− 1) · sin θ(i+ 1) (3.8)

cosϕ(i) = cos θ(i− 1) · cos θ(i+ 1) (3.9)

− sin θ(i− 1) · sin θ(i+ 1) (3.10)

• Bitmap-environment has been used by [MFW94]. This feature is a 3 × 3 pixel
environment around the current point. It allows the recognizer to determine points
that cross or touch strokes. Adding this feature reduced the error by 50 % compared
to using only coordinates, the direction, curvature and speed.

• Hat-Feature has been used by [SGH94, JMW00].

3.4.2. Global Features

• Re-curvature is defined in [HK06, HZK09] as the ratio between the height of a
stroke and the distance between its start and end point. It is not clear if this distance
was meant to be the euclidean distance or the distance on the stroke. Both variants
were tried, but the distance on the stroke gives much better evaluation results. So
it was chosen to use the feature

re-curvature(stroke) =
height(stroke)

length(stroke)

• Center point for every single stroke was used in [HK06]. A center point of a stroke
is the arithmetic mean of the coordinates.

• Stroke length was used in [HK06]. It can be calculated by using the summed line
segment length after a linear interpolation step.

• Number of strokes was used in [HZK09].

• Sequence features

– Pen-tip sequence: [Kir10] used the raw pen-tip sequence combined with DTW
variants to recognize mathematical symbols. Other authors like [KWL95] used
pen-tip sequences, too, but made use of HMMs or artificial neural networks
(ANNs) to recognize symbols.

– Zone sequences are used by [Bro64, iHY80]. The idea is to recognize symbols
by dividing the box in which the character is written into zones. By examining
the position of the pen-tip a sequence of zones can be generated for a written
symbol.

– Direction sequences were used in [IMP76, Pow73].

19

20 3. Domain Specific Classification Steps

• Aspect ratio of the bounding box of the recording.

There are other global features used for off-line handwriting recognition which will not be
examined. Examples are Pseudo-Zernike moments and Shadow Code features which were
used in [KC98].

20

4. Domain Independent Classification
Steps

The previous chapter shows the used data as well as preprocessing steps and features that
can be found in on-line HWR. This chapter introduces some general methods that can be
applied in any classification task of time series data. At this point we have pairs of feature
vectors x ∈ Rn and class labels y. The set of those pairs (x, y) is split into three distinct
subsets: A training set, a validation set and a test set. The training set can be used by a
learning algorithm to adjust internal parameters. However, the training algorithm could
be able to adjust too much and create a recognizer that works well on the training set
but much worse on new examples. Hence the validation set is used to detect when the
algorithm suffers from overfitting. The test set on the other hand only gets used when the
training is finished and the system can be evaluated.

Although a lot of learning algorithms like Gaussian mixture models (GMMs), support vec-
tor machines (SVMs), k-Nearest Neighbors and even more can be applied for classification
tasks, only two are explained and evaluated: Greedy time warping (GTW) and multilayer
perceptrons (MLPs). The GTW classifier is easy to implement and works reasonably well
with only a few training examples, but it is slow in evaluation. MLPs on the other hand
are harder to implement, take longer to train, but evaluate new data faster and with higher
recognition rates if enough data is available as showed in chapter 6.

4.1. Feature Enhancement

Feature enhancement algorithms can be used to make the already calculated features more
useful for training algorithms. The effect of those algorithms depends on both, the data
and the used learning algorithm.

An important subset of the feature enhancement algorithms are those that reduce the
dimensionality. PCA and LDA are such algorithms.

One simple feature enhancement is feature standardization sometimes also called feature
normalization. For some learning algorithms it is useful if the different features have a
mean of 0 and either a similar range or a similar variance. Feature standardization gives
this property.

Feature standardization is done by calculating the mean x of all feature vectors x ∈ T in
the training set T . Then, before the training gets applied and before every evaluation, the
mean gets subtracted from every feature vector xi:

21

22 4. Domain Independent Classification Steps

x′ ← xi − x

This is called mean normalization. In order to standardize features one has to divide x′

by the range of values max(T)−min(T) of the training set.

If the feature is only divided by either the range or the variance it is called feature scaling.

4.2. Greedy Time Warping

A web system for on-line handwritten symbol recognition was implemented and is described
in [Kir10]. It uses an GTW algorithm which is similar to DTW.

The idea of the GTW algorithm is to calculate how far the points between two recordings
A and B have to be moved to match each other. The algorithm calculates a distance
d(A,B) of two recordings. This is done with help of the squared euclidean distance δ.

In the following ai denotes the ith point of the recording A and bi the ith point of the
recording B. αi denotes the number of the point in the recording A that was moved in
step i and βi denotes the number of the point in recording B that was moved in step i.

The distance δ(aα0=0, bβ0=0) between the first points of A and B is calculated. Then the
minimum of δ(aαi+1=αi+1, bβi+1=βi), δ(aαi+1=αi+1, bβi+1=βi+1) and δ(aαi+1=αi , bβi+1=βi+1)
is added to the already calculated distance. If αi + 1 does not exist because αi is already
the number of points in A then only the last distance is taken. Similar, if βi + 1 does not
exist because βi is already the number of points in B then only the first distance is taken.

Pseudocode is on page 70.

4.3. The Perceptron Algorithm

The idea of developing an algorithm that has similar capabilities as the brain probably
began in 1943 when Warren McCulloch and Walter Pitts described the binary threshold
unit in [MP43]. This work was later continued by Frank Rosenblatt who invented the
perceptron algorithm in 1958 [Ros58]. The perceptron is a function

pw,ϕ :Rn → R pw,ϕ(x) : = ϕ(wT · x)

ϕ :R → R ϕ(x) : =

{
1 if x > 0

0 otherwise

This function, or rather the visualization of it as shown in figure 4.1b, is also called an
artificial neuron. Artificial neurons are inspired by biological neurons such as the one
illustrated in figure 4.1a. In biological neurons, signals are sent within the cell by charged
particles, so called ions. But before a biological neuron sends a signal, a threshold charge
has to be reached at the axon hillock. This threshold charge is called action potential. The
action potential can be reached by multiple factors, but the one which is most interesting
are charges send by other neurons. The closer other axon terminals are to the axon hillock,
the more their signal contributes to reaching the action potential. If the stimulated neuron
has reached the action potential, it sends a signal.

Artificial neurons are similar as they receive input signals and give an output signal. Those
input signals get weighted and summed up. Then an activation function ϕ is applied to
the weighted sum. However, there are important differences, too. Artificial neurons use

22

4.3. The Perceptron Algorithm 23

 Flow of si
gnal

Axon terminals
Axon hillock

Nucleus

(a) Biological Neuron

Σ ϕ

x0

x1

x2

x3

xn

w
0

w
1

w2

w3

w n

o

...

(b) Artificial Neuron

Figure 4.1.: Both neurons receive weighted input signals, apply a function to that sum and
send an output signal.

different activation functions. In most applications, artificial neurons use a differentiable
function which sends a continuous signal whereas a biological neuron encodes the infor-
mation by the frequency it sends a signal. Biological neurons send signals asynchronously,
but PCs work synchronously. More details can be found in [LBK+08, p. 1001–1026] and
[CRU+08, p. 1047–1061].

An application of the perceptron is a binary classifier where the parameters w ∈ Rn have to
be learned. In the context of supervised learning there are already m training examples of
input vectors xi ∈ Rn, i ∈ { 1, . . . ,m } together with the desired output y ∈ { 0, 1 } given.

The output is called the class and x
(j)
i is the jth feature of the ith training example.

When such a training set T = { (xi, yi) | i ∈ { 1, . . . ,m } } is given, we want to find a choice
for w that is best for that set according to an differentiable error function E : Rn → R+

0 .
The error function E can be modified to represent not only the error on the training set,
but also additional targets. Therefore it is also called loss function, objective function or
cost function. [Mit97, p.89–92] describes in detail how the perceptron learns its weight
parameters w.

We want to find the minimum of that function E. One way to find the minimum of a
function is by gradient descent. That means one starts at a random point w, calculates the
gradient at this point and “goes” in the direction of the gradient, that means the weights
are adjusted. This is commonly expressed as

w ← w + ∆w

and hence this learning method is called delta rule. In this case w and ∆w are vectors
where the single vector components are

∆w(j) = −η ∂E

∂w(j)

where η ∈ R>0 is called the learning rate. The training algorithm will overshoot the
minimum if it is too big, but when it is too small, the training algorithm will make
progress very slow.

A common way to visualize gradient descent is to imagine the error surface. It is a surface
in the Rn+1 where n dimensions are the possible choices of the parameter w ∈ Rn and the

23

24 4. Domain Independent Classification Steps

last dimension is the error E(w) ∈ R. The form of that surface depends on the training
examples and the error function. As the error function uses the output of the perceptron,
it depends on the activation function. It follows that the activation function ϕ has to be
differentiable. Hence the sign function is not a good choice. A common choice for ϕ is the
sigmoid function:

sigmoid(x) :=
1

1 + e−x

The perceptron classifier is able to make use of an arbitrary number of features to distin-
guish two classes.

However, in the case of symbol classification there are more than two classes. One way
to solve this is by applying the one-vs.-rest strategy. That means for every class there is
one classifier that tests if the recording belongs its class. When a recording should get
classified, the output of every single neuron gets calculated. Then the softmax function
gets applied to the vector of outputs o of those neurons.

softmax : Rn → [0, 1]n softmax(o)(i) :=
eo

(i)∑n
j=1 e

o(j)

The softmax function makes sure that every single value of the result is in [0, 1] and that
the sum of all values is exactly 1. Furthermore, the order of the values in that vector
remains the same. One could say that the softmax function transforms a vector of scores
to a vector of probabilities.

Another mayor drawback of a single layer perceptron is the fact that it can only classify
data which is linearly separable in the feature space. The feature space is usually an Rn,
where n is the number of features. Every recording of the training data is a point in that
space. While the obtained data might usually be in the R2 or R3, the features might give
relationships between this information. By a clever choice of features one can make data
that was not linear separable in the obtained space separable in the feature space. In fact,
one can make every training set linearly separable by adding a new feature per training
example that gives the distance to that training example. But that would be a lot of
features and the resulting model would very likely suffer from overfitting. As the number
of training examples might be very high, even dimensionality reduction algorithms like
PCA and LDA could be difficult to apply.

For this reason it is desirable that the neural network is able to learn features by itself.
This can be achieved by using multiple layers, where every layer computes a new set of
features.

4.4. Multilayer Perceptron

A MLP is organized in layers of artificial neurons. Every artificial neuron is a function pw,ϕ
with different weight vectors w per artificial neuron. Every layer has exactly one activation
function ϕ, but the activation functions of different layers may be different. Every layer is
fully connected with its predecessor and its successor.

The number of layers is in principle not limited and the number of neurons is not limited
either. However, the number of parameters between a layer i with ni neurons and a layer
j with nj neurons is ni · nj . That means for subsequent layers with many neurons the
number of parameters that have to be learned gets very big.

24

4.4. Multilayer Perceptron 25

4.4.1. Notation

A notation that is almost identical to the one in [Mit97] was chosen:

• ` ∈ N is the number of layers of the MLP.

• nj ∈ N is the number of neurons in layer 1 ≤ j ≤ `.

• (xi, yi) ∈ Rn1 × Rn` is a single training example of the training set T .

• v(i) is the ith element of a vector v.

• xj,i ∈ R is the ith input to the j neuron.

• wj,i ∈ R is the weight from neuron i to neuron j.

• netj :=
∑

i∈input neuronswj,ixj,i is the activation of neuron j, that means the value
that the activation function is applied to.

• oj(x) := ϕj(netj(x)) = ϕj(
∑

i∈input neuronswj,ixj,i) is the output of neuron j after
the MLP got x as input feature. If j was not in the last layer, there is at least one i
such that oj = xi,j (note the order).

• outputs is the set of all neurons in the last layer (the output layer).

• D(j) is the Downstream, that means the set of all neurons that have neuron j as a
direct input. That means the downstream of j includes all neurons of the layer that
is nearer to the output layer directly after the layer in which the neuron j is.

Figure 4.2 visualizes the notation.

1

2

3

4

5

6

7

8

9

10

11

12

61

85

Figure 4.2.: Visualization of the used notation. Every neuron has an index (1–12). Only
two weights were labeled: w6,1 = 61 and w8,5 = 85. The downstream of neuron 6 is
D(6) = { 9, 10, 11, 12 } = D(7) = D(8). If this was a 3 layer perceptron where the neurons
9, 10, 11 and 12 are the output layer, then outputs = { 9, 10, 11, 12 }.

25

26 4. Domain Independent Classification Steps

4.4.2. Activation Functions

The activation function of artificial neurons have to be differentiable and their derivative
has to be non-zero so that the gradient descent learning algorithm can be applied. At least
one layer should also be non-linear, because linear combinations of linear functions are
again linear functions. So if all activation functions of a MLP were linear, the complete
MLP would only represent a linear function. This means the neural network could be
reduced to a MLP without any hidden layer.

The last layer in classification tasks is often the softmax function. For all other layers
it is often the sigmoid function and sometimes also the hyperbolic tangent tanh. The
advantage of tanh over the softmax function is that it converges faster when the absolute
value of the argument is big.

Figure 4.3 shows the activation functions sigmoid, tanh and the sign function.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−1

−0.5

0.5

1

x

y
sign function

sigmoid
tanh

Figure 4.3.: A plot of the sign function, the sigmoid function and the hyperbolic tangent.
All three functions can be used as activation functions in artificial neurons.

4.4.3. Evaluation

The evaluation of a neural network is very similar to the evaluation of a single perceptron.
For every perceptron of the first layer, the weights are multiplied with the input. Those
values are added and then the activation function gets applied. This is repeated until the
output of the first layer completely calculated. Then exactly the same process is repeated
with every following layer.

However, this evaluation can also be expressed with matrix multiplications. The input
vector xI ∈ Rni−1 gets extended by one value to the vector x ∈ Rni . This value is 1
and represents the bias. Then the vector x is multiplied by weight matrix W ∈ Rni×nj

resulting in a vector a which is also called activation:

xT ·W = aT ∈ Rnj

After that, all activation functions get applied point-wise to the activation vector a to get
the output vector o with the output of every neuron of that layer.

The advantage of this matrix-wise expression is that some programs can automatically
parallelize this multiplication and that GPUs can compute those matrix multiplications
directly.

26

4.4. Multilayer Perceptron 27

4.4.4. Supervised Training with Gradient Descent

The gradient descent algorithm is a supervised algorithm for training MLPs. Just like the
perceptron algorithm in section 4.3 it needs an error function which can be minimized.
Cross entropy (CE) is a possible choice for MLPs with a softmax output layer:

Exi :Rn1×n2 × Rn2×n3 × · · · × Rn`−1×n` → R≥0

Exi(W) : = −
n∑̀
k=1

(
y
(k)
i log(o(xi)

(k)) + (1− y(k)i) log(1− o(xi)(k))
)

EB :Rn1×n2 × Rn2×n3 × · · · × Rn`−1×n` → R≥0
EB(W) =

∑
xi∈B

Exi(W)

where Exi is the error for a single training example and EB with ∅ 6= B ⊆ T is called
a mini-batch. Different choices of B lead to different training modes as explained in
section 4.4.5.

There are other error functions like the classification figure of merit (CFM) or mean squared
error (MSE) [HW89]. However, in the following describes only the training with the CE
function.

The error function EB is to be minimized. The gradient descent algorithm with batch
gradient descent converges to a local minimum if the learning rate is decreased while
applying gradient descent multiple times.

As the error is the sum of non-negative values, we get a lower error by minimizing the
error for every single training example if the learning rate η is low enough. However, it
should be noted that those minimizations are not independent. This means the global
error could increase with single stochastic gradient descent and single mini-batch gradient
descent steps, although the learning rate is low.

The training algorithm is

Algorithm 1 Stochastic Gradient Descent

function train(T , W)
for epoch← 1; epoch ≤ 1000; epoch← epoch + 1 do

for all (x, tx) ∈ T do
for all weights wj,i do

wj,i ← wj,i − η
∂E{ x }

∂wj,i
(W)

where the number of epochs could be adjusted or changed to another stopping criterion
like a threshold for the change in validation error or the value of the cost function.

Computing the partial derivatives ∂EB
∂wj,i

is not a trivial task, but it is explained in detail in

[Mit97].

Finally, the weight update rule can be formulated as

wj,i ← wj,i + ∆wj,i (4.1)

⇔ wj,i ← wj,i + ηδjxj,i (4.2)

27

28 4. Domain Independent Classification Steps

where δj is a term that depends on the layer and is recursively defined. For CE as an error
function, an output layer that makes use of the softmax activation function and sigmoid
activation functions in all hidden layers it is

δj =

1
|B|
∑

xi∈B

(
y
(j)
i − oj(xi)

)
if j ∈ outputs

1
|B|
∑

xi∈B

(
oj(xi)(1− oj(xi))

∑
k∈D(j) δkwk,j

)
otherwise

The δj get calculated layer-wise, starting from the output layer. This is the reason why
this learning algorithm is also called the backpropagation algorithm, although it is only
a special case of gradient descent. The signal gets propagated through the network, the
output is generated and then the error is propagated back.

4.4.5. Batch, Mini-Batch and Stochastic Gradient Descent

Neural Networks can be trained in three different training modes. The stochastic gradient
descent takes one training example and adjusts the weights. Another training mode is
mini-batch gradient descent where a chunk of a fixed size b, the size of the mini-batch,
is used to calculate the gradient and to adjust the weights. A third training mode is
batch gradient descent where all training examples are used to calculate the adjustment
of weights. A common choice for the mini-batch size is b = 256. However, for b = 1 it is
stochastic gradient descent and for b = |T | it is batch gradient descent. The advantage
of stochastic gradient descent is that the weights are updated faster, compared to batch
gradient descent. The advantage of batch gradient descent is that weight updates are more
meaningful. Mini-batch gradient descent can be faster than stochastic gradient descent,
because the weights are updated less often.

4.4.6. Momentum

One problem of simple gradient descent is the choice of the learning rate. Depending on
how much the error changes between different epochs, one might choose a higher learning
rate or lower it. A learning parameter called momentum tries to implement such an
automatic adjustment of the error.

If one imagines the error surface in the parameter space, one can imagine the current
weight as a ball. The ball begins to roll down the error surface. If it does not change
the direction much and keeps rolling down, it speeds up. If the direction changes or if the
weight increases, the momentum decreases. It also keeps the ball going in the direction
that worked before. So in case of an error surface that has a plateau, the momentum helps
to get away from that plateau.

The momentum α ∈ [0, 1] changes the weight update to

∆wj,i(epochi) = ηδixj,i + α∆wj,i(epochi−1)

as described in [Mit97, B+06].

4.4.7. Newbob Training

Newbob training is an adaptive training that is described in [new00]. It starts with a
learning rate η and trains until the error on the validation set decreases by less than
θ1 = 0.5 %. When that happens, the learning rate is multiplied with a decay parameter.
newbob-decay = 0.5 is chosen in [new00]. The training is stopped when the error drops
by less than θ2 = 0.5 % after the threshold θ1 was hit in the training step before. Those
two thresholds can be adjusted, of course.

28

4.4. Multilayer Perceptron 29

4.4.8. Denoising Auto-encoder

An auto-encoder is a neural network that is trained to restore its input. This means the
number of input neurons is equal to the number of output neurons. The weights are an
encoding of the input that allows restoring the input. As the neural network finds the
encoding by itself, it is called auto-encoder. If the hidden layer is smaller than the input
layer, it can be used for dimensionality reduction [Hin89]. If only one hidden layer with
linear activation functions is used, then the hidden layer contains the principal components
after training [DHS01].

Denoising auto-encoders are a variant introduced in [VLBM08] that is more robust to
partial corruption of the input features. It is trained to get robust by adding noise to the
input features.

There are multiple ways how noise can be added. Gaussian noise and randomly masking
elements with zero are two possibilities. [Deea] describes how such a denoising auto-
encoder with masking noise can be implemented. The corruption is the probability of a
feature being masked.

4.4.9. Pretraining

When a neural network gets more layers, the number of weights can decrease even if the
total number of neurons increases. For example, a MLP with a 500 : 500 : 500 topology
has

5002 + 5002 = 500 000

weights, but a MLP with a 500 : 100 : 500 : 500 topology has

500 · 100 + 100 · 500 + 5002 = 350 000

weights.

However, the more weights a MLP gets, the more random initializations are done for this
MLP. This might lead to high variations in classification performance for the same training
queue, but different weight initializations. One possible way to deal with this problem is
to apply pretraining. This means that the layers are trained before the layers get stacked
to form the resulting model. This means at first, the first hidden layer gets trained. Then
the first two layers get trained, etc.

Pretraining can be done supervised, semi-supervised or unsupervised. A supervised train-
ing algorithms needs labels for all training examples, an unsupervised does not use any
labels and a semi-supervised needs labels for some examples, but not for all.

Denoising auto-encoders are an example for unsupervised pretraining. Supervised layer-
wise pretraining (SLP) is to train first a MLP with one hidden layer, then discard the
output layer, add the second hidden layer and a new output layer and train again.

4.4.10. Regularization

Regularization is a group of methods that help to prevent overfitting, that means the
problem that a model performs much worse on the test set than on the training set.
The idea of regularization in MLP is that sparse weights or weights with a low absolute
value tend not to cause overfitting and are therefore preferred. This can be encoded in
the training algorithm by modifying the cost function such that higher weights correspond
with a higher cost when compared to lower weights that have a similar error on the training
set.

Two common regularizations are L1 and L2 regularization. L1 regularization adds the
absolute value of the weights to the error function and L2 regularization adds the squared
parameters to the error function [Ng04].

29

5. Implementation

When this bachelor’s thesis was written, there was no publicly available data set for on-
line handwritten mathematical symbols. In order to get the necessary data to conduct
experiments, the website write-math.com was created in preparation for this bachelor’s
thesis as a free-time project. The code for the website is available at https://github.com/
MartinThoma/write-math. While data was gathered, Daniel Kirsch was contacted and
asked for the data recorded by detexify.kirelabs.org. After some months, he published
the data. A link to the data as well as a description of the data format is available at
martin-thoma.com/write-math.

The following sections describe four different projects that were important for this bache-
lor’s thesis:

• write-math: The website that was created to collect recordings

• hwrt: The toolkit to view recordings and make experiments

• hwr-experiments: The files that define the experiments

• Neural Network Training: An internal project for creation, evaluation and training
of neural networks.

5.1. write-math.com

The website http://write-math.com was created to get data. It is a combination of
PHP, MySQL, JavaScript, CSS and HTML. It makes use of the front-end framework
Bootstrap and the template engine Twig. The source is available at https://github.com/
MartinThoma/write-math.

The website allows the users to classify recordings (see figure G.4a on page 92). As soon as
the user has drawn the symbol, he clicks on submit and gets redirected to a classification
page. He sees the recording, get a link to a page where he can try out preprocessing
methods and see the symbols that classifiers suggested. Every user has the possibility
to add his own classifier that others are also able to use. Every time a new recordings
gets submitted, the website contacts every known classifier by sending a JSON string via
POST-request. The website expects every classifier to respond by serving a JSON string
that contains a list of at most 10 dictionaries which map symbol identifiers (integers) to
probabilities. This could look like

31

write-math.com
https://github.com/MartinThoma/write-math
https://github.com/MartinThoma/write-math
detexify.kirelabs.org
http://martin-thoma.com/write-math
http://write-math.com
https://github.com/MartinThoma/write-math
https://github.com/MartinThoma/write-math

32 5. Implementation

[{"31":0.88842893496419},

{ "1":0.10999419040225},

{"36":0.001499575497246},

{"40":7.7299136313199e-5}]

The list must be ordered descending by probability. Figure 5.1 visualizes this workflow.

Currently, only System A is online.

Classification workers

ServerClient

requests
classification

returns
classification

Figure 5.1.: The workflow of a single classification is the following: (1) The user writes
a symbol. This symbol gets recorded by the users browser via JavaScript and send to
the server. (2) The server stores the recording and contacts all classification workers.
(3) Each classification workers sends a list with up to 10 symbols and their probability
back to the server. (4) The server stores those suggestions and shows the user all results.
The image of a desktop computer on the top left is from https: //

commons .wikimedia .org/ wiki/ File: Computer-aj _aj _ashton _01 .svg and
was created by an unknown artist, the server image on the top right is from
https: // commons .wikimedia .org/ wiki/ File: Server-multiple .svg and was created
by RRZEicons and the images that was used three times for classification workers is
from https: // commons .wikimedia .org/ wiki/ File: Server _by _mimooh .svg and was
created by Mimooh.

5.2. Handwriting Recognition Toolkit

A toolset was created for the analyzation, preprocessing and feature calculation of on-line
handwritten data. This toolset was bundled in a Python module called hwrt. It is freely
available over the Python Package Index (PyPI) and can be installed with pip install

hwrt. It contains algorithms for preprocessing, feature selection and data multiplication
as well as tools to download the latest data, view and analyze the data.

The following preprocessing algorithms were implemented. They all work on exactly one
recording. They were described in section 3.2.

32

https://commons.wikimedia.org/wiki/File:Computer-aj_aj_ashton_01.svg
https://commons.wikimedia.org/wiki/File:Computer-aj_aj_ashton_01.svg
https://commons.wikimedia.org/wiki/File:Server-multiple.svg
https://commons.wikimedia.org/wiki/File:Server_by_mimooh.svg

5.2. Handwriting Recognition Toolkit 33

• RemoveDuplicateTime: If a recording has two points with the same timestamp, than
the second point is discarded. This is useful for a couple of algorithms that don’t
expect two points at the same time.

• RemoveDots: Remove all strokes that have only a single point (a dot) from the
recording, except if the whole recording consists of dots only.

• ScaleAndShift: Scale a recording so that it fits into a unit square. This keeps the
aspect ratio. Then the recording is shifted. The default way is to shift it so that
the recording is in [0, 1]× [0, 1]. However, it can also be used to be centered within
[−1, 1] × [−1, 1] around the origin (0, 0) by setting center=True (for the smaller
dimension) and center_other=True (for the bigger dimension).

• SpaceEvenly: Space the points evenly in time over the complete recording. The
parameter number defines how many points should the recording should get in total.
All strokes get connected by lines. All points on the strokes get a pen_down=True

feature and all points between strokes get a pen_down=False feature.

• SpaceEvenlyPerStroke: Space the points evenly for every single stroke separately.
The parameter number defines how many points are used per stroke and the pa-
rameter kind defines which kind of interpolation is used. Possible values include
cubic, quadratic, linear, nearest. This part of the implementation relies on
scipy.interpolate.interp1d.

• DouglasPeucker: Apply the Douglas-Peucker stroke simplification algorithm sep-
arately to each stroke of the recording. The algorithm has a threshold parameter
epsilon that indicates how much the stroke is simplified. The smaller the parameter,
the closer the resulting strokes are to the original.

• StrokeConnect: Detect if strokes were probably accidentally disconnected. If that is
the case, connect them. This is detected by the threshold parameter minimum_distance.
If the distance between the end point of a stroke and the first point of the next stroke
is below the minimum distance, the strokes are connected.

• DotReduction: Reduce strokes where the maximum distance between points is below
a threshold to a single dot.

• WildPointFilter: Find wild points and remove them. The threshold means speed
in pixels / ms.

• WeightedAverageSmoothing: Smooth every stroke by a weighted average. This
algorithm takes a list theta of 3 numbers that are the weights used for smoothing.

The following data multiplication algorithms were implemented. They were described in
section 3.3.

• Multiply: Copy the data n times.

• Rotate: Adds rotational variants of the recording. It has three parameters: min, max
and num. The algorithm adds num rotated variants of the recording to the dataset.

The following features were implemented. They were described in section 3.4.

• ConstantPointCoordinates: Take the first points_per_stroke=20 points coordi-
nates of the first strokes=4 strokes as features. This leads to 2 · points per stroke ·
strokes features.

If points is set to 0, the first points_per_stroke point coordinates and the pen_down
feature is used. This leads to 3 · points per stroke features.

If there are not enough points or strokes, the feature gets filled with fill_empty_with=0.

33

34 5. Implementation

• FirstNPoints: Similar to the ConstantPointCoordinates feature, this feature
takes the first n=81 point coordinates. It also has the fill_empty_with=0 to make
sure that the dimension of this feature is always the same.

• StrokeCount: The number of used strokes can be a powerful feature. Figure 6.4
(page 46) gives an impression how good this feature can separate some symbols.

• Bitmap: n× n grayscale bitmap or the recording, where n is a parameter. A human
can recognize most recordings with n = 32 and still many with n = 18.

• Ink: Ink as a 1-dimensional feature. It gives a numeric value for the amount of ink
this would eventually have consumed.

• AspectRatio: Aspect ratio (width+0.01
height+0.01) of a recording as a 1-dimensional feature.

• Width: Width of a recording as a 1-dimensional feature.
Note that this is the current width. So if the recording was scaled, this will not be
the original width.

• Height: Height of a recording as a 1-dimensional feature.
Note that this is the current height. So if the recording was scaled, this will not be
the original height.

• Time: The time in milliseconds it took to create the recording. This is a 1-dimensional
feature.

• CenterOfMass: Center of mass of a recording as a 2-dimensional feature.

• StrokeCenter: Get the stroke center of mass coordinates for the first stroke=4

strokes. The dimension of this feature is 2 · stroke.

• StrokeIntersections: Count the number of intersections which strokes in the
recording have with each other in form of a symmetrical matrix for the first stroke=4
strokes. The feature dimension is round(strokes

2

2) + strokes
2 , because the symmetrical

part is discarded.

• ReCurvature: Re-curvature is a 1-dimensional, stroke-global feature for a recording.
It is the ratio height(stroke)

length(stroke) .

5.3. Experiments

All experiments are saved as configuration files on https://github.com/MartinThoma/
hwr-experiments. The handwriting recognition toolkit (HWRT) is able to use those con-
figuration files and regenerate the models automatically. The structure of the configuration
files is explained in section F.

5.4. Neural Network Implementation

The training and testing of neural networks with hwrt needs an executable nntoolkit

that supports the following usages:

$ nntoolkit run --batch-size 1 -f%0.4f <test_file> < <model>

has to output the evaluation result in standard output as a list of floats separated by
newlines \n. The evaluation result might either be the index of the neuron with highest
activation or the list of probabilities of each class separated by spaces.

34

https://github.com/MartinThoma/hwr-experiments
https://github.com/MartinThoma/hwr-experiments

5.4. Neural Network Implementation 35

$ nntoolkit make mlp <topology>

has to print the model in standard output.

The hwrt toolset is independent of the way the training command is formatted as the
training command gets inserted directly into the configuration file info.yml of the model.

In order to implement such a neural network executable one can use Theano, cuDNN
(https://developer.nvidia.com/cuDNN) or Caffe (http://caffe.berkeleyvision.org/).
http://www.deeplearning.net/tutorial/ contains example code for multilayer percep-
trons written with Theano (Python).

35

https://developer.nvidia.com/cuDNN
http://caffe.berkeleyvision.org/
http://www.deeplearning.net/tutorial/

6. Evaluation

The following experiments and their results show how the previously described algorithms
perform and how they influence the classification error on the test set. The training set
has 134 804 recordings, the validation set has 15 161 recordings and the test set has 17 012
recordings. 369 symbols were tested. Those symbols are listed in tables B.10 to B.18.

All changes that are described in the following were done with 4 systems. All of those 4
systems use a simple preprocessing queue: Scaling with respect to the aspect ratio to fit
into a unit square, shifting to [−1, 1] × [−1, 1] and linear resampling. The first 4 strokes
of a recording were used for features, all other strokes were discarded. For each stroke,
20 points coordinates that were spread equidistant in time were taken as features. If a
recording had less then 4 strokes, the feature got 0 as a value. Hence the trained neural
networks gets 4 strokes · 20points

stroke · 2 features
point = 160 input features which equals the number

of input neurons.

System Bi has i hidden layers with 500 neurons per hidden layer. Mini-batch training
with a batch size of 256, a learning rate of η = 0.1 and a momentum of α = 0.1 was used.
Every system Bi has a softmax layer at the end. Neither regularization nor pretraining
were used. As different topologies might severely influence the classification results of
MLPs, one baseline system was chosen for each of the 4 tested topologies.

Table 6.1 shows three types of errors for four different MLPs: TOP1, TOP3 and MER.
TOP n is the standard classification error which tests if the reference class was within the n
hypotheses with highest probability. The MER error (short for merged classes) accepts the
symbols in table B.2 as being equivalent. MER first gets the TOP3 hypotheses, extends
this set M by all equivalent symbols and then checks if the reference class is within M .

System Topology
Classification error

TOP1 TOP3 MER

B1 160:500:369 23.34 % 6.80 % 6.64 %
B2 160:500:500:369 21.51 % 5.75 % 5.67 %
B3 160:500:500:500:369 21.93 % 5.74 % 5.64 %
B4 160:500:500:500:500:369 23.88 % 6.12 % 6.04 %

Table 6.1.: Evaluation of the baseline systems B1–B4 with three different classification error
measures. All errors were measured on the test set.

37

38 6. Evaluation

6.1. Influence of Random Weight Initialization

The neural networks in all experiments got initialized with a small random weight

w ∼ U(−4·
√

6

nj + nj+1
, 4·
√

6

nj + nj+1
) where w is a weight between layer j and layer (j+1)

as suggested on [deeb]. The random initialization is done to break symmetry.

This might lead to different error rates for the same models just because the initialization
was different.

In order to get an impression of the magnitude of the influence on the different topologies
and error rates the baseline models were trained 5 times with random initializations.
Table 6.2 shows a summary of the results and table B.19 shows the raw data. The more
hidden layers were used, the more have the results varied.

System
Classification error

TOP1 TOP3 MER
min max range min max range min max range

B1 23.08 % 23.44 % 0.36 % 6.67 % 6.80 % 0.13 % 6.54 % 6.64 % 0.10 %
B2 21.45 % 21.83 % 0.38 % 5.68 % 5.75 % 0.07 % 5.60 % 5.68 % 0.08 %
B3 21.54 % 22.28 % 0.74 % 5.50 % 5.82 % 0.32 % 5.41 % 5.75 % 0.34 %
B4 23.19 % 24.84 % 1.65 % 5.98 % 6.44 % 0.46 % 5.83 % 6.21 % 0.38 %

Table 6.2.: The systems B1 – B4 were randomly initialized, trained and evaluated 5 times
to estimate the influence of random weight initialization.

6.2. Preprocessing Algorithms

The preprocessing algorithms can be split in two groups as shown in section 3.2: Normal-
ization and noise reduction algorithms.

Both, normalization and noise reduction algorithms, can be analyzed for computational
costs and effect on the test classification error. Additionally, noise reduction algorithms
can be analyzed for effectiveness in terms of false positives or false negatives. However, in
the following they were only analyzed for their effect on the three error measures TOP1,
TOP3 and MER.

6.2.1. Scale and Shift

There are several ways to implement the scale and shift algorithm. Especially how one
deals with dots or straight lines (xmax − xmin = 0 or ymax − ymin = 0) makes a difference.

The following transformation is done with each point:

p[′x′]← (p[′x′]− xmin) · factor − addx
p[′y′]← (p[′y′]− ymin) · factor − addy
p[′t′]← (p[′t′]− tmin)

38

6.2. Preprocessing Algorithms 39

where xmin, ymin and tmin are the minimal values among all points of a single recording,
factor ∈ R+ is positive scaling constant and addx, addy ∈ R+

0 are non-negative shifting
constants.

Implementation 1 is the implementation that was used for all other evaluations. It does
not shift the bigger dimension, but centers the smaller dimension of the bounding box
within the [−1, 1]× [−1, 1] unit square.

A recording with a bounding box of the dimension 1 × 0.8 would be within [−0.4, 0.4] ×
[0.0, 1.0] after implementation 1 shifting.

The following lines show how such a shifting could be implemented:

width← xmax − xmin

height← ymax − ymin

factorx, factory ← 1, 1
if width 6= 0 then

factorx ← 1
width

if height 6= 0 then
factory ← 1

height

factor ← min(factorx, factory)
addx, addy ← 0, 0
. Only the smaller dimension (x or y) gets centered

add← −min(width,height)·factor
2

if factor == factorx then
addy ← add

else
addx ← add

Implementation 2 is the same as implementation 1, but with addx = 0 and addy = 0.
So no centering was done. After that, the recording is in the [0, 1] × [0, 1] unit square,
aligned to (0, 0).

A recording with a bounding box of the dimension 1 × 0.8 would be within [0.0, 0.8] ×
[0.0, 1.0] after implementation 2 shifting.

Implementation 3 is the same as implementation 1, but with the bigger dimension being
shifted by −0.5. So in implementation 1, only one dimension gets centered around (0, 0).
In implementation 3, both dimensions get centered around (0, 0).

if factor == factorx then
addy ← add
addx ← −0.5

else
addx ← add
addy ← −0.5

A recording with a bounding box of the dimension 1 × 0.8 would be within [−0.4, 0.4] ×
[−0.5, 0.5] after implementation 3 shifting.

Those three implementations of the scale and shift algorithm were tested with all the
neural networks B1–B4. The results in table B.20 show that system B4 was most sensitive
for changes in this implementation. Implementation 2 performed best or was at lest not
more than 0.04 % worse than implementation 1 for B1–B3. However, implementation 2
was by far the worst for B4. The experiment was executed four times with different weight
initializations for B4,I2 and all evaluations were at least 3 % worse in TOP1 error than B4.

39

40 6. Evaluation

6.2.2. Wild Point Filter

Wild points are strokes which consist of a single point which the user did not want to
draw. Wild points are likely to be caused by hardware errors (see problem D1, page 10).

The dataset contained 2.77 % recordings with dots, excluding all recordings of the symbols
i, j, \cdot, \div, \because and \therefore. However, removing those dots changed the
bounding box size of only 0.85 % of all recordings.

As the proposed wild point detection relies only on the speed of single points of a stroke
it was analyzed in which range those points are. The mean speed was 0.35 px

ms with a
standard deviation of 0.65 px

ms . Figure 6.1 shows the distribution of the speed between
control points in a histogram. After that, the wild point filter with a threshold θ = 3 px

ms
and θ = 6 px

ms and were tested. The results are listed in table 6.3. The models B3 and B4

improved by both applications, whereas the models B1 and B2 did not improve.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 ∞0

2M

4M

6M

8M

10M

12M

14M

16M

18M

1.
96
· 1

0
7

3.
38
· 1

0
6

1.
09
· 1

0
6

2.
89
· 1

0
5

1.
55
· 1

0
5

53
,1
97

37
,1
41

15
,6
64

14
,5
29

5,
04

6

25
,7
99

Speed between two subsequent points of a stroke in px
ms

N
u
m
b
er

of
p
oi
n
t
p
ai
rs

Figure 6.1.: The speed between two subsequent control points of the same stroke is used can
be used for point filtering preprocessing steps. Points with high speeds could be caused by
errors in the hardware. The plot shows that the majority of all point pairs have a speed of
less than 0.5 px

ms . Less than 0.3 % of all point pairs have a speed of more than 3 px
ms .

6.2.3. Stroke Connect

In order to solve problem D5 (interrupted strokes, see page 10) the stroke connect algorithm
was introduced on page 15. The idea is that for a pair of consecutively drawn strokes si, si+1

the last point si is close to the first point of si+1 if a stroke was accidentally split into two
strokes.

Figure 6.2 shows the distance between consecutively drawn stroke pairs. 59 % of all stroke
pair distances are between 30 px and 150 px. Hence the stroke connect algorithm was tried
with 5 px, 10 px and 20 px. Table B.21 shows the results of this algorithm. All models
improved much with a threshold of θ = 10 px with all error measures, except B4 with the
TOP3 error measure.

40

6.2. Preprocessing Algorithms 41

System
Classification error

TOP1 change TOP3 change MER change

B1,θw=3 px
ms

23.55 % 0.21 % 6.85 % 0.05 % 6.70 % 0.06 %

B2,θw=3 px
ms

21.73 % 0.22 % 5.67 % −0.08 % 5.58 % −0.09 %

B3,θw=3 px
ms

21.25 % −0.68 % 5.66 % −0.08 % 5.55 % −0.09 %

B4,θw=3 px
ms

21.91 % −1.97 % 5.77 % −0.35 % 5.65 % −0.39 %

B1,θw=6 px
ms

23.30 % −0.04 % 6.94 % 0.14 % 6.80 % 0.16 %

B2,θw=6 px
ms

21.80 % 0.29 % 5.77 % 0.02 % 5.65 % −0.02 %

B3,θw=6 px
ms

22.30 % −0.63 % 5.79 % 0.05 % 5.58 % −0.06 %

B4,θw=6 px
ms

22.98 % −0.90 % 6.10 % −0.02 % 5.99 % −0.05 %

Table 6.3.: The wild point filtering algorithm was added to the baseline systems B1–B4

and the absolute change to the baseline model of the same topology was calculated. The
threshold θw, which is measured in px

ms , denotes which points get filtered. All points that
are faster than the threshold get filtered. This means a threshold θ = 0 px

ms results in the
same as if no wildpoint filter had been applied. The table shows that the effect of wild point
filtering is less than the effect of random weight initialization for the models B1–B3, but
improves model B4.

0.0 30 60 90 120 150 180 210 240 270 ∞0

4K

8K

12K

16K

20K

15
,6
29

20
,6
43

23
,4
00

22
,7
57

20
,6
16

16
,6
59

11
,9
88

7,
96

0

4,
85

3

2,
69

0

83
0

Distance between subsequently drawn strokes in px

N
u
m
b
er

of
st
ro
ke

p
ai
rs

Figure 6.2.: The distance between two subsequently drawn strokes (si, si+1) in pixels is
calculated by measuring the euclidean distance between the last point of si and the first
point of si+1. Less than 11 % of those distances are below 30 px. It is assumed that
accidentally interrupted strokes (see page 10) are rarely happening. The stroke connect
algorithm is therefore evaluated with thresholds of less than 30 px.

41

42 6. Evaluation

6.2.4. Weighted Average Smoothing

Weighted average smoothing was described in section 3.2.2 on page 14. It takes consecutive
points, weights the x, y and time values independently and calculates a new average point.
Three points were used to calculate the new average point with weights w1 = [16 ,

4
6 ,

1
6] and

w2 = [13 ,
1
3 ,

1
3]. The results are shown in table 6.4. The results with w1 did not change

enough to make a meaningful statement about the influence of this algorithm, but w2 had
a positive effect on B1 – B3.

System Weights
Classification error

TOP1 change TOP3 change MER change

B1,WAS
1
6 ,

4
6 ,

1
6 23.33 % −0.01 % 6.68 % −0.12 % 6.57 % −0.07 %

B2,WAS
1
6 ,

4
6 ,

1
6 21.73 % 0.22 % 5.87 % 0.12 % 5.75 % 0.08 %

B3,WAS
1
6 ,

4
6 ,

1
6 21.77 % −0.16 % 5.57 % −0.17 % 5.52 % −0.12 %

B4,WAS
1
6 ,

4
6 ,

1
6 24.17 % 0.29 % 6.47 % 0.35 % 6.21 % 0.17 %

B1,WAS
1
3 ,

1
3 ,

1
3 23.26 % −0.08 % 6.55 % −0.25 % 6.41 % −0.23 %

B2,WAS
1
3 ,

1
3 ,

1
3 21.67 % −0.16 % 5.69 % −0.06 % 5.60 % −0.07 %

B3,WAS
1
3 ,

1
3 ,

1
3 21.44 % −0.49 % 5.67 % −0.07 % 5.58 % −0.06 %

B4,WAS
1
3 ,

1
3 ,

1
3 24.24 % 0.36 % 6.26 % 0.14 % 5.95 % −0.09 %

Table 6.4.: The baseline models B1–B4 were tested with additionally weighted average
smoothing (WAS) being applied. The smoothing was applied before every other prepro-
cessing step.

6.2.5. Douglas-Peucker Smoothing

The Douglas-Peucker algorithm, which is described on page 15, can be used to find control
points that are more relevant for the overall shape of a recording. After that, an inter-
polation can be done. If the interpolation is a cubic spline interpolation, this makes the
recording smooth.

The Douglas-Peucker algorithm was applied with a threshold of ε = 0.05, ε = 0.1 and
ε = 0.2 after scaling and shifting, but before the interpolation. The interpolation was
done linearly and with cubic splines in two experiments. The recording was scaled and
shifted again after the interpolation because the bounding box might have changed.

The result of the application of the Douglas-Peucker smoothing with ε > 0.05 was a high
rise of all classification error measures for all models. This means that the simplification
process removes some relevant information and does not — as it was expected — remove
only noise. For ε = 0.05 with linear interpolation some models improved for some error
measures, but the changes were small. It could be an effect of random weight initialization.
However, cubic spline interpolation made all systems perform much worse.

The lower the value of ε, the less does the recording change after this preprocessing step. As
it was applied after scaling the recording such that the biggest dimension of the recording
(width or height) is 1, a value of ε = 0.05 means that a point has to move at least 5 percent
of the biggest dimension.

Table B.22 shows the evaluation results.

42

6.3. Data Multiplication 43

6.3. Data Multiplication

Data multiplication can be used to make the model invariant to transformations. However,
this idea seems not to work well in the domain of on-line handwritten mathematical sym-
bols. It was tried to triple the data by adding a rotated version that is rotated 3 degrees to
the left and another one that is rotated 3 degrees to the right around the center of mass.
This data multiplication made all classifiers for most error measures perform worse than
before as table 6.5 shows.

Data multiplication was also used in section 6.6.6 on page 51 combined with newbob
training.

System
Classification error

TOP1 change TOP3 change MER change

B1,min=−3,max=3,num=3 25.43 % 2.09 % 6.44 % −0.36 % 6.28 % −0.36 %
B2,min=−3,max=3,num=3 23.58 % 2.07 % 5.78 % 0.03 % 5.57 % −0.10 %
B3,min=−3,max=3,num=3 28.90 % 6.97 % 8.39 % 2.65 % 7.54 % 1.90 %
B4,min=−3,max=3,num=3 39.71 % 15.83 % 18.12 % 12.00 % 15.20 % 9.16 %

Table 6.5.: Evaluation of the baseline models that used a training set T ′ which was three
times bigger than the normal training set T . T ′ was created from T by adding two rotational
variants for each original recording. Those two rotational variants were rotated by −3° and
by 3° around the center of mass.

6.4. Features

A single dimension of a feature F of a given symbol S could be modeled by a random
variable. For a random variable XS that is normally distributed and has a mean of µ for
the feature F and a standard deviation of σ one writes:

XS,F ∼ N (µ, σ2)

In the interval (µS−2σS , µ+2σ) is about 99.7 % of the data. That means if those intervals
are disjunct for two given symbols, the symbols can be separated well by the feature F .
This knowledge can be used to calculate the mean µ and the standard deviation σ of every
symbol for a given feature. The symbol can then be plotted in a mean-standard deviation
scatter plot at the coordinates (µ, σ). Ideally, the intra-symbol standard deviation would
be low, the inter-symbol standard deviation would be high and the means of the symbols
would be well separated from each other.

For example, in figure 6.3 one can see that the symbol − at (0.04, 0.03) can be distinguished
from many other symbol only by using the re-curvature feature for the first stroke. In
contrast, the > symbol cannot be distinguished from any other symbol by this feature.

Five features are evaluated in the following. The mean and variance of the first dimension
of those features was plotted to give the reader an impression of how well they separate
symbols and which symbols cannot be separated by those single features. Additionally,
the baseline systems were extended by those features to measure their influence on the
three error measures.

43

44 6. Evaluation

6.4.1. Re-curvature

The re-curvature feature is a feature for single strokes. It was defined on page 19 as

re-curvature(stroke) :=
height(stroke)

length(stroke)

As both, the height and the distance are measured in the same unit, the feature is a
dimensionless quantity.

In order to get a constant feature dimension it is required to define on how many strokes
this feature should get applied to. If a recording has less strokes, the feature is defined to
have the value 0.

The results of this feature, applied to the first four strokes, are shown in table 6.6. This
feature improved classification for all models and all error measures a lot.

Figure 6.3 shows the mean and standard deviation of the re-curvature feature for the first
stroke of every recording.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

|
H|
-‖‖

2⇓
`

|=�
P

KF

.

R

R

I

R

i

H

·
∐

D

P
↓

.

.

.
. . .7−→#
]
⊥

κ

7→
. . .

N

↑

l

′�

∴

/

. .
.

X\
\

⊥

d

†

be

∗

k

∵

c〈

Bq

〉
!

f
‚λ
x
o

N

G

<

1

P

¸́ffl

← [

ι

H

×

E

+

E

1

T

R

X

±

–
˝
j

ℵ

]

[

X

Γ

L

D

[
1́
↘

7

χ

r

↗y

∏

K

J

A

Π

X

p

X
Y

π

t

~
B

b

~

P

N

>h

4
§

∀

V

<

%

>
ζ

v

r

∃

∧

4

S

$

6
ρ

∨

η

F

@

C

JΛ

�≺&
5

κ

ε
s

3
2

≷�∈

⊕

>

C
C
`

^
�

∩∪
]
q
δ

ν

c

A
ξ
∠

β

T

.
γ

µ

L

6

♦
U

≥

3

d

ϕ

�

E♦

ψ

Ψ

9

M

S

n

∂

≤

ZN

ε

0

Z
t

/♥

M

.

OG

z

u
S
%

⊗
L

g

�

�

�

e

M

⊙

Q8

u

Z

F

⊂

C

∅

∇
�
θ

W

φ

*
¬

A

G
⊃

4

E
∆Q

Θ
⊆
C

τ

o

	
Q

n}

�

ϑ

&
&

yO
(⊇

↔

?

Z
Z

w

ao

•

v

sun

E

℘L

©

�
H

O

Φ

=

∅

S

U

◦

÷

M
Σ

♣

A

�
∑

Ω

	α

./

./

D

∝

σ
ω

m

v
_

�

a

⇐⇒⇐

∼
∝

I

≈
↪→
$

⇔

←

 ∞⇀

'

,
Ξ

(�
→

∓

9
⇒

�

−→
�

.
=

⇒;=⇒
6=6≡

≡
−

Mean re-curvature value in px px−1

St
an

da
rd

de
vi

at
io

n
of

re
-c

ur
va

tu
re

in
p
x

p
x
−
1

Figure 6.3.: Mean and standard deviation of the re-curvature feature of the first stroke
every symbol. The − (0.04,0.03) and the (0.16,0.05) are well-separated, but this feature
is not able to distinguish ± (0.65,0.44) from either of them.

System
Classification error

TOP1 change TOP3 change MER change

B1,rec 22.14 % −1.20 % 5.96 % −0.84 % 5.86 % −0.78 %
B2,rec 20.65 % −0.86 % 5.19 % −0.56 % 5.10 % −0.57 %
B3,rec 20.84 % −1.09 % 5.30 % −0.44 % 5.22 % −0.42 %
B4,rec 23.25 % −0.63 % 5.90 % −0.22 % 5.65 % −0.39 %

Table 6.6.: Evaluation of baseline systems B1 – B4 with an additional re-curvature feature
(rec) for each of the 4 strokes. All error measures improved notably.

44

6.4. Features 45

6.4.2. Stroke Center Point

The stroke center point is a 2-dimensional feature. It calculates the center of mass of a
stroke by calculating the arithmetic mean of its coordinates. The feature was added to all
four baseline systems B1 – B4. As those systems had four strokes, the feature was applied
for four strokes resulting in 8 new features.

Table 6.7 shows the results of this experiment. The results changed by less than the range
of random weight initialization which indicates that this feature is useless.

System
Classification error

TOP1 change TOP3 change MER change

B1,cp 23.18 % −0.16 % 6.53 % −0.27 % 6.39 % −0.25 %
B2,cp 21.74 % 0.23 % 5.85 % 0.10 % 5.74 % 0.07 %
B3,cp 21.19 % −0.74 % 5.63 % −0.11 % 5.55 % −0.09 %
B4,cp 23.94 % 0.06 % 6.24 % 0.12 % 6.08 % 0.04 %

Table 6.7.: Evaluation of baseline systems B1 – B4 with additional stroke center point
features (cp) for 4 strokes. The results indicate that the feature is useless.

6.4.3. Ink

The ink feature measures how long each stroke is. This feature improved all models
except for B4 as one can see in the results listed in table 6.8. Although the experiment
was executed multiple times for B4, all evaluations showed that the ink feature made B4

perform worse.

The mean-standard deviation scatterplot is shown in figure C.1

System
Classification error

TOP1 change TOP3 change MER change

B1,i 22.22 % −1.12 % 5.88 % −0.92 % 5.77 % −0.87 %
B2,i 20.91 % −0.60 % 5.20 % −0.55 % 5.11 % −0.53 %
B3,i 21.33 % −0.60 % 5.28 % −0.46 % 5.21 % −0.43 %
B4,i 27.15 % 3.27 % 6.60 % 0.48 % 6.31 % 0.27 %

Table 6.8.: Evaluation of baseline systems B1 – B4 with additional ink feature (i). The
small systems B1 – B3 benefit from this feature, but the bigger model B4 performs worse.

45

46 6. Evaluation

6.4.4. Stroke Count

The number of strokes is a strong single feature, because most people tend to use the
same number of strokes for a given symbol. There are some symbols where people make
variations, but those variations are only if two strokes are connected or not. For example,
The letter “E” is by some people drawn as 4 strokes, by others as an “L” with two more
strokes. Figure 6.4 shows the mean-standard deviation scatterplot of the number of strokes
for each of the evaluated symbols excluding a few listed in table B.8.

The feature improves recognition rates for the models B1–B3, but makes B4 perform worse.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

1.5

2

~

H

⇐⇒⇔

. . .

;#
2

]

6≡

�⇒

∗

Φ
.
.
.

Ξ

R

←[

. . .

|=

�Q
�

↔
E

.
=

∴
. .
.

⇐@
7→÷

=⇒�,⇒∵
‚

notin

*

!

∐
Π

π

∓⇓≡
]
±

F

6=
H

⊗

(

9
F

⊕

ℵ

∏

%

N

F
H
7−→1

�
ΘΨ

q

<

κ

IJ

�

^

§

4↑
Z

A

$
t

x

�j

K
�

�

v�
K
∃

−→

i~

G
}EZ
∀
f

T

6

X

�
≷≤>
+

.

†

∈́

↓

←

X
¸⊥
3
`
'&‖χ≥ψ
ffl

⊇

	

T

A

⊆≈×
λ

-
∅

⊥
φ

>
∅

‖

P

R

a
Q

τ

 →

↘
↪→

RD

B

P

	k

Y

�

4

↗

P
=$
y

I

Λ

�

Z

?

θ
 D

♣

ε
7(5zB

y

Z

κ

•

[p

Γ

♥H

./

A

�

1N
J
≺�
b

n
C4
n
a
Σ�

M

N∝O
∑

d

o
[/

q

·

G∇

l

�
Mµβ
&
♦
⇀d∆%
e
gm
űι
t♦
η.M∠–∝&℘8γE
O

Ch9
s/|G
]
∂Ω◦ρσα
X
∧⊂δSSOζ>L̀∞eϕvcwVωS<Crvb∨Lξ∩ε〈Du∪
´

EL3∼2¬\Cϑ|ν\
UW06co⊃−o_〉′U

Mean stroke count

St
an

da
rd

de
vi

at
io

n
of

th
e

st
ro

ke
co

un
t

Figure 6.4.: Mean-standard deviation scatterplot of the stroke count feature as it was in-
troduced on page 43.

System
Classification error

TOP1 change TOP3 change MER change

B1,sc 23.28 % −0.06 % 6.71 % −0.09 % 6.55 % −0.09 %
B2,sc 21.75 % −0.24 % 5.46 % −0.29 % 5.38 % −0.29 %
B3,sc 21.42 % −0.51 % 5.45 % −0.29 % 5.39 % −0.25 %
B4,sc 25.28 % 1.40 % 6.87 % 0.75 % 6.50 % 0.46 %

Table 6.9.: Evaluation of baseline systems B1 – B4 with additional stroke count feature
(sc). B2,sc and B3,sc performed slightly better, B1,sc barely changed, but B4,sc performed
much worse than before.

6.4.5. Aspect Ratio

The aspect ratio is a 1 dimensional feature of a recording that is calculated by calculating
the ratio

aspect ratio(recording) =
width(recording)

height(recording)

However, as the width (and the height) get calculated by subtracting the minimum x (y)
value from the maximum x (y) value, it can be 0. In order to avoid zero division errors

46

6.5. System A: Greedy Time Warping 47

+0.01 was added to both values, width and height. This could be seen as the thickness of
a stroke and could have an impact on the value of this feature.

One dimension — either width or height — has the value 1 as all baseline systems use the
scale and shift algorithm (except if it was only a point).

Figure C.2 on page 85 shows a scatterplot of the mean and the standard deviation of this
feature and table B.9 on page 76 lists all symbols that were not used in the figure.

The evaluation results showed that the models B1 and B3 improved with this feature by
about 0.2 % MER error, but B4 got worse. The error rate of model B2,ar barely changed.

System
Classification error

TOP1 change TOP3 change MER change

B1,ar 23.07 % −0.27 % 6.55 % −0.25 % 6.45 % −0.19 %
B2,ar 21.45 % −0.06 % 5.67 % −0.08 % 5.60 % −0.07 %
B3,ar 21.49 % −0.44 % 5.36 % −0.38 % 5.28 % −0.36 %
B4,ar 25.01 % 1.13 % 6.45 % 0.33 % 6.10 % 0.06 %

Table 6.10.: Evaluation of baseline systems B1 – B4 with additional aspect ratio feature
(ar). The small systems B1,ar–B3,ar improved, but B4,ar got worse.

6.5. System A: Greedy Time Warping

System A used only scaling and shifting as resampling. After that, greedy time warping
was applied (a variant of dynamic time warping that is faster, but not optimal) to calculate
the distance of two recordings.

A new recording was classified getting the minimal distance to any known recording. The
label of the recording with minimal distance was used as a classification result.

This system needed about 22 s in average on Intel Pentium P6200 processor to classify
a single recording, although the amount of recordings per symbol was limited to 50 at
maximum. So it was much too slow.

The classification error was 85.46 %. The TOP10 classification error was 65.78 %. So this
system was clearly much worse than the MLPs.

Note that those results are much worse than what was achieved in [Kir10] on a similar
dataset. This is probably the reason, because Kirsch did apply more preprocessing steps
and tweaked the time warping approach. However, even his results with time warping
were much worse than what can be done with MLPs.

6.6. System B: Multilayer Perceptrons

The tested systems were already described in table 6.1. However, there are many param-
eters that might influence how fast a MLP can learn. The effect of changes to some of
those parameters were tested and are described in the following.

6.6.1. Baseline Testing

Figure 6.5, a plot of the validation and test error over the epochs shows that — except
for the system B4 — the biggest drops in error are done until the 400th epoch. After
that, there is almost no change. Only system B4 seems to be able to improve after that.

47

48 6. Evaluation

System
Classification error

TOP1 change TOP3 change MER change

B1,epochs=10 000 21.31 % −2.03 % 5.81 % −0.99 % 5.68 % −0.96 %
B2,epochs=10 000 21.47 % −0.04 % 5.84 % 0.09 % 5.68 % 0.01 %
B3,epochs=10 000 21.16 % −0.77 % 5.44 % −0.30 % 5.34 % −0.30 %
B4,epochs=10 000 21.00 % −2.88 % 5.74 % −0.38 % 5.64 % −0.40 %

Table 6.11.: Evaluation of baseline systems B1 – B4 after 10 000 epochs of training. The
models were tested after every epoch. There was no model in between that performed much
better. So overfitting is not a problem in that case.

Training B4 for 10 000 epochs led to an TOP1 error of 21.00 % which is 2.88 % better than
the result with only 1000 epochs of training. Model B3 was also able to improve, but not
that much. The exact results for all models and errors are in table 6.11.

Figure 6.6 shows a learning curve for model B1. Every point in that plot was generated
by artificially reducing the training set to a maximum number (from 1 to 150) of training
examples per symbol and training for only 300 epochs. As the training and the test error
were plotted, one can see how more data might affect the error rate. Although there are
symbols with only 50 recordings, it seems not to make a difference if one had 150 or more
recordings per symbol for a MLP with only one hidden layer. The TOP1 error on the
training set for 6 training examples per symbol is already at 29 %. This indicates that
more or better features could improve the model, whereas more training examples will not
help to get below 29 %.

6.6.2. Execution Time

The neural network training was executed on a Nvidia GeForce GTX Titan Black. It took
about 12 minutes to train B1 and about 25 minutes to train B4.

The training of B1 executed on a Intel P6200 CPU was aborted after 31 h. This means the
execution time was reduced by GPU training to about 1.6 % of the time it took before.

6.6.3. Learning Rate

The choice of the learning rate in mini batch training determines how wide the steps in
gradient descent are. Bigger steps lead to a faster improvement at the beginning, but at
the end the algorithm might jump back and forth and not be able to improve. Table B.23
shows the results after 1000 epochs of mini batch training with different choices for the
learning rate. Tested were learning rates of 0.05, 0.1, 0.2 and 1.0. For all models, a learning
rate of 0.1 was the best choice.

48

6.6. System B: Multilayer Perceptrons 49

100 200 300 400 500 600 700 800 900

0.2

0.4

0.6

0.8

1

epoch

error

validation error (1 hidden, lr 0.1) test error (1 hidden, lr 0.1)
validation error (1 hidden, lr 1) test error (1 hidden, lr 1)
validation error (2 hidden, lr 0.1) test error (2 hidden, lr 0.1)
validation error (3 hidden, lr 0.1) test error (3 hidden, lr 0.1)
validation error (4 hidden, lr 0.1) test error (4 hidden, lr 0.1)

Figure 6.5.: Training- and test error by number of trained epochs for different topologies.
The curves all show almost no difference in validation and test error. The error for all
curves with learning rates of η = 0.1 converge to similar values, although the error of B4

still drops while all other models do not perform better with more training. A learning rate
of η = 1 is much worse than η = 0.1.

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

0.2

0.4

0.6

0.8

1

Overfitting

Ability to match training data

max. training examples per symbol

er
ro
r

training error test error

0

0.2

0.4

0.6

0.8

1

sy
m
bo

ls
w
it
h
m
ax

.n
r
of

tr
ai
ni
ng

ex
am

pl
es

in
%

symbols with max. nr. of training examples

Figure 6.6.: This plot shows the learning curve for a 160:500:369 MLP. The x axis shows
the number of training examples per symbol, the y axis shows the error for the colored lines
and the percentage of symbols that had at least the maximum number of training examples.
The training and the testing error is plotted as well as the percentage of symbols with the
maximum number of training examples.

49

50 6. Evaluation

6.6.4. Momentum

The momentum α in mini-batch training is, just like the learning rate, important for
the speed of improvements and eventually also for the final result. It was explained in
section 4.4.6.

System
Classification error

TOP1 change TOP3 change MER change

B1,α=0.1 23.34 % 6.80 % 6.64 %
B1,α=0.9 22.51 % −0.83 % 6.88 % 0.08 % 6.74 % 0.10 %

B2,α=0.1 21.51 % 5.75 % 5.67 %
B2,α=0.9 21.17 % −0.34 % 5.96 % 0.21 % 5.85 % 0.18 %

B3,α=0.1 21.93 % 5.74 % 5.64 %
B3,α=0.9 20.57 % −1.36 % 5.59 % −0.15 % 5.53 % −0.11 %

B4,α=0.1 23.88 % 6.12 % 6.04 %
B4,α=0.9 21.39 % −2.49 % 6.00 % −0.12 % 5.91 % −0.13 %

Table 6.12.: Evaluation results of the systems B1 – B4 with adjusted momentums α. The
column “change” was left blank, because the baseline systems B1 – B4 use a momentum of
α = 0.1.

6.6.5. Pretraining

Pretraining is a technique used to improve the training of deep neural networks. Two
pretraining algorithms are described in section 4.4.9 on page 29: SLP and denoising auto-
encoders.

Figure 6.7 shows the evolution of validation and test errors over 1000 epochs with su-
pervised layer-wise pretraining and without pretraining. It clearly shows that this kind
of pretraining improves the classification performance. Detailed results are listed in ta-
ble 6.13.

System
Classification error

TOP1 change TOP3 change MER change

B1 23.34 % 6.80 % 6.64 %
B2,SLP 19.89 % −1.62 % 4.76 % −0.99 % 4.68 % −0.99 %
B3,SLP 19.43 % −2.50 % 4.64 % −1.10 % 4.54 % −1.10 %
B4,SLP 19.63 % −4.25 % 4.66 % −1.46 % 4.55 % −1.49 %

Table 6.13.: Systems with SLP compared to pure gradient descent. The SLP systems per-
formed notably better. Although the pretrained systems Bi,SLP got 1000 epochs of training
for each layer whereas the systems Bi only got 1000 epochs of training in total, it is impor-
tant to note that the systems B1–B3 were not able to improve with more training epochs.
Denoising auto-encoders (da) on the other hand made the system much worse.

Pretraining with denoising auto-encoder lead to the much worse results listed in table 6.14.
The first layer used a tanh activation function. Every layer was trained for 1000 epochs
and the MSE loss function. A learning-rate of η = 0.001, a corruption of 0.3 and a L2

regularization of λ = 10−4 were chosen. This pretraining setup made all systems with all
error measures perform much worse.

50

6.6. System B: Multilayer Perceptrons 51

100 200 300 400 500 600 700 800 900

0.2

0.25

0.3

0.35

0.4

epoch

error

validation error (1 hidden) test error (1 hidden)
validation error (2 hidden) test error (2 hidden)
validation error (2 hidden, pretraining) test error (2 hidden, pretraining)
validation error (3 hidden, pretraining) test error (3 hidden, pretraining)
validation error (4 hidden, pretraining) test error (4 hidden, pretraining)

Figure 6.7.: Training- and test error by number of trained epochs for different topologies
with SLP. The plot shows that all pretrained systems performed much better than the
systems without pretraining. All plotted systems did not improve with more epochs of
training.

6.6.6. Newbob Training

Newbob is a training mode that adjusts the training rate according to the improvement
over the last epoch. It was explained on page 28. Figure 6.8 shows the result of the
training and test error with newbob training. It was used with θ1 = 0.5 % and θ2 = 0.1 %.

Table 6.15 shows results for different choices of parameters for newbob training. Although
the training finished fast (most of the time after about 80 epochs, but always before the
400th epoch), no result of newbob training was better than the baseline system.

System
Classification error

TOP1 change TOP3 change MER change

B1,p 23.75 % 0.41 % 7.19 % 0.39 % 6.98 % 0.34 %
B2,p 22.76 % 1.25 % 6.38 % 0.63 % 6.28 % 0.61 %
B3,p 23.10 % 1.17 % 6.14 % 0.40 % 6.04 % 0.40 %
B4,p 25.59 % 1.71 % 6.99 % 0.87 % 6.88 % 0.84 %

Table 6.14.: Systems with denoising auto-encoder pretraining compared to pure gradient
descent. The pretrained systems clearly performed worse.

51

52 6. Evaluation

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0.2

0.4

0.6

0.8

1

epoch

error

validation error (newbob) test error (newbob)
validation error (newbob, 10 times data) test error (newbob, 10 times data)
validation error (newbob, 20 times data) test error (newbob, 20 times data)

Figure 6.8.: Training- and test error by number of trained epochs for different topologies
and training types.

System
Classification error

TOP1 change TOP3 change MER change

B1,α=0.1,dm=20,d=0.5,θ=0.001 34.86 % 11.52 % 16.02 % 9.22 % 15.69 % 9.05 %
B1,α=1.0,dm=20,d=0.95,θ=0.00001 30.60 % 7.26 % 12.36 % 5.56 % 12.09 % 5.45 %
B1,α=0.1,dm=20,d=0.50,θ=0.00001 28.24 % 4.90 % 10.92 % 4.12 % 10.68 % 4.04 %
B1,α=0.1,dm=20,d=0.75,θ=0.00001 27.70 % 4.36 % 10.67 % 3.87 % 10.41 % 3.77 %
B1,α=0.1,dm=20,d=0.95,θ=0.00001 26.77 % 3.43 % 9.59 % 2.79 % 9.42 % 2.78 %
B1,α=0.1,dm=1,d=0.95,θ=0.00001 26.80 % 3.46 % 10.21 % 3.41 % 10.00 % 3.36 %

B2,α=0.1,dm=20,d=0.95,θ=0.00001 48.08 % 26.57 % 27.78 % 22.03 % 27.31 % 21.64 %
B3,α=0.1,dm=20,d=0.95,θ=0.00001 98.12 % 76.19 % 97.06 % 91.32 % 97.03 % 91.39 %
B4,α=0.1,dm=20,d=0.95,θ=0.00001 98.60 % 74.72 % 96.76 % 90.64 % 96.72 % 90.68 %

Table 6.15.: Evaluation results of Newbob trainings with different learning rates α, data
multiplications dm (by copying data), newbob weight decays d and newbob thresholds θ.

52

6.7. Optimized Recognizer 53

6.7. Optimized Recognizer

All preprocessing steps and features that were useful were combined to create a recognizer
that should perform best.

All models were much better than everything that was tried before. The results of this
experiment show that single-symbol recognition with 369 classes and usual touch devices
and the mouse can be done with a TOP1 error rate of 18.56 %, a TOP3 error of 4.11 %
and a MER error rate of 4.01 %. This was achieved by a MLP with a 167 : 500 : 500 : 369
topology.

It used an algorithm to connect strokes of which the ends were less than 10 px away, scaled
each recording to a unit square and shifted this unit square to (0, 0). After that, a linear
resampling step was applied to the first 4 strokes to resample them to 20 points each. All
other strokes were discarded.

The 167 features were

• the first 4 strokes with 20 points per stroke resulting in 160 features,

• the re-curvature for the first 4 strokes,

• the ink,

• the number of strokes and

• the aspect ratio

SLP was applied with 1000 epochs per layer, a learning rate of η = 0.1 and a momentum of
α = 0.1. After that, the complete model was trained again for 1000 epochs with standard
mini-batch gradient descent.

After the models B1,c – B4,c were trained the first 1000 epochs, they were trained again
for 1000 epochs with a learning rate of η = 0.05. Table 6.16 shows that this improved the
classifiers again.

System B′2,c had an error rate of 14.91 % if only the first symbol and its equivalence class
were accepted as correct.

System
Classification error

TOP1 change TOP3 change MER change

B1,c 20.96 % −2.38 % 5.24 % −1.56 % 5.13 % −1.51 %
B2,c 18.26 % −3.25 % 4.07 % −1.68 % 3.98 % −1.69 %
B3,c 18.19 % −3.74 % 4.06 % −1.68 % 3.99 % −1.65 %
B4,c 18.57 % −5.31 % 4.25 % −1.87 % 4.18 % −1.86 %

B′1,c 19.33 % −1.63 % 4.78 % −0.46 % 4.67 % −0.46 %

B′2,c 17.52 % −0.74 % 4.04 % −0.03 % 3.96 % −0.02 %

B′3,c 17.65 % −0.54 % 4.07 % 0.01 % 4.00 % 0.01 %

B′4,c 17.82 % −0.75 % 4.26 % 0.01 % 4.20 % 0.02 %

Table 6.16.: Error rates of the optimized recognizer systems. The systems B′i,c were trained
another 1000 epochs with a learning rate of η = 0.05. The value of the column “change” of
the systems B′i,c is relative to Bi,c.

53

54 6. Evaluation

6.8. User Interviews

Four people who used the recognizer on the website write-math.com with a Samsung
Galaxy Note 10.1 (a 10.1 inch tablet with a stylus), with a smartphone and with a PC and
a mouse were asked for feedback about the input devices. They were asked which device
they prefer, why they prefer it, and if they could imagine entering multi-symbol formulas
on those devices.

User A preferred this tablet with the stylus over using the mouse or a smartphone. She
uses this tablet often and knows how to use the stylus for various applications. While
using the website, she noted that the recognition works better if the symbol is written in a
larger size. After noting that, she entered all symbols in a bigger size. She could imagine
using the tablet to enter multi-symbol formulas.

User B used this tablet before, but did not use the stylus for writing before. He could
enter symbols without problems with the tablet, but preferred using the index finger for
writing instead of the styles. The reason is that he is used to lay the heel of the hand on
the surface on which he is writing, which did not work well with the tablet. He preferred
using a Nexus 4 smartphone to enter symbols. He could not imagine entering complex
formulas with a tablet or the computer.

User C never used a touch device before. She preferred the tablet, but she had problems
with the stylus as the tablet did not allow to lay the heel of the hand on the surface. This
is the reason why she used the tablet with her fingers. She could also imagine to use a
recognition system with multi-symbol formulas on a tablet, but not by using the mouse.

Like user C, user D never used a touch device before. He liked the stylus, although it
took him a few minutes to get used to not placing the heel of the hand on the tablet. He
also tried to enter symbols with a trackball, but that didn’t work for him. According to
user D, it is not possible to draw straight lines with a trackball which makes it unusable
for writing symbols. He could also imagine to write multi-symbol formulas with a tablet.

6.9. Evaluation Summary

Five different classification systems were evaluated: A GTW classifier (see page 47) and
four MLPs. The GTW classifier performed much worse than all MLP systems. For this
reason, it was only tested in one variant.

The four MLPs Bi, i ∈ { 1, 2, 3, 4 } had i hidden layers with 500 neurons per layer. The
baseline systems used scaling into a unit square, shifting to (0, 0), 160 features that were
coordinates of the first 20 points of the first 4 strokes. The baseline systems were trained
with mini-batch gradient descent for 1000 epochs with a learning rate of η = 0.1 and a
momentum of α = 0.1.

For many recordings, there are at least two possibilities which symbols humans would
recognize without context. This is the reason why the TOP1 error is less meaningful
for single-symbol recognition. Hence two other error measures were calculated for every
experiment: The TOP3 error and the MER error. The MER error of the baseline system
B2 is 5.67 %.

The MLPs were tested with five preprocessing algorithms, one data multiplication algo-
rithm, five features and five variants for training in 16 separate experiments.

The effects of the preprocessing algorithms were often similar for the systems B2 and B3.
The system B4 was very sensitive to changes. A possible reason is the bigger number of
weights, the higher order of internally computed features and the fact that the system was

54

http://write-math.com

6.9. Evaluation Summary 55

still able to improve after 1000 epochs of training. The system B4 could be the best system
if it was trained long enough as table 6.11 on page 48 shows. This means all results of the
system B4 should be taken with caution and eventually be evaluated again with 10 000
training epochs. System B1 on the other hand performs much worse than system B2. The
storage size and the comparably small amount of necessary computing power to train B1

are the only reasons to use this system.

The optimized system B′2,c was the best evaluated system with a TOP1 error rate of
17.52 %, a TOP3 error rate of 4.04 %, and a MER error rate of 3.96 %. This was achieved
by extending the system B2 by one algorithm or feature at a time, evaluating the extended
system and combining all changes into B′2,c which improved the recognition rate.

The most important change was SLP (see page 50). It improved the MER error by
0.99 %. Adding the re-curvature feature improved the systems MER error by 0.57 %, the
ink feature improved it by 0.53 %, the stroke count feature by 0.29 % and the aspect ratio
feature by 0.07 %. The stroke connect preprocessing algorithm improved the MER error by
0.33 %, but all other preprocessing steps had either no effect that was bigger than random
weight initialization or even made the classifiers worse. Douglas-Peucker smoothing is a
preprocessing step that was not mentioned before in the literature for on-line HWR, but
its evaluation results were much worse than the baseline system for any simplification
threshold ε > 0.05. The computational cost of cubic spline interpolation is higher than
linear interpolation and the classification results are worse.

55

7. Conclusion

7.1. Summary

The aim of this bachelor’s thesis was to build a recognition system that can recognize many
mathematical symbols with low error rates as well as to evaluate which preprocessing steps
and features help to improve the recognition rate.

All recognition systems were trained and evaluated with 166 898 recordings for 369 sym-
bols. These recordings were collected by two crowdsourcing projects (Detexify and write-
math.com) and created with various devices. While some recordings were created with
standard touch devices such as tablets and smartphones, others were created with the
mouse.

MLPs were used for the classification task. Four baseline systems with different numbers
of hidden layers were used, as the number of hidden layer influences the capabilities and
problems of MLPs. Furthermore, an error measure MER was defined, which takes the top
three hypotheses of the classifier, merges symbols such as \sum (

∑
) and \Sigma (Σ) to

equivalence classes, and then calculates the error.

All baseline systems used the same preprocessing queue. The recordings were scaled to fit
into a unit square, shifted to (0, 0), resampled with linear interpolation so that every stroke
had exactly 20 points which are spread equidistant in time. The 80 (x, y) coordinates of
the first 4 strokes were used to get exactly 160 input features for every recording. The
baseline systems B2 has a MER error of 5.67 %.

Three variations of the scale and shift algorithm, wild point filtering, stroke connect,
weighted average smoothing, and Douglas-Peucker smoothing were evaluated. The eval-
uation showed that the scale and shift algorithm is extremely important and the connect
strokes algorithm improves the classification. All other preprocessing algorithms either
diminished the classification performance or had less influence on it than the random
initialization of the MLPs weights.

Adding two slightly rotated variants for each recording and hence tripling the training set
made the systems B3 and B4 perform much worse, but improved the performance of the
smaller systems.

The global features re-curvature, ink, stoke count and aspect ratio improved the systems
B1–B3, whereas the stroke center point feature made B2 perform worse.

57

http://detexify.kirelabs.org/classify.html
write-math.com
write-math.com

58 7. Conclusion

The learning rate and the momentum were evaluated. A learning rate of η = 0.1 and
a momentum of α = 0.9 gave the best results. Newbob training lead to much worse
recognition rates. Denoising auto-encoders were evaluated as one way to use pretraining,
but by this the error rate increased notably. However, supervised layer-wise pretraining
improved the performance decidedly.

The stroke connect algorithm was added to the preprocessing steps of the baseline system
as well as the re-curvature feature, the ink feature, the number of strokes and the aspect
ratio. The training setup of the baseline system was changed to supervised layer-wise
pretraining and the resulting model was trained with a lower learning rate again. This
optimized recognizer B′2,c had a MER error of 3.96 %. This means that the MER error
dropped by over 30 % in comparison to the baseline system B2.

A MER error of 3.96 % makes the system usable for symbol lookup. It could also be used
as a starting point for the development of a multiple-symbol classifier.

The aim of this bachelor’s thesis was to develop a symbol recognition system which is easy
to use, fast and has high recognition rates as well as evaluating ideas for single symbol
classifiers. Some of those goals were reached. The recognition system B′2,c evaluates new
recordings in a fraction of a second and has acceptable recognition rates. Many variations
algorithms were evaluated. However, there are still many more algorithms which could be
evaluated and, at the time of this work, the best classifier B′2,c is not publicly available.

7.2. Future Work

The presented system for single-symbol recognition with 369 classes works well. However,
there are still many other symbols that one might want to classify, but which did not
have enough training examples. This means that one part of the future work will include
collecting more training examples, so that each class has at least 150 training examples.

Single-symbol recognition does already help LATEX users a lot, but multiple symbol recog-
nition is much more interesting. New hardware like iSketchnote or Equil Smartpen 2 can
be used to improve the user experience of data input. It would be a significant develop-
ment if users could employ those improved input devices to write complete formulas or
systems of equations which a recognition system would record, recognize, and optimize for
the best typeset result.

User interviews and surveys should be made to see how users employ such recognition
systems, what they expect and if the system is useful for them. It might especially be
interesting to see which kind of input device is comfortable for users and how the recorded
data and the classification error changes with different devices.

However, there is still a lot that could be tried for single-symbol recognition with the mouse
as an input device. Local features like bitmap environments notably improved recognition
rates in earlier work and should be evaluated again and compared with the optimized
recognizer B′2. Different user interfaces like the one shown in figure 1.1 could be applied.
Bottlenecks could be added to the MLP architecture. The F1 score of preprocessing steps
could be calculated to learn optimal parameters for noise reduction.

Future work could also attempt to find recognition systems that have less weights and
similar recognition capabilities by inserting bottlenecks. If the neural net becomes smaller,
it could be possible to let users download it in a JavaScript browser application and execute
the classification directly on the client with ConvNetJS.

58

http://www.isketchnote.com
https://www.indiegogo.com/projects/equil-smartpen-2-real-ink-real-paper-digitized
http://cs.stanford.edu/people/karpathy/convnetjs/index.html

Bibliography

[Ara83] H. Arakawa, “On-line recognition of handwritten characters –
Alphanumerics, Hiragana, Katakana, Kanji,” Pattern Recogni-
tion, vol. 16, no. 1, pp. 9 – 21, 1983. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0031320383900031

[B+06] C. M. Bishop et al., Pattern Recognition and Machine Learning, M. Jordan,
Ed. Springer Science+Business Media, 2006, vol. 1.

[BH84] A. Belaid and J.-P. Haton, “A syntactic approach for handwritten mathemat-
ical formula recognition,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. PAMI-6, no. 1, pp. 105–111, Jan 1984.

[BN72] P. W. Becker and K. A. Nielsen, “Pattern recognition using dynamic
pictorial information,” Systems, Man and Cybernetics, IEEE Transactions
on, vol. SMC-2, no. 3, pp. 434–437, July 1972. [Online]. Available:
http://ieeexplore.ieee.org/xpl/abstractKeywords.jsp?arnumber=4309141

[Bro64] R. M. Brown, “On-line computer recognition of handprinted characters,”
Electronic Computers, IEEE Transactions on, vol. EC-13, no. 6, pp.
750–752, Dec 1964. [Online]. Available: http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?arnumber=4038313

[BS89] R. Bozinovic and S. Srihari, “Off-line cursive script word recognition,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 11, no. 1, pp. 68–83, Jan 1989. [Online]. Available: http:
//ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=23114

[CRU+08] N. A. Campbell, J. B. Reece, L. A. Urry, M. L. Cain, S. A. Wasserman, P. V.
Minorsky, and R. B. Jackson, Biology, 8th ed., B. Wilbur, Ed. Pearson, 2008.

[Deea] “Denoising autoencoders (da).” [Online]. Available: http://deeplearning.net/
tutorial/dA.html

[deeb] “Going from logistic regression to mlp.” [Online]. Avail-
able: http://www.deeplearning.net/tutorial/mlp.html#going-from-logistic-
regression-to-mlp

[DHS01] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. John Wiley
& Sons, 2001.

[Dim58] T. L. Dimond, “Devices for reading handwritten characters,” in Papers and
Discussions Presented at the December 9-13, 1957, Eastern Joint Computer
Conference: Computers with Deadlines to Meet, ser. IRE-ACM-AIEE ’57
(Eastern). New York, NY, USA: ACM, 1958, pp. 232–237. [Online].
Available: http://doi.acm.org/10.1145/1457720.1457765

59

http://www.sciencedirect.com/science/article/pii/0031320383900031
http://ieeexplore.ieee.org/xpl/abstractKeywords.jsp?arnumber=4309141
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4038313
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4038313
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=23114
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=23114
http://deeplearning.net/tutorial/dA.html
http://deeplearning.net/tutorial/dA.html
http://www.deeplearning.net/tutorial/mlp.html#going-from-logistic-regression-to-mlp
http://www.deeplearning.net/tutorial/mlp.html#going-from-logistic-regression-to-mlp
http://doi.acm.org/10.1145/1457720.1457765

60 Bibliography

[GAC+91] I. Guyon, P. Albrecht, Y. L. Cun, J. Denker, and W. Hubbard, “Design
of a neural network character recognizer for a touch terminal,” Pattern
Recognition, vol. 24, no. 2, pp. 105 – 119, 1991. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/003132039190081F

[GP93] W. Guerfali and R. Plamondon, “Normalizing and restoring on-line
handwriting,” Pattern Recognition, vol. 26, no. 3, pp. 419–431, 1993.
[Online]. Available: http://dx.doi.org/10.1016/0031-3203(93)90169-W

[Gro66] G. F. Groner, “Real-time recognition of handprinted text,” in Proceedings of
the November 7-10, 1966, Fall Joint Computer Conference, ser. AFIPS ’66
(Fall). New York, NY, USA: ACM, 1966, pp. 591–601. [Online]. Available:
http://doi.acm.org/10.1145/1464291.1464355

[HBT94] J. Hu, M. K. Brown, and W. Turin, “Handwriting recognition with hidden
Markov models and grammatical constraints,” in In Proceedings of the
Fourth International Workshop on Frontiers in Handwriting Recognition,
1994. [Online]. Available: http://www.bell-labs.com/user/jianhu/papers/
iwfhr94.ps

[Hin89] G. E. Hinton, “Connectionist learning procedures,” Artif. Intell., vol. 40, no.
1-3, pp. 185–234, Sep. 1989. [Online]. Available: http://dx.doi.org/10.1016/
0004-3702(89)90049-0

[HK06] B. Huang and M.-T. Kechadi, “An HMM-SNN method for online
handwriting symbol recognition,” in Image Analysis and Recognition, ser.
Lecture Notes in Computer Science, A. Campilho and M. Kamel, Eds.
Springer Berlin Heidelberg, 2006, vol. 4142, pp. 897–905. [Online]. Available:
http://dx.doi.org/10.1007/11867661 81

[HW89] I. Hampshire, J.B. and A. Waibel, “A novel objective function for improved
phoneme recognition using time delay neural networks,” in Neural Networks,
1989. IJCNN., International Joint Conference on, 1989, pp. 235–241 vol.1.
[Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=
118586

[HZK09] B. Q. Huang, Y. Zhang, and M.-T. Kechadi, “Preprocessing techniques
for online handwriting recognition,” in Intelligent Text Categorization
and Clustering, ser. Studies in Computational Intelligence, N. Nedjah,
L. de Macedo Mourelle, J. Kacprzyk, F. França, and A. de De Souza, Eds.
Springer Berlin Heidelberg, 2009, vol. 164, ch. Preprocessing Techniques
for Online Handwriting Recognition, pp. 25–45. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-85644-3 2

[iHY80] S. ichi Hanaki and T. Yamazaki, “On-line recognition of handprinted
kanji characters,” Pattern Recognition, vol. 12, no. 6, pp. 421 – 429,
1980. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/0031320380900187

[IMP76] S. Impedovo, B. Marangelli, and V. L. Plantamura, “Real-time recognition of
handwritten numerals,” Systems, Man and Cybernetics, IEEE Transactions
on, vol. SMC-6, no. 2, pp. 145–148, Feb 1976. [Online]. Available:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5409186

[JMRW01] S. Jaeger, S. Manke, J. Reichert, and A. Waibel,“Online handwriting recogni-
tion: the NPen++ recognizer,” in International Journal on Document Anal-
ysis and Recognition, 2001, pp. 169–180.

60

http://www.sciencedirect.com/science/article/pii/003132039190081F
http://dx.doi.org/10.1016/0031-3203(93)90169-W
http://doi.acm.org/10.1145/1464291.1464355
http://www.bell-labs.com/user/jianhu/papers/iwfhr94.ps
http://www.bell-labs.com/user/jianhu/papers/iwfhr94.ps
http://dx.doi.org/10.1016/0004-3702(89)90049-0
http://dx.doi.org/10.1016/0004-3702(89)90049-0
http://dx.doi.org/10.1007/11867661_81
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=118586
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=118586
http://dx.doi.org/10.1007/978-3-540-85644-3_2
http://www.sciencedirect.com/science/article/pii/0031320380900187
http://www.sciencedirect.com/science/article/pii/0031320380900187
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5409186

Bibliography 61

[JMW00] S. Jaeger, S. Manke, and A. Waibel, “NPen++: An on-line handwriting
recognition system,” in in 7th International Workshop on Frontiers
in Handwriting Recognition, 2000, pp. 249–260. [Online]. Available:
http://isl.anthropomatik.kit.edu/cmu-kit/IWFHR stephen1.pdf

[KC98] A. Khotanzad and C. Chung, “Hand written digit recognition using
combination of neural network classifiers,” in Image Analysis and
Interpretation, 1998 IEEE Southwest Symposium on, 4 1998, pp. 168–
173. [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=666880

[Kir10] D. Kirsch, “Detexify: Erkennung handgemalter LaTeX-symbole,” Diploma
thesis, Westfälische Wilhelms-Universität Münster, 10 2010. [Online].
Available: http://danielkirs.ch/thesis.pdf

[KR98] A. Kosmala and G. Rigoll, “Recognition of on-line handwritten formulas,”
in In Proceedings of the Sixth International Workshop on Frontiers
in Handwriting Recognition, 1998, pp. 219–228. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.9056

[KRLP99] A. Kosmala, G. Rigoll, S. Lavirotte, and L. Pottier, “On-line handwritten
formula recognition using hidden Markov models and context dependent
graph grammars,” in Proceedings of the Fifth Internation Conference
on Document Analysis and Recognition (ICDAR), 1999, pp. 107–110.
[Online]. Available: http://hal.inria.fr/docs/00/56/46/45/PDF/kosmala-
rigoll-etal 1999.pdf

[KWL95] M. Koschinski, H.-J. Winkler, and M. Lang, “Segmentation and recogni-
tion of symbols within handwritten mathematical expressions,” in Acoustics,
Speech, and Signal Processing, 1995. ICASSP-95., 1995 International Con-
ference on, vol. 4, May 1995, pp. 2439–2442 vol.4.

[LBK+08] H. Lodish, A. Berk, C. A. Kaiser, M. Krieger, M. P. Scott, A. Bretscher,
H. Ploegh, and P. Matsudaira, Molecular Cell Biology, 6th ed., K. Ahr, Ed.
W. H. Freeman and Company, 2008.

[MFW94] S. Manke, M. Finke, and A. Waibel, “Combining bitmaps with dynamic
writing information for on-line handwriting recognition,” in Proceedings of
the ICPR-94, 1994, pp. 596–598.

[MFW95] ——, “The use of dynamic writing information in a connectionist
on-line cursive handwriting recognition system,” in Advances in
Neural Information Processing Systems 7, G. Tesauro, D. Touretzky,
and T. Leen, Eds. MIT Press, 1995, pp. 1093–1100. [On-
line]. Available: http://isl.anthropomatik.kit.edu/cmu-kit/downloads/
The Use of Dynamic Writing Information in a Connectionist On-
Line Cursive Handwriting Recognition System(3).pdf

[Mit97] T. M. Mitchell, Machine learning, ser. McGraw Hill series in computer sci-
ence. McGraw-Hill, 1997.

[MP43] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in
nervous activity,” The bulletin of mathematical biophysics, vol. 5, no. 4, pp.
115–133, 1943. [Online]. Available: http://dx.doi.org/10.1007/BF02478259

[MVGK+11] H. Mouchere, C. Viard-Gaudin, D. H. Kim, J. H. Kim, and
U. Garain, “Crohme2011: Competition on recognition of online handwritten
mathematical expressions,” in International Conference on Document

61

http://isl.anthropomatik.kit.edu/cmu-kit/IWFHR_stephen1.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=666880
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=666880
http://danielkirs.ch/thesis.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.9056
http://hal.inria.fr/docs/00/56/46/45/PDF/kosmala-rigoll-etal_1999.pdf
http://hal.inria.fr/docs/00/56/46/45/PDF/kosmala-rigoll-etal_1999.pdf
http://isl.anthropomatik.kit.edu/cmu-kit/downloads/The_Use_of_Dynamic_Writing_Information_in_a_Connectionist_On-Line_Cursive_Handwriting_Recognition_System(3).pdf
http://isl.anthropomatik.kit.edu/cmu-kit/downloads/The_Use_of_Dynamic_Writing_Information_in_a_Connectionist_On-Line_Cursive_Handwriting_Recognition_System(3).pdf
http://isl.anthropomatik.kit.edu/cmu-kit/downloads/The_Use_of_Dynamic_Writing_Information_in_a_Connectionist_On-Line_Cursive_Handwriting_Recognition_System(3).pdf
http://dx.doi.org/10.1007/BF02478259

62 Bibliography

Analysis and Recognition (ICDAR), 2011, Sept 2011, pp. 1497–
1500. [Online]. Available: http://hal.archives-ouvertes.fr/docs/00/61/52/
16/PDF/CROHME CRC511.pdf

[MVGK+12] H. Mouchere, C. Viard-Gaudin, D. Kim, J. Kim, and U. Garain,
“Icfhr 2012 competition on recognition of on-line mathematical ex-
pressions (crohme 2012),” in International Conference on Frontiers in
Handwriting Recognition (ICFHR), 2012, Sept 2012, pp. 811–816. [On-
line]. Available: http://hal.archives-ouvertes.fr/docs/00/71/78/50/PDF/
Mouchere2012 CROHME.pdf

[MVGZ+13] H. Mouchere, C. Viard-Gaudin, R. Zanibbi, U. Garain, D. H. Kim,
and J. H. Kim, “Icdar 2013 crohme: Third international competition
on recognition of online handwritten mathematical expressions,” in
12th International Conference on Document Analysis and Recognition
(ICDAR), 2013, Aug 2013, pp. 1428–1432. [Online]. Available: http:
//www.isical.ac.in/˜crohme/CROHME2013.pdf

[new00] “The training performed by qnstrn,” 08 2000. [Online]. Available:
http://www1.icsi.berkeley.edu/Speech/faq/nn-train.html

[Ng04] A. Y. Ng, “Feature selection, l1 vs. l2 regularization, and rotational
invariance,” in Proceedings of the Twenty-first International Conference on
Machine Learning, ser. ICML ’04. New York, NY, USA: ACM, 2004, pp.
78–. [Online]. Available: http://doi.acm.org/10.1145/1015330.1015435

[Pow73] V. M. Powers, “Pen direction sequences in character recognition,” Pattern
Recognition, vol. 5, no. 4, pp. 291 – 302, 1973. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0031320373900228

[Ros58] F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain,” Psychological Review, vol. 65, no. 6,
pp. 386–408, 1958. [Online]. Available: http://dx.doi.org/10.1007/978-3-
642-70911-1 20

[SBV96] B. Schölkopf, C. Burges, and V. Vapnik, “Incorporating invariances
in support vector learning machines,” in Artificial Neural Networks
– ICANN 96, ser. Lecture Notes in Computer Science, C. von der
Malsburg, W. von Seelen, J. Vorbrüggen, and B. Sendhoff, Eds., vol.
1112. Springer Berlin Heidelberg, 1996, pp. 47–52. [Online]. Available:
http://link.springer.com/chapter/10.1007/3-540-61510-5 12

[SGH94] M. Schenkely, I. Guyonz, and D. Hendersonz, “On-line cur-
sive script recognition using time delay neural networks and
hidden Markov models,” in 1994 IEEE International Conference
on Acoustics, Speech, and Signal Processing., vol. ii, 4 1994,
pp. 637–640. [Online]. Available: http://pdf.aminer.org/003/076/160/
on line cursive script recognition using time delay neural networks.pdf

[Tap87] C. C. Tappert, Speed, Accuracy, Flexibility Trade-offs in On-line Character
Recognition, ser. Research report. IBM T.J. Watson Research Center, 1987.
[Online]. Available: http://books.google.com/books?id=5br HAAACAAJ

[TSW90] C. C. Tappert, C. Y. Suen, and T. Wakahara, “The state of the
art in online handwriting recognition,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 12, no. 8, pp. 787–808, 8 1990. [Online]. Available:
http://dx.doi.org/10.1109/34.57669

62

http://hal.archives-ouvertes.fr/docs/00/61/52/16/PDF/CROHME_CRC511.pdf
http://hal.archives-ouvertes.fr/docs/00/61/52/16/PDF/CROHME_CRC511.pdf
http://hal.archives-ouvertes.fr/docs/00/71/78/50/PDF/Mouchere2012_CROHME.pdf
http://hal.archives-ouvertes.fr/docs/00/71/78/50/PDF/Mouchere2012_CROHME.pdf
http://www.isical.ac.in/~crohme/CROHME2013.pdf
http://www.isical.ac.in/~crohme/CROHME2013.pdf
http://www1.icsi.berkeley.edu/Speech/faq/nn-train.html
http://doi.acm.org/10.1145/1015330.1015435
http://www.sciencedirect.com/science/article/pii/0031320373900228
http://dx.doi.org/10.1007/978-3-642-70911-1_20
http://dx.doi.org/10.1007/978-3-642-70911-1_20
http://link.springer.com/chapter/10.1007/3-540-61510-5_12
http://pdf.aminer.org/003/076/160/on_line_cursive_script_recognition_using_time_delay_neural_networks.pdf
http://pdf.aminer.org/003/076/160/on_line_cursive_script_recognition_using_time_delay_neural_networks.pdf
http://books.google.com/books?id=5br_HAAACAAJ
http://dx.doi.org/10.1109/34.57669

Bibliography 63

[VLBM08] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and
composing robust features with denoising autoencoders,” in Proceedings of
the 25th International Conference on Machine Learning, ser. ICML ’08.
New York, NY, USA: ACM, 2008, pp. 1096–1103. [Online]. Available:
http://doi.acm.org/10.1145/1390156.1390294

[VW90] M. Visvalingam and J. D. Whyatt, “The douglas-peucker algorithm for
line simplification: Re-evaluation through visualization,” in Computer
Graphics Forum, vol. 9, no. 3. Wiley Online Library, 1990, pp.
213–225. [Online]. Available: http://www.bowdoin.edu/˜ltoma/teaching/
cs350/spring06/Lecture-Handouts/hershberger92speeding.pdf

63

http://doi.acm.org/10.1145/1390156.1390294
http://www.bowdoin.edu/~ltoma/teaching/cs350/spring06/Lecture-Handouts/hershberger92speeding.pdf
http://www.bowdoin.edu/~ltoma/teaching/cs350/spring06/Lecture-Handouts/hershberger92speeding.pdf

Glossary

ANN artificial neural network. 19

CE cross entropy. 27, 28

CFM classification figure of merit. 27

CROHME Competition on Recognition of Online Handwritten Mathematical Expressions.
6

CUDA Compute Unified Device Architecture. 5

Detexify A system used for on-line handwritten symbol recognition which is described in
[Kir10]. 3

DTW dynamic time warping. 6, 19, 22

GMM Gaussian mixture model. 21

GPU graphics processing unit. 5, 26

GTW greedy time warping. 21, 22, 54

HMM hidden Markov model. 6, 19

HWR handwriting recognition. 1, 2, 7, 21, 55

HWRT handwriting recognition toolkit. 34

hypothesis The recognition results which a classifier returns is called a hypothesis. In
other words, it is the “guess” of a classifier. 37, 57

JSON JSON, short for JavaScript Object Notation, is a language-independent data format
that can be used to transmit data between a server and a client in web applications.
7

LDA linear discriminant analysis. 3, 21, 24

line Geometric object that is infinitely long and defined by two points.. 15

line segment Geometric object that has finite length and defined by two points.. 19

MER An error measure which combines symbols to equivalence classes. It was introduced
on page 37. 37

MLP multilayer perceptron. 21, 24–27, 29, 37, 47–49, 53, 54, 57, 58

MSE mean squared error. 27, 50

65

66 Glossary

PCA principal component analysis. 3, 21, 24

PyPI Python Package Index. 32

reference Labeled data is used to evaluate classifiers. Those labels are called references.
37

SLP supervised layer-wise pretraining. 29, 50, 51, 53, 55

stroke The path the pen took from the point where the pen was put down to the point
where the pen was lifted first. 7

SVM support vector machine. 21

symbol An atomic semantic entity. A more detailed description can be found in sec-
tion 1.1. 1

TDNN time delay neural network. 5

YAML YAML is a human-readable data format that can be used for configuration files.
84, 85

66

Appendix

A. Algorithms

The following pseudo-code makes use of 0-indexed lists and arrays. The notation abc[−1]
means that the last element of the list or array abc is accessed. The notation abc[2 : 5] is
called a slice in Python. It creates a new list from the list abc that contains the elements
with index 2, 3 and 4. The slice abc[1 : −1] means that a new list is created that contains
all elements except for the first of the list abc.

Algorithm 2 Resampling

function resampling(pointlist, points per stroke)
new pointlist← List()
for all stroke in pointlist do

new stroke← List()
if count(stroke) < 4 then

. Don't do anything if there are less than 4 points
new stroke← stroke

else
x, y, t← List(),List(),List()
for all point in stroke do

x.append(point['x'])
y.append(point['y'])
t.append(point['time'])

fx ← interpolate(x, t) . This could be linear interpolation,
fy ← interpolate(y, t) . cubic spline interpolation or something else
times← space linear(t[0], t[−1])
for all t in times do

point← Point(fx(t), fy(t), t)
new stroke.append(point)

new pointlist.append(new stroke)
return new pointlist

67

68 Appendix

Algorithm 3 Scale and shift a list of strokes to the [−0.5, 0.5]× [−0.5, 0.5] unit square

function scale and shift(pointlist)
. Calculate bounding box
minx,miny ← pointlist[0][0]['x'], pointlist[0][0]['y']
maxx,maxy ← pointlist[0][0]['x'], pointlist[0][0]['y']
mint ← pointlist[0][0]['t'], pointlist[0][0]['t']
for all stroke in pointlist do

for all p in stroke do
minx ← min(minx, p['x'])
maxx ← max(maxx, p['x'])
miny ← min(miny, p['y'])
maxy ← max(maxy, p['y'])
mint ← min(mint, p['t'])

. Calculate parameters for scaling and shifting to [−0.5, 0.5]× [−0.5, 0.5]
width, height← maxx −minx + 1,maxy −miny + 1
factorx, factory ← 1

width ,
1

height
factor ← min(factorx, factory)

addx, addy ← width·factor
2 , height·factor2

. Move every single point of a recording
for all stroke in pointlist do

for all p in stroke do
p['x']← (p['x']−minx) · factor − addx
p['y']← (p['y']−miny) · factor − addy
p['t']← p['t']−mint

return pointlist

Algorithm 4 Dot reduction

function dot reduction(pointlist, θ ∈ R≥0)
new pointlist← List()
for all stroke in pointlist do

new stroke← stroke
. Calculate maximum distance of two points in a stroke
max distance← get max distance(stroke)
. Merge points of a stroke if the distance between them is below a threshold θ
if max distance < θ then

p← get average point(stroke)
new stroke← List(p)

new pointlist.append(new stroke)
return new pointlist

68

A. Algorithms 69

Algorithm 5 Dehooking

function dehook stroke(stroke, θ ∈ R≥0)
if count(stroke) < 3 then

return stroke
else

new stroke← stroke[0 : count(stroke)− 1] . Get everything but the last point
stroke← stroke[count(stroke)− 3 :] . get the last 3 points
p← stroke[−1] . last point
if calculate angle(stroke) < θ then

new stroke.append(p)
else

new stroke← dehook stroke(new stroke, θ)
return new pointlist

Algorithm 6 Weighted average smoothing

function weighted average smoothing(pointlist, θ = [16 ,
4
6 ,

1
6])

θ ← 1
sum(θ) · θ . Normalize parameters to a sum of 1

new pointlist← List()
for all stroke in pointlist do

tmp← List(stroke[0])
new pointlist.append(tmp)
if count(stroke) > 1 then

for i← 1; i < count(stroke)− 1; i← i+ 1 do
p← θ0 · stroke[i− 1] + θ1 · stroke[i] + θ2 · stroke[i+ 1]
new pointlist[−1].append(p)

new pointlist[−1].append(stroke[−1])
return new pointlist

Algorithm 7 The Douglas-Peucker algorithm for stroke simplification.

function douglas peucker(stroke as list of points, ε ∈ R≥0)
S ← { stroke[0], stroke[−1] }
. Calculate point that is furthest away from line (stroke[0], stroke[−1])
pimax ← 0 . Index of the point with highest distance
dmax ← 0 . Distance of the point with highest distance
for i← 1; i < count(stroke)− 1; i← i+ 1 do

. Distance of the point i to the line

. defined by the first and the last point of stroke
d← distance(stroke[0], stroke[−1], stroke[i])
if d > dmax then

dmax ← d
pimax ← i

. Recursively apply the algorithm
if dmax > ε then

S1 ← douglas peucker(stroke[0 : pimax], ε)
S2 ← douglas peucker(stroke[pimax : −1], ε)
S ← S ∪ S1 ∪ S2

return S

69

70 Appendix

Algorithm 8 Greedy matching as described in [Kir10]

a← next from A
b← next from B
d← δ(a, b)
a'← next from A
b'← next from B
while points left in A ∧ points left in B do

l,m, r ← δ(a', b), δ(a', b'), δ(a, b')
µ← min {l,m, r}
d← d+ µ
if l = µ then

a← a'
a'← next from A

else if r = µ then
b← b'
b'← next from B

else
a← a'
b← b'
a'← next from A
b'← next from B

if no points left in A then
for all points p in B do

d← d+ δ(a', p)
else if no points left in B then

for all points p in A do
d← d+ δ(b', p)

70

B. Tables 71

B. Tables

Dot reduction

Minimum distance threshold [0,maximum point distance)

Wild point filter

Maximum speed threshold (0, maximum point distance
recording time)

Dehook

Maximum angle threshold (0, 360]

Smooth

Smoothing factor pi−1 [0, 1]
Smoothing factor pi [0, 1]
Smoothing factor pi+1 [0, 1]

Douglas Peucker

Epsilon [0,minimum point distance)

Scale

Size (0,∞)× (0,∞)

Shift

Center { true, false }
Shift target R2

Stroke connect

Minimum distance threshold [0,maximum point distance)

Resample

Type { linear, cubic }
Points per stroke 1, 2, . . .

Table B.1.: Preprocessing algorithms, their parameters and value ranges of those parame-
ters. All of those algorithms are explained in section 3.2.

71

72 Appendix

Base symbol equivalent symbols
LATEX Rendered LATEX Rendered

\sum
∑

Σ Σ
\prod

∏
Π Π
\sqcap u

\coprod
∐

\amalg q
\sqcup t

\perp ⊥ \bot ⊥
\models |= \vDash �
| | \mid |
\Delta ∆ \triangle 4

\vartriangle M
\| ‖ \parallel ‖
\ohm Ω Ω Ω
\setminus \ \backslash \
\checked � \checkmark X
\& & \with &
\# # \sharp]
\S § \mathsection §
\nabla ∇ \triangledown O
\lhd C \triangleleft /

\vartriangleleft C
\oiint

‚

\varoiint
!

\mathbb{R} R \mathds{R} R

\mathbb{Q} Q \mathds{Q} Q

\mathbb{Z} Z \mathds{Z} Z

\mathcal{A} A \mathscr{A} A
\mathcal{D} D \mathscr{D} D
\mathcal{N} N \mathscr{N} N
\mathcal{R} R \mathscr{R} R
\propto ∝ \varpropto ∝

Table B.2.: Symbols that cannot be distinguished in handwriting. Those symbols were used
to define equivalence classes for an error measure MER which is introduced on page 37.

72

B. Tables 73

LATEX Rendered LATEX Rendered

\alpha α \propto ∝
\ltimes n

0 0 O O
o o
\circ ◦
\degree ◦

\fullmoon #
\epsilon ε ε ε

\in ∈
\mathcal{E} E

\Lambda Λ \wedge ∧
\emptyset ∅ \O Ø

\o ø
\diameter �
\varnothing ∅

\rightarrow → \longrightarrow −→
\shortrightarrow �

\Rightarrow ⇒ \Longrightarrow =⇒
\Leftrightarrow ⇔ \Longleftrightarrow ⇐⇒
\mapsto 7→ \longmapsto 7−→
\mathbb{1} 1 \mathds{1} 1

\mathscr{L} L \mathcal{L} L
\mathbb{Z} Z \mathcal{Z} Z
\geq ≥ \geqslant >

\succeq �
\leq ≤ \leqslant 6
\pi π \Pi Π
\psi ψ \Psi Ψ
\phi φ \Phi Φ

\emptyset ∅
\rho ρ \varrho %
\theta θ \Theta Θ
\odot � \astrosun �
\cdot · \bullet •
x x \times ×

X X
\chi χ
\mathcal{X} X

\beta β \ss ß
\male ♂ \mars ♂
\female ♀ \venus ♀
\bowtie ./ \Bowtie 1
\diamond � \diamondsuit ♦

\lozenge ♦
\dots . . . \dotsc . . .
\mathcal{T} T \tau τ

Table B.3.: Symbols that are extremely difficult to distinguish in handwriting (1).

73

74 Appendix

LATEX Rendered LATEX Rendered

\mathcal{A} A A A
\mathcal{D} D D D
\mathcal{N} N N N
\mathcal{R} R R R
\varepsilon ε \mathcal{E} E

Table B.4.: Symbols that are extremely difficult to distinguish in handwriting (2).

LATEX Rendered LATEX Rendered

\dots . . . \textellipsis . . .
- - \textendash –

\textemdash —
\-- -
\--- –
\---- —

_ \textunderscore

i i !‘ ¡
\textexclamdown ¡

@ @ \MVAt @

| | \shortmid p

\textpipe |

\textbar |
\degree ◦ \textdegree ◦

Table B.5.: LATEX symbols that were not evaluated, but also have confusion problems

74

B. Tables 75

Base symbol \n variant \not variant

LATEX Rendered LATEX Rendered LATEX Rendered

= = \neq 6= \not= 6=
\cong ∼= \ncong � \not\cong 6∼=
\equiv ≡ - - \not\equiv 6≡
\in ∈ \notin /∈ \not\in 6∈
\vDash � \nvDash 2 \not\vDash 6�
\mid | \nmid - \not\mid 6|
\exists ∃ \nexists @ \not\exists 6 ∃
\subseteq ⊆ \nsubseteq * \not\subseteq 6⊆
\rightarrow → \nrightarrow 9 \not\rightarrow 6→
\Rightarrow ⇒ \nRightarrow ; \not\Rightarrow 6⇒

Table B.6.: \n and \not variants of symbols.

Symbol Mean σ Symbol Mean σ

\blacksquare 9.22 3.86 \male 3.31 0.55
\blacktriangleright 6.86 2.25 \parr 3.30 0.47

\bullet 6.63 4.05 \mathfrak{X} 3.30 0.36
\boxtimes 5.64 0.70 \leftmoon 3.29 0.52
\circledast 5.27 0.70 \sun 3.28 0.68
\boxplus 5.19 0.50 \mathfrak{S} 3.27 0.52
\otimes 4.89 0.52 \mathds{P} 3.25 0.46
\circledR 4.77 0.60 \notin 3.15 0.53
\oplus 4.62 0.47 \mars 3.13 0.40
\star 4.28 1.21 \fullmoon 3.05 0.25

\circledcirc 4.28 0.60 \degree 3.04 0.33
\clubsuit 4.20 1.83 \mathds{1} 3.01 0.67
\mathbb{Q} 4.14 0.41 \cong 2.96 0.29
\oiint 4.12 0.55 \mathds{C} 2.95 0.47

\copyright 4.07 0.45 \female 2.68 0.55
\Bowtie 3.92 0.46 \venus 2.64 0.32

\mathds{Q} 3.89 0.53 \ohm 2.49 0.50
\mathfrak{M} 3.84 0.89 \celsius 2.42 0.37
\mathds{R} 3.83 0.50 \sqrt{} 1.89 0.38
\mathds{E} 3.82 0.63 \checked 1.59 0.19
\mathds{Z} 3.80 0.58 \cdot 0.77 2.19
\mathds{N} 3.78 0.50 \therefore 0.46 1.04
\mathfrak{A} 3.51 0.54 \because 0.36 1.01
\astrosun 3.39 0.61 \dotsc 0.06 0.30

Table B.7.: Mean and standard deviation σ of the ink feature of symbols that are not shown
in figure C.1.

75

76 Appendix

Symbol Mean σ Symbol Mean σ

\sun 9.46 2.18 \mathfrak{M} 2.17 1.72
\mathds{E} 4.78 1.56 \astrosun 2.17 0.58
\mathds{1} 3.40 0.85 \celsius 2.05 0.29
\female 3.35 1.88 \copyright 2.03 0.22

\mathfrak{X} 3.26 1.60 \diameter 2.01 0.29
\male 3.25 3.73 \mathfrak{A} 1.45 0.92

\mathds{P} 3.17 0.62 \Bowtie 1.18 0.60
\mathds{Q} 3.15 2.73 \leftmoon 1.15 0.36
\mathds{R} 3.15 0.77 \ohm 1.05 0.29

\cong 3.04 0.30 \mathfrak{S} 1.05 0.27
\venus 3.02 0.22 \parr 1.05 0.22

\mathds{N} 3.00 1.03 \sqrt{} 1.04 0.29
\mars 2.70 1.04 \checked 1.04 0.22
\dotsc 2.57 1.13 \degree 1.03 0.16

\mathds{Z} 2.19 0.78 \fullmoon 1.02 0.14

Table B.8.: Mean and standard deviation σ of the stroke count feature of symbols that are
not shown in figure 6.4.

Symbol Mean σ Symbol Mean σ

- 33.09 31.82 \mathfrak{S} 1.04 0.25
\dots 21.35 23.35 \copyright 1.04 0.19
\dotsc 20.15 27.43 \celsius 1.01 0.25

\rightharpoonup 5.06 2.28 \diameter 0.99 0.29
\multimap 4.43 1.90 \mars 0.99 0.20

\longrightarrow 4.33 2.27 \mathfrak{A} 0.97 0.33
\frown 3.65 1.71 \mathds{Q} 0.96 0.21

\twoheadrightarrow 3.60 1.31 \mathfrak{X} 0.93 0.26
\rightsquigarrow 3.44 1.15 \male 0.92 0.40

\sim 3.41 1.16 \mathds{C} 0.90 0.21
\leadsto 3.32 1.12 \mathds{E} 0.84 0.23
\ohm 1.61 0.53 \parr 0.75 0.15
\cong 1.52 0.41 \mathds{1} 0.72 0.24
\sqrt{} 1.50 0.56 \mathds{N} 0.72 0.18

\mathfrak{M} 1.28 0.35 \female 0.71 0.38
\mathds{Z} 1.18 0.29 \mathds{R} 0.71 0.17
\Bowtie 1.15 0.33 \mathds{P} 0.64 0.21
\checked 1.13 0.56 \venus 0.60 0.13

Table B.9.: Mean and standard deviation of the aspect ratio of symbols that are not shown
in figure C.2.

76

B. Tables 77

B.1. Evaluated Symbols

LATEX Rendered LATEX Rendered

\& & \nmid -
\Im = \nvDash 2
\Re < \int

´

\S § \fint
ffl

\Vdash \odot �
\aleph ℵ \oiint

‚

\amalg q \oint
¸

\angle ∠ \varoiint
!

\ast ∗ \ominus 	
\asymp � \oplus ⊕
\backslash \ \otimes ⊗
\between G \parallel ‖
\blacksquare � \parr `
\blacktriangleright I \partial ∂
\bot ⊥ \perp ⊥
\bowtie ./ \pitchfork t
\boxdot � \pm ±
\boxplus � \prime ′
\boxtimes � \prod

∏
\bullet • \propto ∝
\checkmark X \rangle 〉
\circ ◦ \rceil e
\circledR r \rfloor c
\circledast ~ \rrbracket K
\circledcirc } \rtimes o
\clubsuit ♣ \sharp]
\coprod

∐
\sphericalangle ^

\copyright © \sqcap u
\dag † \sqcup t
\dashv a \sqrt{}

√
\diamond � \square �
\diamondsuit ♦ \star ?
\div ÷ \sum

∑
\ell ` \times ×
\flat [\top >
\frown _ \triangle 4
\guillemotleft ´ \triangledown O
\hbar ~ \triangleleft /
\heartsuit ♥ \trianglelefteq E
\infty ∞ \triangleq ,
\langle 〈 \triangleright .
\lceil d \uplus]
\lfloor b \vDash �
\lhd C \varnothing ∅
\lightning \varpropto ∝
\llbracket J \vartriangle M
\lozenge ♦ \vdash `
\ltimes n \with &

Continued on next page

77

78 Appendix

LATEX Rendered LATEX Rendered

\mathds{1} 1 \wp ℘
\mathsection § \wr o
\mid | \{ {
\models |= \| ‖
\mp ∓ \} }
\multimap (\vee ∨
\nabla ∇ \wedge ∧
\neg ¬ \barwedge Z

Table B.10.: 112 symbols that were used for evaluation.

LATEX Rendered LATEX Rendered LATEX Rendered LATEX Rendered

\# # A A S S i i
\$ $ B B T T j j
\% % C C U U k k
+ + D D V V l l
- − E E W W m m
/ / F F X X n n
0 0 G G Y Y o o
1 1 H H Z Z p p
2 2 I I [[q q
3 3 J J]] r r
4 4 K K a a s s
5 5 L L b b u u
6 6 M M c c v v
7 7 N N d d w w
8 8 O O e e x x
9 9 P P f f y y
< < Q Q g g z z
> > R R h h | |

Table B.11.: 72 ASCII symbols that were used for evaluation, including all ten digits, the
Latin alphabet in lower and upper case and a few more symbols.

LATEX Rendered LATEX Rendered LATEX Rendered

\approx ≈ \geqslant > \lesssim .
\doteq

.
= \neq 6= \backsim v

\simeq ' \not\equiv 6≡ \sim ∼
\equiv ≡ \preccurlyeq 4 \succ �
\geq ≥ \preceq � \prec ≺
\leq ≤ \succeq � \gtrless ≷
\leqslant 6 \gtrsim & \cong ∼=

Table B.12.: 21 symbols that were used for evaluation and indicate a relationship.

78

B. Tables 79

LATEX Rendered LATEX Rendered

\Downarrow ⇓ \nrightarrow 9
\Leftarrow ⇐ \rightarrow →
\Leftrightarrow ⇔ \rightleftarrows �
\Longleftrightarrow ⇐⇒ \rightrightarrows ⇒
\Longrightarrow =⇒ \rightsquigarrow
\Rightarrow ⇒ \searrow ↘
\circlearrowleft 	 \shortrightarrow �
\circlearrowright � \twoheadrightarrow �
\curvearrowright y \uparrow ↑
\downarrow ↓ \rightharpoonup ⇀
\hookrightarrow ↪→ \rightleftharpoons

\leftarrow ← \longmapsto 7−→
\leftrightarrow ↔ \mapsfrom ←[
\longrightarrow −→ \mapsto 7→
\nRightarrow ; \leadsto
\nearrow ↗ \upharpoonright �

Table B.13.: 32 arrow symbols that were used for evaluation.

LATEX Rendered LATEX Rendered LATEX Rendered

\alpha α \xi ξ \Xi Ξ
\beta β \pi π \Pi Π
\gamma γ \rho ρ \Sigma Σ
\delta δ \sigma σ \Phi Φ
\epsilon ε \tau τ \Psi Ψ
\zeta ζ \phi φ \Omega Ω
\eta η \chi χ \varepsilon ε
\theta θ \psi ψ \varkappa κ
\iota ι \omega ω \varpi $
\kappa κ \Gamma Γ \varrho %
\lambda λ \Delta ∆ \varphi ϕ
\mu µ \Theta Θ \vartheta ϑ
\nu ν \Lambda Λ

Table B.14.: All Greek letters and some variations of Greek letters were used for evaluation.
38 of them are in this table, the rest is identical to Latin letters.

79

80 Appendix

LATEX Rendered LATEX Rendered LATEX Rendered

\mathcal{A} A \mathcal{T} T \mathds{Z} Z

\mathcal{B} B \mathcal{U} U \mathfrak{A} A
\mathcal{C} C \mathcal{X} X \mathfrak{M} M
\mathcal{D} D \mathcal{Z} Z \mathfrak{S} S
\mathcal{E} E \mathbb{H} H \mathfrak{X} X
\mathcal{F} F \mathbb{N} N \mathscr{A} A
\mathcal{G} G \mathbb{Q} Q \mathscr{C} C
\mathcal{H} H \mathbb{R} R \mathscr{D} D
\mathcal{L} L \mathbb{Z} Z \mathscr{E} E
\mathcal{M} M \mathds{C} C \mathscr{F} F
\mathcal{N} N \mathds{E} E \mathscr{H} H
\mathcal{O} O \mathds{N} N \mathscr{L} L
\mathcal{P} P \mathds{P} P \mathscr{P} P
\mathcal{R} R \mathds{Q} Q \mathscr{S} S
\mathcal{S} S \mathds{R} R

Table B.15.: 44 variants of Latin letters were used for evaluation.

LATEX Rendered LATEX Rendered LATEX Rendered

\therefore ∴ \cdot · \dots . . .

\because ∵ \vdots
... \ddots

. . .

\dotsc . . .

Table B.16.: 7 symbols that contain only dots were used for evaluation.

LATEX R LATEX R LATEX R LATEX R LATEX R

\AA Å \L L \male ♂ \ohm Ω \sun ☼

\AE Æ \O L \mars ♂ \fullmoon # \degree ◦

\aa å \o ø \female ♀ \leftmoon $ \iddots . .
.

\ae Æ \Bowtie 1 \venus ♀ \checked � \diameter �

\ss ß \celsius ◦C \astrosun � \pounds £ \mathbb{1} 1

Table B.17.: 25 symbols that were used for evaluation.

LATEX Rendered LATEX Rendered LATEX Rendered

\cup ∪ \varsubsetneq \exists ∃
\cap ∩ \nsubseteq * \nexists @
\emptyset ∅ \sqsubseteq v \forall ∀
\setminus \ \subseteq ⊆ \in ∈
\supset ⊃ \subsetneq (\ni 3
\subset ⊂ \supseteq ⊇ \notin /∈

Table B.18.: 18 set related symbols that were used for evaluation.

80

B. Tables 81

B.2. Evaluation Results

System
Classification error
std TOP3 merged

B1 23.34 % 6.80 % 6.64 %
B1 23.12 % 6.71 % 6.58 %
B1 23.44 % 6.72 % 6.57 %
B1 23.18 % 6.67 % 6.54 %
B1 23.08 % 6.75 % 6.64 %

B2 21.51 % 5.75 % 5.67 %
B2 21.45 % 5.68 % 5.60 %
B2 21.80 % 5.74 % 5.66 %
B2 21.83 % 5.75 % 5.68 %
B2 21.58 % 5.75 % 5.66 %

B3 21.93 % 5.74 % 5.64 %
B3 22.28 % 5.82 % 5.75 %
B3 21.80 % 5.74 % 5.58 %
B3 21.74 % 5.50 % 5.41 %
B3 21.54 % 5.50 % 5.41 %

B4 23.88 % 6.12 % 6.04 %
B4 24.84 % 6.44 % 6.21 %
B4 23.84 % 6.17 % 6.02 %
B4 23.93 % 6.31 % 6.13 %
B4 23.19 % 5.98 % 5.83 %

Table B.19.: The influence of random weight initialization. This table is summed up on
page 38.

81

82 Appendix

System
Classification error

TOP1 change TOP3 change MER change

B1 23.34 % 6.80 % 6.64 %
B2 21.51 % 5.75 % 5.67 %
B3 21.93 % 5.74 % 5.64 %
B4 23.88 % 6.12 % 6.04 %

B1,NSS 40.51 % 17.17 % 17.83 % 11.03 % 17.16 % 10.52 %
B2,NSS 32.27 % 10.76 % 10.19 % 4.44 % 10.07 % 4.40 %
B3,NSS 34.31 % 12.38 % 11.66 % 5.92 % 11.52 % 5.88 %
B4,NSS 60.33 % 36.45 % 32.34 % 26.22 % 31.34 % 25.30 %

B1,I2 22.75 % −0.59 % 6.40 % −0.40 % 6.24 % −0.40 %
B2,I2 21.52 % 0.01 % 5.42 % −0.33 % 5.31 % −0.36 %
B3,I2 21.73 % −0.20 % 5.20 % −0.54 % 5.09 % −0.55 %
B4,I2 28.20 % 4.32 % 7.77 % 1.65 % 7.29 % 1.25 %

B1,I3 22.77 % −0.57 % 6.67 % −0.13 % 6.53 % −0.11 %
B2,I3 21.86 % 0.35 % 5.87 % 0.12 % 5.80 % 0.13 %
B3,I3 21.80 % −0.13 % 5.95 % 0.21 % 5.84 % 0.20 %
B4,I3 23.55 % −0.33 % 6.11 % −0.01 % 6.03 % −0.01 %

Table B.20.: The baseline models B1–B4 were tested with all three implementations of the
scale and shift preprocessing algorithm. After every error score is indicated how much the
system changed in comparison to its baseline. A change of −0.05 % means that the system
improved by 0.05 % compared to its baseline system. The column “change” was left blank as
implementation 1 was used in the baseline systems. Implementation 2 does not center the
recording and implementation 3 does center the recording on both axes. The NSS models
used no scale and shift algorithm. The results of this table are discussed on page 38.

System
Classification error

TOP1 change TOP3 change MER change

B1,θsc=5px 23.27 % −0.07 % 6.50 % −0.30 % 6.37 % −0.27 %
B2,θsc=5px 21.20 % −0.31 % 5.59 % −0.16 % 5.50 % −0.17 %
B3,θsc=5px 21.80 % −0.13 % 5.54 % −0.20 % 5.47 % −0.17 %
B4,θsc=5px 24.29 % 0.41 % 6.10 % −0.02 % 5.94 % −0.10 %

B1,θsc=10px 23.17 % −0.17 % 6.61 % −0.19 % 6.47 % −0.17 %
B2,θsc=10px 20.97 % −0.54 % 5.43 % −0.32 % 5.34 % −0.33 %
B3,θsc=10px 21.34 % −0.59 % 5.42 % −0.32 % 5.33 % −0.31 %
B4,θsc=10px 23.50 % −0.38 % 6.11 % −0.01 % 5.81 % −0.23 %

B1,θsc=20px 22.81 % −0.53 % 6.28 % −0.52 % 6.19 % −0.45 %
B2,θsc=20px 21.61 % 0.10 % 5.79 % 0.04 % 5.69 % 0.02 %
B3,θsc=20px 21.71 % −0.22 % 5.55 % −0.19 % 5.45 % −0.19 %
B4,θsc=20px 24.36 % 0.48 % 6.23 % 0.11 % 5.93 % −0.11 %

Table B.21.: The baseline models B1–B4 with additionally applied stroke connect algorithm,
before the scale and shift algorithm with different thresholds θsc. The results of this table
are discussed on page 40.

82

B. Tables 83

System
Classification error

TOP1 change TOP3 change MER change

B1,ε=0.05,linear 22.87 % −0.47 % 6.68 % −0.12 % 6.55 % −0.09 %
B2,ε=0.05,linear 21.24 % −0.27 % 5.67 % −0.08 % 5.57 % −0.10 %
B3,ε=0.05,linear 21.88 % −0.05 % 6.01 % 0.27 % 5.92 % 0.28 %
B4,ε=0.05,linear 23.84 % −0.04 % 6.58 % 0.46 % 6.25 % 0.21 %

B1,ε=0.05,cubic 25.26 % 1.92 % 8.77 % 1.97 % 8.73 % 2.09 %
B2,ε=0.05,cubic 23.84 % 1.91 % 7.59 % 1.84 % 7.54 % 1.87 %
B3,ε=0.05,cubic 23.95 % 2.02 % 7.49 % 1.75 % 7.42 % 1.78 %
B4,ε=0.05,cubic 29.47 % 6.13 % 9.96 % 3.84 % 9.68 % 3.64 %

B1,ε=0.1,linear 23.81 % 0.47 % 7.04 % 0.24 % 6.91 % 0.27 %
B2,ε=0.1,linear 22.02 % 0.51 % 5.95 % 0.20 % 5.88 % 0.21 %
B3,ε=0.1,linear 22.10 % 0.17 % 5.80 % 0.06 % 5.72 % 0.08 %
B4,ε=0.1,linear 25.05 % 1.17 % 6.78 % 0.66 % 6.42 % 0.38 %

B1,ε=0.2,linear 28.08 % 4.74 % 8.60 % 1.80 % 8.48 % 1.84 %
B2,ε=0.2,linear 25.82 % 4.31 % 7.38 % 1.63 % 7.24 % 1.57 %
B3,ε=0.2,linear 26.72 % 4.79 % 7.42 % 1.68 % 7.27 % 1.63 %
B4,ε=0.2,linear 28.36 % 4.48 % 7.90 % 1.78 % 7.76 % 1.72 %

B1,ε=0.2,cubic 30.98 % 7.64 % 10.77 % 3.97 % 10.62 % 3.98 %
B2,ε=0.2,cubic 28.54 % 7.03 % 9.16 % 3.41 % 9.06 % 3.39 %
B3,ε=0.2,cubic 28.94 % 7.01 % 8.82 % 3.08 % 8.66 % 3.02 %
B4,ε=0.2,cubic 32.80 % 8.92 % 10.25 % 4.13 % 9.85 % 3.81 %

Table B.22.: The evaluation results of Douglas-Peucker smoothing show that a strong sim-
plification (a high ε value) gives much worse results. Cubic spline interpolation performed
much worse than linear interpolation. Those results are explained on page 42.

83

84 Appendix

System
Classification error

TOP1 change TOP3 change MER change

B1,η=0.05 24.58 % 1.24 % 7.95 % 1.15 % 7.70 % 1.06 %
B1,η=0.1 23.34 % 6.80 % 6.64 %
B1,η=0.2 23.41 % 0.07 % 6.66 % −0.14 % 6.64 % 0.00 %
B1,η=1 30.80 % 7.46 % 12.09 % 5.29 % 11.36 % 4.72 %

B2,η=0.05 22.37 % 0.86 % 6.24 % 0.49 % 6.14 % 0.47 %
B2,η=0.1 21.51 % 5.75 % 5.67 %
B2,η=0.2 22.39 % 0.88 % 6.02 % 0.27 % 5.95 % 0.28 %
B2,η=1 30.27 % 8.76 % 12.80 % 7.05 % 11.29 % 5.62 %

B3,η=0.05 22.81 % 0.88 % 6.01 % 0.27 % 5.89 % 0.25 %
B3,η=0.1 21.93 % 5.74 % 5.64 %
B3,η=0.2 21.77 % −0.16 % 5.83 % 0.09 % 5.71 % 0.07 %
B3,η=1 90.67 % 68.74 % 86.98 % 81.24 % 86.12 % 80.48 %

B4,η=0.05 25.23 % 1.94 % 6.86 % 0.74 % 6.74 % 0.70 %
B4,η=0.1 23.88 % 6.12 % 6.04 %
B4,η=0.2 23.29 % −0.59 % 6.14 % 0.02 % 5.98 % −0.06 %
B4,η=1 99.17 % 75.29 % 98.85 % 92.73 % 98.85 % 92.81 %

Table B.23.: Evaluation results of the systems B1 – B4 with adjusted learning rates η. The
column “change” was left blank for the baseline systems (η = 0.1), as this value will only
be different from exactly 0 due to random weight initialization. The results of this table
are explained on page 48.

84

C. Figures 85

C. Figures

C.1. Scatterplots of Features

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

!

H

N

Z

	

R
Θ

./

B

D�A

<

B
∅

6≡�

θ

]

#

H
m

∗

Φ

�

,
∅

2
Z
℘
]

&

E

*

&;

Q

R

E

o
v

♥a

n

κ

F

P

UG
(
∑
�

	

L

O

Σ

$

C

@

D

◦

M

n
D

8
e

o

∇

M

⊇

∆

R

%

C

⊆

M

O

3

N

z

4
u
g

N
H

1
W

⇒

O

A
$

φ

.

/

�

∈

ℵ

K
∝d

%

6=

4

Z∞

E
∃

0

^

G

ϑ
α

≡

⇐⇒
⇔

β

ε
=

w

µ

Ξ

⇓
Ω

S

.

J
∂X

�

ε

&

≷
κσ

�
�≥

ω

∐
p

∏

≤

t

´
P
q

UE

♦

u

t

9

6

Ψ

χ

~

∝

S
ϕ

A

G

5

⇐

>

3
F

⇒
Z

π

∀

§

6

♦

b

Π

∓
=⇒

γq

×

δ

x

ξ

±

L

K

C

≈̀

s�

ψ

2

|=

H∪

⊃

¸

X

η

ν

⊂∩

c

Λ

P

S

�'
rC

ρ

9
ky

←[

�

h

τ

4J

≺

ζ

.
=

[
↔

v

V

↘

T

↗7→

∠

F

y

∧

‖

7−→

∨<‖

7
λ>

+

�
Γ

T

⊥
↪→

>

�ffl

⊥

↓
f

a

 →

`

↑

Y

v

←

L

†

[

(

X
]

I

–
1
−→
-
˝

¬
ί

o

∼⇀

l

÷

c
〉

�

〈
b
de

\

_

/

\

j

′

|
|

−

i

. .
.. . .

.

.

.

. . .

Mean ink value in px

St
an

da
rd

de
vi

at
io

n
of

th
e

in
k

fe
at

ur
e

in
p
x

Figure C.1.: Mean-standard deviation scatterplot of the ink feature. Some symbols were
excluded from this plot. They are listed in table B.7. This type of scatterplot was introduced
on page 43.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

0

0.5

1

1.5

2

→

←

�

↔
v↪→

⇐⇒

7−→¬

9

∞

7→←[
=⇒

⇔'

≡
y

∝$≈

⇐

�
.
=⇒

∝÷⇒σ
ω

αΩ⊃;⊂
m
�./

⊥

Ξ

πΠ

∠
∵⊇
wMτ4⊆
Z
⊥
≤
6=
>Z
	

∴

·

∓
Zq
≥
#

∑
aC
∐
ϑ

∆

Ôv
∏
´

sun

,z

⊕

. . .

◦	~
on∗
��

∨

⊗
↗�T×•?
X6≡
∇
�
�

∧
NΣ
κ
ut
A

}
+

∈

W

<
≺

F. .
.

M
L
3
F�
χ±↘
�

�IX>H

a

c
UA(
�

Q
Θ
r
]
6
=O♥�
Λ
Z�

P

o

u

♣
.>SE
DvQ
∅/%Lx.∩ν&
T
H4ℵ2e
∪
]
n

C
DRS<

ὲ

O

|=
C

�

G
DC
Ψt
µ
κλ&℘P
*
ε
θE∀M♦s
\
&leftmoon
ψ
\
BR
γ⇓♦X
∅
R

‚

2ΓA∃5V

G

0

/

E
≷
3∂notinEUϕS%N
1
LF

ρ
Φ

G

NH47B
!

~
r

J
K6
@φηδy
P

β̀
8

′

9Y
H

†

gq

ffl

ζ

d$b

J

K
h
ξ f
§
k
¸

p
↓〉〈ι

´↑[]–
Ico
[̋-
j

‖be1d‖�
li.

.

.||

Mean aspect ratio (height / width)

St
an

da
rd

de
vi

at
io

n
of

th
e

as
pe

ct
ra

ti
o

Figure C.2.: Mean-standard deviation scatterplot of the aspect ratio feature. This type of
scatterplot was introduced on page 43.

85

86 Appendix

D. Creative Users

The following drawings made some creative users:

(a) ID 286218 (b) ID 271124 (c) ID 278421 (d) ID 280080

(e) ID 284768 (f) ID 282203 (g) ID 266998 (h) ID 247571

(i) ID 208279 (j) ID 191364 (k) ID 215135 (l) ID 218757

(m) ID 167020 (n) ID 230694 (o) ID 230995 (p) ID 233035

Figure D.3.: Images drawn by creative users.

86

E. Raw Data Example 87

E. Raw Data Example

The following code shows the recording with ID 292927 as it is stored in the database. It
is a JSON string that contains a list of strokes. Every stroke is a list of control points
where every control point has the x and y coordinates as well as the time.

The symbol that was drawn is a ⊆. So it has two strokes. This recording has 145 control
points.

The Unix time of the 28th of April 2014, 3 p.m. UTC would be 1 398 636 000. The
Unix time of 1 411 732 873 010 is the number of milliseconds since 1970. It is the 26th of
September 2014 at 12:01:13 p.m. UTC.

292927.json
1 [[{"x":657,"y":600,"time":1411732873010},

2 {"x":656,"y":600,"time":1411732873056},

3 {"x":654,"y":599,"time":1411732873064},

4 {"x":651,"y":599,"time":1411732873072},

5 {"x":650,"y":598,"time":1411732873078},

6 {"x":646,"y":598,"time":1411732873086},

7 {"x":643,"y":598,"time":1411732873094},

8 {"x":638,"y":598,"time":1411732873102},

9 {"x":634,"y":598,"time":1411732873110},

10 {"x":629,"y":598,"time":1411732873118},

11 {"x":626,"y":597,"time":1411732873126},

12 {"x":620,"y":597,"time":1411732873134},

13 {"x":616,"y":597,"time":1411732873142},

14 {"x":614,"y":597,"time":1411732873150},

15 {"x":612,"y":596,"time":1411732873158},

16 {"x":606,"y":596,"time":1411732873164},

17 {"x":603,"y":596,"time":1411732873172},

18 {"x":599,"y":596,"time":1411732873180},

19 {"x":596,"y":596,"time":1411732873188},

20 {"x":592,"y":597,"time":1411732873196},

21 {"x":589,"y":599,"time":1411732873204},

22 {"x":585,"y":599,"time":1411732873212},

23 {"x":582,"y":600,"time":1411732873220},

24 {"x":579,"y":600,"time":1411732873228},

25 {"x":577,"y":602,"time":1411732873236},

26 {"x":574,"y":603,"time":1411732873242},

27 {"x":572,"y":605,"time":1411732873258},

28 {"x":571,"y":605,"time":1411732873266},

29 {"x":569,"y":607,"time":1411732873274},

30 {"x":567,"y":608,"time":1411732873282},

31 {"x":565,"y":609,"time":1411732873290},

32 {"x":560,"y":611,"time":1411732873298},

33 {"x":557,"y":613,"time":1411732873306},

34 {"x":556,"y":613,"time":1411732873314},

35 {"x":553,"y":615,"time":1411732873320},

36 {"x":552,"y":616,"time":1411732873331},

37 {"x":551,"y":616,"time":1411732873336},

38 {"x":550,"y":617,"time":1411732873345},

39 {"x":548,"y":620,"time":1411732873352},

40 {"x":548,"y":622,"time":1411732873360},

87

88 Appendix

41 {"x":546,"y":623,"time":1411732873368},

42 {"x":545,"y":627,"time":1411732873376},

43 {"x":545,"y":629,"time":1411732873384},

44 {"x":544,"y":633,"time":1411732873392},

45 {"x":543,"y":636,"time":1411732873400},

46 {"x":542,"y":642,"time":1411732873406},

47 {"x":540,"y":647,"time":1411732873414},

48 {"x":539,"y":653,"time":1411732873422},

49 {"x":538,"y":657,"time":1411732873430},

50 {"x":537,"y":659,"time":1411732873438},

51 {"x":536,"y":664,"time":1411732873446},

52 {"x":535,"y":669,"time":1411732873454},

53 {"x":535,"y":670,"time":1411732873462},

54 {"x":534,"y":674,"time":1411732873470},

55 {"x":534,"y":675,"time":1411732873478},

56 {"x":533,"y":680,"time":1411732873486},

57 {"x":532,"y":684,"time":1411732873492},

58 {"x":532,"y":689,"time":1411732873500},

59 {"x":532,"y":690,"time":1411732873508},

60 {"x":532,"y":691,"time":1411732873516},

61 {"x":533,"y":693,"time":1411732873524},

62 {"x":535,"y":695,"time":1411732873540},

63 {"x":535,"y":696,"time":1411732873556},

64 {"x":536,"y":696,"time":1411732873564},

65 {"x":537,"y":697,"time":1411732873570},

66 {"x":539,"y":698,"time":1411732873578},

67 {"x":540,"y":699,"time":1411732873594},

68 {"x":542,"y":700,"time":1411732873602},

69 {"x":544,"y":700,"time":1411732873610},

70 {"x":549,"y":701,"time":1411732873618},

71 {"x":550,"y":701,"time":1411732873626},

72 {"x":553,"y":701,"time":1411732873634},

73 {"x":556,"y":701,"time":1411732873642},

74 {"x":559,"y":701,"time":1411732873650},

75 {"x":562,"y":701,"time":1411732873656},

76 {"x":565,"y":701,"time":1411732873664},

77 {"x":568,"y":701,"time":1411732873672},

78 {"x":571,"y":702,"time":1411732873680},

79 {"x":572,"y":702,"time":1411732873688},

80 {"x":576,"y":702,"time":1411732873696},

81 {"x":579,"y":702,"time":1411732873705},

82 {"x":587,"y":702,"time":1411732873713},

83 {"x":591,"y":702,"time":1411732873720},

84 {"x":594,"y":702,"time":1411732873728},

85 {"x":601,"y":702,"time":1411732873736},

86 {"x":606,"y":702,"time":1411732873742},

87 {"x":610,"y":702,"time":1411732873750},

88 {"x":615,"y":702,"time":1411732873758},

89 {"x":618,"y":702,"time":1411732873766},

90 {"x":622,"y":702,"time":1411732873774},

91 {"x":627,"y":702,"time":1411732873782},

92 {"x":630,"y":702,"time":1411732873790},

88

E. Raw Data Example 89

93 {"x":632,"y":702,"time":1411732873798},

94 {"x":636,"y":702,"time":1411732873806},

95 {"x":639,"y":702,"time":1411732873814},

96 {"x":642,"y":702,"time":1411732873820},

97 {"x":642,"y":701,"time":1411732873828},

98 {"x":644,"y":701,"time":1411732873836},

99 {"x":645,"y":701,"time":1411732873852},

100 {"x":646,"y":701,"time":1411732873868},

101 {"x":648,"y":700,"time":1411732873876},

102 {"x":649,"y":700,"time":1411732873884},

103 {"x":651,"y":700,"time":1411732873892},

104 {"x":653,"y":700,"time":1411732873900},

105 {"x":656,"y":700,"time":1411732873906},

106 {"x":657,"y":700,"time":1411732873914},

107 {"x":658,"y":700,"time":1411732873922}],

108 [{"x":524,"y":741,"time":1411732874446},

109 {"x":526,"y":741,"time":1411732874462},

110 {"x":527,"y":741,"time":1411732874470},

111 {"x":529,"y":741,"time":1411732874478},

112 {"x":532,"y":740,"time":1411732874484},

113 {"x":537,"y":740,"time":1411732874492},

114 {"x":539,"y":740,"time":1411732874500},

115 {"x":543,"y":740,"time":1411732874508},

116 {"x":548,"y":740,"time":1411732874516},

117 {"x":550,"y":740,"time":1411732874524},

118 {"x":558,"y":740,"time":1411732874532},

119 {"x":567,"y":740,"time":1411732874540},

120 {"x":575,"y":740,"time":1411732874548},

121 {"x":580,"y":740,"time":1411732874556},

122 {"x":587,"y":740,"time":1411732874564},

123 {"x":591,"y":740,"time":1411732874570},

124 {"x":599,"y":740,"time":1411732874578},

125 {"x":602,"y":740,"time":1411732874586},

126 {"x":610,"y":739,"time":1411732874594},

127 {"x":615,"y":739,"time":1411732874602},

128 {"x":621,"y":738,"time":1411732874610},

129 {"x":628,"y":738,"time":1411732874618},

130 {"x":633,"y":738,"time":1411732874626},

131 {"x":638,"y":738,"time":1411732874634},

132 {"x":646,"y":738,"time":1411732874642},

133 {"x":652,"y":738,"time":1411732874650},

134 {"x":655,"y":738,"time":1411732874656},

135 {"x":661,"y":738,"time":1411732874664},

136 {"x":664,"y":738,"time":1411732874672},

137 {"x":671,"y":738,"time":1411732874680},

138 {"x":676,"y":738,"time":1411732874688},

139 {"x":681,"y":739,"time":1411732874696},

140 {"x":686,"y":740,"time":1411732874704},

141 {"x":692,"y":741,"time":1411732874712},

142 {"x":697,"y":742,"time":1411732874720},

143 {"x":702,"y":742,"time":1411732874728},

144 {"x":705,"y":742,"time":1411732874734},

89

90 Appendix

145 {"x":706,"y":742,"time":1411732874742}]]

F. HWRT Handbook

The Python package hwrt can be installed via pip:

pip install hwrt

The toolkit requires a configuration file /.hwrtrc that contains your projects root folder
and the name of your neural network toolkit:

root: /home/moose/Downloads/write-math

nntoolkit: programname

After that, it can be checked via command line if the installation worked:

$ hwrt --version

hwrt 0.1.150

The project development hosted on https://github.com/MartinThoma/hwrt.

hwrt 0.1.X works in your projects root folder. Inside of project root it looks for the
following folders

• raw-datasets: Flat folder that contains one info.yml and the raw datasets as
.pickle files. Pickle is the standard way to serialize objects in Python.

• preprocessed: Folder that contains other folders. Each folder describes one specific
way to preprocess data as well as the raw data source within a info.yml and contains
the preprocessed files as .pickle files.

• feature-files: Folder that contains other folders. Each folder describes a set of
features and the data source that should be used within a info.yml. The feature-files
are created in those folders in the .pfile format.

• models: Folder that contains other folders. Each folder contains an info.yml that
describes the feature file data source, the model and how to train the model.

The YAML configuration file for the preprocessing queue, info.yml, looks like this:

data-source: archive/raw-datasets/2014-08-26-20-14-handwriting_datasets-raw.pickle

queue:

- RemoveDuplicateTime: null

- StrokeConnect:

- minimum_distance: 10

- ScaleAndShift:

- max_width: 1.0

- max_height: 1.0

- center: true

- SpaceEvenlyPerStroke:

- kind: linear

- number: 20

- ScaleAndShift:

- max_width: 1.0

- max_height: 1.0

- center: true

90

https://github.com/MartinThoma/hwrt

F. HWRT Handbook 91

The queue is ordered and can contain duplicate elements. All features that are classes
in hwrt/preprocessing.py can be used in this list. The data-source is relative to the
project root folder.

The YAML configuration file for features, info.yml, looks like this:

data-source: archive/preprocessed/c2

data-multiplication:

- Multiply:

- nr: 1

features:

- ConstantPointCoordinates:

- strokes: 4

- points_per_stroke: 20

- fill_empty_with: 0

- pen_down: false

- ReCurvature:

- strokes: 4

- Ink: null

- StrokeCount: null

- AspectRatio: null

All features that are classes in hwrt/features.py can be used in this list.

The model info.yml looks like this:

data-source: archive/feature-files/c2

training: ’{{nntoolkit}} train --epochs 1000 --learning-rate 0.1

--momentum 0.1

{{training}} {{validation}}

{{testing}} < {{src_model}} > {{target_model}} 2>> {{target_model}}.log’

model:

type: mlp

topology: 167:500:500:369

The training parameter makes use of templates. {{nntoolkit}} gets replaced by the
string that was specified in ∼/.hwrtrc, {{training}} gets replaced by the training
pfile, {{validation}} gets replaced by the validation pfile and {{testing}} gets re-
placed by the testing pfile. The training algorithm looks for model-[number].json and
replace {{src_model}} by the latest model path. {{target_model}} gets replaced by
model-[number+1].json.

91

92 Appendix

G. Website

(a) Webpage where users can record their handwrit-
ing

(b) Gallery page where the user can see what was
drawn and what is unclassified

Figure G.4.: Screenshots of different pages of write-math.com

Figure G.5.: Page on which the user can see a recording and which symbols were suggested
by automatic classifiers as well has human classifiers. The human classifications can get
accepted and rated.

92

	Contents
	1 Introduction
	1.1 Symbols, Glyphs and LaTeX Codes
	1.2 MathML and LaTeX
	1.3 Steps in Handwriting Recognition
	1.4 Limitations of Single-Symbol Recognition

	2 Related Work
	3 Domain Specific Classification Steps
	3.1 Data
	3.1.1 Choice of Symbols
	3.1.2 Problems
	3.1.3 Data Cleansing

	3.2 Preprocessing
	3.2.1 Normalization: Scaling, Shifting and Resampling
	3.2.2 Noise Reduction
	3.2.3 Order of Preprocessing Steps

	3.3 Data Multiplication
	3.4 Features
	3.4.1 Local Features
	3.4.2 Global Features

	4 Domain Independent Classification Steps
	4.1 Feature Enhancement
	4.2 Greedy Time Warping
	4.3 The Perceptron Algorithm
	4.4 Multilayer Perceptron
	4.4.1 Notation
	4.4.2 Activation Functions
	4.4.3 Evaluation
	4.4.4 Supervised Training with Gradient Descent
	4.4.5 Batch, Mini-Batch and Stochastic Gradient Descent
	4.4.6 Momentum
	4.4.7 Newbob Training
	4.4.8 Denoising Auto-encoder
	4.4.9 Pretraining
	4.4.10 Regularization

	5 Implementation
	5.1 write-math.com
	5.2 Handwriting Recognition Toolkit
	5.3 Experiments
	5.4 Neural Network Implementation

	6 Evaluation
	6.1 Influence of Random Weight Initialization
	6.2 Preprocessing Algorithms
	6.2.1 Scale and Shift
	6.2.2 Wild Point Filter
	6.2.3 Stroke Connect
	6.2.4 Weighted Average Smoothing
	6.2.5 Douglas-Peucker Smoothing

	6.3 Data Multiplication
	6.4 Features
	6.4.1 Re-curvature
	6.4.2 Stroke Center Point
	6.4.3 Ink
	6.4.4 Stroke Count
	6.4.5 Aspect Ratio

	6.5 System A: Greedy Time Warping
	6.6 System B: Multilayer Perceptrons
	6.6.1 Baseline Testing
	6.6.2 Execution Time
	6.6.3 Learning Rate
	6.6.4 Momentum
	6.6.5 Pretraining
	6.6.6 Newbob Training

	6.7 Optimized Recognizer
	6.8 User Interviews
	6.9 Evaluation Summary

	7 Conclusion
	7.1 Summary
	7.2 Future Work
	Bibliography
	Glossary

	Appendix
	A Algorithms
	B Tables
	B.1 Evaluated Symbols
	B.2 Evaluation Results

	C Figures
	C.1 Scatterplots of Features

	D Creative Users
	E Raw Data Example
	F HWRT Handbook
	G Website

