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Abstract

Machine translation deals with translation done by computers
and has been an ongoing research topic for decades. Recently,
phrase-based machine translation was revolutionized by sig-
nificant improvements of neural models. Recurrent language
models, in particular, have been a great success due to their
ability to model arbitrary long context. However, one serious
drawback of neural models is their high demand for large train-
ing data for good performance, which is not always available for
less common languages. In this work, we investigate the inte-
gration of global semantic information extracted from large in-
dependent encyclopedia sources into neural network language
models. We integrate semantic word classes extracted from
Wikipedia and sentence level topic information into an RNN-
based language model. The new resulting models exhibit great
potential in alleviating data sparsity problems with the addi-
tional knowledge provided. This approach of integrating global
information is not restricted to language modeling but can also
be easily applied to models that profit from context or further
data resources, e.g. neural machine translation.
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1 Introduction

1.1 Introduction

Statistical machine translation (SMT) is a technology to automatically translate text from
one language into another, using probabilistic models induced from a parallel text corpus
that was previously translated by humans. Generally speaking, a statistical machine
translator is composed of three parts: a translation model, that provides a mapping of
words or phrases between two languages; a language model, that checks the fluency of
the target language; and a decoder, that consults the translation and language model to
find the best translation to a given sentence.

One focus to improve SMT has been to improve language models. Language modeling is
primarily approached by the use of n-gram language models, which predict the next word
in a sentence in the context of its preceding words. Since then, a wide range of statistical
language models have been proposed that are based on n-gram models. However, they
all have the same dilemma caused by data sparsity: trading larger context information
for more reliable statistics.
Recently, with the increasing popularity of neural networks these have been employed

successfully in language modeling. Recurrent neural network language models (RNNLMs),
in particular, have shown great improvement in SMT, both during decoding and rescoring.
The use of continuous word representations has achieved better generalization of the data
which effectively lowered data sparsity problems. Furthermore, the recurrent connections
are able to model long range dependencies. Yet, most of these models strictly depend on
monolingual and parallel data, which is sometimes not available in large amounts or only
for specific domains, especially with low-resource languages. This has motivated neural
network language models that take multiple parallel streams of data as input instead of
just a single stream of surface words. These so-called factors can be used to add addi-
tional information, e.g. part-of-speech (POS) or clustered word classes, which is mainly
helpful for morphologically rich languages (e.g. Romanian, German). However, so far the
additional factors were only limited to syntactic or local context information around the
current word. Especially for languages without sufficient training data it is important to
take advantage of other knowledge sources, e.g. encyclopedia knowledge. For example,
Wikipedia has become a growing source for learning general concepts since the emergence
of the Internet has led to an explosion of textual data. These data sources give insights
into a variety of human endeavors waiting to be computationally analyzed.

In this paper, we studied the integration of large encyclopedic knowledge into recurrent
neural network-based language models by using two approaches. In the first approach we
used a factored model to integrate Wikipedia categories as factors.
In order to understand large unstructured datasets great achievements have been at-

tained in latent concept learning in the area of text mining. Techniques include categoriza-
tion of documents using latent semantic analysis and probabilistic topic modeling. In this
work, we used techniques like term frequency–inverse document frequency (tf-idf), latent
semantic analysis (LSA) and latent dirichlet allocation (LDA) to compute a real-valued

1



1 Introduction

topic vector for each sentence that is fed into the network as additional input.
These approaches utilize general word categories and global topic features in combina-

tion with local contexts implicitly provided by recurrent neural models to improve lexical
selection.
We show that this has led to an improvement over the baseline system, that uses

recurrent neural network based language models for rescoring, tested on English-Chinese
and English-Romanian translation systems.

• Chapter 2 gives an overview of SMT with focus on language modeling. It describes
the different components of a SMT system, particularly the phrase-based and log-
linear models that we used as our experimental framework, together with various
evaluation metrics.

• Chapter 3 gives a short overview of work that has been done related to incorporating
additional information into neural language models and introduces previous work
on topic modeling.

• Chapter 4 proposes our two approaches to integrate encyclopedic information into
neural language models.

• Chapter 5 presents and explains experimental results.

• Chapter 6 discusses the implications of the experimental results, and suggests future
research directions.
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2 Background

2.1 Statistical Machine Translation

SMT translates a source sentence of one language into a target sentence of another lan-
guage, utilizing only statistical methods generated from the analysis of parallel text cor-
pora with aligned sentences. SMT requires huge amounts of data and large computing
power. These parallel text data are often obtained from web crawling and text extraction.
In training, statistical models are generated, that extract word and phrase translations
from the parallel corpus. Once they are trained, the models can yield different candidate
translations, referred to as translation hypotheses, for a given test sentence and finally
choose the one with the highest probability. The fundamental problem of SMT can be
described with Bayes’ theorem

P (t|s) = P (s|t) ∗ P (t)
P (s) , (2.1)

with s denoting the source sentence and t the target sentence. P (t|s) is the probability
of translating s into t, which is influenced by the independent probabilities of the sentences
s and t and the probability that t is a translation of s. The goal of decoding is to find

t̃ = arg max
t

P (t|s) = P (s|t) ∗ P (t)
P (s) (2.2)

which is equivalent to
t̃ = arg max

t
P (t|s) = P (s|t) ∗ P (t) (2.3)

P (s|t) is realized by the translation model, P (t) by the language model.

2.1.1 Language Model

To model the fluency and language accuracy of a sentence w we use a language model
P (w). For example, the translation model on its own would probably translate “peanut
butter” as “花生黄油”, which is the result if we looked up both words separately. How-
ever, a language model would remember from previous training data that “butter” in the
context of “peanut” has another meaning, and would translate it correctly with “花生酱”,
which literally translates to “peanut paste”. The most common way to model contextual
information is to use an n-gram model, which uses the Markov assumption to predict
the next words in consideration of the last n − 1 words. Let’s take a look at a sentence
w = w1, w2, . . . , wm and its probability when using a trigram language model, that is an
n-gram model with n = 3.

pLM (w) = p(w1, w2, . . . , wm)
= p(w1)p(w2|w1) · · · p(wm|w1, w2, . . . , wm−1)
' p(w1)p(w2|w1) · · · p(wm|wm−2, wm−1)

(2.4)

3



2 Background

i
Translation Probability p(t|s)
我 0.8
余 0.08
吾 0.07
朕 0.05

know
Translation Probability p(t|s)
知道 0.4
认识 0.2
知 0.2
懂得 0.2

Figure 2.1: Translation tables

Figure 2.2: Word alignment matrix. The region with x marks is an example of a wrong
phrase.

where the trigram occurrence frequencies are gathered statistics from training data

p(wi|wi−2, wi−1) = count(wi−2, wi−1, wi)∑
w count(wi−2, wi−1, w) (2.5)

2.1.2 Translation Model and Word Alignment

The translation model provides the mapping of translation units, e.g. words or phrases,
from one language into another along with the translation probability, as shown in Figure
2.1.
The translation probability distribution induces a word alignment which is often illus-

trated using a word alignment matrix A, as shown in Figure 2.2.
The problem is that in the beginning neither the translation probability distribution

nor the word alignment is given. But knowing one of them is enough to deduce the other.
The expectation maximization (EM) algorithm solves this dilemma.

2.1.3 Phrase Translation Model and Reordering

The translation model so far is based on an alignment model with words as its units. This
can be a problem when a word translates to several words or none at all. In this case, a
model based on phrases, i.e. successive words, as its smallest translation units is usually
a better alternative to comprise more contextual information. Note that phrases in SMT
are not restricted to linguistic phrases. However, sequence of words are only considered
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2.1 Statistical Machine Translation

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

s :

t :

d(start1 − end0 − 1)
= d(6− 0− 1)
= d(5)

d(start2 − end1 − 1)
= d(1− 9− 1)
= d(−9)

d(start3 − end2 − 1)
= d(4− 3− 1)
= d(0)

Figure 2.3: Distance-based reordering

phrases if they conform to the previously acquired word alignment. A phrase pair (s̄, t̄)
with s̄ = s1, s2, .., sm and t̄ = t1, t2, .., tn is said to be consistent with an alignment A, iff

∀ti ∈ t̄ : (ti, sj) ∈ A⇒ sj ∈ s̄ (2.6)
∀sj ∈ s̄ : (ti, sj) ∈ A⇒ ti ∈ t̄ (2.7)
∃ti ∈ t̄, sj ∈ s̄ : (ti, sj) ∈ A (2.8)

In other words, words within the phrase pair cannot be also aligned to any neighboring
words outside of the phrase. In the example shown in Figure 2.2, (I know, 我知道) would
be a valid phrase pair since it is consistent with the alignment. However, (birds can, 鸟
会) is not a SMT phrase pair since is does not comply with Formula 2.7.
After decomposing a sentence into phrases, the translated phrases often need to be

rearranged to fit the structure of the target language. The phrase-based translation
model can be described as

P (s|t) =
I∏
i=1

φ(s̄i|t̄i)d(starti − endi−1 − 1) (2.9)

where the target sentence t is broken up into I phrases, where each phrase t̄i is aligned
to the source phrase s̄i along with the phrase translation probability φ(s̄i|t̄i).
d is a distance-based reordering model, that penalizes reordered phrase pairs. Given

the aligned phrase pair (s̄i, t̄i), the reordering distance is computed as starti = endi−1−1.
starti defines the first word’s position of s̄i and endi last word’s position of s̄i. An example
is shown in Figure 2.3.
The probability distribution over extracted phrase pairs (s̄|t̄) can simply be determined

using maximum likelihood

φ(s̄|t̄) = count(t̄, s̄)∑
si count(t̄, s̄i)

(2.10)

Some languages vary greatly in their syntactic sentence structure. This reordering model
could put too much penalty on correct translations. In this case, it is better to use models
that facilitate bigger reordering distances, such as tree-based reordering models.

2.1.4 Log Linear Model
So far the phrase-based model consists of three components: the phrase translation table
φ(s̄|t̄), the reordering model d and the language model pLM (t). We can then rewrite
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Formula 2.3 as

t̃ = arg max
t

I∏
i=1

φ(s̄i|t̄i)d(starti − endi−1 − 1)
|t|∏
i=1

pLM (ti|t1...ti−1) (2.11)

Sometimes a SMT system does not yield very fluent sentences based on Formula 2.11,
which can be influenced by the language model. To give the language model more weight
Formula 2.11 can be generalized by assigning individual weights to each of the components:

t̃ = arg max
t

I∏
i=1

φ(s̄i|t̄i)λφd(starti − endi−1 − 1)λd
|t|∏
i=1

pLM (ti|t1...ti−1)λLM (2.12)

A big drawback of building a model on Formula 2.12 lies in its costly computation. Also,
adding or removing model scores is not easily done due to heavy multiplications. A
common solution is to transform it into log-linear form, which decomposes the original
model into several weighted feature components, that can be trained separately. The
log-linear model holds the following form:

p(x) = exp(
n∑
i=1

λihi(x)) (2.13)

To convert the phrase-based translation model 2.12 into this form, the following assign-
ments are needed:

number of components n = 3,
random variable x = (t, s, start, end),
feature functions h1 = log φ, h2 = log d, h3 = log pLM ,
feature weights λ1 = λφ, λ2 = λd, λ3 = λLM .

This way, to find the best translation t̃ a simpler formula can be solved instead:

t̃ = arg max
t

P (s|t) = arg max
t

exp(
n∑
i=1

λihi(x)) = arg max
t

n∑
i=1

λihi(x) (2.14)

Another big advantage of Formula 2.14 is that the features hi(x) in this form do not
necessarily need to be probability distributions. Model weights can be adjusted without
too much effort. For example, increasing λφ will lead to more accurate translations,
increasing λd will lead to less reordered translations, and increasing λLM will result in
more fluent sentences.

2.1.5 Decoding
Given an input sentence, the goal of decoding is to find the best translation with the
highest score according to the underlying model features. Simply translating the source
sentence phrase-by-phrase, picking out the highest-rated translation from the translation
table neither yields in fluent language nor reflects the meaning of the original sentence.
Instead, creating multiple hypotheses that consider various translations of the same phrase
at multiple different positions in the output sentence increase the chance of generating
the most-probable translation. For this, the output sentence is incrementally built from

6



2.1 Statistical Machine Translation

left to right, which yields multiple partial hypotheses. With each newly added phrase the
corresponding partial score is determined by consulting the model features using the log-
linear model, and added to the overall score. The multiple ways to expand a hypothesis
lead to an exploding number of hypotheses that grows exponentially in the length of the
input sentence for two main reasons: 1. There are several options to pick the next phrase.
2. A certain phrase can, yet again, be translated in multiple ways according to the phrase
translation table. 3. Phrases can be reordered.
For this reason, searching through all possible hypotheses to find the optimal trans-

lation is infeasible. Hence, in practice heuristic methods are employed, that skip parts
of the search space efficiently, hopefully without omitting the most promising candidate
translations.
If a translator fails to find the best translation, either the decoding or the model are to

blame. A decoding error occurs when the search algorithm fails to find the most-probable
translation due to its heuristic nature. In case of a model error the best translation does
not get the highest score based on the model and, thus, gets discarded in decoding.
The first step to restrict the search space is to use hypothesis recombination, that merges

all partial hypotheses with the same words translated so far, and takes the score of the best
hypothesis. This way, only one hypothesis needs to be extended in the future. However,
hypothesis recombination is not enough to cut down the computational complexity from
exponential to polynomial. For this, we introduce two heuristic methods.

2.1.5.1 Beam-Search Stack Decoding

First, hypotheses can be organized into stacks according to their number of translated
words. The worst hypotheses are dropped according to their partial score when the stack
becomes too large. This is called histogram pruning. In addition, a fixed threshold can
cut off hypotheses that are worse than the current best hypothesis by this factor. This is
known as threshold pruning. Together, they constitute the beam-search stack decoding
which has a polynomial computational complexity of

O(max stack size× sentence length2) (2.15)

2.1.5.2 A* Search

A drawback of beam search is that future improvements of a path are not taken into
account when hypotheses are dropped. Therefore, it runs the risk of mistakingly dropping
a hypothesis that may turn out to be the best later on. While the partial score g(n) of a
path n alone can be misleading, adding an estimated future cost h(n) for the remaining
path may be a more realistic criteria for pruning. The heuristic cost function f(n) :=
g(n) + h(n) is guaranteed to find the best path if it is admissible, that is if f(n) never
overestimates the actual cost. One example of an admissible heuristic function is g(n)
since it is always below the actual cost of a completed path. Depth-first search can be used
to expand the next hypothesis according to the heuristic function. After each expansion
the estimated score for the newly added phrase is overridden by the real cost.

2.1.6 Evaluation
Fluency and adequacy determine translation quality and play a major role in the evalua-
tion of a SMT system. Difficulties include inherent linguistic and non-linguistic problems,
such as lexical and structural ambiguities as well as stylistic differences between the source
and target language. The advantages of automatic evaluation against human translation

7



2 Background

are low-cost, language-independence and normalized judgment due to standardized met-
rics. The basic idea of an automatic evaluation system is to determine the similarity
between the generated translations and the reference translations that were previously
translated by humans. The challenge is to come up with a good similarity scoring that
reflects the correlation between human translations and automatic translations. Some of
the important metrics are introduced in the following.

2.1.6.1 Precision and Recall

Precision is a very simple metric that counts the number of correct words in the output
sentence. A word is correct if it also appears in the reference translation.

precision = correct
output-length (2.16)

recall = correct
reference-length (2.17)

Unlike precision, recall considers omitted words in a sentence. Both metrics, however,
ignore the original word order.

2.1.6.2 WER, PER, TER

Word error rate (WER) [30] is adopted from speech recognition and takes word order
into account. Based on the Levenshtein distance, it uses operations such as “insertion”
(ins), “deletion” (del), and “substitution” (sub) to find the distance between the output
translation and the reference.

WER = #ins + #del + #sub
reference-length (2.18)

A problem of WER is that the exact same order of words in hypothesis and translation
are required for a low error. A grammatically correct sentence with a slightly varied
structure can have a high WER. For example, the hypothesis “On a sunny day, they like
to drink lemonade” of the given reference “They like to drink lemonade on a sunny day”
results in a 100% WER.
Position-independent word error rate (POS) [43] neglects word order completely.
Translation error rate (TER) [40] also employs the idea of editing distance, but uses
an additional operation that swaps segments of words to allow varied word order in
translations.

2.1.6.3 BLEU and NIST

Bilingual evaluation understudy (BLEU) [35] is an automated and inexpensive evaluation
metric most commonly used in SMT. The main idea is to measure the frequency with
which the n-grams in the output appear in the reference translation, which is known as n-
gram precision. For this reason, BLEU is considered a precision-based metric. To prevent
words from being dropped, BLEU penalizes outputs that are shorter than the reference.
Since a lot of n-grams do not occur in the reference sentence, BLEU is computed over the
entire test set and is therefore considered a document-level metric. BLEU is defined as:

BLEU-n = BP · exp(
n∑
i=1

λi log pi) (2.19)

8



2.1 Statistical Machine Translation

where n is the maximum order of n-grams which is considered for statistics, BP is the
brevity penalty for too short output, and pi is the n-gram precision. Usually, baseline
systems use 4-gram and uniform weights λi = 1

n
:

BLEU-4 = BP ·
4∏
i=1

pi (2.20)

NIST [15] is a variation of BLEU, that assigns different weights λi to n-grams according
to their rarity and co-occurrence statistics. For example, “it is” is given a lower weight
than “excessive consumption”.

2.1.6.4 METEOR

METEOR [7] is a more recent evaluation metric, that considers stemming and synonymy.
That is, if output and reference do not match to the exact word, their word stem or even
word class will be taking in account, utilizing WordNet 1. This leads to more human-like
translations. However, one of the drawbacks is that METEOR is much more complicated
to apply and so far has been only reliably employed for English translations due to required
background knowledge.

2.1.7 Parameter Tuning and Rescoring

Dicriminative training eliminates translation errors by directly maximizing the posterior
probability P (t|s) rather than using the argmax model according to Formula 2.3. Pa-
rameter tuning optimizes model parameters in the log-linear model directly against the
underlying evaluation metric, usually BLEU. Since evaluating Formula 2.14 is expensive,
the idea is to carry out the optimization on a development or tuning set that is smaller
than the training set and similar to the actual test set in the hope that if the model per-
forms well on the development set it also does on the test set. Rescoring can be used for
better translation results and is performed on an extracted n-best list. It allows reranking
of the top hypotheses by using more sophisticated models, that are too expensive to be
applied on the complete data. These complex models can comprise multiple features that
can be easily integrated thanks to the log-linear model. A variety of additional features
can be found in [33].

2.1.7.1 MERT

Minimal error rate training (MERT) [32] is a batch tuning algorithm used for rescoring
and parameter tuning. The tuning process follows the following steps:

1. Initialize model parameters.

2. Decoder generates an n-best list based on model parameters.

3. Optimize parameters according to the evaluation metric.

4. Unless the parameters converge apply changes to parameters and repeat from step
2.

5. Finished.
1https://wordnet.princeton.edu/
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2 Background

To speed up tuning in MERT, it is common to use the heuristic of Powell’s search [36]
with smart step size, that varies one parameter at a time to find an optimum for each
feature dimension. One problem of this method is that it does not scale well with many
features. The number of features should not exceed 20.

2.1.7.2 ListNet

The ListNet-based n-best list rescoring method [27] uses the ListNet algorithm [12] which
minimizes the difference between the log-linear model ranking and the reference ranking
with respect to the underlying BLEU evaluation metric. For this it uses the cross entropy
loss function that considers the whole n-best list during learning instead of single pairs
of entries. Unlike MERT it scales well with many features. The idea is to define two
probability distributions over hypotheses that determine the likelihood of a hypothesis to
be ranked first in list, one for the hypothesized ranking and one for the reference ranking.
Then the algorithm minimizes the Kullback-Leibler divergence between the distributions
to optimize the model parameters.

2.2 Language Models
One problem of n-gram models is data sparsity. Any n-grams not seen in training would
be assigned a probability of zero in testing if their empirical count is zero according to
Formula 2.5. This is unwanted behavior since, although a lot of n-grams in testing will
probably not appear in training, we still want to be able to predict sentences containing
these n-grams. Therefore, strings should never be given a probability of zero. The data
sparsity problem becomes more severe the bigger n becomes, which conflicts with the
original intention to model more contextual information for more fluent translation. To
solve this dilemma smoothing techniques and back-off models can be employed, which
avoid probabilities of zero by taking probability mass from observed n-grams and adding
it to unseen ones.

2.2.1 Factored Language Model
Factored language models (FLMs) [8] generalize n-gram model by substituting a word
with a bundle of features, e.g. a word’s POS, surface form or stem. This allows additional
information to be incorporated into an FLM, which offers the option to layer linguistic
information on top of the original n-gram model. In an FLM, a word wi is considered a
vector of K features fi, referred to as factors.

wi ≡ f1
i , f

2
i , . . . , f

K
i = f1:K

i (2.21)

The FLM probability over a sentence w = w1w2 . . . wm is described as

P (w1, w2, . . . , wm) = P (f1:K
1 , f1:K

2 , . . . , f1:K
m ) = P (f1:K

1:m ) (2.22)

Analogous to an n-gram model this can be further transformed into a product of probabil-
ities of the form P (f |f1, f2, . . . , fM ) like in Formula 2.4. Also, a variation of back-off can
be used for the statistical model. However, unlike a word-only model factors do not neces-
sarily exhibit temporal sequencing, so dropping the oldest factor in the history to back off
may not make any sense. For example, factors, such as word classes, provide information
about the whole sentence and, therefore, should be given equal weight in back-off. Various
options of back-off for FLMs are proposed by [8], which can be altogether depicted in a
back-off graph.
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2.3 Neural Networks

2.2.2 Perplexity
The premise for a language model is to assign a higher probability to good language and
a lower score to bad language. One way to evaluate language models is to use perplexity,
which is interpreted as the “branching factor” of a language. Another interpretation is
to regard perplexity as the number of words a language model chooses uniformly and
randomly from a set of words to predict the next word. Perplexity is based on the
distribution’s entropy, which is defined as

H(pLM ) = − 1
n

log pLM (w1, w2, . . . wn)

= − 1
n

n∑
i=1

log pLM (wi|w1, w2, . . . wi−1)
(2.23)

Then, perplexity is defined as a transformation of the distribution’s entropy.

PP = 2H(pLM ) (2.24)

The better a language model, the higher the probability of a well-formed sentence and
the lower the perplexity of a sentence.

2.3 Neural Networks
An artificial neural network can be described as a weighted graph, consisting of an input
layer of the size of the number of input features, one or multiple hidden layers, and an
output layer with each of its nodes corresponding to a label in supervised learning. Gen-
erally speaking, a neural network is a nested composite function where the computation
is carried out in distributed nodes. The final result is displayed at the output layer. A
feed forward neural network, as shown in Figure 2.4, channels the input straight through
the network, never touching the same node twice. Therefore, the information of an input
is lost after it is processed, and each input is treated completely independent from any
other.
The nodes of an m-layered feed forward neural network are computed as follows:

oji =


f1(

∑n
k=1w

1
k,i · xk + θ1

i ) if j = 1
g(

∑n
k=1w

m
k,i · o

m−1
k + θmi ) = yi if j = m

fj(
∑n
k=1w

j
k,i · o

j−1
k + θji ) else

(2.25)

where xk denotes the k-th entry of the input, wjk,i the weight from the k-th node in
layer j − 1 to the i-th node in layer j, θji the bias of the i-th node in layer j, fj an
activation function, such as sigmoid or tanh, and g the softmax function that generates a
probability distribution over the output vocabulary. The output value yi represents the
probability of label i corresponding to the input x.
Backpropagation is a method used in conjunction with an optimization method to train

a network and comprises two steps. In a forward pass, the results are generated at the
output layer and the error E is calculated according to a certain cost function, e.g cross
entropy. In a backward pass, the error is propagated backward through the layers and
the contribution of a network’s weight w to a reduction of error E is represented by its
gradient:

∂E

∂w
(2.26)
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Figure 2.4: Feed forward neural network

Gradient descent is one way to optimize the model based on backpropagation. Given a
learning rate η, the weight w is adjusted as follows:

wnew = w − η · ∂E
∂w

(2.27)

Usually the training algorithm iterates multiple times (often 20-50 times) over the training
data, referred to as epochs, and uses validation data for early stopping as well as con-
trolling of the learning rate. Weights are initialized to small random values. After each
epoch, the network is tested on the validation data to see if the likelihood has improved.
If not, the learning rate is decreased for the next epoch. Training is finished if learning
converges or is stopped.

2.3.1 Recurrent Neural Network
Recurrent neural networks are optimized neural network for sequence learning where the
previous output will influence the next prediction. This is realized by a feed-back loop
that directs outputs back to the beginning of a hidden layer, thus retaining the sequential
information in the network’s hidden state. The new input in conjunction with the for-
mer hidden state determines the next output. Examples of recurrent neural networks in
natural language processing (NLP) include machine translation, speech recognition and
hand writing. In this work, we used recurrent neural networks for language modeling.

x

h

y

W

V

U

Figure 2.5: Recurrent neural network

Given a simple recurrent neural network with an input layer x and an output layer y.
Let xt denote the input vector, yt the output, and ht the hidden state or context vector at

12



2.3 Neural Networks

time t which has a recurrent connection with the time-delayed context vector ht−1. Then
the layers are calculated as follows:

ht = f(Wxt + Uht−1))
yt = g(V ht)

(2.28)

where f is the activation function, g the softmax function, and U, V,W are parameters
to be learned in training. h0 is usually initialized to zero.

2.3.1.1 Back-Propagation Through Time

To train a recurrent neural network an extension of backpropagation, known as back-
propagation through time (BPTT), is used to treat the feed-back loop. The original
backpropagation cannot be applied to the network right away since the recurrent connec-
tion’s gradient V cannot be explicitly determined. If the training data can be represented
as an ordered sequence of input-output pairs, for example (x1, y1), (x2, y2), . . . , (xm, ym),
BPTT is able to unfold the recurrent neural network into a feed-forward network through
time. Here, time is simply expressed by a well-defined, ordered series of calculations link-
ing one time step to the next, which is the prerequisite for backpropagation to work. In
the above example there are m time steps. Let’s illustrate this using an example of a
recurrent neural network with one recurrent layer and one feed forward layer, as shown
in Figure 2.5.
The unfolded network substitutes the recurrent component with m feed forward com-

ponents. For example, if m = 3 the unfolded network looks like Figure 2.6.

h1

y1 y2 y3

x1 x2 x3

h2 h3
U U U U

V V V

W W W

Figure 2.6: Unfolded recurrent neural ntwork

After transforming the recurrent neural network into an equivalent feed forward neu-
ral network, the previously discussed backpropagation can now be used to calculate the
derivatives. Unlike regular feed forward neural networks all of the components corre-
sponding to the same recurrent connection must share the same weights in the unfolded
network after each iteration, as indicated in Figure 2.6. To achieve this, the weights’
derivatives are summed up, which becomes the new weight of the corresponding recurrent
connection. One problem is that m can get very large. But if m increases, the gradients
at early time steps decay quickly. As a consequence, the first part of the training sequence
hardly influences the outcome at the output layer. This problem is known as the vanish-
ing gradient problem [19] and entails that a basic recurrent neural network cannot model
long-term dependencies.
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2.3.1.2 Long Short-Term Memory

Long short-term memory (LSTM) [20] is a recurrent neural network architecture which
suffers less from the vanishing gradient problem and is able to learn long-term dependen-
cies. The key idea of an LSTM is to preserve a constant error over multiple time steps
which causes the gradient to reach further back in time. This is realized by utilizing a cell
state that can incorporate input over a span of steps, but can also forget history. This is
controlled by three gates: a forget gate to reset the cell state; an input state to preserve
information about the current input in the cell state; and an output gate that decides
what to output depending on the cell state and the input. This way, BPTT is able to
consider more than 1000 time steps.
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3.1 Additional Information in Neural Language Models
Language models are a critical component of machine translation, yet they have always
faced the problem of data sparsity. When FLMs (Section 2.2.1) were developed, they out-
performed previous n-gram models without expanding the training data due to additional
information. Compared to FLMs and feed forward neural networks, recurrent neural net-
works do not rely on backing off to shorter context nor require a fixed context length. In
addition, recurrent neural networks have a lower model complexity. This inspired neural
language models that incorporate additional information to model longer contexts and
counter data sparsity problems.

3.1.1 Factored Recurrent Neural Network Language Models
Inspired by RNNLMs and FLMs, factored recurrent neural network language models
(FRNNLMs) [44] can be considered as a generalization of RNNLMs. Like FLMs they use
a factored input layer that takes a bundle of factors which can be used to integrate addi-
tional linguistic information. For this reason, FRNNLMs are better in dealing with data
sparsity in morphologically rich languages [44] and exploiting commonalities and special-
ties among diverse data, upon which reordering or grammatical coherence decisions are
made. If a word’s surface form is the only factor used, the model becomes an ordinary
RNNLM. Let’s take a look at the example phrase “difference between developed coun-
tries and developing countries”. Whereas a RNNLM would treat the bigrams “developed
countries” and “developing countries” independent of each other, a FRNNLM with stem
features would recognize “develop countri” as their common stem and therefore establish
a connection between the two phrases. Let’s assume we need to evaluate “developing
countries” in testing, but this phrase has never been seen in training. If we have already
observed “developed countries” and therefore its stem “develop countri”, a FRNNLM is
capable of giving the unseen phrase a higher and, in this example, a more realistic score
than a regular RNNLM.

The work of [44] proposes a FRNNLM that predicts P (wi|fi−1, si−1), that is the next
word wi based on the previous source factor fi−1 and hidden state si−1, as opposed to
the conventional RNNLM that predicts P (wi|wi−1, si−1). Their model uses a structured
output layer based on word classes which is able to handle large vocabularies. The factors
used include a word’s surface form, stem and POS. They claim that POS yields better
results than stem by explaining that the similarity between a word’s stem and surface
form does not add too much information to the network.
Motivated by multi-task learning in NLP, the paper [28] proposes a multi-factor recur-

rent neural language model which jointly predicts different output factors by mapping the
output of the LSTM-layer to as many softmax layers as there are output factors. The
model architecture is shown in Figure 3.1. The model generates one probability distribu-
tion for each output factor. In the rescoring of an n-best list, this model can be included
in the log-linear model as either one or several additional features depending on whether
the output is treated as a joint probability or individual probabilities. Due to its design,
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this model can also be used as a bilingual model. In the paper, they used the conjunction
of the previous target word’s and the current source word’s factor set to predict the next
target word. This way, the model computes the translation probability rather than the
language model probability. On the source side the word’s surface form and POS are used
as factors; on the target side the word’s surface form, POS and clustered word classes are
used as factors.

Figure 3.1: Multi-factor recurrent neural network-based language model. The figure is
taken from the paper [28].

3.1.2 Other RNNLM Variations

So far only factors have been associated with each word. However, using a dedicated
continuous space vector would offer more flexibility and possibility to store additional
side information, especially for complex higher-level concepts, such as topic information.
In the paper [26] a first approach to use an additional vector for higher-level concepts was
proposed. In their work, a vector instead of a factor is associated with each word and
connected to both the hidden and output layer. However, this vector depends only on a
word’s earlier local context, thus neglecting the influence of the future context on a word’s
meaning. In fact, often the meaning of a word cannot be just derived from its preceding
words but by content words in the entire sentence or surrounding sentences. Also, the
additional information is extracted from the same corpus. Therefore, this information
will not be enough to learn knowledge beyond the given training data.
Since RNNLMs are too expensive to use during decoding, all of the mentioned variations

of RNNLMs are mainly used in rescoring, their probabilities interpolated with n-gram
probabilities.

3.2 Concept Learning and Wikipedia

Topic models play a great role in text mining because they summarize large amounts of
documents into fewer concepts by capturing word co-occurrence information. Essentially,
topic models can be divided into vector space models, e.g. LSA [14], and probability mod-
els, e.g. LDA [9]. The successful usage of Wikipedia to devise methods for computing
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semantic relatedness of documents was reported in [16] and [42]. Generative probabilistic
models were employed in [17] to link named entities in text documents by using infor-
mation extracted from Wikipedia. In the work of [13] and [11] vector space models were
employed to resolve word disambiguations based on entities derived from Wikipedia. Sim-
ilar approaches were applied on other knowledge sources, such as the semantic network
WordNet [18].
However, to our knowledge, it is the first time encyclopedic knowledge and neural

language models are used together.

3.2.1 TF-IDF
Tf-idf [38] is a co-occurrence measure and determines the importance of a word to one or
multiple documents. Having the capability of grading down a term appearing in multiple
documents, tf-idf is computed by multiplying a local component (term frequency or tf)
with a global component (inverse document frequency or idf). Term frequency tf(t, d) is
defined as the relative number of times a term t appears in a document d:

tf(t, d) = countd(t)
|d|

(3.1)

Inverse document frequency idf(t,D) measures how much information a term t provides
regarding the set of documents D, that is, whether it is common or rare in D:

idf(t,D) = log2
|D|

|{d ∈ D : t ∈ d}| (3.2)

tfidf(t, d,D) = tf(t, d) · idf(t,D) (3.3)

To compute a ranking of similar documents for a given sentence query, the query’s tf-idf
vector q is computed and compare it to each of the documents’ tf-idf vectors d1, d2, . . . , d|D|
using the cosine to calculate the angle θ between vector pairs:

cos θi = q · di
|q| · |di|

(3.4)

The closer this value is to one the better the match. Shortcomings of this model include
the inability to reduce the description length of the document, since words are only
replaced with values. Also, it does not tell much about the statistical structure within
and between documents.

3.2.2 Latent Semantic Indexing
LSA [14] is a method that discovers hidden concepts in documents by using single value
decomposition (SVD) on the set of documents D. LSA uses a term-document matrix A
whose rows correspond to terms and columns correspond to documents. The entry Ai,j
equates to the tf-idf value of the term i for the document j. SVD decomposes A into U ,
Σ, and V , such that A = UΣV ∗, with U and V being orthonormal matrices and Σ being
a diagonal matrix with the single values on its diagonal. LSA uses the decomposition
to find a low-rank approximation, that is, a matrix Ak = UkΣkV

∗
k of a predefined lower

rank k closest in similarity to the original matrix A. This is done by deleting all but the
k biggest single values in Σ. LSA minimizes the Frobenius distance ‖A − Ak‖F . In this
application, k is the number of hidden concepts to be learned. The vector representations
of the documents based on this model can be found in the columns of ΣkV

∗
k . The number

17



3 Related Work

of dimensions k is an empirical question. Essentially, k is much smaller than the original
space dimension, which is usually the total number of documents. Previous papers show
that for Wikipedia dumps a good value for k should be chosen between 200 to 500 [10].

3.2.3 Latent Dirichlet Allocation
LDA [9] is a generative probabilistic model that automatically discovers topics from a
data collection. The basic idea is that documents are represented as random mixtures
over latent topics, where each topic is characterized by a distribution over words. The
model is a three-level hierarchical Bayesian model with the first level being the corpus-
level, the second being the document-level, and the third being the word-level. Setting the
number of topics to be learned to K, LDA makes the following assumptions for generating
a document d = {w1, . . . , wN}:

1. Choose the document length N ∼ Poisson(ξ)

2. Choose the document’s distribution of topics θ ∼ Dir(α) with K dimensions

3. For each document word wn:
a) Choose topic zn ∼Multinomial(θ)
b) Choose wn from p(wn|zn, β), a multinomial probability conditioned on the topic

zn. β is a K × V matrix with βij = p(wj = 1|zi = 1)

The model is learned with Bayesian inference, e.g. by using collapsed Gibbs sampling
and expectation propagation. As for K, [21] discusses how to choose the number of topics.
Given the computed model, the topic of a word is predicted with Bayes’ theorem.
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4 Encyclopedic Knowledge Integration into
RNNLMs

4.1 Motivation
In the past, RNNLMs were mainly fed with additional information that are syntactic or
restricted to the local context. This can be problematic when translating sentences like

“A journalist wrote articles for a column” (4.1)

The problem here is that “column” has ambiguous meaning and can both refer to an
upright pillar or a newspaper section, although it usually refers to a pillar. If the training
data is not taken from news domains or is limited in size so the words “column” and
“journalist” have not been seen in the same context, the system is likely to choose the
wrong translation. For us humans it is obvious that the newspaper section is meant here,
as the content words “journalist” and “articles” suggest.

In this work, we want to provide RNNLMs with global information extracted from
offline encyclopedia, such as Wikipedia. By doing so, the model may create stronger
ties between words from the same domain, e.g. “column”, “articles”, and “journalist”,
that did not often appear together in the past, with the purpose to find more suitable
translations.
We propose two approaches, one that integrates side information on the word level

into a FRNNLMs, and one that uses a dedicated continuous space vector determined on
the sentence level in conjunction with a RNNLM, which we will refer to as an extended
recurrent language model.
The proposed models were used to rescore English-Chinese and English-Romanian base-

line systems.
In this work, we used the torch7 1 implementation of a recurrent neural network-based

language model [24] to train all of the models.

4.2 Encyclopedia and Knowledge Extraction
Wikipedia offers all of the available content to users for offline use [6] in a number of
different languages. The contents are available for download both in XML data format
or as SQL databases. In this work, XML files without links and media content 2 were
used because they mostly contain textual data. The English (EN) archive has a size of
12.2 GB, the Chinese (ZH) archive a size of 1.2 GB and the Romanian (RO) archive
a size of 363 MB. For each language, the Wikipedia content needs to be preprocessed
in the beginning. A characteristic of Wikipedia is that most of its articles only refer
to a small group of lexical categories. For example, there are a lot more articles about
objects than activities. To complement the weaknesses of Wikipedia and show our model’s
1http://torch.ch/
2zhwiki-latest-pages-articles.xml
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performance independently of one specific encyclopedia, we web-crawled a Chinese lexicon
from zdic.net [1] which offers short but precise Chinese explanations for all types of words.
The following experiments that are based on Wikipedia will be referred to as “WIKI” and
those based on the lexicon will be referred to as “ZDICT”.

4.2.1 Word Level Information

In this approach, for each word in the training sentence we search for a corresponding
category from Wikipedia, which we use as a label. On this basis, we create a parallel data
stream of words and their labels, and use this as input into a factored neural language
model in order to improve the rescoring of n-best lists. The motivation behind using word
categories from Wikipedia in association with words is to strengthen the relatedness of
words in a sentence, which is actually a good translation but gets a low score according
to the underlying translation model. Given the previous sentence 4.1, Example 4.1 shows
two potential hypotheses in decoding.

1. 一位one︸︷︷︸
NR

记者
journalist︸ ︷︷ ︸
新闻 (=news)

给
for︸︷︷︸
P

柱子
column︸ ︷︷ ︸

建筑(=archit.)

写
write︸︷︷︸
VV

文章
article︸ ︷︷ ︸
作品

2. 一位one︸︷︷︸
NR

记者
journalist︸ ︷︷ ︸
新闻 (=news)

给
for︸︷︷︸
P

专栏
column︸ ︷︷ ︸

新闻(=news)

写
write︸︷︷︸
VV

文章
article︸ ︷︷ ︸
作品

Example 4.1: Two hypotheses labeled with Wikipedia categories

Although the second translation is obviously the better one, the first translation could
be more likely according to the translation model since, generally, a column describes
more often a pillar than a newspaper area, so “柱子 (=archit.)” gets a higher model
score. For example, the words “journalist” and “column” might have not been seen
together. However, their Wikipedia categories “news” and “news” might have appeared
togethers in the context of other news-related words. Our approach to solve this problem
is to tag the words in the sentence with according Wikipedia categories. By labeling the
words, the bond between words related to each other, such as “column” and “journalist”,
is reinforced by their common factor “新闻 (=news)” which contributes to a higher score
for a correct translation.

4.2.1.1 Word Category Extraction

In the following, the Wikipedia category extraction and word tagging will be explained.
First, the Wikipedia database dump is cleaned with the Wikipedia extractor tool WikiEx-
tractor.py 3, that discards any information but plain text or annotation present in Wikipedia
pages, such as images, tables, references and lists. In case of the Chinese Wikipedia, the
extracted Wikipedia text must be further cleaned and normalized in multiple steps due
to several characteristics specific to the Chinese Wikipedia. First, the entire content is
displayed in traditional Chinese characters by default, so it needs to be transformed into
simplified Chinese to be consistent with the training data. Another characteristic of the
Chinese Wikipedia is that it uses five instead of two character sets, which are: simpli-
fied Chinese, Hongkong traditional, Macao traditional, Malaysia/Singapore simplified and
3http://medialab.di.unipi.it/wiki/Wikipedia_Extractor
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Taiwanese style. These modes differ not only in the two standard character sets but also
in local expressions specific to certain regions. This makes the transformation between
character sets confusing, especially because the Chinese Wikipedia does not offer a gen-
eral rule to retrieve simplified Chinese phrases. Afterwards, we segmented it with the
Stanford Word Segmenter [4].
Once the preprocessing is done, the target side of the language pair is tagged with POS

information. The POS tags for the Chinese corpus are generated by the Stanford Tagger
[5]; the tags for the Romanian corpus are created by the tagger described in [22]. Figure
4.1 shows a snippet of POS-tagged Chinese text. A list of all possible Chinese POS tags
can be found in “Part-Of-Speech Tagging Guidelines for the Penn Chinese Treebank” [3].

史蒂芬帕伦#NR ：#PU 追寻#VV 水银#NN 的#DEC 踪迹#NN
海洋#NN 是#VC 一#CD 个#M 非常#AD 复杂#JJ 的#DEG 事物#NN 。#PU

Figure 4.1: Segmented text labeled with POS

A Wikipedia page, labeled with a title, is either an article, a redirection page, or a
category page which encompasses one or multiple pages. We define the search space as
the set of all page titles. Given a word, we search for the page with the same word as title
and retrieve its category which is found at the bottom of the page, as shown in Figure
4.2. In this example, the article has the title “马”(horse) and has three categories “驯养
动物”(domestic animals), “马属”(Equus) and “生肖”(Chinese zodiac).

分类: 驯养动物|马属|生肖

Figure 4.2: Word categories at the bottom of a page

The equivalent information can be found in the XML file, as shown in Figure 4.3. The
XML file has a list structure of all Wikipedia pages, which are included between the tags
<page></page>. The tag <ns></ns> at the beginning of a new page indicates whether
it is an article (0) or a category (4). For simplicity, the first category in the list, which
usually serves as a good categorization, is taken as a word’s category.

<page >
<title >马</title >
<ns>0</ns>
<id>39564 </id>
<revision >

.

.

.
[[ Category:驯养动物|EC]]
[[ Category:马属|FC]]
[[ Category:生肖|H]] </text >
<sha1 >5 z7i2gcm92uxhcsvxkkh4kuompeqin7 </sha1 >

</ revision >
</page >

Figure 4.3: Title and category information in the XML file
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The steps of generating a mapping of pages to their category are as follows: 1. Extract
the categories of articles. 2. Extract the categories of redirected pages and add them to
categories list of the redirecting pages. 3. Extract the categories of category pages. 4.
Merge the results of the above steps to one final lookup table that does not distinguish
between articles and category pages.
For the English-Chinese system it is sufficient to only tag the nouns in the data set

with Wikipedia categories, whereas for the English-Romanian system we also tagged the
entire corpus. This is because a big fraction of the Wikipedia articles deal with objects
(nouns) rather than activities (verbs). Also, the Chinese Wikipedia is much larger than
the Romanian Wikipedia. The results are presented in Chapter 5.
Using the POS tag as a word’s default factor, we look up it’s Wikipedia category and,

if such one exists, update the word’s factor accordingly. Denoting the set of unique words
in the training corpus with W = {w1, . . . , wN}, the set of categories of words that appear
in training with C = {C1, . . . , CM}, we define the frequency of n-sized categories as
|{ Cj ∈ C |Cj | = n }|.

Figure 4.4: Frequency of categories based on category size

For the English-Chinese system, 5166 Wikipedia categories in total are seen in training.
Figure 4.4 shows the distribution of the number of categories of a certain size. We can
see, that the frequency of larger categories decreases rapidly. For example, there are less
than ten categories that share the common size of 15. On the other hand, there are alot
of categories that only contain one element. To reduce the number of categories we set a
lower boundary x on a category’s size, so in case a category has less than x elements we
resort to the next higher category. We recursively go up the tree of categories and their
children. We stop at a category that either fulfills the size requirement or is a root. Note
that there can be multiple category trees. Among experiments with x = 5, 10, 15, those
with x = 5 yielded the best results, which we present in Chapter 5. The total numbers
of categories used for the Chinese corpus are listed in Table 4.1.

4.2.1.2 Integration into Factored Neural Language Model

In the input data preparation process a truncated vocabulary with the 10000 most fre-
quent words is used, which is motivated by Zipf’s law in NLP. It says there is only a small
fraction of words that constitute a big portion of the corpus, the rest of the corpus is
made out of less common words. The common words are mostly stop or function words,
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Figure 4.5: x=5 Figure 4.6: x=10 Figure 4.7: x=15

x #categories
original 5166
5 3323
10 3301
15 3296

Table 4.1: Number of seen categories in training

e.g. “the”, that indicate how content words relate to each other. Content words usually
have lower frequency and refer to objects, actions or properties. Within the vocabulary
three entries are reserved, one for the start of a sentence; one for the end of a sentence;
and one that represents out-of-vocabulary (OOV) words. Based on the vocabulary the
data is transformed into a 2D-Tensor of word indices, where each row corresponds to a
sentence. To speed up training time corpus is broken down into mini-batches and the
model is trained on graphics processing units (GPUs).
For training we used the torch framework and the neural network packages nn, rnn.

The factored language model proposed in the paper [28] served as the model basis, which
takes one or multiple factors at the input layer and offers the option of a factorized output
layer.
The input layer consists of a “LookupTable” and a “SplitTable” that project the input

onto a lower dimensional word embedding vector, which is dense and real-valued. Each
dimension of the vector represents a latent aspect of the word, and captures its syntactic
and semantic properties [25]. The “SplitTable” splits the sentence into a set of word
embedding vectors, which are then sent through one or multiple LSTM-based layers with
the support of “Sequencer” modules and, finally, projected onto factored output proba-
bilities. The instance of the FRNNLM we used is based on the work in [28] and takes
two factors, the word’s surface form and its Wikipedia category. These are mapped to
an embedding vector of size 100, which is the same size as the first LSTM-layer. For the
second LSTM-layer we use 200 nodes. For the output we only used the surface form of the
next word as the only factor. In model training statistical gradient descent is employed
according to the negative log-likelihood loss function.

4.2.2 Sentence Level Information
The idea to use a dedicated topic vector is motivated by a more flexible representation
of information and methods that are capable of drawing correlations betweens words
independently of their distance. For example, the sentence

“Columns contain articles written by journalists” (4.2)
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4 Encyclopedic Knowledge Integration into RNNLMs

exhibits several problems. First, when translated into a low-resource language, e.g. Ro-
manian, some of the topic words do not have their own Wikipedia entry, so we cannot
take full advantage of the first approach. Second, the contextual word of “columns”,
which is “journalists”, can appear later in the sentence. This has motivated us to take
words both left and right of the current word into account during translation. A topic
vector is created for the current sentence based on topic-related Wikipedia articles. In
the above example these would most probably be news related articles. By compressing
the information of these articles into a vector which is associated with each word, we can
improve the translation of single words by considering global topic information spanning
neighboring words. To create a ranking of similar documents and their representation
to a given sentence, vector space models are employed, such as tf-idf [38] and LSA [10],
as well as probabilistic models, such as LDA [9]. After representing the sentences and
cleaned encyclopedia articles as bag-of-words, we query for each sentence the most similar
documents from the total set of encyclopedia articles. These documents provide general
information, such as higher-level concepts, about the current sentence. Based on the cho-
sen model, e.g. LSA, the best documents are transformed into vector representations and
the averaged sum of the vectors is used as the additional feature input for the extended
neural language model. This process is illustrated in Figure 4.8.

We used the python gensim library 4 to create the tf-idf, LSA and LDA models on
the encyclopedia data. For the LSA model we chose k = 300 as the number of hidden
concepts; for the LDA model we chose K = 100 and used the default values for the
remaining parameters suggested by the gensim library.

sentence docs

feature
vector

neural network

vector vectors

transformation transformation

ranking
+ avg. sum

Figure 4.8: Feature input creation process for the extended language model. Sentence and
encyclopedia articles are transformed into vector representations based on the
underlying model. The articles most similar to the sentence are chosen; then
their averaged sum constitutes the feature input.

4https://radimrehurek.com/gensim/
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4.2 Encyclopedia and Knowledge Extraction

4.2.2.1 Integration into Extended Neural Language Model

The basic RNNLM consists of an input layer, a hidden layer with recurrent connections
that maintains a representation of the sentence history, and an output layer which pro-
duces the probability distribution over words. We propose an extension of the RNNLM
by extending it with an additional sentence-based feature layer that is connected to the
output layer, using the nngraph package [2] of the torch framework. Since this real-valued
feature vector stays the same for all words in the current sentence, it is replicated for each
word beforehand. This way, the feature information is retained in the model while the
same sentence is being processed. LSTM-based layers are used for the m hidden layers.
Given a sentence w = {w1, w2, . . . , wn}, the sentence-level information f is computed for
the sentence w based on the underlying topic model and duplicated for each word. For the
i-th word we denote its representation with xi, which is encoded using 1-of-N coding, the
feature input with fi, the hidden layers with s1, s2, . . . , sm and the output layer with yi.
With one connection from the feature input to the output layer, the hidden and output
layers are computed according to (4.3).

s1
i = f1(U1xi +W1s

1
i−1)

sji = fj(Ujsj−1
i +Wjs

j
i−1),

j ∈ {2, . . . ,m}
yi = g(V smi + F fi)

(4.3)

where fi represents activation functions, and g the softmax function. For training of
the network, that is finding the weight matrices U1,...,m, V,W1,...,m, F , stochastic gradient
descent is used according to the negative log-likelihood loss function. We also tested the
option of adding an additional connection from the feature layer to the first hidden layer,
as indicated in Figure 4.9.
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4 Encyclopedic Knowledge Integration into RNNLMs

ys2s1

x

U2
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F

f

f

W2W1

Figure 4.9: Extended recurrent language model with additional feature input f and two
LSTM-based hidden layers. The dashed line from the feature input to the
first hidden layer represents an optional connection.
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5 Evaluation

5.1 Used Data and System Description

We evaluated the FRNNLM and the extended language model on English-Chinese and
English-Romanian language pairs. For each language pair we created the n-best lists using
the in-house phrase-based machine translation system and used the models as additional
features in rescoring.
All recurrent neural network-based language models are trained on the target side of the

parallel training data, and used in addition to the baseline features to improve rescoring.

5.1.1 English-Chinese

The English-Chinese phrase-based baseline systems are trained on the TED and UN
corpus, optimized and rescored on the TED dev2010 and tested on the test2010 corpora.
The Chinese corpus contains 148.968 sentences, the development set 887 sentences, and
the test set 1570 sentences.
To build the baseline systems preprocessing including tokenization and smartcasing

is applied to the data. Then, a word alignment is created over the parallel data with
the GIZA++ toolkit [34]. A phrase table is built on top of that with the Moses toolkit
[23]. In addition, two other phrase tables are created: an indomain phrase table which
is only based on the TED data, and a union of the basic phrase table and an adapted
phrase table (conjunction of large out-of-domain phrase table and indomain phrase table)
according to [29]. Corpus adaptation is motivated by the problem of gathered indomain
corpora usually being limited in size, which makes it impossible to train a standalone
model with respect to the target recognition task. For this reason, it is common to use a
large background corpus for model training and an indomain corpora for fine tuning.
Several language models were tested. First, a 4-gram language model with modified

Kneser-Ney smoothing was trained with the SRILM toolkit [41]. Second, an indomain
language model based on the indomain phrase table was created. Finally, a bilingual
language model and a 9-gram cluster language model with 1000 word classes and witten-
bell smoothing was created according to the MKCLS algorithm [31]. The latter alleviates
data sparsity problems.
As for reordering two different rules were used on the source language. First, short

range reordering rules were learned from POS information produced by a TreeTagger
[39]. Second, tree-based reordering rules were learned with the Stanford Parser [37] to
model longer dependencies and ranges. The resulting reordering possibilities are then
encoded in a lattice.
Multiple SMT systems with different configurations were created. After comparing

them with each other, we chose two baseline systems for which we will present the results:
a basic system and a system with the highest BLEU score on the test set.
The first baseline system, which will be referred to as “basic”, uses a basic 4-gram

language model and short reordering rules. In total, eight features are used to create
an n-best list with 300 entries, which include the language model, the reordering model,
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word count, phrase count and four translation models (forward and backward phrase
translation and forward and backward lexical translation).

The second baseline system, which will be referred to as “complex”, uses the adapted
union phrase table, a general and an indomain language model, as well as long range
tree reordering rules. In total 12 features are incorporated to create an n-best list with
3000 entries, which include two language models, one reordering model, word count,
phrase count, and six reordering models (both-way phrase translations, both-way lexical
translations, both-way adapted phrase translations, and the lattice score).
Minimum error rate training [32] is used for optimization in decoding as well as for

rescoring of the n-best list.
All of the Chinese neural language models use a vocabulary of size 10K.
For sentence level side information, as described in Section 4.2.2, an additional web-

crawled Chinese lexicon from zdic.net [1] is used in the English-Chinese system to show
the model’s performance independently of a specific encyclopedia.

5.1.2 English-Romanian

The English-Romanian baseline system is trained on corpora of WMT 2015 Shared Trans-
lation Task, optimized on the first half of news-dev 2016 and tested on the second half
of news-dev 2016. In addition, for rescoring a subset of 2000 sentences of the SETimes
corpus is used for further optimization.
The English-Romanian baseline system uses two word-based language models, 2 cluster-

based models with 50, 100 or 1000 clusters, and a POS-based language model. In total
22-23 features are used to generate an n-best list of size 300. A full system description
can be found in [28].
Minimum error rate training [32] is used for optimization in decoding, whereas ListNet

[27] is used for rescoring of the n-best list.
All of the Romanian neural language models use a vocabulary of 5K.

5.2 Results

In this section, we show the results to all of the experiments conducted on the English-
Chinese and English-Romanian system. The results are displayed in BLEU.

5.2.1 English-Chinese

The English-Chinese (ZH) systems before rescoring gives a BLEU score of 16.35 (“basic”)
and 17.05 (“complex”) in testing. For all of the following experiments, a system that
is rescored with a basic RNNLM will serve as the baseline system system. We labled
only nouns in the data sets, which led to word coverages as shown in Table 5.1. In the
first experiment of English-Chinese the scores of the FRNNLM are used in addition to
the baseline features, the results are shown in Table 5.2 and Table 5.3. BLEU score
improvements over the baseline system are displayed in parentheses. The FRNNLM that
uses surface form and Wikipedia categories as factors performs 0.66 BLEU score points
better in testing than the same model without Wikipedia categories. The system that
uses words, Wikipedia categories, and POS as factors performs 0.84 BLEU points better
than the same system without Wikipedia categories.
In a second experiment, extended language models along with the different topic mod-

els to compute the feature input vector based on Wikipedia are studied. Tf-idf, LSA
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5.2 Results

Data devdata testdata
basic 11.19% 10.68%
complex 11.21% 10.61%

Table 5.1: ZH factored language models: word coverage when only nouns are labeled

experiment devdata testdata
Baseline 14.07 16.61
+Factored LM POS 14.14 17.10
+Factored LM Cat 14.09 (-0.05) 16.96 (-0.14)
+Factored LM Cat + POS 14.11 (-0.03) 17.43 (+0.33)

Table 5.2: ZH factored language models (“basic”)

Model devdata testdata
Baseline 14.7 17.02
+Factored LM POS 14.77 16.97
+Factored LM Cat 14.89 (+0.12) 17.63 (+0.66)
+Factored LM Cat + POS 14.75 (-0.02) 17.81 (+0.84)

Table 5.3: ZH factored language models (“complex”)

and LDA are used for similar document ranking as well as vector representation. It is
worth mentioning that the method for ranking can be paired with a different choice for
representation. The performance results of various combinations of pairings are presented
in Table 5.4 and Table 5.5.

Rank Vect devdata testdata
Baseline 14.07 16.61
TFIDF TFIDF 14.05 (-0.02) 17.26 (+0.65)
LSA TFIDF 14.03 (-0.04) 16.68 (+0.07)
LSA LSA 14.10 (+0.03) 16.78 (+0.17)
LDA TFIDF 14.08 (+0.01) 16.54 (-0.07)
LDA LDA 14.06 (-0.01) 16.88 (+0.27)

Table 5.4: ZH extended language models: overview of different feature vectors (“basic”)

Rank Vect devdata testdata
Baseline 14.70 17.02
TFIDF TFIDF 14.78 (+0.08) 17.68 (+0.63)
LSA TFIDF 14.78 (+0.08) 17.31 (+0.29)
LSA LSA 14.83 (+0.13) 17.80 (+0.78)
LDA TFIDF 14.79 (+0.09) 17.41 (+0.39)
LDA LDA 14.79 (+0.09) 17.27 (+0.25)

Table 5.5: ZH extended language models: overview of different feature vectors
(“complex”)

In case of tf-idf and LSA choosing the same method for both ranking and vector rep-
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resentation causes a higher gain. For example, the tf-idf model creates an increase of
0.65 BLEU and 0.63 BLEU respectively on the baseline systems, and LSA an increase of
0.17 BLEU and 0.78 BLEU. The only exception to this rule is LDA. One reason for this
could be suboptimal parameter picks for this generally more complex generative model.
Despite the good performance of the LSA model, we use the tf-idf model in the following
experiments due to its simplicity and, thus, faster training and evaluation. Models trained
on Wikipedia use the top two articles for each sentence and are trained with a learning
rate of 0.05 for 50 epochs.

The Chinese lexicon crawled from zdic.net [1] contrasts Wikipedia in the variety and
length of definitions. The lexicon provides more but shorter compact explanations for all
types of words, particularly verbs. The models based on zdict (“ZDICT”) use the top ten
most similar articles for each sentence and are trained for 40 epochs with a learning rate
of 0.05. Despite the differences between Wikipedia and zdict, the use of the lexicon shows
an increase of 0.13 BLEU and 0.56 BLEU in testing, which is comparable to the model
improvement based on Wikipedia. The results are shown in Table 5.6 and Table 5.7.

Model devdata testdata
Baseline 14.07 16.61
+WIKI 14.05 (-0.02) 17.26 (+0.65)
+ZDICT 14.10 (+0.03) 16.74 (+0.13)

Table 5.6: ZH extended language models: comparison between different encyclopedia
sources (“basic”)

Model devdata testdata
Baseline 14.7 17.02
+WIKI 14.78 (+0.08) 17.68 (+0.66)
+ZDICT 14.91 (+0.21) 17.58 (+0.56)

Table 5.7: ZH extended language models: comparison between different encyclopedia
sources (“complex”)

An overview of all models along with their perplexities is given in Table 5.8.

Model PPL
Baseline 128.17
Factored LM POS 110.86
Factored LM Cat 109.73
Factored LM Cat+POS 110.38
WIKI 118.11
ZDICT 118.64
WIKI+ZDICT 119.02
WIKI 4-CONTEXT 118.46

Table 5.8: ZH model perplexities

All models exhibit an evident reduction in perplexity compared to the baseline system,
which is consistent with the rescoring results. In addition, two extended language models
whose feature inputs are determined differently are listed with their model perplexities.
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5.2 Results

The first model’s feature input depends on both Wikipedia and zdict.net; the second
model’s feature input is based on the last and next four sentences.
As indicated in Figure 4.9, an additional connection was established between the feature

layer and the first hidden layer in another experiment. As a result, the model with two
connections gained a small increase of 0.01 BLEU and 0.16 BLEU on the model with just
one connection, as shown in Table 5.9 and Table 5.10.

Model devdata testdata
Baseline 14.07 16.61
+TFIDF 14.05 (-0.02) 17.26 (+0.65)
+2Con TFIDF 14.05 (-0.02) 17.27 (+0.66)

Table 5.9: ZH extended language models: connecting feature input with two layers
(“basic”)

Model devdata testdata
Baseline 14.70 17.02
+TFIDF 14.78 (+0.08) 17.68 (+0.63)
+2Con TFIDF 14.74 (+0.04) 17.81 (+0.79)

Table 5.10: ZH extended language models: connecting feature input with two layers
(“complex”)

5.2.2 English-Romanian
In the previous work [28], the factored language model for English-Romanian integrated
four factors: the word’s surface form, POS, and word clusters with 100 and 1000 class
respectively. Our English-Romanian (RO) experiments build on top that, using a vocab-
ulary size of 5K for all systems as well as the same denotations to illustrate the following
results. For this language pair we extracted Wikipedia categories for both nouns and all
word types. The word coverages of tagged words can be found in Table 5.11, which shows
significant differences between the two choices.

Data Nouns All
Devdata 1.94% 9.06%
Testdata 2.62% 10.17%
Setimes 3.48% 11.14%

Table 5.11: RO factored language models: word coverage by Wikipedia categories

In the first experiment, the FRNNLMs are evaluated without the baseline features.
The system from the previous work with all four factors for input and prediction reached
a BLEU score of 28.54, as shown in Table 5.12. This model will serve as reference for
our models. The FRNNLMs with Wikipedia categories as factor show an improvement
of 0.17 BLEU and 0.30 BLEU points respectively depending on how the data is tagged.
Table 5.13 shows the results of the model’s joint probability used in addition to the

baseline features in three configurations [28]. Adding Wikipedia categories for all word
types achieves an improvement of about 0.1 BLEU in two configurations (Conf2 and
Conf3) over the reference model.
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Input Prediction Single
Word Word 27.88
All factors All factors 28.54
+Cat (Nouns) +Cat (Nouns) 28.71 (+0.17)
+Cat (All Words) +Cat (All) 28.84 (+0.30)

Table 5.12: RO factored language models: single scores

Model Conf1 Conf2 Conf3
Baseline 29.86 30.00 29.75
+All factors 29.94 30.01 30.01
+All factors + Nouns 29.94 30.31 29.99

(+0.00) (+0.30) (-0.02)
+All factors + All Words 29.95 30.13 30.14

(+0.01) (+0.12) (+0.13)

Table 5.13: RO factored language models: end scores

In another experiment, the extended language model is used for rescoring in addition
to the previously discussed factored neural language models. The results are illustrated in
Table 5.14. The improvement over the original factored neural language model with four
factors is indicated in parentheses. It turns out that the combined use of Wikipedia cate-
gories and Wikipedia topic information performs about 0.2 BLEU better in two different
configurations (Conf2 and Conf3). The system that uses Wikipedia categories for all word
types in conjunction with the extended language model achieves an improvement of 0.07
BLEU over the system without extended language model scores in these configurations.
The best system exhibits a score of 30.23 BLEU, which is 0.22 BLEU better than the
best system of the previous work [28] that has the same vocabulary size.

Model Conf1 Conf2 Conf3
All factors 29.99 30.19 29.99

(+0.05) (+0.18) (-0.02)
All factors + Nouns 29.99 30.29 30.23

(+0.05) (+0.28) (+0.24)
All factors + All Words 30.00 30.20 30.21

(+0.05) (+0.19) (+0.20)

Table 5.14: RO extended language models: end scores
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6 Conclusion

6.1 Summary
Language modeling is an important issue in statistical machine translation because it
determines the fluency and adequacy of the language. The success of neural networks
revolutionized language modeling and machine translation in general. At the same time,
they exacerbate the data sparsity problem, that is the need of large amounts of training
data to generate a reliable model. To counter this problem, this thesis focuses on adding
related external information, that contributes to a better understanding of a sentence,
to neural network-based language models. The additional higher-level information is
obtained from encyclopedic sources, such as Wikipedia. We then use these extended
language models in the rescoring of n-best lists of a statistical machine translation system.

We propose two approaches to integrate side information into recurrent neural language
models. The first is based on a factored neural language model, that is able to create
multiple predictions of parallel streams of input data – the factors. In previous works, the
use of factors was limited to basic syntactic information, such as POS. We create word
classes extracted from Wikipedia and use them as factors to complement the information
in the sentence. In another approach we extend the conventional recurrent neural net-
work by a dedicated feature vector in the input layer. The idea is to incorporate more
complex information into the neural network. For each sentence in training, topic related
encyclopedia articles are searched and compressed into a vector form, which then serves
as the additional feature input. We introduce three methods to determine the relatedness
between articles and sentences and represent the documents in the required form.
By using global information from large encyclopedia, we have improved translation

systems on two different language pairs by up to 0.84 BLEU and 0.24 BLEU respectively.
This work exhibits great potential for low-resource translation tasks.

6.2 Future Work
For future work it would be very helpful to extend the knowledge source, in our case
Wikipedia, by semantic networks, such as WordNet. For some languages that are less
common, this will be a challenging task. But also for more popular languages such as
Chinese, it can be difficult to find freely available sources. On the basis of a given external
source, other co-occurrence measures or topic models than the ones proposed can be
applied to supplement RNNLMs, e.g. frequency and mutual information. Depending
on the language and knowledge base, the same method can produce different results.
Moreover, bilingual RNNLMs can be adopted that also consider the n-grams of the source
sentence for the next word prediction. An advantage of those can be the incorporation of
additional information on both the source and target side of the language pair to facilitate
lexical disambiguation. Finally, the proposed methods can be applied in neural machine
translation, especially for low-resource languages.
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Acronyms

Glossary
n-best list top n candidate translations. 9, 10, 15, 20, 27, 28, 33

n-gram model predicts the next word in a sequence depending on the previous n − 1
words. 1, 3, 10, 15

backpropagation method used together with an optimization method, e.g. gradient de-
scent, to train a neural network. 11, 13

baseline system reference system which serves as a basis for change. 2, 28

corpus set of texts for statistical analysis. 1, 27

decoder finds the best translation to a given sentence. 1

epoch one full training cycle on the training set. 12

feed forward neural network an artificial neural network without cycles. 11, 13

hypothesis candidate translation. 3, 6–10, 20

language model models the language fluency of a word sequence. 1, 3, 5, 6, 11, 19, 27,
28

log-linear model see Formula 2.13. 6, 9, 10, 15

neural network see Section 2.3. 11, 12

perplexity measure how well a probability distribution predicts a sample. 11

recurrent neural network an artificial neural network with cycles. 12–14, 19

reordering model measures the likelihood of the movements of words and phrases. 5, 27,
28

translation model provides a mapping of words or phrases between two languages. 1, 3,
4, 28

Acronyms
BLEU bilingual evaluation understudy. 8–10, 27, 28, 30, 31, 33

BPTT backpropagation through time. 13, 14

EM expectation maximization. 4

FLM factored language model. 10, 15

FRNNLM factored recurrent neural network language model. 15, 19, 23, 27, 28, 31
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Acronyms

GPU graphics processing unit. 23

LDA latent dirichlet allocation. 1, 16, 18, 24, 29, 30

LSA latent semantic analysis. 1, 16, 17, 24, 28–30

LSTM long short-term memory. 14, 15, 23, 25

MERT minimal error rate training. 9, 10

NLP natural language processing. 12, 15, 22

OOV out-of-vocabulary. 23

POS part-of-speech. 1, 10, 15, 16, 21, 22, 27, 28

POS position-independent word error rate. 8, 28

RNNLM recurrent neural network language model. 1, 15, 16, 19, 25, 28, 33

SMT statistical machine translation. 1–8, 27

SVD single value decomposition. 17

TER translation error rate. 8

tf-idf term frequency–inverse document frequency. 1, 17, 24, 28–30

WER word error rate. 8
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