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Abstract

Robust "peech re('ngnition in noisy environment.s can still b••St'<'nas

a widely unsolved problem, while being enormously rl.'!evant in practice.

For instance, state of the a.rt syst.ems would likely perform unsatisfactory

as spf'ech interface to a ticket machine in a train station or for the tusk

of answering your emaiL~whiledrivinginacar-becauseofthepre.ll.nce
of environmental noi.~e.

In recent years pal'tide filter bllSCd method:! have shown significant

performanre improvcmcnu in thi.~ field of rf'Sl'lI.rrh. On!' of the moo;t

crucial subjects in particle niter design for clean speech estimation is, to
have an adequate representation of speech (spet,.-;hmodel) on which the

particle weight calculation is ba:sed. Typically, a general. time invariant
and phoneme independent speech model is uSt'<1in this place.

First attempts of research into using a time varying, phonf'ml' spednc
sJK~'chIllude! have already b(.~11performed by F. Faubel and 1\1.\Vijlfel at

Universitiit Karlsruhe (Til) and Carnegie Mellon Uni\'ersity. !';SA which

have shown notable gains in word error rate.

This project thesis introduces new approadws to further improve the

particle niter performance by phcltleme flpecijic dynamically tlIne vG1'1Iing

speech modd.i. These speech models are based.on three different concepts:

l. Building knuwledge-driven, heuristic based phuneme clusters

2. Building data-driven, uusupervu,ed hierarchical clustering based

phoneme clusters

3. Considering confusability to build phoneme classes
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Deutsche Zusarnrnenfassung

RobHste Spracherkenmmg in gen'i.uschbehafteten lJmgebungen kann heute
imrnf'rnoch aL~£'in p;ro6tf'nlf'illi Ilnj::;('IOst(>:;Prohlem b('tra.chtet werd!!ll,

obwohl es auBeroderdentlich praxisrelevant ist. Bcispielsweise ist ZIIer-
wart ••n, dass aktuelle Spra.cherkennunKNiysteme als Sprachschnittstelle fiir

einen Fahrkartenautomaten illl Bahnhof \ln~ureich"nde ErgebnLe,;;eHefern,
Opr Grund dafiir ist da.•.•Vorhandensein von Hintergrundgerauschen.

III dUll Ictzt!!!) Jahrell erreicllfeu auf Partikelfiltern basierende Ver-

rahren eine signifikante Verbessungungen der Erkennungsleistung auf
diesem Forschungllgebiet. Einer der entscheidendsten Faktoren im Ent-

.•••.Ilrf von Partikelliltern ist, cine geoeigllete Repriisentatioll fur unver-
rau»f'hte Spraehe (Sprochmodell) ZII linden, au! ekr di...,lkr...,...,hnungder

Gewichtsfaktorell der Partikel beruht. TypiM:herweise ""ird Z1ldiesem
ZWf'Ckein allgemeinffi, zeitinvariantes lind phonelllllnabhiingiges Sprach-
rnodell verwpndet.

Erstl' Forschullgen ein zeitv!!riil1derliches uud phonemspezifisches

Sprachmodell zu verwenlien, wurden bereits von F. Faubel und M. \\'t:ilfel
an der 1Jniversitat Karlsruhe (TEl) und Carnegie Mellon University, USA
unternommen, die deutliche Verbel<..-.erungender \Vortfphlprrate 7Rigtcll.

Die:;e StudienarhPit st.ellt neue Ansatze vor, urn dic Leistung \.011

Partikf'ltiltern durch phonClllspezifische, zeitverii.nderliche Sprachmodelle

•••.<.'iter zu verbe_o;;,ern.Diese "-1odelle hasier!'n auf dr!'i unterschiedlichen
Konzepten:

I. ErZf'ugung von Phollemkla." •••.'tl, durch wissens- lind ht'llristik.
basierendc Vcrfahren

2. Erzeugung von Phonemklassen, durch

IIniibcrwa.chte, hierarchbche Clusterverfahren
datengetriebene,

3. Bctrachtllllg VOIIVeru'ech.selbarkeit, ali> Mittel zllr Bildung von
PhollPmkla:<sen

Eine Reihl' von Verfahren wurde implementiert und anhand von
Sprachprkennungsexpcrimenten evaluiert. Trotz deutlicher Vllriahilit.iit.en
in II••" gemf'l'senf'lI Ergebnis..<;en,konnte in vielen Fallen die \\'ortf ••hler-
rat.e durch eines der neu vorgcschlagenen KonzeptI', im Vergleich zu den
tnulitionellen ~lethoden, weiter verbessert werrlen.
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1 Introduction

The family of algorithms called Particle Filters (PF)s (a.k.a. Sequential Monte
Carlo Methods) is well known in various fielrlsof research including Complltt'r
Scif'IlCe, Signal Processing, Statistics and Econometrics. The rea.'ion is, that
it is becoming more and more important to cope with non~llnearit}'and 1100-

Gallssinanity of dynamic proces.'ies that have to be modeled in t.hoM' fields.
Fllrthf'TffiOre, ,he performanre of tarlay'!>computers is sufficif'nl to use them in
ff'-Ri-timeapplications. In research and practice PFs have become most popular
in rliffen'nt kinds of t.racking tasks, e.g:. pt~rsllingt.he position of airplanes on a
radar [GSS93] or the movement of persons in a video.

In H'(:cnt times, they also were applied in the field of automatic speech recog.
nit ion (ASR), where they can be used for the enhancement of speech features in
noisyem'ironments. It is a generally unsolved problem. that the performance of
ASR systems dccrea.'ie rapirlly, when operating in an environment which is not
completely silent, apart from the speaker\ \'oice, Obviously, this premise can-
not hold in many rcal worlrl applications. An analysis of the probl('matic eiff'cts
occurring, when si!l;nab are contaminated by noi,.;e,can be found in chaptt-'r ,I
of [)'lor96j.

Since ASR can be set'n a.-;a pattern recognition issue, the problem, which
hal; t.o be addres;;ed is, to overcome the discrepancy between tbe environment,
in wbich the acoustic models of tht-' ASR system have bet'n trained and the
environmental conditions in which the ASR system ha.o;to decode the (noisy)
spet'ch features, afterwards. This mismatch remits in a drastic decrealSe of
recognition performance. Over the years, various kinds of techniques have het'n
suggested, which try to o\'ercome this drawback.

1.1 Basic components of a statistical speech recognition
system

_ ~ ~~bastWQlll

.. )0 FrontEnd-)o"Deco~r"'.
S'Qnai _!LP8&cIl ~ _

---- ~ ••l"""s ,,' _-'""".
/ "..

Figure 1: Basic ASH system components

Figure 1shows the typical components of a statistical ASR system. First, the
analog sinF;al is pre-proccs.;,ed in a front-end step, which digitalizes the signal,
reduces the dimension and extracts relevant speech features. Thel;C features arp
decoded in a following recognition step, which outputs thp word sequence with
the he!;t probability. The decode.,. hasically works 011 three informat.ion sourCe!;:
First, acoustic modeL~,which provide a conditional probability of speech featurt'8
for a given phonetic unit or spt-ech. Second, a dictionary. which maps the
phonetic units to words, which can he recognized and third, a language model
which givt'!>likelihoods ror a St'(jllellcPof worrls in II. spedfk language,

4



1.2 Acoustic models - Gaussian l\Hxture t\lodels
Mo~l ~tat(' of tht' art ASR ~ystem~ represent the acou~tic unit'" of speech by
Gau"sian mixture models (G:\I~l)s, which are actually the Linearcombination
of M ~ingle Caus~ian distributions:

.W

p(x) =Lc,//(xl/..l ••Li), where
;=1

M

LCi=LO~c-t~l
.=1

(UI

A ~ingle multivariate Gaus.'iiandistribution of dimension n is defined as

Where JJ is the mean vector (centroid), L is the cnVllriann' matrix and I . I b
tht' determinant. In ASR, u~ually, diagonal cm"ariatlce matricl'S are u~ed for
modeling acoustic speech.

Gaussian mixtur~ are known to be uniyer~al approximators, which meam;
that any probability distribution can be modeled by a (not necessarily finite)
Gaussian mixture.

1.3 Noise compensation techniques
Tbe term 'stationary noise' means, that the background noise is &>Oillllledto
be a slocha.,.,ticprocess, whose probability distribution is fixed over time (e.g,
means and variances are ~et to be time constant). This a'isumption of stationary
ILOl.';('lIIay hold for white noise, which is a random signal with equal energy for
eli-Chfrequency in the power spectrum, and for colored noise, which al~o has a
fixed power distribution (e.g. pink noise's spectral density is proportional to the
reciprocal of the frequcncyl). However, most of the noise we havc to face undPf
real world conditions, con~ist~of important parts that vary o\'er time (imagint'
a car driving pN-itthe road, or voices of an auditory in the background). IIb-
tarica-IIy,the first noise compensation tcchniques tried to cope with stationary
noise, since it is much easier to handle comparro to non-staliona~ noise.

Over the time mallYdifferent noise compensation approaches have bt'ell pro-
posed (e.g. model adaptiotl techniques, or hidden ~1arkov Illodel - decompusi~
tion). The technique we use is speech feature e1Ihancemen!. This method tries
to clean and emphlL'lizeclassification relevant characteristic.'1of 1\ noisy spt'f'ch
signal with the goal to retrieve features, which are undistorted, ~o that the
ASR-dt>Coderis able to process them properly_

It l.'i possible to perform spt't'ch feature enhancement in an independent
pre-processing step (offering an easy potential for parallel implementation), or
within the frollt-end of the ASR system during feature extraction. In both
cases it is not necessary to modify the decoding stage and it does not require
any changes to the acoustic models of the ASR system.

Traditionally, techniqu~ like spectral subtraction or Wwnr:r filtering wert)
used for speech feature enhancement. However these mf'thods hasically only
work for stationary nobe compensation. A detailed analysis of traditional meth-
ods and further exlensions to these systems can be found ill [Eph92J.

IS(f) = l' "..h",,, f is th•• fr..quellcy_



Considering the problem of spet-'Chfeature enhancement ali Bayesian pa-
rameter t"stimation, which is also not limited to st.ationary proce!ises, makf's it
p()lo;.~ibleto apply a Sf'ril~ of statistical algorithms to ffitimate the state of dy-
lIalllical systems. First attcmpts of research in this ficld, assumed speech as an
autoregressive (AR) linear process, polluted by white noise. Therefore [PB87J
proposed to estimate the linear prediction (LP) coefficients and noise variances
and then apply a Kal,ftlJII filler (KF) to get an estimate of the clean signal. But
there are fundamental prohlems using LP, since it is known to unsuitably model
\'OicedsPf'{'Chand medium or high pitched voices. ~10reover LP coefficients are
unstable, which IlIcallSsmall chll.lIgesill the coefficielJts lIlay not lead to small
changes in the speech l'iignal. Furthermore a KF assumes the relationship be-
tween the observations and the inner state to he linear and Gaussian, which
is not true in practice. That is why [DGWOO]proposed to usc a time varying
partial correlation model. and in addition to that to replace the KF by a particle
filter (PF) (operating in time domain).

Instead of tracking clean spt'eCh, [Kim98] propo;;ed to sec the problem from
thE~opposite direction and use Ilobe as the state variahle, which means that the
noise spectrum is 'contaminated' by clean speech. All of the filtering methods
mentioned before, do neither operate in the log spectral, nor in the l',[elfrequency
domain. That is why [YS02] presented a PF, opNating in the log Mel spectral
domain, where the characteristics of the human auditory system are regarded.
A PF using the technique of sequential importance resampling (SIR), called
Baye.~ian Boohtrap filter, was first proposed by Gordon et aL [GSS9J] and is
basically the approach used for the experiments of this thesis. The advdntages
of particle filtering compared to other filtering methods are:

• I\oise can he non-stationary .

• It can cope with the multi-modality of the propo~al den.~ity (i.e. can have
more than one maximum) .

• It can cope with the non-linearity and non-Gaussianity of the observation
transition .

• PFs arc compuinfi.onn[ ptJir:ipnt compared to alternative algorithms (e.g,
EKF or 1I~(~1-decomposition).

1.4 Basic work

In prior works [FallOn,FW06) a particle filter for speech feature enhancement
has already been developed and implcmented by ollr rest"arch group at the
Institut fur Theoretische Informatik, Universitiit Karlsruhe (TH), Germany and
the Interactive Systems LaboratoriE'S, Carnegie Mellon Uni\'ersity, Pittsburgh,
USA. It is part of the JanUll R('.cognition Took/it (JRTk), which is developed
and maintained cooperatively by both institutions,
The PF algorithm lIlainly followsthe approach of Singh and Raj [SR03]. FUr-

thermore, a series of refinements to the original approach have been developed
to further improve the word recognitioll ac:curacy and stability of the PF:

In practice it can happen, that the PF algorithm overestimate:; a noise hy-
pothel'iis, so that it exceeds the ob~rved contaminatf'C! spectrum. In this case
the relationship betv.ecn contaminate speech, clean speech and noise cannot be
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calculated in the log :"Ie1spectrum. becau~c of Ile!!:ativelogarithm, as :;hown
in the next chapter. As:oignillgzero weight to ~uch a hypothe~is can lead to a
decimation of the particle population until its complete annihilation. [FWOil
tackled the problem by a so-called fa.~tocc.eptancete~t alld reinitialization pro-
cedure.

TIlt' l*tond major performance ililproWllIent of the particl", filter is, to re-
place the commonly used vector Taylor ~eries(\lTS) [MRS96J by a new .~talis.
tical inference approach [FWOiJ to infer clean speech after the noise estimation.

1.5 Pre-processing stage
A ~pecch feature enhancement stage ~hould be placed as close as po:;~ibleto the
feature domain in which the decoder of the ASR system operates, to achieve
the best effects. That is why otherwise irrelevant parts of the signal may be
cleaned (e,g. a ~"MSEestimation in the spectral domain docs not lead to
a Mr-.tSE estimation in the log spectral domain) and furthermore there is a
general problem that speech feature enhancement may not directly result in a
better recognition performance (in terms of word error rate),

Figure 2 shows the pre-processing stage of the spt'Cchrecognizer (JRTk) u~pd
for this project thesis.

G) @
warped .@ ,@

Windowing MVOR
log

••• ,~ .n
@ 0: @

LOA concat OCT
u - "

Figure 2: Feature extraction stage

1. The inputed acou~tic signal is sampled by 16kHz, 8 bit. Thi:-;time domain
signal is cut into fnl.lnt~:-;,each of 10 ms length, using a 16 Ill:; Hamming
window.

2. In~tead of the prominent FouriN tramformatioll, we retrieve spectral co-
efficients, from the 256 samples, by the warJX'<iand scaled minimum V(.lf'i-

ance di.~tortionless response (~IVDR) spectral envelope [W!\to5]. This
results in a 129 dimensional estimation of the power spectrum, It has
b('('n shown that spectral envelopl.'Soperate more robustly in noisy elJ-
vironments, since they overcorne the equal weighting of spectral valley:-;
and peak:; by representing energy rich regions with more detailed infor-
mation than low energy region:;, where lIobe is mainly present. Further-
more, },fVDRoutp~~rformslinear prJ'diction (LP), which is known to model
voiced speech and high pitched voices not aecurately. To mimic the human
auditory !System,which percept!Sfrequencies and IOl1dne~slogarithmically,
Mel-frequency is approximated by warpiul/; the }'lVDR.
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3. By calculating the componentwi~ logarithm (log) we obtain the log Mel
power s]lf'.ctrum.

4. The application of di~creteco.~irle tmrufonn (OCT) takes the spectum
into the commonly so--cal1ed('£p.~t''1Jm. A dimt:'nsionll.1rt"duction to 20
spectral bins is performed by cutting off high cepstral coefficients. This
procedure is commonly known as lifte.ring. Tran!'iformingback again, using
a 20 dimensional matrix, results in a smoothing effect of the spectrum.

5. The partide. [ute.r, which is discussed in the next sections, performs the
speech feature enhancement.

6. VCT, yet without truncation, is applit'l:lto operatt" in tht"cepstrum, again.

7. To he able to regard variations to adjacent samples in the feature ~pace, for
each frallle the 7 prior and 7 following spoctra (samples) are comhinat{'lj
to form a 300 dimen~ional vector.

8. Finally, linp.o.r di.scriminant analysis (LDA) is applied. This trall.'o;forma-
tion decorelates and arranges the features by their discriminability, while
minimizing the "ariances within each class (i.e. codebook) and maximizing
the variance between the c1a.-;.."Cl;.13ycutting off low ordn coeJlkicuts dur-
ing the tramformation, a further reduction to 42 dimensions is achieved.

Thus, the PF works in !,he log ~Iel spectral domain. Maybe it would be
appropriate to do spt~h feature enhancement in the cepstral domain or after
the LDA tran~formation, but there are mathematical problems to maintain the
relationship between noise corrupted speech, clean spet-'Chand noise lhroughout
the DCT and LDA steps. [Fau06J points out the problems in delail.

1.6 Phones and Phonemes

Phollologists accuratf'!y distinguish between phonc,~ and phonemes. Phone.$
are all the single acoustic units, which can be dbtin~uished in speech. The
in/cnwtioflai phone/ic alphabet (IPA) [Ass] aims to list phones of any spoken
languaAt'. Phonf'mf'S, howf'ver, are the srnalle~t units of sp<-'e(:h,which can effect
the ~ml1ntic meaning of a word (e.g. first sound of the words 'rip' and 'lip').

Enginffl;'rs,seeing thE'~~differences from a more technical per~pective, tend to
mix the terms, since ASR syst.l'msonly use acou!'iticmodels for recognitioll of thE'
phonetic units, which have to be mappoo to words. Throughout this thesis I use
the term phoneme, although it might not he correct in every situation. Appendix
A lists the phonemes and corresponding word examples used for clustering and
particle filtering in this work.
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2 Speech Feature Enhancement using Particle
Filters

This section gives a short introdllCtion into particle filt{'ring th(~ry, which II;
ba.'ied 011 llayesian tTfl.CkinR, and presE'uts our part ide filtering algorithm for
dean speech e:;limation.

2.1 Particle Filter Theory
~lany Tealworld processes can be modeled as time-clbcrete slocha.stlc dynamic
IJystems [R.,\;03]. At time step t the output or observation Yt of such a systelil
depends 011 the CUTTI'nt i'lput till and all i,mer state Xt (which can be set'll as
a hidden memory). Yt, Xt and tit can he regarded as 11 dimensional random
vectors.

The evolution of the inner state Xl is described by the so called (dYIlamic)
slale model. The (static) measurement model describe,; the output Yt upon a
gi\'en point of tillle t, inner state Xt and currl:'nt input Ut_

l;sually the state transition probability can he modeled as a (lst-order)
Afar/cov chain:

p(Xt+dxQ, Xl, ... , xtl = p(xl .•.dxtl

The 1tarkovill.nassumption is basically no restriction, since it can be shown, that
every hight>rordN ~Iarkov chain can be transformed into a 1st-order :\Iarkov
chair. (by an increll..wof state space dimensionality).

Figure 3 shows a typir.al block diagram of a dynamical 1Iarkovian system,

system
model

measurement
model

Y.

Figure 3: Dynamic :\Iarkovian syst.('m

The est.imation of the inner state It, based on the observatiom y from timc
slep 0 to time step t (the notation Yu;t is USI..-din the following), is colIllllonly
known as~rqul'llti(jl BOYl'si(l1lfilt1'11ng. Particle ji1tl''f.~ (PF)s are simulation
filters, where the probability density mll..'>sis modeled by samples from the state
space. the so-called parlicles, outputting the posteriori probability derl,~ity of
the system state,

Sequential estimations from this hidden system slate's probability density
p(XtIYo,t) are obtained for each time step by r<'Cursivelycomputing, whcn a new
observation is received (i,e. tracking).

Several diff('ff'nt PF algorithms han' beCllpI"OJKX-;oo. In [AMGC02], variants
are discusSI..-dand compared to estimators, which perform optimal under certain
restrictive couditiolls, like the Kalman filter (KF). Siucc •••.-e IL"R a Bayesian
Roostrap fiher, the term particle filtt'rillg refers to a PI-' algorithm u~illg the
t<'Chlliqueof Sl'quential sampling importance resampling (SIR), throul!:hout this
thesis.
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2.1.1 Bayesian tracking algorithm

A general Bap'sian tracking algorithm call be regardoo as two simple steps:

1. Prediction from the previous density (at t -1) one time step ahead to the
current time step (t) via the state transition density (time update), which
can be seen a.~the evolution (or simulation) of the system:

Since this equation is recursive, the system state ha.~to he initially (at
t = 0) estimated by an a-priori probability p(xolyo) = p(xo).

2. A jilteri'lg step (mea.~urementupdate), which lIses the latest obst'rvation
to adjust the probability density \Ising Bayes' thl:'Orem

( I ) p(Ytlxt)p(Xtlul:t_l)
p Xt Y1:t = ~~p~(y-.~Iy-.~_-')~- (2.2)

where the denominator (normalizinll;constant) can be computed by mar-
gia.lisatiollof the Ilumerator:

It can be shown, that the optimal solution to the tracking problem, which hi
the t'Stimation of the system state, that ha.~a minimal distance to the optimal
estimate (minimum mt'an square. error estimation) is

(2.3)

where JE[.]is the expectation value. As we are interested in a functional depen-
dency of the estimated noise, corruptoo speech and cl~~anspeech in our algorithm
in the next section, (2.3) can be A'~nerali7.t'dto

(2.4)

2.1.2 Particle Altering

The Bayesian tracking algorithm derived in the prior section can be s('('n a.~
the optimal ~olution of recursively calculating the posteriori density. But in
general it cannot be computed analytically, because (2.1) and (2.2) arc !lot
necessarily linf'ar. Applying further restrictions, allows to compute an optimal
estimatioll. E.g. a Killman fillp-r (KF) df'livers an optimal f'stimate under
the restrictive condition that both, the state transitioll and the ollM'rvation
transition, are Gaussian and linear functions. But since the relationship between
noise and speech is non-linear in nature, a KF is not an adequate algorithm for
spet'Ch feature enhanceml.'nt. Alternatively an f'.rtp-nd"d Kalman filtpr (EKF)
rollld bf' used, whkh IOl'allylinearizl'Stllf' problf'm by a first.order Taylor ;;eries
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approximation. I!owever it is Hot lIH:1.tbclllatkallyjustified to retrie\'e gains in
recognition performance when \Ising an EKF [Kim98J.

Particle filters have the ability to cope with lIOIl-linearaud non-Gaus."ian
problems by approximating the probability dbtribution with discrete random
mea.<;ure:-;,modeled N sample:-;and weights (called particles):

(
(j) ,)j))"

It ,"" ,=1

The~e particles are relocated and wcighteJ in each time step. Particle filterinl!:
belongs to the cla.:;sof Monte Carlo algorithms, thererore it will not perform
optimal in Kl.'neral,but as t.hl.'Ilumber of particles ~()esto infinity, PFs approllch
the Bayesian optimal estimate.

So PFs approximate t.he continuous posteriori probability dl.'lIsity (2.2) by
its dis<Tetisized (empirical) counterpart:

"( I ) "(j),( (j))P Xt YI,' "'"L 'Wt 1.1 Xt - xt

j=l

Wh•.re I\' is the number of the particles xP) and w;j) their corfl~ponding
weights (I:j~1w;j) = 1) as outlined in the next section. 60 denotes the Dirac
di;;tribution.

2.2 PF algorithm for clean speech estimation

A practical particle filtering algorithm for noise tracking and dean spt'l'ch esti-
mation can be seen as rour st.eps:

L Evolution of noise hypotheses (state transition of particles).

2. Rating the noise hypothl~es likelilwoo (part.ide wl'ights).

3. Inference of clean speech ba.~'<ion the noise estimatioll and oh~erwd spec-
tral signal.

4. Re.samplillg of noise hypotheses.

The steps 1 _4 are repeated until each speech frame has hpt,~llprocess,'{1.
~ote that in this chapter fit is the state vector (instead of Xt in the prC{~ed-

ing section). Xt denote.. c1I'alll>peechand Yl is the noise contaminated speech
obSl;'rvation.

l. Initialization and Evolution of noise hypotheses

Initially the /\' noise hypotheses nUl U '= 1 ... N) are sampled from a
general probability dbtribution, which is learned from nobe spectra for a
specific noisl.' (!lobe mudel).
Later (t > 0) the evolu.tiotl of particles (noise hypotheses) call be modeled
by a kth-order autoregressive progress, as proposed in [RSSIHj.

fit = Al . nl_1 + Az . tlt_2 + ... + Ak . tll_k + (I

= /j.. !!t_1 + (I (2.5)
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where A. arc d xd state trausition lllatriees, which aw lcafll{'dfor a ,,~wcific
noise and III is /I. noi~e.sample at time t. The error term (, is i.i.d. zero
mean Gaussian (i.e. A'(nt;O,I:""u~)). It can be regarded to model parts
of the system. which arc not expres..~edb:r the autoregressive progress. .A.
denote;; the (k. d) x d by row concatenation of the k A; matrices and 111_1
denote;; the vector by column concatenation of the IMt k d-dimensional
noise samples ni, This leads to the noi..~etmnsition probability (prediction
step)

p(n,+ 1I'ld = :V( nl_I;.A. . D,.I:"o,.~)
Since it hw;been experienced, that the prediction of noise hypotheseo doel;
lIot signifklllltly improve by USillgII 1II0deiorder greater than k = 1 and
11. IIlllchhigher training effort would be necessary, weuse a 1st-order model.

A new particle generation is ohtained by drawing each particle of the
next time step n~j) (j = 1.... "") from a so-called importance or ProlJO,~al
density, sinre drawing samples from the posteriQri density p(ntJYl:d is
usually impossible. This concept, r-allt>dset"juentialimportance sampling
(SIS). can he understood a:;drawing samples from regions of 'importance'.

When using a sampling importance rcsampling (SIR) particle filter all':o-
rithm, the proposa.l density of a new particle n~j) is its state transition
probability p(nl+lln;j). This way, the particles arc drawn from a den~ity,
which i~ independent from YI, however the current observation Yt takes
effect to th~ part.ir1~weighting (next step of this algorithm).

As mentioned before. ow:,restimations of the noise hypotheses can Call.~e
severe decimation of the particle population, which is al;;o analyzed in
[HUS05]. A ~imple solution to work against the degeneracy would be,
to use a very high number of particles, but this would suffer from high
computational co~ts. Therefore we use the so-called fa,~t acceptance test,
which has been proposed by [FW07]:

\Vhile the condition n;j) < Yt is not satisfied for all sPf'rotralbins, or
a certain numher lJ of iterations have pa..,>sHli,the new particle n~~lis
sampled from a transition probability p{nl+dn~-»). which is the one of a
random particle Ill-) (i.e. random s E {1 , .. N}). This can be regarded as
virtually inCTea:;ill.'(the ll11mrn-rof particll~~up to N . IJ. if llet:'e!:iSary.

2. Calculation of particle weights

Having an additive noise a.,>sumption,the time domain relation

12



call be expressed in the log Mel frequenc)' domain by the followingf'(lua-
tion2, if the pha.~e is omittt:d (a df'tailed analysis can be found in [FW07]):

Y! = log(e:r, + en,)

This makes it possible to express a functional dependency of the clean
speech estimation calculated from riP) and y/:

Xl = 109(ell' - e"')
( ') I,)

~ f(YI' TI/ );= Yt + 109(1 - en, -\I') (2.6)

:'\t'xt, wt' can apply tht' so-called jundamefltul trullsjo17natiO/I law oj prob-
abilities, which is dcfilled as

p,(y) ~ P.(f(y)) .ld~~)1

In our case this transformation allo""~to evaluate tht> output probability
p(Yrlnd (i.e. P\I(Y) := p(Yrlnr», given the relationship (2.6) a.nd a proba-
bility distribution of clean spet_"Chp:r(xd (spL't-"Chmodel).

As noted before, speech is usually llIodeled by a Gaussian mixture modd
(equation 1.1, pa!!:e5). This giyes us the probability distribution vl(xd
of clean speech.
So the output probability can be expressed as

The likelihood I(nj}); yd of the j-th particle is actually the output probu-
bility p(ytlnt) of the dynamical syMem, i.e. l(n~j);Ytl = p(Ytln;j)).

Thl:' weight of th", j-th particle can be calculated a...~its normalized likeli-
hood

where .",f is the number of partic!t"S.

21n our s"tup. th~' relationship hctW><elloorrupt~..:l "p',"-'Ch,dean "pt~'Ch, and noi"" only
appruximates this oqus.tion for the log Mel p""""r 8\X'C!.rUln,since feMure••derh .•'<i by warped
~IVDIt are only an approximation to Fouri~'r f,'ature ••. and Ih" liftering step (4. P"l';" 8)
illtroducC'l further non_lilleariti,'>l.
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Equation (2.9) b 110tcomputable, if n;j) exceeds Yt in any spEJctralbin,
since it implies en~')-y, 2: I. p(ydn~}») is set to zcro in this CNie.

3. Inference of clean speech

Usually, PFs for noibe tracking df'al with the non-linearity of the relation
betwEJ'e1lthe system state x and the o\);;ervatiOlly with a linearization using
Taylor series expansions for clean speech inference. This so-called 1J1'.ctor
Taylor series (\'TS) approach [1IRS96] uses a Oth-order Taylor l'eries to
approximate the term logO _ en'-II') .

In contrast to that, we use a strai~ht forward direct ("Met/jation (statistical
inference approach), derived from equation (2.6):

(a) Calculation of clean speech hypothet-c;; x~j) for each of the N noi.-;e
samples n~}):

xP) = Yt + logO _ en:'l-ll')

(b) The clean speech ~timatiOll X, can be evaluated exploiting equa-
tion (2.4), which can actually be calculated by averaging over all
jV clean speech hypotheses x;j), weighted by their normalized likeli-
hoods (particle weights tl)~j)):

"Xl =L w;j) . x;j)
]=1

This simple approach solve;; the inference problem without approximation
and has.shown better performance than VTS, while being computationally
extremely efficient [FWD?].

4. Resampling of particles

A major proulclIl whell using ~ SIR pll.rtide filter is tile degelleracy of
particl~. Meaning that after a small number of time step!:i,all, uut only
a few particles get insignificant weights and the probability density is de-
!:icribed inadequately, !:iineethe contribution of 1lI0!:itof the particles to
the pO!:iterioridensity i!:ialmost zero. Therefore, the sy.~temtl.tic residual
resamplitlY algorithm [BDH03) i!:iused to resample the particles. This is
a !"emi-determiniHticvariant of the sequential ,~amplin9 importance reMlm-
bUng (SIR) algorithm. SIR can be seen a pruning step, where samples
having a low rating in the likelihood function die, and likely !:iample:sare
multipliro. Figure 4 schematically illustrates the concept.
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Figure 4: Weighting (indicated by particlc~' diameter) and resampling of parti-
cles
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3 Phoneme Specific Particle Filtering
Onf' nudal st~p t.o improve the estimation of a partk]!' filt.ering algorithm,
is to get a more prccU;eweighting of the partidt'S (step 2 of the algorithm in
tbe preceding section). Thiti can be achieved by using Ii better way to model
how speech looks like. In other wordl;, we would appreciate to have an output
prohability distribution (2.9), which models the obbervoo spet'ch si/!;nal more
precisely.

Traditionally parlidl:' filtering for speech featme enhancement is performed
\Ising a general speech model. This means one generic model, giving Ii likelihood
which st.atf'S, how far Ii sJ)('l'ifk spect.nl\ frame has the shape of what i;; a.-;sumed
to he clean speech. Faubel and W61feIIFW06] have propo;;ed a time dependent,
phonf'me s~ifir dean spc(,l'h modd:

M

Pphon.~(I)(X) =L Ct.pho",,«(),V('xIJl ••phone{(), ~i.pho,,~«(») (3.1)
,:1

It is obvious, that a general model for speech is a very unfocused criterion,
ignoring the dynamic properties of speedl, since different phonemes have differ-
ent important frequency characteristics (e.g. high frequencies for fricative:; like
'S' and low frequent formants for vowels).

Figure 5 shows the prohability distribution of a general speech model in
comparison to different phoneme models.

Our r~earch team ha.~developted a PF. which performs a particle weight
calculation halied on a phoneme specific sJN:echmodel. as further addres~ in
this thesis, and first experiments showed that t,he improved estimation can lead
to a notable increase of word recognition accuracy [FW06].

To establish It phoneme dependency in the PF, it has to be known, what is
spoken at a specific point of time in an uttemnre. But, since it is the actual job
of the ASR system to ohtain these phonemes (and reveal word sequences), they
are not known in advance. Therefore, a two ]"IltSs system ili used (Figure 6).

3.1 Two pass Particle Filter

In the finJl PlLij!'l a phoneme independent, geneml IIcou.stic model for 'ipeech is
appliPd to the acoustic signal, a.s it is commonly used for partide filtering.
Aflt'rwards, as usual, the ASR system dOe>;itli dl..'Codingto generate a hypothesis
of what hM been said. This hypothe;;es is the b<L;;isfor tbe $econd pass. As
it is known, at that point, what phonemes have been spoken throughout an
utterance, the models can be switched dynamically and particle filtering Ca.llbe
performed using more specific acoustic speech models_

By using a phoneme transcription hypothe:;is a.<;indicator which phoneme
:spt'cificspeech 1Il0deito use, the PF's :.tatiollary speech modI!!is replaced hy a
dynamically time varying clean speech model. Furthermore, by coupling hack
the recognition results of the first pass into the speech feature enhancement
stage, it benefits from the sophisticated methodologies of the decoder of the
ASR system.
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Figure 6: Two pass particle lilter

3.2 Problems of the two-pass approach

In preceding experiments [FW06) recognized, that using a phonf'me specific
spf~~h modf'1for particle filtering is a very promising approach, since the word
error rate (WER) could be roouced by more than 5%3 compared to particle
filtering lIsing a !l,"ener1l.1sPf'ffh model. But only if a reference hypothesis iron.
scription i.~available, specifying whkh phoneme is spoken at a srwcific point
of time. This can be regardE'd ItS the output of a perfect ASR system in the
first pass, Of courS(', in a rf'al world scenario, sHcha rf'ferf'nce is not available
in advance, that is why we use the decoded hypoth~is of Ii previous decoding
PII.,;s.Howcver, sllch Ii hypothesis of the first pass may be wronll:,which results
in wrong probability distributions being used liS speech models for partirle fil-
lering. The dTrct is, that in CRSl'of a mismR.l•.hl'd hypothesis, tbe PF cleans
and enhances the noisy speech features into the direction of a wrong phoneme
/lnd the decoder recognizes the wronp;phoneme even more likely, which leads
to a wors(' WER than Ilsing a general sp('('ch modd for partide filtering. We
call this phenomenon 'model lying'. Thi~ f'fff'et is most substant.ial for similar
phonemC!iwhich are likely to be e(lllfuS(!d.

Another problCIll, whcn ul;ing a phOlLl'lllt'-l;pcciticPF, is that dynamically
switching the models learlHto very sudden changes in the particle's weigbts,
which can dct;tabilize the PF.

To overcome these problems, [F\V06] introduced Ii mixed model consisting
of the interpolation of a phoueme specific alitl a gcneral speech model. In 00-
ditioll to reconfirming these experiments, this thesis introduces [he followill~
approaches, which will be di;;cussed in the nf'xt sections;

• Using a phoneme specificmodel which is additionally trained by phonemes,
which are likf'ly to bp interchanged

• Grouping phoneme; to clll.<o;sf'sand using phoneme class.bll.~edspt'('eh mod.
els

JS:"lR 0 dB
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:J.:J General and phoneme-specific mixed models
Intf'rpolfltinl!;bl'twN'n t.hl' two difrprI'nt ll.pproa.ch('S- Kcueral speech model p(x)
nnd phoueme-splXifie :-pf'{'("hmodrl ]Jp'"",~m~{j)(x) - overcomes the model tying
problem, a-; it was shown in [FW06j. A (phoneme dependent) mixed model can
be dl'fined 1\.0;

Pmi:r(I)(X) = u. Pphonemdf)(x) + (1 - u)' p(x)

where (r is the mixture weight and phonnne(t) i~the phoneme in the hypothesis
transcription at time t. It hru; been evaluated, that the incre~ed number of
Gaussia.ns in this t-'quation is not re!e••..ant for the rCtiults.

3.4 Confusability based mixed model
Due to their charlt.Cteristics. some phonemes are l-"Otlceivahlyinterchanged by
the speech recognition system more often than others. Thus, the model tying
efred is assumed to be more severe for th06e phonemes, which have a higher
probability of confusion in the decoding stage. The cOTt/usability /KL.~edmixed
model trips to tackle this problem by interpolating each phoneme model with a
series of phoneme models, which are known to be interchan/!;w often. The goal
is, not to focus the enhancements by the PF strongly on the single phonenw
given by the hypothe~is transcription, but also let it be bia"ed by other possible
phoneme:;, according to the probability of their confusability, so that the decoder
can identify the correct word.

The phonpmp spl"dllc, ronfllsability b1l.,"f'dmixed modf'1is ddined as follows:

if A = plwneme(t)
if A f- p}wllcme(t)

(3.2)

where
>"pllQn~m~(I) = IF'(phoneme(t) is not interchanged),

>"pllOn~•••dl),A = P(phuncme(t) is inh'rchange with A)

w is the set of all phonemes and phoflcme(t) is the pholleme in the hypothesis
transcription at time t. The prohabilitiC!' >"ph<>n~m,,(l) and >""honeme(I).A were
determined by an omine experiment, which messured the number of interchanges
of all pairs of phonemes hy comparing the result of a recognition pass (i.e. tht,
decoded hypothesis transcription) to a reft'relll'e transcription of approximately
100 hour~ of speech data.

Typically >"phon"m~(t) is a much higher probabHity than >""hon.",e(t),A' which
il' zero for many phonemes A in the phoneme ~t tV. However, if phoncme(t)
is potentially interchanged with Illany other phonemes, it leads to a very high
number of Ga.ussians in equation (3.2). Tht'refore, the expt'riments for this
approach nsf' a fixed number (If Gaussians, bllt art' trained by samples, which
bf'lollll; to difff'rrent phonemes, dislribnt.f'd (,{lrrt~pondin~ to >"ph"".",~(t) and

>"ph<m~"'''{I).A'
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4 Class-Based Phoneme Models

As thf' phonf'me sPffific 1'1" is [orusl'd laO much and theu'fore t.purls to in-
fhll'nCf' thl' spectrum I,awards It maybe wrong hypothpsis, tht" irlea is, to tie
similar phonemes together into one phoneme cluster. This should also result in
smoothf'r transitions between the different modl'ls and avoid the dying out of
partide, hecause of rapid changed likelihoods of the particles. The goal is to
emphasizl' the PF performance by exploiting the characteristk.<; of mOTf' specific
spet'ch models, while dropping the irrelevant charactt'ristics. E.g. phonemes
which are similar find likely to be interchanged may be clustered in one class,
so that this dof's not infincll(,c the dt'rocicr in the way of model tying.

4.1 Class-based particle filtering

Generally, there are two different ways how data can be clustered _ A:nowlcdgc-
driven (supervised) and data-driven (unsupervised).

Heuristic, supervised clustering means, that there is a human, who has ex-
pcrt knowlPdge in the special domain of the data to be clustered (c.g. a linguist,
or phonologist for the domain of ASR). Thb expert can analyze the data and
create clusters in a way data can be separated by his knowledge. The methodol-
ogy of using manually labelPd data for clustering hl\.~shown good results in many
different fields of data clustering (e.g. acoustic model combination for multilin-
gual phoneme set creation [SK06] chapter 4..1). However, it is time consuming
and expensive compared to unsupervised clustering. ~Iorcover, many theoreti-
cal cOllcepts are difficult to apply to real world data, where various problematic
effects have to be considercd. E.g. in the case of finding similarities between
phoncmes, it is complex to deal with fluent, spontaneous speech, where effects
like eoarliculation occur.

The main focus of this thesis li~ in purely data driven III1Mlpervised
clustering approaches (without human interaction). So a clustering algorithm
has to dt'lermine on its own, which pieces of data belong to one c\a."sand which
do not. We have addressed a hierarchical clustcring algorithm to achieve this.

--------------------------
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Figure 7: Two-pass particle filter usiJij!;phoneme classes

Figure 7 shows an extension of thp two-pass approach introduceet in the previ-
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ou~~'dioll havillI':1m additiolJal cla.;;sifierl:Ollll-JOll('llt,whkh maps the phoneme
tralLSl"riptioll(hyputbesis) of the first pas~ to phOIlClilCclasses, following a cer-
tain dassiticatiolL l;tratcgy.

The dilS5ification l;tmteg.vrcalizl'Sthe various dusterillg approach~ and pa-
rameters we addressed, e.g. the c!ll5tering policy (i.e. data-dri\'en or knowledge-
ba.~ed), number of cl~es, used distance mt'asure, etc.

4.2 Supervised heuristical clustering
First, we focus un the knowledge blU:iedapproach, and obtRin simple phoneme
classifications, ba.o;edon phonologically well known phoneme classes.

This section introduces the evaluated c\a."Sl'S and shortly describes their dif-
ferent characteristics.

4.2.1 Voiced and Unvoiced speech

One of the most fundaml'ntal dassifixation is the distinrtion betwl;'t'nvoiced and
unvoiced speech. Voiced speech is ql1asi-pt'riodic, consisting of a fUlldalilental
frequt'ncy corresponding to the pitch of the speaker and its harmonics. Un-
voiced speech is stocha:stic in n6-ture and do not consist of a periodic part in the
spectruill. It can be modeled lU:iwhite noise cOll\'olvedwith an infinite impulse
responsc filter.

So the following t"'1) phonellle cllU;ses(&'ts of phonemes) have bccn defined

CtJI"c~d= {AA, AE, AH,AO. AW. AX. AX R, A}',B, D, [)Il. Elf. ER, EY.
C, TIl, IX, IY, JILL. AI, ,'Ii, ,••••C.OW.OY, R, V,UW,UIl. lV.

Z.Zll.XL,XM.XX. y}
C••m'OIr~d= {Cll. F.ll If, K. P.5, SlI, T, Tll}

4.2.2 Vowels and Consonants

In most language;; sounds can be dbtinct betwet~nvowels and consonants. On
the one hund vowels are articulated without major constrictions in the vocal
tract, on the other consonants are formed by characteristic constrictions in the
throal or obstruction in the mouth. Vowelscarry most enerRYof the speech sig-
Ilal, whereas consonants are weak, often looking similar to silence. and therefore
are likely to be dominated by noise.

So the following two phoneme cla."\ses(sets of phonernl'ti) have beell defiucd

C~'ow~18= {AA, AE, All, AD, Att', AX, AY,Ell. EY, Ill, IX. IY.Oa',OY,
UW,UH}

Ccon.o"onh= {AXR, B,CH, D,Dll, ER, F,G, If If, JIf, K, I., M. 1""', NC, P,
R,S, SH,T, Tll. V,nc, XL,X "I, XN. Y.Z, Zll}

4.3 Unsupervised purely data driven clustering
This ~'Ctioll preSl;'tltshow to build phoneme clusters ba~1 on an ullsupervbed
clustering method. One of the best known unsupervised clustering methods
is to huild up II hit'rll.rchical cluster tree e.g. as presented in [DHSOIJ. This



way of clustering is also popular ill finding similar phonemes for multi-lingual
automatic phoneme clustering e.g. jBd~ICA:\1991and performs good for speaker
segmentatinn (e.g. [JS04]).

Hierarchkal clustering cau be performed ill two different ways: agglomer-
ative (bottom-up) and diversive (top-down). In the following we ll.<;,eI1nago
glomerative approach, which means, it starts \l.'ith TI singleton elements to be
clustered and merges similar elements or clusters into bigger clusters up to one
single cluster consisting of all n dements.
The choke, which elements and clu.-;tersare most 'similar', and therefore are

gOillKto be (:olTlbined,call hI;'determined by Hlany different kinds of distance
meal,ures, which are discusse<!later. The result of the hierarchical c1nstering
algorit.hmcan he illustrated as a rootoo binary trre (a.k.a. dendrogmm), !>tarting
with sill~leelements to be clustered (leafs) and ends in one sin,ll;lecluster (root).

4.3.1 A hierarchical clustering algurithm

Listing I: Hierarchical cl\ll'tering algorithm
1: Cluster{] hierarcbClustering(Cluster[] clusters.
2: iot finalNumberOfClusters) {
3,
4: for ( i-I .. n: i<-o; i++ )

5: for ( j-l..n; j<-n: j++ )
6: distances[i,j) :_ O(i,j);
7,
8: while Iclustersl > finalNumberOfClusters) {
9: (i.j) :- getHinDistance(clusters, distances);
10: clusters:_ mergeClusters(i. j, clusters);
11: IClusterl--;
12: }
13 :
14: return clusters;
15: }

Listing 1 shows a typical agglomerative hierarchical c1ul'tering algorithm in
p.~udu-codc. The first step ill IlieTlm:hicalclustering is calculating all distanCe!;
between the elements (line 6) to be clul'terro. In each of the following steps,
the closest clusters are dt'termincd (line 9) and combined to a new clu,<;ter(line
10), rHiulting in a dt'Crea.-;eof the number of clusters by one. The algorithm
tcnnillat('S when the specified filial numher of dusters tiM IX'C1lreached and
returns thf' resulting cluster!';.
Tll('re remain two important points to make the hierarchical clustering al-

gorithm work:

1. Definition of distances between the clusters

2. :\-Iergin~of clusters to bigger clusten;

4.3.2 Distauce defiuitions

In order to du.ster similar phonemes, rcpre;ented by Gaussian mixture models
(;:\-I:\-I)s, the nexl sccl.ions prf'Sf'nt difT('n'nt distance measures lind merging
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methods.
Most of the Jil;twlCt-'blL'iUallyused ill the til'lds 01patteru rt-~ognitiolJare de-

fined hetween .singleGau.s.sianJi.stributions, wbidl meallS !Ilollllgau;;sianmodeb.
E.g. there is no c10ticdform representation of the relative entropy. that could be
used ~ distance betw~n Gr-.1Ms.So, in many elJ,..;cs, monogaus..•ian dbtance's
definitions must be extended to the use for G:\I)'1s.
The following di!itances, were tested in the hierarchical clustering algorithm,

and are discw;S'<'dfurther ill the following:

• Dbtlluces between mOl1ogau'isianmodds:

Euclidean distance

Extended ).Iahalar,obis distance

Kullback Leibler distance

• Distances between Gau'isilln mixture models:

Kullback Leibler distance for G:\I~h

Earth Movers distance

• Euclidean distauce bet •.•:t-"ell~J)\"edl samples

In this chapter, <1>" <l>j denote Gaussian distributions, with means I~,. IJj and
diagonal ((lVlt.riall(;eIIlatrice; }:;, Ej (i.e. <1>;;= :V(xl!t" E;), 4>j := •.'\/(xl/-lj, :Ej)).
r. aBd I'j Me Gaussian mixtures, a-; introduced in (1.1).

4.3.3 :\lerging classes

Afwr the distance calculation in the hierarchical clustering algorithm, the ne».r-
est clusters are merged into a nt'w biuer cluster (listing 1 line 10). As th",
phoneme classes are repre;ented by G~I:\Is, an easy method achil;"\'Cthis, is to
mix the models by adding and adjusting their distribution weights:

•.•..ht>reP-4(x) and Pfl{X) arc the G)'I~b of tht>two clusters and u is a mixture
•.•..eight, which can be set, according to thl' Ilumber of phont"lIles the clusters
consist of. to achieve all equal weighting of the intra class distribution wt>ights.
The number of Gaussians of the new GMM is the sum of the Gallssialls of both
c1ustNs.
This method of mt'rging was applied in the experiments for clustering th••

Kullback Leibler distance for G~nls and the Earth mover's distance.

Apart from this approach, combined models can be created by training new
distributions, based on samplt"Sof the two phoneme clas.<.;f'Sto Ix-merged:
Then' fife diffef{'nt ways to trfLin the parameters of a G~n1.\\'{'uS!.' the

widesprt~ad split alld merge (SA~'1)training algorithm (e.g. [U:'\GH98J), which
itf>rative1yimprovt"Sa lIlodel by jwrforming alteruatcly a ph/il;e of split operu-
tions followed by a phuS<'of merge operations. Starting with It monogaussiall
model, based on all training samplf'S, the splitting divides lar.l\ecluster (of train-
ing samples) inW two subclusters, whereas the merging combines two nt,arby
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clu~t('rs. The parameters of the G:\L\ls are improved by several iterations of
the expectation maximization (EM) algorithm, after each merge and split phase.

This method of merging was applied in the experiments for clustering using
the monogaussian distanceb.

The Euclidean distance between speech samples does not necessaryly Il(.'cd
a special merging step. The distance calculation can just be performed betwecn
the samples in each of the clusters.

4.3.4 Eucledian distance

Figure 8: Hierarchical clustering bll.M~don Euclidean distance

One of the most popular and simple distance!; is the Euclidean distan(:e:

Obviously, this distance is onl:r bll..~edon means /-l-j,/-l-j of Gaussians $;, 1» and
does not consider their covariances. This can e.g. re~;ult in very differently
scattered distributions having the same distance.

Figure 8 shows the dendrogram when clustering the phoneme specinc models
by the hierarchical clustering algorithm.
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4.3.5 Extended I\.labalanobis distance

TtlI' wellknown :\tahalaIlobis clisl.allfl'is dditll .•.1 to messurl' thl' di~tance hetwI'l:'1l
two vectors in a \'ector space:

D;;:~'fN = J(x-y)lI: l(x_y) (1.1)

\Vhere x and yare the v('('tors and I:-1 is the inverse comriance matrix of the
vector space, In fact the ~Iahalallobis distance is a weighted Euclidean distance
where the weighting is determined by the covariance matrix (hoth distan(~esarc
identical, if the covariaIlce matrix is the identity),

It can be extended to a distance between two Gaussiam, a,,;follows:

••
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Figure 9: lIierarehieal clustering based on extendf'd ~tahalanobis distance

4.3.6 Kullback-Leibler distance

The Kullback Leibler divergence is usually used as a means to measure the
distance between a truf' probability density p(x) and an approximation to it
p(x). From an information theoretical point of view, it can also be seell as the
relative entropy for using p(x) instead of p(x):

DK~d,<' = f<XO p(x) . log ~(x) dx
p.p _,'" p(x)

This ddinition is llot sullident a.o; 11 distalln~, sinn" it is not. symmetric (LI'.
D,KLd;"1' DK,Ld'V). So tllf' followingsymmf'lrbl'd c!iv('rgenn'definition is \lsed

,9 .9.



in this tht~h;. It will be called Kullback Leibler di.~ta7ICein th~ following.

(42)

It should be noted, that Dr.:: is still not metric, since it does not satisfy the
triangle inequality in general.

In the cas~ of 10 and gO being multivariate Gaussian distributions the
Kullba.ck-Leihler divergence can be computed fl.'

where ir denotes the trace.
Using diagonal covariance matrices and assuming tltf' eodficients to be statis-

ticall)' independent, allows a simpler e.alculation of the K ulihack-Leihlf'T distance
(4.2)

, , ,
KL 1",,(1.1 (1)/ 1 1 2

D (••••,•••j) = -,L.)-r+ -T -2+(-,- + -,-){Il;,I-P,j.l) )
1=1 (1J,1 (1;,1 (1j,1 0"1.l

(4.3)

where d is the dimension of the feature space and O"?.I' (7;,1 are mriances of
the diml:'nsion t.

,.

Figure 10: Hierarchical c!m;t.ering hased all Ku\lback-Leibler distance
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4.3.7 Distanc~s Letwccu Gaussian ~Iixture 1\lodels

All di~tanccs pre~ented in the pre\.iou~St-'CtiOIlS,are only defined for silL)1;leGaus-
sian dbtributions. So, .•••.e have to face the problem to apply these distances to
GMMs. OlLrway to har,dle this is to find a matchin~ bet .•••.N'1lSill~ll~Gaussian
components or the two GM~Is and compute the di;;tence betwt-'t'nthe mappl'd
pairs (e.g. [GADS]). We have tried the follow;llgmapping:

D{l';.l'j)= L L c,,'c~.D(1',,<I>j)
ofI.€r, <l>vEr)

However this approach did not lead to balanct'<icluster trees and therefore
was not considered in our experiments. Another approach to use distance~
between single Gaussians for G\I\1s i;;, simply to compute distances Oilmono-
gaussian lIlodeb. These can be generated by a training algorithm.

4.3.8 Earth 1\lover"sdistance

The Earth ~lover's Distance, proposed in [RTG98j, tries to express the minimum
amount of work needed to transform the 'distribution ma."s' of one distribution
into another distribution. In [1.8011 it is ust->das di;;tance between GM~ls ba~ed
on thl:"Kullback Leib/er distance (4.3) a:; a 'ground distanc~' bdwt'ell the ~ingle
Gaussian mrnpotl('nts of the G:\t:\ls. It can be ddir:ed as

DE.\fD(fi,f'j) = L L DKL(<I>:r.1>~). F(4t",,1'y)
~zEr. <I>.ErJ

where F(4),,,,1>y) is the flow from <1>",to 1'y. This flow, which also ran be
rl:"gardcdas a weighted matching between the ~ingleGaussians of tht>G~I~1;;,is
the solution to the tramportation problem [A:\f093], whl;'rethe Gaussians <1>,
with their distribution weight Ci supply the consullIcrs 1>j with capacity Cj.

4.3.9 Kullback Leibler distance on GM~'1"

The symetrised Kullback Leihler distance (4.3) call be extended by the dislri-
bution weights of the G:\nb:

4.3.10 Sample distance

A rlilfercnt apprOf.rh from bllilding phonl'me dasses hased on spet'Chmodels, is
to lllea.;ure the distance betWt-'eli:,;amplesof :;pe('Chin order to get a dassifieation.

The square of the Euclidl:"andistance can he u~('d as a straight forward
metric:
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Figure 11: Hierarchical clustering hased on Earth :\fow~r'sdistance

"n""'S'''p(P p) _ I '" '" "'( )'
1, 2 -IPII.IP21 L- L... L.. Pl,d-P2,d

plEP, p2eP, d=1

where PI and P2 are ~ets of speech ~amplesof two phonemes and I . I dcnot~
the cardinality of the set.

4.4 Confusability clustering

In contrast to finn similarities between phonctnes, the idell behind this clustering
method is the fact (similar to the confusahility based mixed model in section
3.1), that wille phollf'mes are conceivably interchanged by the speech recognition
system more often than others. So the goal of the clustering method proposed
in this section, is to try to Use the same phoneme duster aud therefore the
same (and still corred) SI>€t'<:hmodel for particle filtering, even if the decodf'd
hypothesis of the first pass is wrong (i.e. the hypoth",sis indicates a phoneme
which is known to be illh~rchanged often). Thil'i should compensate the effect
of model tying in a more direct Wily, than by the approach using a distance
measures hetween GM"ts, which Wfl.., propo!:iCdin prior sections, because it
gains from the complex evaluations and optimizations ill the dpcoding stage of
the ASR system, in addition to considering similarities between G:".[:>.fs. Thus,
regarding the interchanges between phonem("Soffers a potentially good indicator
for building phoneme cll\.~ses.

To achieve thb, we introduce a mt'!';SUft'for clustering which answers the
question "How likely will two phollf'mc c1a.,"'t"l'i.t and Y be interchan,l(ed?'.
This measure is called Phoneme Interchange Rate (PIR) in the following.
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Figure 1:2: Hierarchical du~tt'rillg b~ed OllKullback.Leibler dbtance between
Gaus~ian mixtures

Phonellie interchange rate

The offliueexperiment, which was already mentioned in section 3..1,provide; us
the IlUmbN of interchanp;es of all pairs of phonemes hy comparing the result of
a recognition pass (i.e. the decoded hypothesis) to a referellce transcription of
the speech data. The i.nterchange rate between the phonemes X and Y (PIR)
can be computed as follows:

PIR(X.Y) = P( X and Yare interchanged 1 X occurs and Yoccurs)

P( X and Yare interchanged)
~ IP( X occurs) . P( Y occurs)

#ic(X. Y) + #ic{Y,X)

I: #,,(A, B)
A.DE'"

#oc(X)

I: #,,,,(C)
CE'I'

#oc(Y)

I: #oc(C)
0<'

(44)

\Vhere #ic(X, Y) means the numher of interchanges of phoneme X by
phoneme Y. #oc(C) is the number of occurren~ of phOllelllt' C ill the ref-
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Fip;ure 13: Hi~rarchical c1u~teringba.~edon Enclidean distance between ~amples

erence transcriptioll, .p is the set of all p!lOllcIIlCS.
In the hierarchical clustering algorithm two phonemH; X and Yare merged

to one new cluster, when their interchange probability PI R{X, Y) is the largH;t.
Therefore, the PIR is defined a.s Ii symmetric measure (i.e. PI R(X, Y) =
PIR(Y,X». The denominator of (4.4) can he regarded as elimination of the
a-priori probability. Xot considering the a-priori probability would lead to a
cluster tree, where nearly in each stl;'P of the algorithm a phoneme is added to
olle single big class. This would result in wry unevenly distributed cia.&;sizes.
Since phonemes, which occur very oftell, haw a. potentia.lly high number of in-
terd11111gc::l,alld tht:refore are merged first. \\'itb the effect of getting an eVI;1l
higher number of occurrences and a probable hij2;h~rllumber of interchange:; in
the following step.

Above, the deHnition of the pllonelTleinterchange rate is between two single
pholwmcs X awl Y. To be able to use it in the hierarchical clustering algorithm
it has to be extended to work for two sets of phonemes (i.e. phoneme classes)
X andY:
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PIR{X,Y) ='" IP( U X b interchanged with Y I
XEX,~'EY

U X occurs and Y occurs)
XEXYEY

I:
XEX,YEY

#ic(X, Y) + #ic(}', Xl
I: #ic(A, il)

A_/H;;'"

I: #~'(X)
XEx,ny L #oc(C)

c"

#oc(Y')

I: #,,,(C)c,.

(I: #oc(C»)'
c"~~~---~I: #i,(A, il)

A,BE'"

I: #i,(X, Y) + #ic(Y,X)
XEXYEY

I: #oc(X). #oc(Y)
XEX.I'EY

The following diagram show~ the corresponding dendrogram, Ii:> outputtt,d
by tht' hiE'rarchicalcl\l~terin,ll;algorithm:

•

•
•

•
••

"

•

J:

1I I ---.,
I

I
,

II I
I

I 1 III ,

I I
I

I
I I

I"

I I I i I ! I I

Figure 14: Hierarchical clustering ba..•ed Phollcmt:' Interchange Hate
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Figure 15: Phoneme Int.f'rr.ha.n~eratt' (darker fields denote higher PIR)
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5 ExperiInents
After the tllL'oreticalpart of this thesis, we now try to evaluate aIllI('ompare the
diSf'llsSl~dparticle filtering f'nhann-'mFntsb)' rt-'t"ognitionpxperiments using the
systt-'msetup df'Scril-Jf'din t.he followingsllh~tion. The dilTl'rt-'ntexperiments
are quantified in tl'rms of word l'rror nte (WER).

5.1 System setup

'lb analyze the performance of the discussed parlicle filtering improwml'nts,
all of the propo:wd techniques were testl;"(\.on 45 minutes of seminar talk, which
presents It very challengmg ll\Sk to all parts of the ASR system: The acoustic
nlOdl'ls have to cope with data that contains spontaneous, non-native and
disfluent speech. The langullgl' model has to deal with demanding tC'ehnical
topic.<;,which are focust'don automatic speech recognit.ionand signal proce~ing,

Dynamic noise was artificially added to the dean speech signal (additive
noise). \\'e selected to evaluate ail of the proPl>sedtechniques under the signal
to noise ratios (SSR)!'lQ dB, 5 dB and 10 dB. The artificially added noise [Pro1
consists of a. collection of diffnent kinds of environmental noise with a high
dl'grl'flof non-stationary sounds. It contains noise of trucks driving pl\Sl, slam-
ming containers and human 1"0llndslike distant voices,shouts and coughing, etc.

The acoustic models were generated ba.o;edon approximately 100 hours of
training data, whichwas takf-'nfrom lCSI, :\'IST, C)'H.' Illl-'t'tingcorpora, l\Sw{'ll
IlSTranslanguage English Dat'ibl\Sc (TED), leading to 3500 contl:'xt dependl'nt
eodd)ooks, which consist of up to 6.j Gaussians with diagonal covariances.

We us~ a 3-gram language model, trained on approximately 23000 words
with a llelplexity of 125.

In the set,:ondpass, we also used adaptioll. 2'lamely,maximum lik('lihood
linear regres..'iion(),tLLR) and constrained )'ILLR (feature space adaption)
adapted the corn'sponding firsl pass hypothesis.

In each experiment tilt' PF nses "'"= 100 particles, sincl' it hIlSbeen discov-
en~d, that a much higher number of particles only leads to slight performance
improvement.s, while being computationally signifiClmtlymore expensive, A
static noise variance t: = 10 (error tum in equatioli (2.5)) has ltet'll chosen
in pfU'hof the experimellts. howew'f difft'ff'nl values have shown cumparabll'
results.

The lraditiona.l geueral speech llKHJdis represellted by olle single Gaussian
)'lixture for bpeech, comisting of up to 6,1 Gaussians. Each duster of the dus-
tt'red phonl;'memodels (prl'!;cTltl-'din chaptl'r 4) also coru;bts of up to 64 Gaus-
sians. The mixed models (st'ction 3.4 ILud3.3) l:onsist of up to 64 Gaussians
for each of the 45 phonemes. ThE~clean speech model for the purdy phoneme
srwdfic wodel (SI"<'tion3.1) consists of Hi Gaussians p('r phoneme.
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5.2 Experimental results
The experiments 1\sing:a part-ide filter with t.he lrarlif.ional general spe(.'(:hmorlel
can be seen l\."ithe baseline t.o the following improvements by mixed modpls or
phoneme c1a."i~.

SNR 0 dB
Unadapted Adaptpd

Hypothesis Reference Hypothesis Reference
)\;0 PF 61.3 ~ 43.9'1~
General PF 56.6% 41.9'1c
ps~r 55.1% 52.9% .11.4% 39.8%
~lix 55.3% 54.8% 41.9% 40.0%
Confw;Mix 56.5% 54.6% 41.5% 39.5%

Table I: ExperimPlltal results S~R 0 dU

SXR 5 dB
Unadapted Adapted

Hypothesis Reference Hypothesis I Reference
No PF 50.1% 35.4%
General PF 46.3% 36.1%
PS~l 45.5% 44.9'10 3,1.5% 33.5'10
~'Iix 45.9% 45.6% 35.3% 33.5%
Confus~1ix 45.910 43.9Yc 34.3'10 33.9%

Table 2: Experimental results SNR 5 dB

)\;0 PF
General PF
PS1t
~tix
Confus~Iix

Adapted
I[ypothel>is Reference

31.2%
31.2%

32.2% 31.2%
32.5% 32.3%
31.7'1~ 32.0%

Table 3: Experimental re~;ultsSXR 10 dB

First, Table 1, Table 2 and Table 3 show the general particle filter re-
sults (General PF) in comparison to the result!> without a spf'eCh feature
enhancement step by particle filtering (No PF). The values with Maption a."
well as without, show significant improvements compared to the recognition
experiments without PF (only the adapted experiment at SXR 5 dB appears
to he an ontlif'r).
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The ulJi1daptl~dgeuerai PF cxpcrillwlits act d.S the first pass of the two p<'_'iS
approach. All of the otlU'r experimeuts arc based Oil the hypothesis phoneme
transcriptio!l of 11 l:orrespundiug; first pa.,>s(i.e. their rdated General PF
experiment) and can be considered as second p~. Additionally, as mentioned
in the previons section, the adapted experimcnts used aclaption tcchniqu~,
bascd Oil these first Pa.\k" recoguitioll results.

In the next row Table 1, Table 2 alld Table 3 show the results of the purely
plwnHlle .~l!ecific1fwdel (PS~I). It appears to generale good resulls for the eval-
uated experimental conditions (with and withoul speaker adaption and for tilt"
rderence as well as the hypothesi;; transcription) for S~R 0 dB and S~H 5
dB. Thus, a.••ill previou!>allalyzl'Swe call clearly cOllfirlll,that particle filtering
grell.tly bellefit" frollJ phonellle specific spe€Ch1lI0dels. The problem of model
tying becomes evident at S~R 10 dB (i.e. the hyputlwsis experiments of the
purely phoneme spedfic model perform worse than the general model, and its
reference experiments perform better). However, in contrast to experiences frolll
previous experiments, this eITed does not ll.ppea.rfor SNR 5 dB and SNR 0 dB
in our system setup.

Mixed Spet:.ch ),Iodels

l'\ext, let us have a look a.t the mixed ~IWY£hmodels (St'esedilJ!l 3.3). COnlrary
to earlier experiments (using different system setups), the phoneme specific
results perform better tha.1lthe remits using the general model even for most
of the hypothesis ba.sed experiments. Therefore, mixing the phoneme spedfic
model with the (worse performing~) general model is not very promissing, We
tested a series of different valUt.'sfor the mixture weight 0;. The experiments
use a = 0.5 (equal weighting of both models), which appeared to he a good
\'alue. The results can abo be found in Table 1, Table 2 and Table 3. The
performance of the hasic mixet:lUlodelc; slightly hetter than the genera1model
approll.ch (except for SXR 10 dB), hut cannot reach the performance of the
purely phoueme sl>p.cificmodel in 1ll~f\r1yall of the OI..<;(>S.

Coufusability based mixed model

~lost of the experiments m;ing the con/usability bo,<ed.mixed model PF (;;eesec-
tion 3.4) show slightly better results, than the basic mixed model experiments.
Even though, for the unadapted ('xperimenb the WER performances is mmtly
located between the one of the two mixture sources (i.e. general Illodel and
phoneme Slwdfic modd), the adapted ('xperimcnts show slightly better rt'sults
than the gelleralillodcl a;;well o.sthe pholiclIle SI_'I.:dticIllodel.

4\\'e <.1,.cuvcn-o, th ••t thl' mixed moods al'Pruach delivers guoti r''>Iults for H"s system
~etllp> if the tmiuiuj( of the 1lI0lIds is sli!<htly 1,,<)dilil~1by ll~ing ~ampl,", of phv,wme mids
vnly (i.e. samples wh,<;hdo not belong to the bt.'ginning vr the end of the articulation of a
phoneme, 1lII<.1therefore arc lIbllullwd to be more ~p••.'Ci",-'''). For b<ot•.•.'r comparability to the
other ••.••proaci>l'S, the rl'S,ilts p••.....,utcd herc arc b••."Ied on the unmodified training procedure,
using all of th.' extracted training samplel1.
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General PF
PS~I
VoicedlJnvoicoo
VowelConl;Ollant

Table 4: Experimental results SNR 0 dB

Gf'nt'ral PF
PS~I
Voicedt:nvoiced
VowelConsonant

Adapted
Ilypothcsis Reference

36.1%
34.5 u 33.5%
34.4% 35.1%
34.9% 31.4%

Table 5: Expt-~rimenlal results S;";R 5 dB

General1'F
1'S)'1
Voict'dUnvoiced
VowelConsollanl

Adapted
Hypothesis I Reference

31.2%
32.2% 31.2%
32.3% 31.7%
31.8% 32.2%

Table 6: Experimental rt'sults SNIt 10 dB
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Knowlodge-based phoneme clustering

The knowledge blL""~ clustering into two c\a.-;St'li,for voict:d arid unvoicell
phonemt:1J (~~ section 4.2.1), as well a.~for l'oweL~ Gild wnsouallts (see S(>c-

tion 4.2.2) reacht'S the performance of the pare!y phoneme sppcific particle filter
results (see Table .1,Tault>=:t, and Tablt>6). Therefore. it can be stated, that im-
provements over the traditional geaeral model approach can be aeiJiewd with a
much lower numbf'"rof c1a:;St!s.So, it is possible to improve the PF performance
up to a level, that is comp&.cubleto the result'Sof the purely phollcme spcdtic
approach (consisting of 4:) phonemes), only by a little more training effort (two
c1a:;scsinstead of one).

Data-driven phoneme clustering

To evaluate the phoheme cla;;s'~sbased methods, we start by analyzing thl'
outputs of the hierarchical clustering algorithm (Ulecorre:;polldillgdt'ndrograms
haw already !teen shown in each of the dist>lll':e\ M'CtiOllS)In the following,
we discuss their perforrnalJce.

Clustering results
First, it becomf'S apparent, that the distance measures are a critical factor ill
building d('ndrograms by agglomerative hierarchical clustering. Some distanc<.-~
tend to gent'rate a trPe, which is very unbalanced, because many phom~ml~
arc IIll'rged to the same cluster over ll. seri••~ of continuous iteratiolls of the
algorithm (i.e. it r{"Sultsin Vt'T)'unevenly distributed cla:;ssizeti). This problem
depicts itself as .~I.(JiTS-f'JJut in the dendrogram (e.g. see the F.1lc1id••an distafll.:e
Iwtwt'en samples, Figure 13). Such a case limits the number of potelltial
phoneme clu..~tersto a small numbl'r (i.e. we oaly evaluated t'.••.o and three
cla.,,~esfor the Euclidean distance between samples). There are distaTlCt'Swhere
this efft'<:tis so scwrl', that it is ewn not po,-;siblcto build a useful c1ustl'f trt:'l:',
because in each iteration of the hierar••..hical clustering algorithm only one single
cluster grows (e.g. the &stant-'e proposed in [HV07], and the generalization of
thl' mOllogaussian distances to G~nls as described in section 4.3.7 turned out
to be inoperative for clustering phoneme modeis).

Having a closer look at the clustering r{"Sultsshows, that the arrangement
of phon('mes diJf('rs si!!:nificantlyfor the diff('r,~:ll.distance measures. iIowt>ver,
it can be recognized, that there are st>yeralcharacteristics that many cluster
trees have ill COIllIllOIl.For example in each of the investigated duster tn.••.,s the
phonemes Sand Z are merged at leaf layer, furtherIllf)re the class { {AA, AW},
{AH, OY}, {AY, EH} } appears in all of the monogaussian dendrograms (i.e.
DEueL, nK L, D~MH.••) and is cOllstructed exactly in the same order for each
of the distances.

All ill all it call be stated, that in most cast.."Sthe phoneme model blL<.;ed
clustering results show structures, which can (intuitively) r••••..ognized as similar
sounding.

The confusability bawd clllstcrinll:(Figure 14) reveals problems due to devi-
ations of the reference alignmellt from the hypothesis. Thus, the two phonemes
IX and NG which together form the suffix 'iug', or Y and U\V which compose to
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the word 'yon', appear to be interchanll;edvt~ryoften. However, Sand Z, which
also show a high interchange rate, an~certainly phonpme~ which are hard to be
kept apart. by tbe decoder.

General model 2 4 8 16 32
mixture factor

Figure 16: Kullhack-Leibler distance on Gaussian mixture modds, unadapted,
2, 4, 8, 16 and 32 clas."iesin comparison to the traditional general model

.i\tollogaussian Di~tances
For the distances bMcd on the monogaussian approach (N:~sections 4.3.4, 4.3.5
and 4.3.6), weevaluat.ed the Euclidean distance (DEueL), and the extended Ma-
}wlanobili di.stance (DPMHN) for two c!a."ises,and the Kulloock Leibler di.stance
(DK

L) for thrt>ec!a.<;Sl;'S,becau."Cof the ~tructure of its dendrogram (it actually
consist:; of two approximately equal sized classes and the phoneme X~I). The
result:; of the monogaussian distances outperform the general model in all of
our pxperiment~ for SXR 0 dB and SNR 5 dB, but can mo:,t1ynot reach the
performance of the purely phoneme spedfic approach. At SNR 10dB, where the
model tying effect occurs, they cannot compete with the general model, how-
f'wr the rl1sultsare hetter than those of the purely phoneme specific approach.
Tlms, t.he monogaussiall distIHI(~ show performance improvements for evident
noisy environmt'nts in comparison to the general model, and appear to be more
robust a~ainst the model tying effect than the phollellle specific approach, only
by enhancing the particle filter with one additional class.

Distances hetween Gaussian !\.1ixtures
For the class of distances based on Gaussian mlxtures, we first evaluatlxl the
Earth }dot'er'.~di.~lancefor two and thrPe cla.">ses.The rftmlts in terms of word
error rate can be found in Table 8, Tahle 9 and Table 10 at rows DEMD.
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They apJ'W-arto be comparable to those hased on the monogaussian distances,
although exploiting some additional information, that the GMMs provide (i.e.
the mixture weights are not considered by the mOllogaussian distances and the
Euclidean distance even ignores the covariance matrices).

Anyhow, the overall best absolute value of a word error rate in our experi-
ments can be found for the adapted reference of the Earth l\Iover's distance for
three classes at SNR 10 dB (31.0%).

We further investigated a det~pt'fanalysis on the Kullback Leibler distance on
G.~I.~ls,since among all studied distances the shape of its dendrogram is most
similar to a balanced binary tff'e. So w(' evaluated 2, 4, 8, 1G and 32 classes.
The compositions of these c1a.~st'l;can be found in Table 7. Table 8, Table 9 and
Table 10 show the correspolldin~ remIts a.••DK LGMM.

A pot€'ntially best numher of c1a.••ses cannot be determinated clearly. For
the unadapted results on the reference, a definite trend for better performance
with more classes can be recognized, however this mostly does not translate
to the adapted experimenls. Nevertheless, for the (most expressive) hypothesis
experinwnts, nearly all of the best performing results (among all studied particle
filter enhancement techniques) can be found in one of those experiments ba.~ed
on Kullhaek Leibler dbta.nce on G)'I~h. For example at SNR .'}dB on the
hypothf'Sis with speaker adapt ion using 8 classes, it could achif've a gain of
2.G% WEll compared to a particle filter using the truditional general model.
Especially it can outperform the traditional general approach and the plltely
phoneme specific approach (exc('pt for the hypothesis experiment at SXR 10
dB, where the general model could not be surpa.ssed by any other approaches'
hypothesis experiment).

SXR 0 dB
Unadapted Adapt.ed

#cl!\'~ses Hypothesis I Reference Hypothesis Reference
General PF 1 56.6% 41.9 0
PSM 45 55.1 Yo 52.9% 41.4 Yo 39.8%
D 2 55.7% 56.1 '10 41.5% 40.370
D' 2 56.3*. 56.3% 41.0% 40.8%
D 3 55.8% 56.0% 42.2'10 41.0%
D 2 56.3% 56.3% 41.0% 39.5%
D , 3 56.4% 56.6% 40.5% 40.2::'0
D 2 56.370 i)G.4% 41.6% 40.0%
D " 4 56.970 56.1'70 40JJ70 41.770
D " 8 55.6% 5.':i.OYo 41.4'10 41.1%
D 16 56.2% 5<1.0% 41.4% 40.4 Y.,
D , 32 54.7% 53.7% 41.3% 39.1%
DP"~ 2 57.U% 56.9% 41.9% 41.0%
D~"c 3 56.2% 56.2% 42.2% 40.6%
D 2 55.9% 56.4% 42.0% 40.9%
D u, 3 56.1% 55.5% 41.70 41.3%

Table 8: Experimental results S;'>;R0 dll
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S:\R 5 dB
t:nadaptt'(\ Adapted

#classes Hypothesis ReferenlX' Hypothesis t Reference
General PF 1 46.3% 36.1%
PSM 45 45.5% 44.9% 34.5% 33.5%

D 2 I 45.9% 45.0% 34.8% 34.7%
D'- 2 -15.0 0 46.0% 35.0 it 3,1.21'0
f5K" 3 45.9% 46.1% 34.6% 34.2%

D 2 45.6% 46.0% 35.0% 34.4.%
D-- 3 46.0% 447% 3.1.7% 34.0%

D 2 45.1% 45.9% 34.4% 34.0%

D 4 45.8% 45.4% 33.9% 34.3%

D . 8 .15.4% 45.3% 33.5% 34.4%

D . 16 46.0% 45.0% 34.6% 34.0%

D 32 4Ei.9% 44.3% 35.0% 33.8%
D~"c,:>. 2 45.U% 40.6% 34.2% 34.2%

De"" 3 46.7% 45.7% 35.3% 34.8%

tynr 2 46.5% 45.7% 34.6% 34.3%

D 3 46.0% 45.4% 34.3% 34.3%

Tablt, 9: Experimental results S~R 5 dB

Sample distance
The Elte/idean distance betu:een samples (sec section 4.3.10) has already shown
flawedclustering rt:'$ults. \\'e evaluated the clustering into two and tllrl'e classes,
which have relatively unevenly distributed clll..'issizes (e.g. in the case of two
clasM~,one class consists of 37 phonemes and the other consists of 8 phonemes).
Table 8, Table 9 and Table 10 again present the H'sults (DndSU p). For ncarly
all of the analyzed experimental parameters, the performance of V""dSUP can
be found among the worst results (e.g. it delivered 57.0% for unadapted, hy-
pothesis with two classes at S!"R 0 dB. wllieh is the oyerall worst IWrformance
in the PF experiments test set). Thert'fort', in our experimellts the Euclidean
distance between samples is the least succt'O'sfulapproach to build clustered
phoneme models, but this points out, that the quality of clustering has an im-
pact un the results of the recognition expenments. :-;everthe!ess,D~"dSM P can
I!XCelthe traditional approach in single expf>fiments,

Confusability clustering
The con/usability clusterillg experiments, which are based on the phoneme in-
h~rchangerate (introduced in section 4.4) can also he found in Table 8, Table 9
aud Table 10 (DP1R). Again, we evaluated two and three classes. The perfor-
mance is below-average. which apPl;'ars to be consistent to the problems, that
have already been indicatl'd by the clustering ft'sults. ilowever, for most of the
experiments, the word Nrol" rait' can still bt' iot'lltifif'd to be better than t'ither
the traditional general, or t.ht~p\lrcly phollt'me SIlt'dfic llIod!'!.
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SKR 10 dB
Unadapted Adapted

#clas~ Hypothf'sis Reference Ilypothesis Reference
General PF 1 40.5% 31.2%
PSM 45 41.4% 39.4% 32.2% 31.2%
D 2 41.3% 40.6% 31.9~ 31.3'10
D<' . 2 41.0% 40.8 l) 32.3'70 31.5%
D 3 10.8% 4Ui% 31.9% 31.7%
D '" 2 41.0% 40.8% 32.3% 32.0%
DO."" 3 4Ll% 40.0% 31.6% 31.0%
D 2 41.0% 40.8% 31.6% 31.7%
D . 4 4Ll% 40.7% 32.3% 32.1%
D " 8 41.4% 40.6% 31.8% 31.7%
D 16 40.9% 40.4% 32.4% 31.7%
D . 32 40.4% 39.6% 31.6% 31.9%
D"""'" .\1 r 2 4(}.8% 40.7% 32.9% 32,2%
D'''c 3 41.2% 40,9% 31.9% 32.0%
D 2 41.1% 40,1% 31.8% 32.3%
D 3 41.2% 40.5% 31.7% 31.7%

Table 10: Expt~riml:'ntalresults S.KR10 dB

6 Conclusion and Outlook

In thi;; thesis, a series of new approacht'S to further improve the particle filter
performance by phoneme specific,dynamically time varying sl~h models have
hl'en introducffi and an experimental scenario has been set up to evaluate their
performance. The focus hab been st't to data-driven, unsupervised phoneme
clusters, which were generated by an agglomerative hierarchical clustering algo-
rithm llsinJol;diffE'rf'ntdistancE'mea.<;llres.In addition to that knowledge-based
and confusability-hased approaches have also been examined.

\Ve tri~ a lot of different approaches and parameters t.oevaluate the per-
formalJ('eof the proposed partkh' filter enhancf'ments. The results show a high
rate of variability, which makes it hard to dl'ri\'e clear qualitative statements
for comparin~ the dilfeU'nt a.pproarhcs. Th('~r prohlrms s('('mto be only partly
inhrrent. in the indet.erminism of the part ide filter f1.pproarh.Additional wl.ri-
abilities come from the language model, the speaker adaption techniques and
also the pre-processing stage appears to be a highly critical factor. For that
reason, the experimental results might not dir('Ctly translate 1,0alternative sce-
narios or proc,('ssingin diffrn'nl. c-limensionaliticsof the [eature "pace. To get
more stable results, further analyses, using a much larger data set, had to be
used, which wa.••not p~sible within the scope of this thesis.

The different distanc(.'Slead to wry different clustering results. but this does
not directly transfer to the word error rates and no single best solution could
be determined, that stands out from the other approaches. Hence, it might be
Il(.'(;css.aryto p,-'rformall additiuual investigation, to fiud uut which approach
achieves the hest possible speech recognition performance for the application's
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special f'nvironmental conditions and ~tup.
However, wc dearly n:<clllLfiflll<'tl,that a pal tide filter ba.",-'dapproach does a

very good job to improve the recoF;nitiollaccuracy in environments aiflictl'd with
highly non-stationary, additive noi.->e.To conclude we can state, that in nearly
all ca.,es, the performance of Olleof the propo~ approachC!icould outperform
dtller the traditional gell!"rlllor the purdy phOllCIIICspccific model, and the
overall best performance could be meliorated by the usc of class-ba.sedphoneme
models

Outlook
Finally, thi:; section introduc't-~some additional iciea.-;,to dcvelojl furthcr the
phoneme specific particle filter design.

The articulation of a phoneme can vary within its duration, so that thl~
onSE't!lnr! o!fM't might dilT!"reonsidl'Hl.bly. Additionally. for spontaneous and
fluent speech, phonf'ffit-'scan not be treated as Sep!lfflteunits, but flow into
each other (coarticulatioll). Because of lhat, a phoneme is often represented by
a J..-statc Hidden ).tarkov Model in ASR systems (modeling its begin, middle
and end). Furthl'rmore context dependent probability distributions are u~'(l
for each statf'. By now, om spef'('h models for particle filtering neglected the
hH:t of Ruetllatiuj1;articulation wit.hin a phonemf' and its wntext. A phoneme
clu:-;teringwith rf'Spl'Ctto begin, middle and end of a phoneme, or clustering
basC'don ('ontt.'xt dCJwn<1cntsub-phonC'mC's('ould be morf' fine ,l!;ranular,reduce
variabilities, and lead to better matching to the acoustic lllodeb USl'Uin the
decoding pass.

Anoth{'r rdinement {'lUIlX'applied to manag<'thl' dassification of lhe particle
filter: Insteild of using a f;in~lebe~t hypothesis transcription of a first rl'CognitiolJ
pass, the classification ran hI' made by using phoncm(' t.ranscriptions bas(~don
the n be,,;thypotheses or lattice, derived from the wordgraph of the (first pass)
decoding stage. This way, additional information about alternative hypothes<-~
and their uncertainty can be transfewd back from the ASH system into the
partit!e filter.

It even might be pos:-;ibleto overcome the two pha.se approach by fast
heuristics to detect classes without a previous recognition pass (e.g. nse
of an voiced/ullvoiced speech detection as classifier), sillcc we experienced
ililprovemcnts ill the performll.m:eof the partide filter even with a small number
of c\a.sS('s.

The methods propo-;ed in this section show, that there are slill many
opportnnitil's to exploit the full potential of phoneme specific partide filters
for SJlt-'Cdlfeature ellltalll.:ellient. Future researcb etforts can improve their
jlerformance alld stability and help to further reduce thl~ impfI.(:tof noisy
environlilents on spt;«h recognitioll.
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A Phonemes in .JRTk
Phoneme Word~
AA arm, article
AE avenue, axe
AH about, ab()v~
AO awe~ome, force
AW bounce, down
AX account, alert
AXR capture, liter, .,.er
AY mike, psycho
B brain. about
GH chain, chicken
D development, destiny
DH the, thank
EH error, excellent
ER versus, term
EY weight. take
F filter, flag
G gold, gun
HH hack, hammer
III history, image
IX illusion, intensive, .. .ing
IY jewlcry, magazine, ... ty
.JH major, merge
K micro, kill
L long. life
11 man, fHanunl
:\ novel, Dice
XC language, bank .... ing
OW bold, code
OY deploy, appointment
l' pittsburgh, Pllfty
R re<!Mm, record
S senior, setup
SH shield, short
T time, today
TH thumb, theatre
I;1l would. look
UW you, loose
V over, provid('r
W queen, way
XL able, augh'!
X~I rhythm, tourism
X" cl:'Ttain. buton
Y young, yeaT
Z advice, is, ...s
ZH mClU;ure, usual
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