
An Optimization of Deep Neural
Networks in ASR using Singular

Value Decomposition

Bachelor Thesis
of

Igor Tseyzer

At the Department of Informatics
Institute for Anthropomatics (IFA)

Reviewer: Prof. Dr. Alexander Waibel
Second reviewer: Dr. Sebastian Stüker
Advisor: Dipl.-Inform. Kevin Kilgour

Duration: January 26, 2014 – May 26, 2014

I declare that I have developed and written the enclosed thesis completely by myself,
and have not used sources or means without declaration in the text.

Karlsruhe, May 26, 2014 Igor Tseyzer

Contents

1 Introduction 1

2 Background and Related Work 3
2.1 Basics of Automatic Speech Recognition 3

2.1.1 ASR as Pattern Recognition Process 3
2.1.2 Extraction of Speech Features 4
2.1.3 Acoustic Models . 5
2.1.4 Language Models . 7

2.2 Artificial Neural Networks in ASR . 8
2.3 Related Work . 9

2.3.1 Deep Belief Networks . 9
2.3.2 Stacked Autoencoders . 11
2.3.3 Deep Stacking Network . 12
2.3.4 Rectified Linear Units and Dropout 13
2.3.5 Context-Dependent Deep-Neural-Network 14
2.3.6 Deep Convolutional Neural Networks 14
2.3.7 Deep Recurrent Neural Networks 16
2.3.8 Restructuring of DNN with Singular Value Decompositions . . 17
2.3.9 Bottle-neck Features . 19

3 Analysis of Existing Methods in the Optimization of DNN 21
3.1 Optimizations in Acoustic Input . 21
3.2 Optimizations in Output Layer . 21
3.3 Prevention of Overfitting . 22
3.4 Pre-training and Weights Initialization 22
3.5 Optimization of Size and Topology of DNN 22
3.6 Types of ANN . 23
3.7 Restructuring of DNN . 23
3.8 Summary . 23

4 Model Design and Implementation 25
4.1 Baseline System . 25

4.1.1 Baseline System . 25
4.1.2 Deep Neural Network Topology and Training 25

4.2 Singular Value Decomposition . 26
4.3 Applying SVD on Weight Matrix of DNN 27
4.4 Non-rank Decomposition of Hidden Layers 27
4.5 Low-rank Decomposition of Hidden Layers 28
4.6 Low-rank Decomposition of Output Layer 29

vi Contents

4.7 Insertion of Bottle-neck Layers to DNN with SVD 30
4.8 Extracting Bottle-neck Features with SVD 30
4.9 Step-by-Step Fine-tuning of Low-rank Decomposed DNN 31
4.10 Summary . 31

5 Results and Evaluation 33
5.1 Topology and Performance Analysis 33
5.2 Analysis of Singular Values in DNN 37
5.3 Non-rank Decomposition of Hidden Layers 38
5.4 Low-rank Decomposition of Hidden Layers 38

5.4.1 Small 4 Layer DNN . 38
5.4.2 Small 5 Layer DNN . 39
5.4.3 Large 4 Layer DNN . 39
5.4.4 Validation of Results . 39
5.4.5 Summary . 40

5.5 Low-rank Decomposition of Output layer 40
5.6 Insertion of Bottle-neck Layer to DNN with SVD 40

5.6.1 Bottle-neck Layers with 50%-rank Decomposition 41
5.6.2 Bottle-neck Layers with 10%-rank Decomposition 41
5.6.3 Validation of Results . 41

5.7 Extracting Bottle-neck Features with SVD 42
5.8 Step-by-step Fine-tuning of Low-rank Decomposed DNN 42
5.9 Summary . 43

6 Conclusion and Outlook 45

Bibliography 47

1. Introduction

Automatic Speech Recognition (ASR) is a powerful tool which opens a new level of
man-machine interaction. ASR can be applied in various areas of everyday life, such
as dictation, hands-free control of devices and machine translation. In recent decades
the accuracy and performance of ASR systems has significantly improved. One of
approaches which insured this improvement is Artificial Neural Networks (ANN) and
particularly Deep Neural Networks (DNN). The DNNs allow extraction of significant
information from acoustic input and in this way increase the accuracy of recognition.
Until recent, training a DNN was not possible. A significant improvement in the
field of deep learning was achieved thanks to the development of computing power
and the introduction of deep learning methods. Therefore the recent decade has
seen significant advance in the research of DNNs for ASR. Recent studies in this
field have shown a big improvement in speech recognition accuracy.

An example of using a DNNs in practice is a lecture translation systems. These
systems make it possible for students to listen to lectures in a language which is
not their native one. Additionally this allows having a recording and transcription
of lectures in both languages; in language of the lecturer and the student’s native
language. These kind of systems must fulfill strict requirements, such as quick
performance and high accuracy in recognition. In order to make an ASR system fit
these strict requirements, the question of optimizing the DNN is uppermost. The
main problem is finding a balance between two properties of DNNs, which are present
on two different poles: performance and accuracy. Improving one of them, in general,
makes the other worse. To solve this problem various optimization techniques can
be used. Today’s studies are directed towards optimizing the topology, weights
initialization and performance of DNNs.

Solving these problems and as a result optimizing the DNN would allow creation
of better ASR systems. This can help to make communication between people in
different counties easier and break the language barrier in education, tourism and
business areas.

This work aims first of all to find the optimal topology for DNN and optimize
this topology by using singular value decomposition. The major attempts will be

2 1. Introduction

researched and evaluated. The main goal of this work is to develop a simple and
effective method of optimizing DNN by using singular value decomposition.

In chapter 2, the background and related work is presented. Chapter 3 analyzes
the modern approaches in optimizing DNN. Design of proposed models and their
implementation is described in chapter 4. Finally, chapter 5 evaluates the proposed
models.

2. Background and Related Work

In this chapter the background of ASR and related work in the field of optimizing
DNN is presented. This would make the process of speech recognition understand-
able and describe recent achievement in optimizing of DNN.

2.1 Basics of Automatic Speech Recognition

In essence speech recognition can be seen as a transformation of human speech into a
form which can be understand by machines. From a mathematical point of view the
ASR process is represented as a classification task. Most of the systems employ prob-
abilistic classifiers to find the most likely word sequence to a given acoustic signal.
In order to perform this classification, two probabilities are estimated: probabilities
of possible word sequences and probability distributions of the acoustic signals for
each word sequence. Both probabilities are represented as two parametric models.

2.1.1 ASR as Pattern Recognition Process

Mathematically, parts of the process of speech recognition can be presented as Pat-
tern, Classes and Classification Output [VSR12]. Where Pattern is an audio record-
ing X, Classes are word sequences W from space W of all word sequences, and
Classification Output is a word sequence W for recording X. For the given speech
recording X, the sequence of word Ŵ = ŵ1, ŵ2, . . . , ŵn can be estimated as follows
[ST95]:

Ŵ = argmax
W

P (W |X). (2.1)

The equation 2.1 can be re-factored using Bayes’ rule as follows:

Ŵ = argmax
W

P (X|W)× P (W) (2.2)

The equation 2.2 can be also represented as:

P (W |X) =
P (X |W)× P (W)

P (X)
(2.3)

4 2. Background and Related Work

This equation is also known as fundamental equation of speech recognition. The
parts of this equation are presented as acoustic model (P (X|W)) and language
model (P (W)) [ST95].

Figure 2.1 presents the basic scheme of statistical ASR system.

Figure 2.1: Scheme of statistical ASR system. Based on [ST95].

2.1.2 Extraction of Speech Features

The first step in the recognition process is the transformation of an acoustic input
into a sequence of feature vectors. This transformation allows the representation
of speech waveform with a relatively small number of dimensions. This process of
transformation is called speech feature extraction.

The speech processing is divided into two major methods, non-parametric methods
based on periodograms, and parametric methods, which use a small number of
parameters from data [VSR12]. An overview of the methods is available in table
2.1.

Properties

Spectrum Method
Frequency

axis
Frequency
resolution

Pitch
sensitivity

PS Nonparametric Linear Static Very high
Warped PS Nonparametric Nonlinear Static Very high
Mel-filter bank Nonparametric Nonlinear Static High
LP Parametric Linear Static Medium
Perceptual LP Parametric Nonlinear Static Medium
Warped LP Parametric Nonlinear Static Medium
Warped-twice LP Parametric Nonlinear Adaptive Medium
MVDR Parametric Linear Static Low
Warped MVDR Parametric Nonlinear Static Low
Warped-twice MVDR Parametric Nonlinear Adaptive Low
PS = power spectrum, LP = linear prediction; MVDR = minimum variance

distortionless response.

Table 2.1: Overview of spectral estimation methods [VSR12]
.

The process of extracting features starts with taking a frame at the start of the
acoustic input, applying a windowing function and shifting the frame further over
the acoustic input. The size of the frame should be chosen sensibly, so it would
be short enough to provide the required time resolution and long enough to ensure

2.1. Basics of Automatic Speech Recognition 5

adequate frequency resolution. Another important parameter is the frame shift over
the acoustic input. Together frame size and frame shift can have a big influence on
speech recognition accuracy and their choice depends on the characteristics of the
speech. In general, a sensible choice of frame size and shift is 16-32 ms for the frame
size and 5-15 ms for the frame shift [VSR12].

The next step is transforming of the chosen frame with Short-Time Fourier Trans-
form (STFT):

X(τ, ω) =

∫ ∞
−∞

x(t)w(t− τ)e−jωtdt, (2.4)

where w(t−τ) is window function, x(t) is acoustic input at time t, τ is time index and
ω is frequency. Various functions could be used as a window function, for example,
Rectangular, Parzen, Hanning, Blackman, Kaiser, and Hamming windows. In speech
recognition the Hamming window is commonly used. The Hamming window is
defined as:

w(n) =

{
0.54− 0.46 cos(2πn

Nw
), ∀0 ≤ n ≤ Nw,

0, otherwise,
(2.5)

Further processing includes calculating Cepstral Coefficients. The cepstrum is a
result of the Fourier transform of the (warped) logarithmic spectrum. The real
cepstrum uses a logarithmic function and is defined as follows [VSR12]:

cx(k) =
1

2π

∫ π

−π
log |X(ejω)|ejωkdω, (2.6)

where X(ejω) is a spectral estimate, for example mel scale.

The speech features could be generated as

x̂min(k) =

0, ∀k < 0,

cx(0), k = 0,

2cx(k) ∀k > 0

(2.7)

Another way to generate features is Type 2 Discrete Cosine Transform (DCT)
[VSR12].

x̂min(k) =
M−1∑
m=0

log |X(ejωm)|T (2)
k,m, (2.8)

where log |X(ejωm)| is a log-power density vector and T
(2)
k,m are components of the

Type 2 DCT.

The general process of generating cepstral coefficients is represented in figure 2.2

2.1.3 Acoustic Models

As mentioned above, the Acoustic Model (AM) can be represented as part P (X |W)
in equation 2.3. After successful extraction of speech features, a classification method
is required to classify extracted features to word sequences. A commonly used
method in recent time is Hidden Markov Model (HMM).

6 2. Background and Related Work

Figure 2.2: Block diagrams illustrating all the processing steps required for the
calculation of the compared mel-frequency cepstral coefficient and warped MVDR
cepstral coefficients front-ends [VSR12]

The HMM can be described as probabilistic function of the Markov Chain [ST95].
The HMM is divided into two levels, a finite set Q = {s1, . . . , sN} of states and
output alphabet K = {v1, . . . , vK}. The first level is a Markov chain, with specified
initial state. The visible states of process are represented as a sequence of random
variable q = q1, ..., qT , which take value from Q. The probability of moving from one
state to another is described as follows [ST95].:

P (qi | q1 . . . qt−1) = P (qi | qt−1), (2.9)

and can be represented as N ×N transition matrix A:

A = [aij]N×N with aij = P (qt = sj | qt−1 = si). (2.10)

The probability of process finding in certain state is described as probability π and
transition matrix A:

πi = P (q1 = si),
N∑
i=1

π = 1 (2.11)

In general the Markov Chain represents the manner in which the process moves
through states.

The second level is a set of state output probability distributions for each state.
When the process comes to state i at time t, an observation symbols O = O1 . . . OT

are generated based on state output distribution [ST95]:

P (Ot |O1 . . . Ot−1, qi . . . qt) = P (Ot | qt), (2.12)

The output symbols probability distribution for state j on the second level can be
found using this equation and represented as matrix B:

bjk = P (Ot = vk | qt = sj) and B = [bjk]N×N (2.13)

2.1. Basics of Automatic Speech Recognition 7

The Hidden Markov Model from this point of view is described as:

λ = π,A,B (2.14)

After describing the HMM, the best parameter λ should be found, which would
represent the set of given symbols O = O1 . . . OT . This training procedure can
be done using maximum-likelihood estimation (MLE), Baum–Welch algorithm and
Expectation–maximization algorithm (EM) [ST95].

The output of HMM is modeled as a probability function. In speech recognition, a
state output distribution P (Ot | qt) is usually modeled as Gaussian Mixture densities
[VSR12]:

P (Ot | qt) =
K∑
k=1

ωi,kN (x;µi,k,Θi,k), (2.15)

where N (x;µ,Θ) is multivariate Gaussian density. The ωi,k, µi,k,Θi,k are mixture
weight, mean vector, and covariance matrix of the kth Gaussian in the mixture
Gaussian state output distribution for state i. K is the number of Gaussians in the
mixture.

As can be seen, the AM allows the representation of extracted speech features as
output symbols. This output should be formed as a word sequence using a Language
Model, which is described in the next section.

2.1.4 Language Models

The next step in the speech recognition process is to build hypotheses of word se-
quences according to given output symbols probability distribution from AM. Gener-
ating of the hypotheses can be done using statistical language models. This modeling
process is represented as part P (W) in equation 2.3 [ST95].

The first step in building a statistical language model is to define equivalence classes
for words Q = {s1, . . . , sN}. This allows the representation of a sequence of words
w1, w2, . . . , wm as a state of deterministic finite state machine [ST95]:

q0 = s[∅] ∈ Q
q1 = s[w1] ∈ Q
q2 = s[w1w2] ∈ Q
...
qm = s[w1...wm] ∈ Q

By using this model, the probability of a sentence can be represented as follows:

P (w) =
m∏
i=1

(N∑
n=1

P (wi | qi−1 = sn)× P (s[w1 . . . wi−1 = sn])
)

(2.16)

As can clearly be seen in the equation above, the probability of one particular word
depends on the sequence of words which appeared before it. The models which can
compute this dependency are called n-gramm [ST95]. The most useful for speech

8 2. Background and Related Work

recognition are unigram, bigram and trigram. The computation of probability with
unigram, bigram and trigram is described in following equations:

P (w) =
m∏
i=1

P (wi), (2.17)

P (w) = P (w1)×
m∏
i=2

P (wi |wi−1), (2.18)

P (w) = P (w1)× P (w2 |w1)×
m∏
i=3

P (wi |wi−2wi−1). (2.19)

However, the amount of parameters in the n-gram could be very big. For example,
the trigram model with 1000 words contains about 109 parameters [ST95]. In order
to avoid this, the words are classified to disjunct categories:

C = {C1, . . . , CN} with ∪Nk=1 Ck =W (2.20)

A word can be ordered to a particular category C(w) ∈ C and w ∈ C(w). So for
example, the probability for bigram can be represented as follows[ST95]:

P (w) = P (w1)×
m∏
i=2

P (wi |C(wi))× P (C(wi)|C(wi−1)) (2.21)

Other models apart from n-gramms can be used, for example:

• multilevel n-gram language models

• morpheme-based language models

• context-free grammar language models

Using language models together with acoustic models and a dictionary enables the
production of the most likely hypotheses for a given acoustic input. The existing
methods of building LM and AM are continuously improved and extended, which
will ensure the further improvement of speech recognition accuracy and performance.

2.2 Artificial Neural Networks in ASR

Artificial Neural Networks (ANNs) started to be commonly used in ASR at the
end of the 1980s. The main idea was to replace Gaussian Mixture Model (GMM)
with ANN. The ANNs are very good at the task of classification, so they could
be successfully applied to transform acoustic input into the states of HMM. There
are various approaches that use hybrid ANN/HMM in the task of ASR. They are
based on ANN’s architectural and algorithmic solutions. According to Trentin et al.
[TG01], ANN/HMM hybrid systems can be divided into five major categories:

Early attempts
Early approaches (between the late 1980s and the beginning of the 1990s)
relied on ANN architectures that attempted to emulate HMMs.

2.3. Related Work 9

ANNs to estimate the HMM state-posterior probabilities
Some ANN/HMM hybrids assume that the output of an ANN is sent to an
HMM.

Global optimization
Introduction of a training scheme aimed at the optimization of a global cri-
terion function, defined at the whole-system (i.e., ANN and HMM simultane-
ously) level.

Networks as vector quantizers for discrete HMM
Unsupervised ANNs are used to perform a quantization in the acoustic feature
space for discrete HMMs.

Other approaches
Hybrid systems based on particular combination techniques between ANNs
and HMMs, not belonging to any of the previous categories, and often focused
on specific tasks.

According to [HDY+12], the main reason for using ANN was the statistical ineffi-
ciency of GMM for modeling a non-linear manifold in a data space, and the ability
of ANN to learn model of data in non-linear manifold. However in the early stages of
ANN, learning algorithms and hardware were not able to provide efficiency as good
as GMM. Since then, development of hardware and new deep learning algorithms
have made it possible to train big ANNs with many hidden layers and big output
layers to estimate the emission probabilities for HMM [HDY+12], which was not
possible before.

Hinton presented the first method of deep learning that makes it possible in 2007
[Hin07]. The main idea of his work is to pre-train each layer of multi-layer neural
network as an unsupervised Restricted Boltzmann Machine (RBM) and to fine-tune
using supervised backpropagation.

The ability of deep learning provided a further development of architectures and
training methods of DNN. Since 2007 DNN has played an increasingly important
role in ASR.

2.3 Related Work

Optimizing the DNN is one of a key task in ASR. As shown by Dahl et al.[DYDA12],
using DNN instead of GMMs significantly improves the performance of speech recog-
nition systems. But the DNNs still have problems; various pre-training, training and
DNN typologies have been researched in order to solve them. This section presents
recent achievements in this field.

2.3.1 Deep Belief Networks

One of the ways to optimize DNNs is the sensible initializing of weights before
training. In 2012 Mohamed et al. presented their work “Acoustic Modelling Using
Deep Belief Networks” [MDH12]. According to their work training a multilayer
network could be represented from two points of view; directed and undirected. In
the undirected view, the model contains separate layers which are not connected to

10 2. Background and Related Work

each other, but the activity of one layer can be given as input to the next layers. A
simple example of the undirected view is the Restricted Boltzman Machine (RBM).
RBM contains visible and hidden units. Visible units are connected to the input,
and hidden units help visible units to represent learned features. Restricted means
that there is no connection between visible-visible or hidden-hidden units.

In the directed point of view, hidden layers represent binary features and the visible
layer represents a data vector. The Deep Belief Network (DBN) has top-down
connections, so the probability of generating date on visible units is bigger than on
others. The difference between RBM and DBN can be seen on figure 2.3.

Figure 2.3: A difference between RBM and DBN

Training the DBN proceeds in two stages. First comes layer-wise unsupervised
pre-training, which contains the step of learning with tied weights. Second comes
learning the different weights in each layer, and then the final layer with softmax
activation function is added to the top of the network. The pre-training is followed
by discriminative fine-tuning using backpropagation to maximize the log probability
of the correct HMM state.

The experiments of Mohamed et al. were performed on the TIMIT corpus [MDH12].
Their experiments showed that the Phone Error Rate (PER) of the best DBN is
20.7%, which is 24.17% less than the PER of Context-Dependent HMM system
(27.3%).

Mohamed et al. concluded the following about factors which influence DNN perfor-
mance [MDH12]:

1. Better recognition performance can be achieved by using 40 filter-bank coeffi-
cients.

2. Adding hidden layers improves performance, if the number of layers is less
than 4. Further addition does not give much of a bigger improvement.

3. More small layers are better than one big layer.

4. Pre-training is necessary when the network has more than 1 hidden layers.

5. Pre-training prevents overfitting of network.

6. The best number of frames in the input window is 11, 17, or 27 frames.

2.3. Related Work 11

7. Adding a last bottle-neck hidden layer helps to prevent overfitting of the net-
work by reducing the number of not pre-trained weights.

2.3.2 Stacked Autoencoders

Initializing of the weights can be done in various ways. As described above, Hinton
et al. [HOT06] achieved great success in deep learning with DBN. At the same time,
Bengio et al. introduced another approach [BLPL06]. They used the same layer-
by-layer initialization using auto-encoders. In 2008 Vincent et al. introduced their
work in which they tried to extract and compose Robust Features with Denoising
Autoencoders [VLBM08]. Their research was based on the hypothesis that partially
destroyed input should have almost the same representation as not destroyed input.

The basic auto-encoder can be described as follows [VLBM08]. First the autoencoder
receives input vector x ∈ [0, 1]d and, using the function

y = fθ(x) = s(Wx+ b), (2.22)

maps it to hidden representation y ∈ [0, 1]d
′
. The function fθ is parametrised by

θ = {W, b}, where W is weight matrix d′ × d and b is a bias vector. The hidden
representation y is then mapped back to vector z ∈ [0, 1]d with function

z = gθ′(y) = s(W ′y + b′), (2.23)

where θ′ = {W ′, b′}. The matrix W ′ is constrained by W ′ = W T . In this case the
autoencoder has tied weights. The parameters are optimized to minimize average
reconstruction error θ∗,

θ′∗ = argmin
1

n

n∑
i=1

L(x(i), z(i)), (2.24)

where L is a loss function. The reconstruction cross-entropy can be presented as
follows:

LH(x, z) = H(Bx ‖ Bz) (2.25)

Second, to construct the denoising autoencoder, a modification of the basic encoder
is needed. It can be represented as the application of stochistic process qD(x̃ | x)
to input vector x. It means that the encoder should be partly destroyed. In order
to do this, the fixed number of components vd are chosen and their value set to 0.
In this way the initial input x is mapped to partly destroyed version x̃. Then the
partly destroyed input x̃ is used to a receive hidden representation:

y = fθ(x̃) = s(Wx̃+ b) (2.26)

Then follows the reconstruction:

z = gθ′(y) = s(W ′y + b′). (2.27)

Now z is a deterministic function of x̃, which represents a stochastic mapping of x.
This procedure can be seen on figure 2.4.

12 2. Background and Related Work

Figure 2.4: An example x is corrupted to x̃. The autoencoder then maps it to y
and attempts to reconstruct x[VLBM08].

As shown by [BLPL06], greedy layer-wise training can be applied to initialize weights
with the autoencoder, where the k layer is used as input for k + 1 layer. The same
procedure can be used for denoising encoder [VLBM08]. The denoising autoencoder
is trained by standard backpropogation to minimize loss function L = (x, z). Vincent
et al. concluded initialization of layers using denoising encoders helps to capture
interesting structures in the input distribution [VLBM08].

A practical application of stacked denosing encoders was done by Gehring et al.
[GMMW13]. In their work they used stacked autoencoders to extract bottleneck fea-
tures for ASR tasks. They used the method proposed by Vincent et al. [VLBM08].

The experiments were performed on IARPA Babel Program Cantonese language col-
lection babel101-v0.1d, Cantonese language collection babel101-v0.4c with 80 hours
of actual speech and the Tagalog language collection [GMMW13].

One of the experiments, the evaluation on babel101-v0.4c, showed significant im-
provement of the autoencoder based network compared to the network that used
MFCC. The results can be seen in table 2.2

System Model DBNF (by AE Layers)
1 2 3 4 5 6

CER (%) 66.4 63.6 62.0 60.9 60.3 60.5 61.1

Table 2.2: Character error rates of the Cantonese babel101-0.4c system with MFCC
and DBNF input features[GMMW13]

The denoising autoencoders can be used for the initialization of DNN and show
better results than MFCC based systems.

2.3.3 Deep Stacking Network

Another approach in initializing weights is the Deep Stacking Network (DSN), which
was presented by Deng et al. in 2012 [DYP12]. The main goal of this network is
to provide a method for building deep classification architectures which can also be
parallellized. The research was based on the idea of composing simple functions into
a chain and then stacking them together. All functions estimate the same target.
This method helps to avoid overfitting due to learning complex functions.

The structure of DSNs can be seen in figure 2.5. The first layer is a linear layer.
It corresponds to raw input data. Second is the non-linear sets of sigmoidal hidden

2.3. Related Work 13

Figure 2.5: Illustration of the basic architecture of DSN [DYP12]

units. Third, the output layer is the set of C-linear output units. The experiments
were done on MNIST image classification and on TIMIT corpus [DYP12]. The
results of speech classification experiments show that the DSN achieved frame-level
error rate of 43.86%, which is 1.18% better than a DNN tested on the same dataset
(45.04%).

2.3.4 Rectified Linear Units and Dropout

An important part of optimizing a DNN is the activation function of neurons. Choos-
ing a sensible activation function for a DNN can not only improve performance, but
also prevent quick system overfitting by deep learning methods. In 2013 Dahl et
al. presented an improvement of DNN that used Rectified Linear Units (ReLU)
and Dropout [DSH13]. Rectified Linear Units use the simple activation function
max(0, x), meaning they can easily be used in DNN or RBM. The problem of ReLU
is that they can more easily overfit, than the sigmoid activation function. In order
to prevent this problem, Dahl et al. [DSH13] combined ReLU with Dropout, which
avoid overfitting by adding noise zeros or “dropout” to hidden units. The use of
dropout can be presented as follows:

yt = f(
1

1− r
yt−1 ∗mW + b), (2.28)

where f is the activation function of t − 1 layer, W and b are weights and bias for
current layer, ∗ is element-wise multiplication. The input from the previous layer
would be computed with factor 1

1−r , where r is the dropout probability for units in
the previous layer. The ability to avoid overfitting allows training of big DNN, but
using dropout slows learning time by a factor of about two.

Dahl et al. performed their experiments on 50 hours of English Broadcast News. The
DARPA EARS rt03 set was used for development/validation and final testing was
performed on the DARPA EARS dev04f evaluation set [DSH13]. The comparison
of results with full sequence training can be seen in table 2.3

They show that combined ReLU and dropout work well. The dropout can also
be used in combination with other activation functions and might improve their
performance.

14 2. Background and Related Work

Model rt03 dev04f
GMM baseline 10.8 18.8
ReLUs, 3k, dropout, sMBR 9.6 16.1
Sigmoids, 2k, sMBR 9.6 16.8

Table 2.3: Results with full sequence training [DSH13]

2.3.5 Context-Dependent Deep-Neural-Network

The second way to optimize a DNN is to use a larger number of output units. The
first ANN used in ASR mostly used context-independent (CI) HMM. Their results
were comparable or better than GMM. The logical development of DNN was to ap-
ply context-dependent (CD) HMM as output for DNN. In 2011 Seide et al. proposed
Context-Dependent Deep Neural Network HMMs, or CD-DNN-HMM [SLY11]. The
experiments were performed on the task of speech-to-text transcription using the
309-hour Switchboard-I training set. A GMM-HMM system with 40 Gaussian mix-
tures trained with maximum likelihood (ML) was used as a baseline. The training
of the DNN was performed in two steps. First, the DNN was pre-trained with
DBN; second, it was fine-tuned with back-propagation. The experiments showed
significant improvement in word-error rate (WER) in about 33% of CD-DNN-HMM
systems (18.5%) compared to a GMM 40-mix, BMMI system (27.4%) tested on an
RT03S task [SLY11].

Extracting Bottle-Neck Features (BNF) can be also done using DNN. In 2013
Gehring et al. [GMMW13] performed an extraction of deep BNF using stacked auto-
encoders. The description, results and evaluation of the experiments performed by
Gehring et al. can be found in section 2.3.2.

2.3.6 Deep Convolutional Neural Networks

As described above, DNN achieved great success in the task of ASR. Another type of
ANN can be used apart from DNN: Convolutional Neural Networks (CNNs). Unlike
DNN, whose units are fully connected, CNN computes only a small local input for
each unit. In 2013 Sainath et al. introduced an application of deep CNN in the ASR
[SMKR13]. They tried to find an optimal architecture for CNN. Figure 2.6 shows a
typical CNN architecture.

The computation of hidden activation proceeds in three steps. First, the weights W
are multiplied with local input v1, v2, v3. Second, the weights W are shared across
the entire input space, and third, max-pooling is used to remove variability in the
hidden units.

Sainath et al. first trained the CNN on a 50-hour English Broadcast News task
and tested it on EARS dev04f set [SMKR13]. 40 dimensional log mel-filterbank
coefficients were used as acoustic input. The performance of the CNN was compared
with a fully connected DNN with a hidden layer size of 1024 units and output layer
of 512 units. Table 2.4 shows the results of comparing DNN with CNN.

Other test results showed that the best number of hidden units for CNN is 128 for
the first convolutional layer and 256 for the second layer. Table 2.5 shows results for
the architecture used. The CNN hybrid is 3-5% better relative to the DNN hybrid.

2.3. Related Work 15

Figure 2.6: Diagram showing a typical convolutional network architecture consist-
ing of a convolutional and max-pooling layer. In this diagram, weights with the
same line style are shared across all convolutional layer bands [SMKR13]

Number of Convolutional vs. Fully Connected Layers WER
No conv, 6 full (DNN) 24.8

1 conv, 5 full 23.5
2 conv, 4 full 22.1
3 conv, 3 full 22.4

Table 2.4: WER as a Function of number of Convolutional Layers [SMKR13]

Model dev04f rt04
Baseline GMM/HMM 18.8 18.1

Hybrid DNN 16.3 15.8
DNN-based Features 16.7 16.0

Hybrid CNN 15.8 15.0
CNN-based Features 15.2 15.0

Table 2.5: WER for NN Hybrid and Feature-Based Systems [SMKR13]

The further experiments were performed on a large task: on 400 hours of English
Broadcast News and 300 hours of conversational American English telephony data
from the Switchboard corpus. DARPA EARS dev04f set was used for development
and DARPA EARS rt04 for evaluation. In the next experiment Hub5’00 set was used
for development and rt03 set for evaluation, with separate testing of Switchboard
(SWB) and Fisher (FSH) portions of the set [SMKR13]. The results can be seen in
tables 2.6 and 2.7.

Model dev04f rt04
Baseline GMM/HMM 16.0 13.8

Hybrid DNN 15.1 13.4
DNN-based Features 14.9 13.3
CNN-based Features 13.1 12.0

Table 2.6: WER on Broadcast News, 400 hrs [SMKR13]

16 2. Background and Related Work

Model dev04f rt03
SWB FSH SWB

Baseline GMM/HMM 14.5 17.0 25.2
Hybrid DNN 12.2 14.9 23.5

CNN-based Features 11.5 14.3 21.9

Table 2.7: WER on Switchboard, 300 hrs [SMKR13]

As can be seen from all experiments, both CNN and DNN perform better than
GMM/HMM systems. For the Broadcast News test, the CNN showed a 10-12%
relative improvement over the DNN-based features. For conversational American
English they are between 4-7% better than the hybrid DNN.

2.3.7 Deep Recurrent Neural Networks

Recurrent neural networks (RNN) are a powerful tool due to their ability to remem-
ber and produce sequences of actions from one input. RNNs achieved great success
in handwriting recognition. Graves et al. introduced the Long Short-Term Memory
(LSTM) RNNs in ASR [GMH13]. They also developed an end-to-end method which
included a joint train of two RNNs, for the acoustic and the language model. The
LSTM RNN is based on purpose-built memory cells which include an input gate, a
forget gate, an output gate and cell activation vector (see figure 2.7).

The main power of RNN is its ability to use previous context from a network, but
RNN can in addition use future context. Such an RNN is called a Bidirectional RNN
(BRNN) (see figure 2.8). The BRNN computes the forward hidden sequence

→
h, the

backward hidden sequence
←
h and the output sequence y. The combination of BRNN

and LSTM gives Bidirectional LSTM; the deep RNN can then be created by stacking
RNN layers one on the top of the other. This Bidirectional LSTM architecture was
applied to the TIMIT corpus.

Figure 2.7: Long Short-term Memory cell [GMH13]

The Bidirectional LSTM was trained on a 40-coefficient filter-bank with three train-
ing method: Connectionist Temporal Classification (CTC), Transducer and pre-
trained Transducer [GMH13]. The best system showed a Phone Error Rate (PER)
of 17.7%.

2.3. Related Work 17

Figure 2.8: Bidirectional RNN [GMH13]

2.3.8 Restructuring of DNN with Singular Value Decompo-
sitions

Training a DNN is a process that requires high computation costs. As shown above,
DNN perform better if their size is increased. In 2013 Xue et al. introduced the
method of compressing a DNN without losing performance [XLG13]. Their work is
based on applying singular value decomposition (SVD) to decompose weight matri-
ces of a DNN and then restructuring the model in order to keep the similarity to the
original model. To maintain the performance of the restructured model, fine-tuning
is applied.

Figure 2.9 shows a typical DNN in ASR with fully connected layers. In order to
perform decomposition, the SVD can be applied to weight matrices between layers.

Figure 2.9: DNN used in ASR systems [XLG13]

Applying SVD to the weight matrix A with size m× n gives the following result:

Am×n = Um×n
∑
n×n

V T
n×n (2.29)

18 2. Background and Related Work

According to Xue et al. [XLG13], about 15% of singular values contribute 50%
of total values and about 40% - 80% of total size. It means that the number of
elements in matrix A can be reduced without losing important information. After
leaving only k-biggest singular values on A, the final matrix would look as follows:

Am×n = Um×k
∑
k×k

V T
k×n (2.30)

The Am×n can also be presented as

Am×n = Um×kWk×n, (2.31)

where Wk×n =
∑

k×k V
T
k×n.

After applying SVD, two smaller matrices U and W can be applied back to the
original model to replace A. The single layer in the original model would be replaced
by two layers. The number of parameters is changed from m × n to (m + n) × k.
The replacement of the single layer can be seen in figures 2.10 and 2.11.

Figure 2.10: One layer in original DNN model [XLG13]

Figure 2.11: Two corresponding layers in new DNN model [XLG13]

Xue et al. [XLG13] applied this procedure to a Microsoft internal task (task1),
which consisted of 750 hours of audio. As input, the CD-DNN-HMM system with
13-dimension mean-normalized MFCC feature was used. The system layout is as
follows: input layer with 572 units, 4 hidden layers with 2048 units each and output
layer with 5976 units. The number of parameters for system: 572× 2048 + (2048×
2048) × 4 + 2048 × 5976 ≈ 29M . Table 2.8 shows the results of applying SVD on
whole system.

Xue et al. were able achieve reduction of the DNN model on task 1 by about 80%.
By keeping singular values proportional to the total amount of values a reduction
of 73% could be reached, with less than 1% accuracy loss.

2.3. Related Work 19

Acoustic model WER Number of parameters
All hidden layers (512) Before fine-tune 26.0% 21M

After fine-tune 25.6%
All hidden layers (256) Before fine-tune 27.0% 17M

After fine-tune 25.8%
All hidden layers and Before fine-tune 29.7% 7M
output layers (256) After fine-tune 25.4%
All hidden layers and Before fine-tune 36.7% 5.6M
output layers (192) After fine-tune 25.5%

Table 2.8: Results of SVD restructuring on the whole model on task 1 [XLG13]

2.3.9 Bottle-neck Features

The DNN can also be used to extract speech features. As described earlier, extract-
ing probabilistic features is a very important part of ASR, and one where various
approaches can be applied. One of the most efficient is bottle-neck features (BNF).
The use of BNF was first proposed by Grézl et al. [GKKC07]. They experimented
with 5 layer multi-layer perception (MLP) with bottle-neck layers in the middle. Af-
ter training, the output of bottle-neck layers was used as features for a GMM-HMM
recognition system.

The system was trained using NIST RT’05 meeting data. The results of the evalua-
tion compared with probabilistic features of the same size are presented in table 2.9.
BNF show a improvement of system accuracy compared to probabilistic features.

feature size 64 69 74 79 84
(NN output) (25) (30) (35) (40) (45)
probabilistic 26.1 25.9 25.6 25.7 25.7
bottle-neck 25.2 25.2 24.9 25.2 25.0

Table 2.9: WER for probabilistic and bottle-neck features in full feature extraction
framework [GKKC07]

20 2. Background and Related Work

3. Analysis of Existing Methods in
the Optimization of DNN

This chapter presents methods of optimizing DNN from various points of views. It
compares and analyzes the recent technologies and achievements in using DNN in
ASR. Optimizing a DNN requires finding balance between ASR’s system accuracy
and performance. For example, big neural networks give better results, but they
require a longer time to be trained. Training time and training accuracy depends
on acoustic input, network size and topology, activation methods, pre-training and
weights initialization. The main goal of this work is to develop simple and effective
methods to optimize DNN. This goal could be achieved by finding optimal topology
for DNN by applying decomposing algorithms to DNN, in order to compress the
model or improve its performance.

3.1 Optimizations in Acoustic Input

The choice of acoustic input for training DNN can have a big influence on perfor-
mance. Early attempts of DNN training used the Mel Frequency Cepstral Coeffi-
cients (MFCC). Recent studies have showed that DNN perform better on simple
spectral features [DLH+13], [MDH12], [GMMW13]. In their works, the best perfor-
mance was shown on 40 log filter-banks. The advantage of spectral features over
MFCC can be explained by the fact that spectral features have more information
(including possibly redundant or irrelevant information) [DLH+13] which might help
DNN in classification task.

3.2 Optimizations in Output Layer

The performance of ANN can be also improved by using context dependent HMM
as the output layer for DNN [DYDA12]. This allows coverage of a large number
of HMM states. This, however, increases network size and negatively influences
its performance. Modern computing technologies such as the Graphics Processing
Unit (GPU) allow much faster training of the DNN, but cannot help it to avoid
performance problems in the speech recognition process later, if the CPU is used.

22 3. Analysis of Existing Methods in the Optimization of DNN

These problems can be solved by restructuring the DNN. The main idea is to reduce
the size of the DNN, without affecting its performance. See chapter 2.3.8 for one of
the possible methods, Restructuring of DNN with Singular Value Decomposition by
Xue et al. [XLG13].

3.3 Prevention of Overfitting

The most commonly used activation functions for hidden layers are linear, hyper-
bolic tangent and sigmoid. The main remaining problem is overfitting. Usually the
problem of overfitting is solved by using cross-validation during training. This stops
a network from overfitting and works perfectly for ANN. However cross-validation
is not able to stop units from being overfitted during deep training. That is why
new methods for DNN should be found and applied. One of the way to solve this
problem is “dropout”. The idea is to add particular noise (zero values or “dropout”)
to the activation function during training. Hinton et al. first proposed “dropout” in
2012 [HSK+12]. In 2013 Dahl et al. applied “dropout” for ASR task in combination
with rectified linear units [DSH13].

3.4 Pre-training and Weights Initialization

Deep learning is divided into two important parts: pre-training and fine-tuning.
The main task of pre-training is to find sensible weights for training, because a
neural network with directly connected layers is difficult to train and it takes a long
time. To avoid this problem Hinton proposed using pre-training based on Restricted
Boltzmann Machine (RBM) [Hin07]. Training a RBM has an advantage compared
to training directly connected network. First, hidden units help visible units to find
the right distributions. Second, a poor approximation to the data distribution is
generated. Third, directly connected neural network tries to learn hidden causes
that are marginally independent.

The RBM can be replaced by autoencoders with a single hidden layer [Hin07]. This
further development showed that denoising autoencoders perform well [VLBM08] in
speech recognition tasks [GMMW13].

3.5 Optimization of Size and Topology of DNN

The introduction of deep learning algorithm allowed the training of very deep net-
works with a big number of units in layers. However, unlimited increases of the
depth and size of networks do not bring the same improvement. According to Mo-
hamed et al. [MDH12] and Graves et al. [GMH13], increasing the network’s depth
stops bringing significant improvement after fifth layer. Another important property
of DNN is that many small-sized layers are better than one big one. In general, the
best topology should be found according to acoustic input, the activation function
used and other parameters. Choosing the size and topology of DNN is a trade-off
between the network’s number of parameters and its accuracy.

3.6. Types of ANN 23

3.6 Types of ANN

The three major types of ANN used in ASR are usually deep full-connected neural
networks (DNN), Deep Convolutional Networks (CNN) and Deep Recurrent Net-
works (RNN). Both CNN and RNN showed they could be applied ASR and achieve
better accuracy than DNN [SMKR13] and [GMH13]. However, DNN with sensi-
ble weight initialization and activation function show comparable accuracy with the
benefits of simple implementation, training and optimization. The sensible choice
for ASR task could be a DNN using denoising auto-encoders.

3.7 Restructuring of DNN

One of the recent approaches in optimizing DNN is restructuring. As Xue et al.
proposed [XLG13], restructuring can decrease the number of parameters in DNN,
which improves its performance. The potential application of restructuring could not
only leads to performance improvement, but also the network’s recognition accuracy.
This approach could be achieved by optimizing the size and topology of DNN, which
cannot be done by pre-training and fine-tuning.

3.8 Summary

The sensible way to implement and optimize the DNN is to use full-connected neu-
ral networks together with various optimization methods. Autoencoders provide the
possibility of sensible initial weight initialization as a DBN, but also control overfit-
ting of units as “dropout”. Additionally, recent methods of restructuring DNN can
be easily applied to full-connected DNN.

24 3. Analysis of Existing Methods in the Optimization of DNN

4. Model Design and
Implementation

In this chapter a design of used models and their implementation are presented. The
model design shows in which way a DNN can be optimized, how this models can be
implemented and a possible advantage of using this models.

4.1 Baseline System

The models would be applied on a baseline system, which can be used with a set of
DNN with various topologies and a size of hidden layers. The description of baseline
system and DNN can be found in the following sections.

4.1.1 Baseline System

The system used in this experiment was trained and decoded using the Janus Recog-
nition Toolkit (JRTk) developed at Karlsruhe Institute of Technology and Carnegie
Mellon University [SMFW01]. The neural networks were trained on 237 hours of
Quaero training data of German language from 2010 to 2012.

For the audio sampling was done at 16Hz with 32ms window size. The feature
extraction was done on 40 log mel scale filterbank coefficients (lMEL) with Pitch
and FFV, which results a feature vector with 54 elements. The acoustic models of
all systems are context-dependent quinphones with three states per phoneme, using
a left-to-right HMM topology without skip states. The GMM models were trained
with incremental splitting of Gaussians training (MAS), followed by optimal feature
space training (OFS) and refined by one iteration of Viterbi training. A vocal tract
length normalization (VTLN) was not used.

The training of neural networks was performed using Theano library [BBB+10].

4.1.2 Deep Neural Network Topology and Training

In this work different typologies with various sizes and numbers of hidden layers will
be tested. The input layer contains 702 units and has a hyperbolic tangent (tanh)

26 4. Model Design and Implementation

activation function. The size of the hidden layers varies from 400 units to 2000 units;
the number of hidden layers varies from 1 to 10. The visible activation function of
units in hidden layers is sigmoid. The output layer has 6016 units, based on 6016
context dependent phone states. The activation function of output layer is softmax.

During pre-training the weights of hidden layers are initialized using stacked de-
noising autoencoders, proposed by [VLBM08]. The denoising autoencoder works
the same as the autoencoder proposed by Bengio et al. [BLPL06], but with the
modification, that input is partly corrupted. This corruption is to avoid overfitting
and allows features to be extracted from large hidden layers. The input corruption
can be represented as a stochistic process qD(x̃ | x) to input vector x. To destroy
the input a fixed number of components vd are chosen and their value set to 0. So
initial the input x is mapped to the corrupted version x̃. The hidden representation
now looks as follows:

y = fθ(x̃) = s(Wx̃+ b) (4.1)

Then the reconstruction z can be computed as:

z = gθ′(y) = s(W ′y + b′) (4.2)

Now z is a deterministic function of x̃, which represents a stochastic mapping of x.
The cross-entropy error is used to compare input with output in order to find the
necessary adjustment for neural network weights:

LH(x, z) =
∑
i

xilogzi + (1− xi)logzi (4.3)

The hidden layers of neural networks were pre-trained with the following parameters:

Parameter First hidden layer Following hidden layers
corruption 0.3 0.3
loss function mean squared error cross entropy
batch-size 128 128
minibatches 2M 1M
learning-rate 0.001 0.01

Table 4.1: Parameters for hidden layer pre-training

After pre-training the output layer is added to neural network and then fine-tuned
using back-propagation. The results with various sizes and numbers of hidden layers
are available in chapter 6 “Results and Evaluation”.

4.2 Singular Value Decomposition

Singular Value Decomposition (SVD) is a factorization of a matrix. The decompo-
sition of m× n matrix A is seen as:

Am×n = Um×nΣm×nV
T
n×n, (4.4)

4.3. Applying SVD on Weight Matrix of DNN 27

where U is unitary matrix, V T is conjugate transpose of the unitary matrix V , and
Σ is diagonal matrix with non-negative real numbers on the diagonal.

The matrix A can be decomposed by using approximation with the matrix lower
rank Ak. This can be done by replacing the lowest singular values in matrix Σ with
zeros. The result of the approximated matrix is

Ak = Um×kΣk×kV
T
k×n. (4.5)

The equation below shows a preciser presentation of approximation problem.

A =

a11 . . . a1n
...

. . .
...

am1 . . . amn

 =

u11 . . . u1n
...

. . .
...

um1 . . . umn

×

σ11 . . . 0 . . . 0

...
. . .

...
. . .

...

0 . . . σkk . . . 0

...
. . .

...
. . .

...

0 . . . 0 . . . σnn

×

v11 . . . v1n
...

. . .
...

vn1 . . . vnn

≈

u11 . . . u1n
...

. . .
...

um1 . . . umk

×

σ11 . . . 0

...
. . .

...

σm1 . . . σkk

×

v11 . . . v1n
...

. . .
...

vk1 . . . vkn

 (4.6)

After approximation the matrix A can be replaced with two smaller matrices, U and
W , where Wk×n = Σk×kV

T
k×n.

The final equation for matrix decomposition is

Am×n = Um×kWk×n. (4.7)

The resulting equation is able to decompose the weights matrix in the DNN, in order
to compress the original DNN [XLG13].

4.3 Applying SVD on Weight Matrix of DNN

The connections between layers in a DNN can be represented as weight matrices.
The weight matrix Am×n between layers i and j has the dimension m × n, where
m is the number of units in layer i and n is the number of units in layer j. After
applying SVD to matrix Am×n, we have two matrices of a smaller size Um×k and
Wk×n. Then the matrix A is replaced with matrices U and W in that order: first
matrix U and then W . This process is illustrated in figure 4.1.

The new layer between layers i and j has k units. For new layer the sigmoidal
activation function is chosen. In order to insure better fine-tuning for new weigths,
the values of bias in each of three layers after SVD are set to 0.

4.4 Non-rank Decomposition of Hidden Layers

This model applied SVD to weight matrices between the first and the last hidden
layers. Weight matrices between input layer and first hidden layer, as well as between
last hidden layer and output layer remain untouched.

28 4. Model Design and Implementation

Figure 4.1: An example of SVD applied to a weight matrix in a DNN. a: matrix
before SVD. b: matrix after SVD

SVD applied on a weight matrix, produces two matrices U and W , as described
in chapter 4.2. If a rank of matrices is not reduced after applying SVD on square
weight matrix of hidden layer Am×m, the resulting matrices would also be square
Um×m and Wm×m. So basically the hidden layer is doubled. This procedure may
allow an increasing of the depth of a network and achieve better accuracy, because
the weights of the DNN would be set to sensible values.

4.5 Low-rank Decomposition of Hidden Layers

Decomposing a DNN can bring the advantage of removing units in hidden layers that
have not been trained during a fine-tuning, from the network. The main goal of this
attempt is to increase the network’s performance, but to keep the total amount
of units constant. Theoretically, this would give the performance of much bigger
network while still having the advantages of a small network. The sensible way of
performing this task is to find the topology, then improve by adding new hidden
layers. As shown by Mohamed et al. [MDH12], adding more than four hidden layers
to DNN does not show any significant improvement. This improvement is too small
compared to the size of the DNN and possible performance problems.

In order to perform such a decomposition, the parameter k is set to the half number
of singular values on the diagonal in matrix Σ. If matrix Am×m is square, the k is
set as half of m. For example, the matrix with an input layer 702 units, four hidden
layers at size 1200 units and an output layer at size of 6016 units is taken (figure
4.2).

The SVD could applied to weight matrices between layers 1 and 2, 2 and 3, and 3
and 4. The matrices between the input layer 0 and 1, the last hidden layer 4 and
the output layer 5 remain the same.

After applying SVD, the resulting neural network has more layers (figure 4.3), but
the number of units remains the same (table 4.2).

4.6. Low-rank Decomposition of Output Layer 29

Figure 4.2: Neural network before applying SVD

Figure 4.3: Neural network after applying SVD

Network Input layer Hidden layers Output layer Number of
hidden layers

Before SVD 842.4K 3× 1.2K × 1.2K = 4320K 7219.2K 4
After SVD 842.4K 6× 1.2K × 0.6K = 4320K 7219.2K 7

Table 4.2: Number of parameters and hidden layers after applying SVD to a network
with 4 hidden layers

4.6 Low-rank Decomposition of Output Layer

Due to using Context-Dependent HMM as output for DNN, the output layer has a
relatively big size. The next attempt is thus to find an influence of applying SVD to
the output layer (figure 4.4). The For example, in the system used here, the output
layer has 6016 units, so the weight matrix, which connects it with previous layer has
1200× 6016 = 7219200 parameters.

Applying SVD to the output layer could significantly decrease this number. The
result of applying SVD to the output layer’s weight matrix with a size of 1200 by
6016 units can be seen in table 4.3: leaving only 50% of singular values allows the

30 4. Model Design and Implementation

Figure 4.4: Low-rank Decomposition of Output layer

number of parameters to decrease by 40%. Theoretically, this approach could not
only decrease number of parameters, but also improve DNN accuracy by deleting
not-trained units.

Output layer Number of parameters % of original
Original 1200× 6016 7219200 100%
After SVD with k = 600 4329600 59.97%
After SVD with k = 120 865920 11.99%
After SVD with k = 42 303072 4.20%

Table 4.3: Number of parameters in output layer after applying SVD

4.7 Insertion of Bottle-neck Layers to DNN with

SVD

This attempt explores the influence of bottle-neck layers in DNN. The bottle-neck
is a layer in a neural network, whose size is significantly smaller than of other layers.
The bottle-neck is usually placed before the last layer in the DNN. This can help
to prevent overfitting by reducing the number of not pre-trained weights [MDH12].
By using SVD the bottle-neck can be inserted after training the DNN. The idea is
to leave only significant singular values, so theoretically this might help to improve
DNN performance. In order to achieve this goal, various numbers of bottle-neck
layers would be added to the DNN. The process of inserting bottle-neck to a DNN
with 4 hidden layers (figure 4.2) is illustrated by figure 4.5.

4.8 Extracting Bottle-neck Features with SVD

As proposed by Grézl et al. [GKKC07], a bottle-neck layer could be used to extract
features. SVD allows to creation of such a bottle-neck layer, leaving only significant
information. The extraction of BNF could be done in two ways: with fine-tuning af-
ter SVD and without. After creating the DNN, the acoustic model and the resulting
system would be trained.

4.9. Step-by-Step Fine-tuning of Low-rank Decomposed DNN 31

Figure 4.5: An insertion of bottle-neck layer to DNN with 4 hidden layers

4.9 Step-by-Step Fine-tuning of Low-rank Decom-

posed DNN

After implementing all of approaches detailed above, the next sensible idea is to
combine the best of them in one DNN. Various approaches are going to be applied
and fine-tuned one followed by the next. Theoretically, this could give a better
improvement than each approach by itself.

4.10 Summary

Decomposing a DNN without increasing the network’s size, and inserting of bottle-
neck layers have a good theoretical basis to be able to improve the performance of
a DNN. In the next chapter these approaches will be evaluated.

32 4. Model Design and Implementation

5. Results and Evaluation

5.1 Topology and Performance Analysis

The topology analysis started from the layers pre-training. The pre-trained setup
consisted of five sets with various hidden layer with sizes of 400, 800, 1200, 1600
and 2000 units. Each set contained 11 pre-trained layers. Table 5.1 presents the
time taken to pre-train 11 layers for each set. The dependence between size and
pre-training time has a linear character (see figure 5.1).

Hidden layer size 400 800 1200 1600 2000
Pre-training time 13:30 27:12 39:47 61:29 102:12

Table 5.1: Pre-training time (h:m) for 11 layers

After pre-training, the DNNs with various parameters were fine-tuned and evaluated
on a Quaero evaluation task. Figure 5.2 presents the dependence between the num-
ber of layers and the time spent for fine-tuning. As it can be seen, as the number of
units in hidden layers increases, the time for fine-tuning increases dramatically and
reaches almost 168 hours for the biggest network.

Figure 5.3 presents the dependence between the number of layers and the validation
error for networks with different hidden layer sizes. The validation error stops de-
creasing significantly after the network has more then 5 layers and after 7th or 8th
layer starts growing again. The dependence between the number of hidden layers
and the Word Error Rate (WER) is noticeable (see figure 5.4). Networks with hid-
den layers of sizes from 1200 to 2000 units, showed a similar level of WER. So it can
be assumed that increasing the size of hidden layers to more than 1200 units is not
sensible.

In order to prove this, the corrected sample standard deviation s of WER would is
analyzed:

s =

√√√√ 1

N − 1

N∑
i=1

(xi − x)2 (5.1)

34 5. Results and Evaluation

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
 (

h
o

u
rs

)

Hidden layer size

Pre-train time

Figure 5.1: Dependence between size and pre-training time

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 3 4 5 6 7 8 9 10

T
im

e
 f

in
e

-t
u

n
in

g
 (

h
o

u
rs

)

Number of layers

400
800

1200
1600
2000

Figure 5.2: Dependence between the number of layers and fine-tuning time

5.1. Topology and Performance Analysis 35

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 1 2 3 4 5 6 7 8 9 10

V
a

lid
a

ti
o

n
 e

rr
o

r

Number of layers

400
800

1200
1600
2000

Figure 5.3: Dependence between the number of layers and validation error

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 1 2 3 4 5 6 7 8 9 10

W
E

R
(%

)

Number of layers

400
800

1200
1600
2000

Figure 5.4: Dependence between the number of layers and WER(%)

36 5. Results and Evaluation

The sample standard deviation s of all networks is presented in table 5.2. Accord-
ing to this table, the deviation gets smaller when the number of hidden layers is
increased. It means, that the difference between WER of networks with different
size of hidden layers get smaller with increasing the number of layers.

Number of x s2 s
hidden layers

1 21.73 2.08 1.44
2 19.49 1.39 1.18
3 18.26 0.90 0.95
4 17.65 0.68 0.83
5 17.24 0.63 0.79
6 17.10 0.55 0.74
7 16.94 0.46 0.68
8 16.98 0.42 0.65
9 16.96 0.26 0.51
10 17.01 0.33 0.57

Table 5.2: Corrected sample standard deviation s for all size hidden layers

As mentioned above, networks with hidden layers of sizes from 1200 to 2000 units
showed a similar level of WER. In order to prove that, the networks with hidden
layers size of 1200, 1600 and 2000 would be only taken. As it can be seen from table
5.3, the corrected sample standard deviation becomes much smaller. The corrected
sample standard deviation of networks with 7 hidden layers is 0.1, which is about 7
times smaller than for all networks.

Further important information is that average WER (x) stops decreasing at 8 layers
and starts growing again.

Number of x s2 s
hidden layers

1 20.83 0.13 0.36
2 18.80 0.02 0.13
3 17.70 0.08 0.28
4 17.20 0.01 0.08
5 16.81 0.01 0.10
6 16.68 0.02 0.13
7 16.59 0.01 0.10
8 16.56 0.02 0.12
9 16.66 0.01 0.09
10 16.68 0.00 0.03

Table 5.3: Corrected sample standard deviation s for network size hidden layers
equal to 1200, 1600 and 2000

The results of the analysis are:

• The addition of further hidden layers does not bring much improvement for
networks with more than 5 hidden layers.

5.2. Analysis of Singular Values in DNN 37

• Increasing the size of hidden layers does not bring much improvement for
networks with a size of more than 1200 units.

• For networks with hidden layers between 1200 and 2000 units, the WER stops
decreasing at layer 8.

The sensible choice based on these results, is a network with a number of hidden
layers between 4 and 8 and with hidden layers with a size of about 1200 units.

5.2 Analysis of Singular Values in DNN

To perform decomposition on a DNN, singular values of weight matrices of the
DNN should be analyzed. After singular value decomposition, singular values are
represented as numbers on a diagonal in matrix Σ. This numbers are sorted and
divided into 5 groups. The results can be seen on figure 5.5.

Figure 5.5: Analysis of singular values of DNN with 5 hidden layers

Figure 5.6: Analysis of singular values of DNN with 8 hidden layers

The values are not equally distributed over the weight matrices. Indirectly, this
could indicate the amount of information stored in every weight matrix. For ex-
ample, the values in matrices A12, A23 and A56 are higher than in others. This

38 5. Results and Evaluation

is comparable with the results of the number of layers/WER, presented in chapter
5.1. There has been shown, that increasing the number of layers does not give con-
stant improvement. Theoretically, this is related to the number of untrained units
in hidden layers. A similar distribution can be seen if the DNN with 8 hidden layers
is taken (figure 5.6). The high of values decreases as the number of hidden layers
increases. Theoretically weight matrices between the 4th and 8th layer could be cut
using SVD without losing significant information that additionally might improve
DNN accuracy.

5.3 Non-rank Decomposition of Hidden Layers
In order to found influence of SVD on DNN, a basis network with 5 hidden layers
each with a size of 1200 units was chosen. Non-rank decomposition is applied on
hidden layers as proposed in section 4.4. After applying SVD the new network
has 9 hidden layers with 1200 units in each. In table 5.4 listed the evaluation’s
results for the original network, the network after SVD and a network with the
same parameters for comparison. As a result, applying SVD allowed to decrease
WER to 16.39%, which is 3.1% improvement compared to the original network and
2.2% to a network with the same number of parameters.

Network (Number of hidden layers ×
size of each layer)

WER (%)
Number of
parameters

Fine-tuning
time (h:m)

Original network (5 × 1200) 16.92 13.18M 65:27
Comparable network (9 × 1200) 16.76 18.67M 81:10
Network after SVD (9) 16.39 18.67M 91:10

Table 5.4: Non-rank decomposition of DNN

5.4 Low-rank Decomposition of Hidden Layers
In this section low-rank decomposition of hidden layers in the deep neural network
is performed. The main goal is to achieve improved performance of the DNN while
keeping the number of parameters constant. Low-rank decomposition will be applied
to networks with different depths and sizes of layers.

5.4.1 Small 4 Layer DNN

First SVD would be performed on a small network with 4 hidden layers each with a
size of 1200 units. The number of parameters in the original network is 702×1200+
3×1200×1200+6016×1200 ≈ 11.80M . The WER of the original network is 17.29%.
After decomposition the number of hidden layers increased to 7, but the number
of parameters stayed constant. The WER of the decomposed network is 16.60%,
which is 4% better, than the WER of the original network. The network after SVD
showed better results than the similar network, but the number of parameters in the
decomposed network is 25.9% fewer (see table 5.5).

Fine-tuning the original network took 56 hours, 54 minutes; for the network with
7 hidden layers time fine-tuning took 71 hours, 23 minutes; and for the network
after SVD it was 58 hours, 29 minutes. So the total time for fine-tuning the original
network and the network after SVD was longer, but it brings the advantages of a
smaller number of parameters and better performance than a similar network with
7 hidden layers.

5.4. Low-rank Decomposition of Hidden Layers 39

Network (Number of hidden layers ×
size of each layer)

WER (%)
Number of
parameters

Fine-tuning
time (h:m)

Original network (4 × 1200) 17.29 11.80M 56:54
Comparable network (7 × 1200) 16.66 15.93M 71:23
Network after SVD (7) 16.60 11.80M 58:29

Table 5.5: Applying SVD to a network with 4 layers each with a size of 1200 units

5.4.2 Small 5 Layer DNN

Next network to apply SVD has 5 hidden layers each with a size of 1200 units. The
WER, number of parameters and fine-tuning time is presented in table 5.6. The
network after SVD showed 16.41% WER, which is 3.01% better than the original
network and 2.08% better than a comparable network with 9 hidden layers.

Network (Number of hidden layers ×
size of each layer)

WER (%)
Number of
parameters

Fine-tuning
time (h:m)

Original network (5 × 1200) 16.92 13.18M 65:27
Comparable network (9 × 1200) 16.76 18.67M 105:49
Network after SVD (9) 16.41 13.18M 67:12

Table 5.6: Applying SVD to a network with 5 layers each with a size of 1200 units

5.4.3 Large 4 Layer DNN

Next, a network with a bigger size of hidden layers will be decomposed. The main
idea is to see if a bigger size of network could bring any significant improvement.
The results are summarized in table 5.7. As it can be seen, the WER achieved by
the network after SVD is 16.42%, which is almost the same as network with 5 hidden
layers each 1200 units in size, but the number of parameters is almost twice bigger.
From this point of view, it would be more sensible to use a network with a smaller
number of units in hidden layers.

Network (Number of hidden layers ×
size of each layer)

WER (%)
Number of
parameters

Fine-tuning
time (h:m)

Original network (4 × 2000) 17.17 24.25M 91:53
Comparable network (7 × 2000) 16.48 35.70M 128:10
Network after SVD (7) 16.42 24.25M 108:22

Table 5.7: Applying SVD to a network with 4 layers each with a size of 2000 units

5.4.4 Validation of Results

In order to prove whether SVD could really improve the performance of a DNN,
validation is performed. To validate the results, a DNN with the same topology
as a DNN after SVD is taken, pre-trained and fine-tuned. This allows to find out
if the improvement is determined only by the topology of the network or by SVD.
For validation a small 5 layer DNN is chosen, because it showed the best results

40 5. Results and Evaluation

in evaluation. A validation network with the same topology as the small 5 layers
network after SVD was pre-trained and fine-tuned.

As it can be seen from table 5.8, just choosing the same topology as network after
SVD does not bring the same improvement as performing the SVD. The validation
network showed an even worse WER as comparable network with 9 × 1200 hidden
layers (table 5.6)

Network (Number of hidden layers) WER (%)
Number of
parameters

Fine-tuning
time (h:m)

Network after SVD (9) 16.41 13.18M 67:12
Validation network (9) 16.83 13.18M 66:59

Table 5.8: Validation results of network with 5 layers (size 1200) after SVD

5.4.5 Summary

Low-rank decomposition of the hidden layers showed sufficient performance improve-
ment (4.37%) in the best case and additionally allowed the same number of param-
eters to be kept.

5.5 Low-rank Decomposition of Output layer

In order to find the influence of output layer decomposition, SVD will be applied
and various numbers of singular values will be left. The results are summarized in
table 5.9. As it can be seen the best accuracy improvement has been shown by
k = 600, which is equal to 2.23% of improvement compared to original network,
also the number of parameters was reduces on 15.9 %. Low-rank decomposition of
output layer can be also applied to reduce the number of parameters and keep the
accuracy on the level of original network. For example by k = 300 the WER is 1.15
% better, but the number of parameters is on 27.9 % smaller.

Network (Number of hidden layers) WER (%)
Number of
parameters

Fine-tuning
time (h:m)

Original (8) 16.61 17.30M 80:37
After SVD k = 900 (9) 16.37 16.60M 67:05
After SVD k = 600 (9) 16.24 14.55M 59:56
After SVD k = 300 (9) 16.42 12.48M 56:14
After SVD k = 120 (9) 16.74 11.22M 53:53
After SVD k = 42 (9) 17.33 10.71M 52:59

Table 5.9: Results of low-rank decomposition of output layer

5.6 Insertion of Bottle-neck Layer to DNN with

SVD

Mohamed et al. explained that inserting a bottle-neck layer to a DNN can help to
improve its performance by reducing number of not pre-trained weights [MDH12].

5.6. Insertion of Bottle-neck Layer to DNN with SVD 41

Applying SVD to the hidden layers of a DNN creates a bottle-neck layers, which can
help improving accuracy of DNN. In this section the dependence between the size
and number of bottle-neck layers will be presented. The experiment is performed
on the neural network with 8 hidden layers each with a size of 1200 units.

5.6.1 Bottle-neck Layers with 50%-rank Decomposition

First the bottle-neck layer with a 50%-rank decomposition of hidden layer is inserted
to the DNN. The bottle-neck layer is inserted into the last, two last and three last
hidden layers of the network. The results of evaluation are summarized in table
5.10. As can be seen, inserting one bottle-neck layer improved the performance
of the DNN by about 1%. Insertion of the second bottle-neck layer improved the
performance on 1.56% and the improvement stops on the third bottle-neck layer.
The number of parameters stays the same as in the original network, which means
that a slight improvement can be reached without affecting the network’s size.

Network (Number of hidden layers ×
size of each layer)

WER (%)
Number of
parameters

Fine-tuning
time (h:m)

Original (8 × 1200) 16.61 17.30M 72:37
Bottle-neck on last layer (9) 16.45 17.30M 62:28
Bottle-neck on last 2 layers (10) 16.35 17.30M 67:27
Bottle-neck on last 3 layers (11) 16.46 17.30M 76:50

Table 5.10: Bottle-neck layers with 50%-rank decomposition

5.6.2 Bottle-neck Layers with 10%-rank Decomposition

In the next experiment the influence of very small bottle-neck layers is researched.
This time, 10% of the original hidden layer (120 units) is taken. The results are
presented in table 5.11. A smaller bottle-neck shows less accuracy improvement,
but it has the advantage of reducing the number of parameters by about 13.47%
for the network with two last hidden layers: the one which shows the best accuracy
improvement.

Network (Number of hidden layers ×
size of each layer)

WER (%)
Number of
parameters

Fine-tuning
time (h:m)

Original (8 × 1200) 16.61 17.30M 72:37
Bottle-neck on last layer (9) 16.48 16.20M 64:16
Bottle-neck on last 2 layers (10) 16.53 14.97M 66:48

Table 5.11: Bottle-neck layers with 10%-rank decomposition

5.6.3 Validation of Results

To validate the bottle-neck layer approach, a DNN with the same topology was
trained. Validation was performed on the network showing the best accuracy im-
provement - DNN with two bottle-neck layers and 50%-rank decomposition (table
5.12). The validation results show, that inserting bottle-neck layers with SVD has
positive influence on the DNN’s accuracy.

42 5. Results and Evaluation

Network (Number of hidden layers) WER (%)
Number of
parameters

Fine-tuning
time (h:m)

SVD bottle-neck on last 2 layers (10) 16.35 17.30M 67:27
Validation network (10) 16.67 17.30M 81:48

Table 5.12: Validation bottle-neck layers with 50%-rank decomposition

5.7 Extracting Bottle-neck Features with SVD

Bottle-neck layers can be created very easily with SVD. Such a bottle-neck layer
can be used to extract bottle-neck features (BNF). First, as a baseline, a network
with 8 hidden layers each with a size 1200 units is chosen. The bottle-neck with
a size of 42 units, created using SVD, is inserted into the last hidden layer. This
bottle-neck layer is used for extracting features. First, the extraction is performed
on the network without fine-tuning. Second, on the network, which was fine-tuned
after SVD. In order to validate the results, a network with the same topology is
trained and used for extracting features. The summary of results is presented in
table 5.13

Network (Number of hidden layers) WER (%)
Number of
parameters

Fine-tuning
time (h:m)

DBNF with SVD no fine-tuning (10l) 18.70 16.02M -
DBNF with SVD with fine-tuning (10l) 17.96 16.02M 64:24
Validation DBNF (10l) 18.31 16.02M 77:57

Table 5.13: Results of extracting DBNF with SVD

As can be seen from the table, the network with no fine-tuning showes a worse
WER as the network with fine-tuning after SVD. The WER of the network with
fine-tuning is 1.9% better than DBNF network created without SVD. The results
show that decomposing DNN with SVD, in order to extract bottle-neck features,
can bring a slight improvement, which, however, is not very sensible because of the
additional fine-tuning time.

5.8 Step-by-step Fine-tuning of Low-rank Decom-

posed DNN

After evaluating all proposed approaches, the sensible idea is to combine the best
of them, in order to improve their accuracy. The best approaches should be applied
to one network after another, and fine-tuned after each step. As a base network, a
network with 8 hidden layers each with a size of 1200 units is chosen. First, two
bottle-neck layers with 50%-rank decomposition are inserted to the base network.
After SVD, the output layer of the resulting network is decomposed with leaving
600 singular values. In order to validate the resulting network, the neural network
is created using the same approaches, but without fine-tuning after each step. This
would allow to see if fine-tuning between applying various approaches can help to
improve network accuracy. The results are summarized in table 5.14. There the
results of each basic approach can also be found in the table.

5.9. Summary 43

Network (Number of hidden layers ×
size of each layer)

WER (%)
Number of
parameters

Fine-tuning
time(h:m)

Original (8 × 1200) 16.61 17.30M 72:37
Only Bottle-neck on 2 last layers (10) 16.35 17.30M 67:27
Only output layer with k = 600 (9) 16.24 14.55M 59:56
Bottle-neck 2 last layers + 16.35 14.55M 65:17
output layer with k = 600 (11)
Bottle-neck 2 last layers + fine-tuning + 16.16 14.55M 67:27 &
output layer with k = 600 (11) 65:28

Table 5.14: Result of step-by-step fine-tuning of low-rank decomposed DNN

The results show that combining the best approaches gave an improvement of WER
(2.7%) compared to the original network. It is also 1,16% better than the approach
of a bottle-neck on the last 2 layers approach and 0,5% better than the approach
of an output layer with k = 600. Another interesting result is that a combining
bottle-neck and SVD of output layer without fine-tuning after each step, shows
worse accuracy than just a simple SVD of the output layer.

5.9 Summary

The results of the evaluation show that Singular Value Decomposition proved its
ability in improving the accuracy of a network also by reducing number of parame-
ters: so SVD can be efficiently used to optimize deep neural networks. The sensible
way of applying SVD is to decompose output layer with k = 600. This attempt
shows a balanced relation between key factors: accuracy improvement (2,23% in the
best case), reducing the number of parameters and the time spent for fine-tuning.
The comparison of the best attempts is listed in table 5.15

Network (Number of hidden layers ×
size of each layer)

WER (%)
Number of
parameters

Fine-tuning
time(h:m)

Original (5 × 1200) 16.92 13.18M 65:27
Non-rank SVD of hidden layers (9) 16.39 18.67M 91:10
Low-rank SVD of hidden layers (9) 16.41 13.18M 67:12
Original (8 × 1200) 16.61 17.30M 80:37
Output layer with k = 600 (9) 16.24 14.55M 59:56
Bottle-neck 2 last layers (50%) (10) 16.35 17.30M 67:27
Bottle-neck 2 last layers + fine-tuning + 16.16 14.55M 67:27 &
output layer with k = 600 (11) 65:28

Table 5.15: Comparison of the best attempts

44 5. Results and Evaluation

6. Conclusion and Outlook

In this work the optimal topologies for DNN were found and optimized by using
singular value decomposition. Simple and effective methods of optimizing DNN
were developed and evaluated.

The optimal topology for DNN in the used dataset are networks with 5 to 8 hidden
layers each a size of about 1200 units. A bigger size of hidden layers does not bring
significant improvement, but increases the number of parameters in network.

Choosing the best attempts to optimize DNN was based on the three main parame-
ters: accuracy improvement, reducing the number of parameters and time spent for
fine-tuning. The best way of optimizing the DNN is decomposition of the output
layer with a rank of 50% of a last hidden layer. By using this approach, the decom-
posed network has a small number of parameters and shows the best WER (16.24
%) in the evaluation of single approaches. At the same time, this attempt requires
a relative small time for a fine-tuning.

Non-rank decomposition of hidden layers shows a good improvement in WER (3%)
compared to the original network, but it increases the number of parameters and
needs a lot of time for fine-tuning. Low-rank decomposition of hidden layers with a
rank of 50% of a network with five hidden layers has an advantage of keeping the
number of parameters small, but shows a little accuracy improvement. Inserting
bottle-neck layers with ranks of 50% and 10% shows a low accuracy improvement
and has relative many parameters after decomposition.

Various approaches can be used in order to achieve different goals: maximal accuracy
improvement, maximal reduction of number of parameters or a balanced solution
with improvement in both accuracy and reduction of parameters. A combination of
various approaches shows a significant accuracy improvement in WER (16.16 %),
but has the disadvantage of a long fine-tuning time. All attempts that used singular
value decomposition proved its ability to optimize DNN.

Future work for developing SVD is to find out how it would perform on a DNN
build with different approaches and methods. The first important question is to find
the best methods for reaching the maximum accuracy improvement and reduction

46 6. Conclusion and Outlook

of parameters. Second, is to find the effect of using different activation functions
for units or a combination of various activation functions. Another very important
question is to research the performance of SVD on networks with different method
of pre-training, for example Deep Belief Networks (DBN) or Restricted Boltzman
Machine (RBM). Furthermore, as shown in section 5.7, SVD can be applied to
extract bottle-neck features and shows better accuracy than original network.

The results of this work showed that singular value decomposition can be successfully
applied in the task of automatic speech recognition and has a positive outlook for
future development.

Bibliography

[BBB+10] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin,
Razvan Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-
Farley, and Yoshua Bengio. Theano: a CPU and GPU math expression
compiler. In Proceedings of the Python for Scientific Computing Con-
ference (SciPy), June 2010. Oral Presentation.

[BLPL06] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle.
Greedy Layer-Wise Training of Deep Networks. In Neural Information
Processing Systems, pages 153–160, 2006.

[DHK13] Li Deng, Geoffrey Hinton, and Brian Kingsbury. New types of deep
neural network learning for speech recognition and related applications:
An overview. In Proc. ICASSP, 2013.

[DLH+13] Li Deng, Jinyu Li, Jui-Ting Huang, Kaisheng Yao, Dong Yu, Frank
Seide, Michael Seltzer, Geoff Zweig, Xiaodong He, Jason Williams,
et al. Recent advances in deep learning for speech research at microsoft.
ICASSP 2013, 2013.

[DSH13] George E Dahl, Tara N Sainath, and Geoffrey E Hinton. Improving
deep neural networks for lvcsr using rectified linear units and dropout.
In Proc. ICASSP, 2013.

[DYDA12] George E. Dahl, Dong Yu, Li Deng, and Alex Acero. Context-
Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary
Speech Recognition. IEEE Transactions on Audio, Speech and Lan-
guage Processing, 20:30–42, 2012.

[DYP12] Li Deng, Dong Yu, and John Platt. Scalable stacking and learning for
building deep architectures. In Acoustics, Speech and Signal Processing
(ICASSP), 2012 IEEE International Conference on, pages 2133–2136.
IEEE, 2012.

[GKKC07] Frantǐsek Grézl, Martin Karafiát, Stanislav Kontár, and J Cernocky.
Probabilistic and bottle-neck features for lvcsr of meetings. In Acous-
tics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE Inter-
national Conference on, volume 4, pages IV–757. IEEE, 2007.

[GMH13] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech
recognition with deep recurrent neural networks,” icassp. 2013.

48 Bibliography

[GMMW13] Jonas Gehring, Yajie Miao, Florian Metze, and Alex Waibel. Extract-
ing deep bottleneck features using stacked auto-encoders. In Acous-
tics, Speech and Signal Processing (ICASSP), 2013 IEEE International
Conference on. IEEE, 2013.

[HDY+12] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman
Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick
Nguyen, Tara N Sainath, et al. Deep neural networks for acoustic mod-
eling in speech recognition: The shared views of four research groups.
Signal Processing Magazine, IEEE, 29(6):82–97, 2012.

[Hin07] Geoffrey E Hinton. Learning multiple layers of representation. Trends
in cognitive sciences, 11(10):428–434, 2007.

[HOT06] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning
algorithm for deep belief nets. Neural computation, 18(7):1527–1554,
2006.

[HSK+12] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever,
and Ruslan R Salakhutdinov. Improving neural networks by preventing
co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580,
2012.

[MDH12] Abdel-rahman Mohamed, George E Dahl, and Geoffrey Hinton. Acous-
tic modeling using deep belief networks. Audio, Speech, and Language
Processing, IEEE Transactions on, 20(1):14–22, 2012.

[RHlBL07] Marc’aurelio Ranzato, Fu Jie Huang, Y lan Boureau, and Yann Lecun.
Unsupervised Learning of Invariant Feature Hierarchies with Applica-
tions to Object Recognition. In Computer Vision and Pattern Recog-
nition, 2007.

[SLY11] Frank Seide, Gang Li, and Dong Yu. Conversational speech tran-
scription using context-dependent deep neural networks. In INTER-
SPEECH, pages 437–440, 2011.

[SMFW01] Hagen Soltau, Florian Metze, Christian Fugen, and Alex Waibel. A
one-pass decoder based on polymorphic linguistic context assignment.
In Automatic Speech Recognition and Understanding, 2001. ASRU’01.
IEEE Workshop on, pages 214–217. IEEE, 2001.

[SMKR13] Tara N Sainath, Abdel-rahman Mohamed, Brian Kingsbury, and Bhu-
vana Ramabhadran. Deep convolutional neural networks for lvcsr. In
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE Inter-
national Conference on, pages 8614–8618. IEEE, 2013.

[ST95] Ernst Günter Schukat-Talamazzini. Automatische Spracherkennung:
Grundlagen, statistische Modelle und effiziente Algorithmen. Vieweg,
1995.

[TG01] Edmondo Trentin and Marco Gori. A survey of hybrid ann/hmm mod-
els for automatic speech recognition. Neurocomputing, 37(1):91–126,
2001.

Bibliography 49

[VLBM08] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine
Manzagol. Extracting and composing robust features with denoising
autoencoders. In Proceedings of the 25th international conference on
Machine learning, pages 1096–1103. ACM, 2008.

[VSR12] Tuomas Virtanen, Rita Singh, and Bhiksha Raj. Techniques for noise
robustness in automatic speech recognition. Wiley.com, 2012.

[XLG13] Jian Xue, Jinyu Li, and Yifan Gong. Restructuring of deep neural
network acoustic models with singular value decomposition. In Proc.
Interspeech, 2013.

50 Bibliography

	Contents
	1 Introduction
	2 Background and Related Work
	2.1 Basics of Automatic Speech Recognition
	2.1.1 ASR as Pattern Recognition Process
	2.1.2 Extraction of Speech Features
	2.1.3 Acoustic Models
	2.1.4 Language Models

	2.2 Artificial Neural Networks in ASR
	2.3 Related Work
	2.3.1 Deep Belief Networks
	2.3.2 Stacked Autoencoders
	2.3.3 Deep Stacking Network
	2.3.4 Rectified Linear Units and Dropout
	2.3.5 Context-Dependent Deep-Neural-Network
	2.3.6 Deep Convolutional Neural Networks
	2.3.7 Deep Recurrent Neural Networks
	2.3.8 Restructuring of DNN with Singular Value Decompositions
	2.3.9 Bottle-neck Features

	3 Analysis of Existing Methods in the Optimization of DNN
	3.1 Optimizations in Acoustic Input
	3.2 Optimizations in Output Layer
	3.3 Prevention of Overfitting
	3.4 Pre-training and Weights Initialization
	3.5 Optimization of Size and Topology of DNN
	3.6 Types of ANN
	3.7 Restructuring of DNN
	3.8 Summary

	4 Model Design and Implementation
	4.1 Baseline System
	4.1.1 Baseline System
	4.1.2 Deep Neural Network Topology and Training

	4.2 Singular Value Decomposition
	4.3 Applying SVD on Weight Matrix of DNN
	4.4 Non-rank Decomposition of Hidden Layers
	4.5 Low-rank Decomposition of Hidden Layers
	4.6 Low-rank Decomposition of Output Layer
	4.7 Insertion of Bottle-neck Layers to DNN with SVD
	4.8 Extracting Bottle-neck Features with SVD
	4.9 Step-by-Step Fine-tuning of Low-rank Decomposed DNN
	4.10 Summary

	5 Results and Evaluation
	5.1 Topology and Performance Analysis
	5.2 Analysis of Singular Values in DNN
	5.3 Non-rank Decomposition of Hidden Layers
	5.4 Low-rank Decomposition of Hidden Layers
	5.4.1 Small 4 Layer DNN
	5.4.2 Small 5 Layer DNN
	5.4.3 Large 4 Layer DNN
	5.4.4 Validation of Results
	5.4.5 Summary

	5.5 Low-rank Decomposition of Output layer
	5.6 Insertion of Bottle-neck Layer to DNN with SVD
	5.6.1 Bottle-neck Layers with 50%-rank Decomposition
	5.6.2 Bottle-neck Layers with 10%-rank Decomposition
	5.6.3 Validation of Results

	5.7 Extracting Bottle-neck Features with SVD
	5.8 Step-by-step Fine-tuning of Low-rank Decomposed DNN
	5.9 Summary

	6 Conclusion and Outlook
	Bibliography

