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Chapter 1

Introduction

1.1 Biometrics
Along with the growing automation of our modern life, there is an increasing
need for reliable identity verificatioll. Currently there are two popular ways for
solving this &eeurity problem. One is related to something ~that :)'ou have" , such
as credit cards, physical keys, etc., and the other depends on "something that
you know", such as passwords, Personal Identification Number (PIN), etc. (6).
As a Result of the extensive usage of these methods, people have to keep various
cards and remember tens of pl\.<;swords.Losing a card or forgetting a password
may bring u:;en; into great trouble. In the meanwhile, hanks, telecomlIlunication
companies and governments are suffering from losing hundreds of millions of
dollars per year due to the hreache; of current card or pa.o;;s ••••,ord based security
~y~telll:;[11.BiometriC!!based verification systems solve these problems as they
rely on ~something that you are~. They use features such as ~ignature, face
profile, fingerprint, voice print, eye retina and hand geometry to identify a
person by I;()mething that cannot be lost, forgotten or :;tolen.

1.2 On-line Signature Verification
This work deals with the automatic signature verification which belongs to the
biometric based methods. In contra."t to a writer identification system where
the system mw;t establish a writ~r's identity by comparing attributes of his
handwriting with all the "'Titer:; enrolled in a reference data bl\.~e,a verification
system decides on the claimed identity of a writer by a one-to-one comparison
proces:;.
There are two tYPellof signature verification sy~telils, Oil-line and off-linc, that
are differentiated by the data acquisition method. In an off-line sy~tem, the
signature image is digitized with a scanner or camera after the completc sig.
nature has been written on paper. An on-line system acquires the signature
trace in real time with a digitizing tablet or an instrumcnted pen. Since an
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on-line 8p;tem can uti1ir..enot ollly the shape information of the signature but
also the dynamic information, it is abo called a dynamic verification system,
whereas an off-line system is called a static verification system. With special
hardware, dynamic verification systems can acquire additional features such as
the air mo\'(~mentof the pen, the pen pressure on the paper or the pen inclina-
tion anglffi. All the;e dynamic feature;; reflect the unique habits of the signer
and are extremely hard to observe and imitate. A static verification systems
cannot recover these features with good accurac)'. Therefore on-line signature
verification systems usually show a better performance than off-line systems.
Here we focus on identity verification by on-line signature verification (05V).
Such a system has all the advantages of a biometrics based system, is extremely
user-friendly and the dynamic features give reason for a possible high security
level. Furthermore there are, fl."; we will see in the next section, more and more
computers equipped with the necessary hardware. Besides the great opportuni-
ties of an on-line signature verification systcm (05V5) there arc also difficulties
we have to solve. The biggest problem is the fact that signature patterns vaty
very much even those patterns of a same individual. Thus, signature verification
is a challcnging task in the biometric-based authentication.

1.3 Possible Applications
Already today many package delivery companies use special devices ill order
to record signatures. Likewise solile shops are alrcady equipped with devices
which record the signature Ilecessary for the purchase by credit card by means
of a graphics tablet. In both cases is the hardware for an on-line signature \'er-
ification system already available and by the application of such a system large
saving potentials possible.
Another large field of possible applications are mobile computers, which use a
pre;l;ure sensitive screen instead of a keyboard and a mouse. Also in combina-
tion with these ever more widespread devicffi, the OSV is the only biometric
procedure, which can be applied without any additional hardware.

1.4 Objective of this Work
In this report the development of an on-line signature verification system is
dft;Cribed. This development covers the steps of data acquisition, preprocessing,
feature extraction and c1a.';.sificationexperiments.
The report is organized as follows. Chapter 2 describes the data acquisition,
Chapter 3 and 4 deal with the preprocessing respectively tbe feature extraction.
5ince the dynamic time warping algorithm is a core technology for almost each of
the experiments, Chapter 5 describe; the algorithm and its different applications
for signature verification. Chapter 6 introduces the evaluation of a signature
verification system (SVS) and Chapter 1exhibits the experiments done. Finally,
Chapter 8 summarizes the results and outlines future work.
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Chapter 2

Data Acquisition

2.1 Types of Genuine Signatures and Forgeries
In oil-line signature verification one can distinguish between two kinds of genuine
signature and three kinds of forgeries [4]. The first t)'pe of genuine signatures
corresponds to signatures written by the subjects in the way they do it most
of the time without any restrictions. The second type arc the so-called "Cast"
signatures where the subjects were told to write their signatures as fast as pos-
sible. The major idea behind that is, that cw;tomcrs will occasionally accelerate
their writing. Furthermore these fast written signatures are useful to evaluate
the robustlle;s of a system with respect to variations in writing speed.
As mentioned, the forgeries can also be divided into three groups: random,
skilled and timing forgeries. A forgeries is considered random, when the forger
only knows how to spell the name of the subject whose signature he tries to forge.
A random forgery is done without any prior knowledge about the appearance
of the genuine signature. An imitation attempt is considered skilled, when the
forger pos.<o;e:,;information about the appearance of a genuine signature and goes
through a training process which consists of exercising imitations. The last cat-
egory, the timing forgery, is a skilled forgery where the forgers are provided with
additional information about dynamic properties of the genuine signature. In
the simplest ca.se this is the average duration of a genuine signature.

2.2 The Data Collection
For the data collection a C++ program was developed which enables the collec-
tion of all types of genuine signatures and forgeries. The dynamic information
for the timing forgeries are implemented as a repeatable animation of a genuine
signature. Figure 2.1 shows the start page of a collection session. If the writer
has used the program before, his settings can be loaded or a previous session
displayed. Besides some personal information like the sex and hand, the date
is saved. Furthermore, every session can be individually configured by the seg-
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Figure 2.1: The start page of the signature collection program.

sion setting!;. During the collection there is a short instruction and in C&..;eof
a forgery the necessary information is displayed above the input canvas. The
pen trace is displayed on the computer monitor as the signing takes place. Each
signature is saved as a sequence of points

where Pi,,,, is the horiwntal and Pi,1I the vertical pooition on the ~reen in pixel,
Pi.p the binary pressure valUe which indicates the pen status (Pi,p = 0 for a pen
up and Pi,p = 1 for a pen down) and Pi,t the system-intern time vaJue in ms.
Using this program, a data ba...;ecOIl.-'listingof 795 genuine signatures from a
population of 31 subjects and 1295 forgeries written by 32 individuals was built
up (see appendix A.I for details), Some genuine signature were collected with
a time delay of several months, which enables experiments that deal with the
changing of signature during a long period of time. Figure 2.3 exhibits some
examples of genuine signatures and corresponding forgeries.
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Figure 2.4: The collection applet ill lUi interuet brow:ser. Below the input canvas
are several in."trnctions.

2.3 Mouse-written Signatures
The input of an OSVS is a sequence of points which could also be sampled with
an ordinary computer mouse in."tead of special pen-input hardware. Of coun;e,
mouse-input looses some natural properties of a human signature. But never-
theless it is interesting to see, whether the developed methods are capable of
doing a reliable signature verification on 1lI0u.-;e-writtensignatures. As almost
ewry computer has a mouse, it was olwiow, to develop II. program which allows
the users to take part in the data collection through the intcrnet. The resulting
program is written in Java and consists of a so-called sen'let which organizes
the data base 011 the serwr and all applet which is the user interface on the
client side (SI..'C Figure 2.4). This solution makes the program for many people
conveniently acce;sible.
Since it is more time consuming to sign with a mouse, the data collection con-
centrated merely on genuine signatures and skilled forgeries. The program was
kept simple, so loading or indi..••idual configuration of sessions is not yet possible.
The resulting data base consists of 210 genuine signatures written by 21 indi-
viduals and 270 forgeries (see appendix A.2 for details).
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(3.1)

Chapter 3

Preprocessing

Although all the procedures used for preprocessing originate from on-line hand-
writing recognition, there is a substantial difference concerning the target of
preprocessing. That is the preprocessing in an OSVS may not eliminate under
any circumstances writer specific peculiarities. Thus only such processing steps
are executed, which do not eliminate the peculiarities of the subject, but sup-
pre;s coincidental lIoise and intra-personal variations. Figure 3.1 exhibits the
preproces.'!ingsteps described below.

3.1 Normalization
The size of a signature is not a writer dependent habit. For this reason a
linear normalization is performed that lIoflnnlizoo the height of each signature
to 1. After the normalization process the lowestp~.value is 0 and the highest
1. The p",-values are normalized accordingly with the same factor. Thus, the
most left point has the Pr-\-alue of 0, the highest Pr-value is dependent on the
signature. \Vith miny as the index of the point with the smallest Pv-va1ue,
maxy the index of the biggest pv.value and minx, mint accordingly the index
of the smallest Pr- respectively PI value, the transformation of a single point
p7r•g of the original point sequence to a point p;"iorm of the normalized point
sequence can be formalized as follows:

O•••g O•••g
N P.,r - Pmi"r.rP ""m =',r Orig Orig

pmarll,1I - Pminll,1I

Or'9 Ori9

P
N"rm = Pi.1I - Pm'''II.1I
',11 Or;9 Ori9

pmarll,1I - Pminll'V
Or;9 Ori9

"' Po'" - Pm;nt.'p"""'" -',1 - Or;9 Ori9
Pmarll.1I - P"';"II,y

PN"rm = p0ri9',p '.P
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3.2 Smoothing
In order to get rid of noise originated form erratic hand motions or inaccuracie!i
of the input device, a smoothing is performed on the normalized data point
~luellce. The smoothing method averages the position and time of every data
point within a smoothing window. The smoothing process is formalized by the
following equations:

Norm
W(j_j)Pj.:r (3.5)

II Re8<J"'p _ 1UMmpll ~P. P._l

P
Smooth = pllo'orm (3.6)
l,p '.p

-Smooth and p$mo<>t" are defined accordingly to pSmooth Here H' TelSP"-
P',II •.1 '.%' .t<lTt.

tively U'"nd stand for the first and last clement of the window function w which
are taken into account to get the new values.

3.3 Resampling
The pen-input device sample; a sequence of data points which can be either
equidistant in time or in space, where the equidistant intervals vary dependent
on the used hardware. In order to eliminate this variability, the point sequence
is resl\tnpled by a linear interpolation algorithm to be l-"quidistant in space. This
means that after rcsampling the Euclidean DL<;tanced between two consecutive
points has the same value:

( Re8<1"'p _ Re8<J"'p), + (pRu<J"'p _ RU<J"'p), _ d
P.,% P(i-I),% ',y P(._I),y-

(3.7)
Hereby is d a fixed value dependent on the nonnalized height of each signa-

ture.
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Chapter 4

Feature Extraction

The input of the fea.ture extraction rstep is the preprocessed data point sequences
p~~~amp.As v.'C will only usc this point sequence in further processing steps, we
will shorten the notation and write Pi instead of p~~M.mp.
The extracted featurHl should help the system to distinguish between genuine
signatures and forgeries. For an on-line signature verification system, these fea-
tUrft; call be divided into two classes: parameter and function features.
Parameter features are also known a.'istatic features which de:scribe the pro-
cess of writing for a segment within a signature or for the whole signature. Ex-
tracted parameters can be the number of strokes, the maximal .,.;riting speed,
the height-length-ratio of the signature, etc.
Function features regard the signature as a function of time and are for this
reason sometimes called dynamic features. Feature; of this cia.o;;;such as the
absolute y-po:;ition Fab_. (i) or the horizontal velocity F"d~ (i) are represf'nted
as functions where the time is implicitly given by the point-index i.

4.1 Function Features

4.1.1 Relative x-Position
After the preprocessing, the possible x-values depend on the length of a signa-
ture. The absolute x values are not useful as features becalL'>etight or wide
written beginnings of a signature can lead to different x values at the end of the
signature. For this reason, the relative x-po:;ition to the predect'NiOrpoint was
cha.;en as a more robust fPAturefor x-po:;itiolls. \Ve define this feature formally
by

F'""'(;j~{ 0 ,
P',z - P(i-l),z .

13
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4.1.2 Absolute y-Position
The vertical position of each point is an extremely important f('.ature. This fea-
ture needs no extra computation, we can simply use the normalized y.position:

(4.2)

4.1.3 Pen-downFeature
The pen-down feature p",nDown(i) indicate; the pr('N;ure of the pen at point
i. Likewise as the y-position, we can copy the corn~sponding value of the data
point sequence:

r.-p"nDown(.) _r I -Pi,p

4.1.4 Direction and Curvature

(4.3)

The following features provide information about the direction and the CUf'--ature
of the trajectory for each point.
The direction is a translation invariant feature which is detennined by a discrete
approximation of the first derivatives with respect to the arc length, :t and ~,
where ds = JdX2 + dY2' The direction feature consists of two components:

where

~/J(i) = ~x(i)
~s{i)

1'"'"'(.) ~ l>yU)
I ~s(i)

~x(i) = PHI,., - Pi-I..,

~y(i) = Pi+l.lI - Pi_1.11

~s(i)= J~x(i)2+~y(i)2

(4.4)

(4.5)

Figure 4.1 illustrates the definition of the direction feature.
The curvature feature (Figure 4.2) is not only translation, but also rotation

invariant. It is defined as the second derivatives ~ and ~ which are approxi-
mated by the angle between two elementary segments: 4>(i) = O(i + I) -O(i -1).
This angle is eneoded by its co.<lineand sine. Using the subtraction formulas for
sine and cosine these values can be computed as:

Fl"'"~(i) = cosO(i + 1)COlSO(i- 1) + sinO(i + l)sinO(i - 1) (4.6)

rin "'(i) = sin O(i + 1) cos6(i - 1) + cos O(i + 1) sin 6(i - 1) (4.7)

14
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Figure 4.1: Estimation of writing direction
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Figure 4.2: Estimation of curvature



4.1.5 Velocity and Acceleration

These two features represent local dynamic properties of a signature. In the
literature, two ways for computation of the;e features can be found. The first
way leads to one dimensional features that approximate tangential velocity or
acceleration. As there are several good reasOIlSto believe that the dynamic
properties mea..'mredby this feature can be cnlcial, we usc two dimensional
features that measure the horizontal and vertical velocity and speed components
separately instead of the one dimensional ones. The implementation of these
features is straight forward with the definitions from phy.si~. The horiwntal
velocity for example is computed a:;

F.'~Jz(i) = Ip(.-t),z - pi,zl + Ipi.z - p(i+IJ,zl
P(i+l),l - P(i-I),l

A.•
= Lit

(4.8)

F',d~(i) can be computed accordingly. AccRleration is the derivation of velocity
and thus the corresponding horizontal acceleration feature is defined as

Fvdz _ F"dz
Facc~(i) = (i-I) (i+l)

P(i+l),l - P(i-l).l

Av
= fj,t

(4.9)

Here Facc.(i) is also defined accordingly. In order to get smoother features for
velocity and acceleration, a time-window can be used instead of taking merely
the neighboring values.

4.2 Parameter Features
\Ve define parameter features for segments which are sequences of consecutive
points within a signature. This work makes use of two different segmentations.
In 7.1 we will use the whole signature as one single segment and in 7.4 we
will u.'>Clocal vertical position extremas as segment boundaries. The following
description is independent of the implemented segmentation-technique.
A segment 5. is defined by a sequence of points:

Si = (ps;,"Grl' ...,ps•.•••~) ('.to)

where 5;,,'ar! is the index of the first point of the sequence inside the prepro-
cessed point sequence and B;.~"d is the index of the last point. This definition
allows every unit from a ~ingle point to a whole signature to be olle segment.
FUrthermore the segments can be overlapping and space between two neighbor-
ing sequences is also possible. Additionally, we define B;,rninz to be the index of
the point inside the segment with the smallest Pz value. Accordingly, we define
5i,rnaxz , 5i.minll ,5;,mazll ,Bi,m,nl and 5i,maz!' To express that 8 point j is inside
the Segment 5; we simply denote j E 5. which is L'Quaito 5;,~!arl ~ j ~S•.~nd
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Fi,li!;ure4.3: Illustration of the computed function features. Here a black point
corresponds to a hight features value, a white one to a low value.
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4.2.1 Number of Strokes
This feature counts the numbt'r of pen-lifts within the 8e)I;mentand can be
formalized by

pSlrokeN(s;) = IUlpj.p = 1,P{j+l),p =O,j E Si}l

Hereby I{.}I stands for the numbt'r of elements in a set.

4.2.2 \Vidth

(4.11)

The width of a segment is simply the maximal horizontal distance between two
points of the tiC!1;lTlent:

pWidth(S)
i = PS,.•••~u.% - Ps, .•••,••~.'"

4.2.3 Aspect
\Ve define the a..<;pectof a segment as thc lcngth-width ratio.
undefined if there is no vertical expansion within thc segment.
fcature is given by

pA'P"CI(Si) = Ps•.•••oz~.% - Ps•.•••,••~,%
PS •.•••a~ •• lI - Ps •.•••, •••• l1

(4.12)

This feature is
Otherwise the

(4.13)

4.2.4 Duration Features
There are three durations of interest: The total duration pT.D• (5;) L<;the time
that was needed to write the whole segment. The other durations mcasure the
time the pen was on the paper respectively in the air during the writing process.

pT •••(S)-p _pi - S•.•••4.1 S,.~,~."t (4.14)

p{j+l),t - Pj.l (4.15)
S'-_t • .-.$'<5, ••••4
p J. P'P(J .•., ).p.'

P{j+l),t - Pj.t
S'._'art $,<S' .•••4

(l-PJ,p).(I-p(J+ ').p)-'

(4.16)

4.2.5 Trace Length Features
Likewise the duration. the trace lcngth can also be specified for the total segment
or the part the pen was on the paper respectively in the air. The;e three trace
lengths can he denotatoo fl..<;:

pL •••(S.) ~
S•.~,~•• 5:j<S'.'B"

18
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S""~rl $,<S, .•~d
~"p.P(j+'l.psl

(4.18)

IIP(J+I) - Pj II
S;,"Bo-' $J<S; .•••d

(I-PJ.p)'I'-"(J+').").'

(4.19)

Where 11.11 is the Euclidian distance betwccn two points.

4.2.6 Pen-up Direction

In most CfL'leSonly the picture of a signature will be Iwailable for a forger. Of
course this it; 1I0t sufficient to find out the correct order of the delayed strokes
i.e. i-clots or t-lines. In particular in context of names with several letters which
permit delayed strokes, there is 8 multiplicity of different combinations in which
the delayerllin~ can be made. The pen-up direction feature codes the sequence
of horizontal movements between two strokes. This permits testing whether
the delayed strokes of two signatures were written in the same sequence. \Ve
formally represent the pen-up direction to feature as a sequence of directions. A
threshold value controls thereby with which significance one of the two directions
B (for backward movement) or F (for fonvard movement) is present. If this
significance is not achieved, then it is a horizolltal neutral movement, which is
coded with an N.

p~"UpDir(Si) = (dirl, diPl, ... ), dir E {B, N, F} (4.20)

4.2.7 Function Feature Extremals and Average
Based 011the function feature there are several possibilities to defille parameter
features. The following features pick out one of the extremals or determine all
average ""lue of OIlefeature.

P"';"pfn, (5;) =min{Ff~at(jHj E 5;}

P"'tupf04' (5;) = max{Ff~at(j)lj E 5d

I: Ff<.'(j)
pt'v9pfu' (5,) = _~,,_s~.~_

S;,wd - 5;,4tart

(4.21)

(4.22)

(4.23)

Hereby feat is a placeholder for any of the function featUres described above.
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Chapter 5

The DTW-Algorithm

The Dynamic time warping (DT\\') algorithm [7] is a well known technique,
which had its first application in speech recognition. Since this algorithm W8.'l

used as one of tbe core technologies for almost every experiment of this work,
this section describes the algorithm, the modifications made for an efficient OSV
and the different pobl;ibilities the DTW can be used within the verification pro-
Ce8/;.

A major problem of signature verification is the fact that each signature is writ.
len with different speed. Unfortunately, a linear time adjustment cannot elim-
inate this effect, since there arc parts in each signature, which arc temporally
more or less strongly shortened by a faster signature. The DTW-algorithm
solves this problem since the algorithm enables a nonlinear time adjustment.
Thit; is accomplished by evaluating various permitted pairings bet .•••-een the
n-dimensional points of two sequences and S('lecting the best alignment path
through these points ba..;;edon some optimally criteria and S('arch constraints.

5.1 DTW-Distance
The experiments use different combinations of function features as input. A
combination of function features builds a feature vector

All the feature vectors of one signature are put together in one pattern

F ~ (F(l), F(2), ,.., F(N))

where N is the length of the preproces..;;eddata point sequence. Since the DTW
compares two patterns, we write

20



for the reference pattern lind

FTe$t = (FTnt(l), FTa,(2), ..., FTe.t(J))

for the t~t pattern.
As a measure of the difference between two feature vectors FRe/(i) and FTut(j),
a distance d(i,j) is employed between them. The definition of this distancc
is crucial for the system-performance. Perfonned experiments showed that a
quadratic distance with a maximal compollent distance leads to the best re-
sults. Such a maximal component distance pre,'ents that a single component
dominates the total distance by extremely large values. Thus, the following
distanc.e me;v;urement was implemented:

•
d(' ') " '{(Fl'"',(,) Fl''''('))' D'}I,) = L.. mm ReI 1 - rnt I ,max 1St

•••
(5,1)

Hereby maxDist is the upper boundary for the distance a single component call
contribute to the total vector-distance.
The cumulative distance c(i,j) bet .••.'een two ~\lences from the beginning of
the signature to point (i,j) is calculated as

c(i,j) = min{c(k,l)1(k,I) E Pred(;.])} +d(i,j) (5.2)

Hereby is Prcd(o,j) the set of permitted predeces.'lOrsof point (i,j). The initial-
ization of the above recursion is done by

,(1, 1) ~ d(l, 1) (5,3)

There are a lot of different possibilitit'S for defining the.set of predecessors. We
will discuss this topic in a later .section.
\\'ith the cumulath-e distll.llccthe overall distance betwecn two sequences is

C(FRe/,FTe.t) = c(l, J) (5.4)

The next .sectionwill introduce the ali,ll;nmentpath which enables a normaliza-
tion by the number of accumulated distanQ'S.

5,2 DT\V-Alignment Path
Sometimes we are not interested in the distance between two pattern..'l, but in
the alignment path. The optimal warping path can then he found recursively
by starting at point (I, J) and backtracking to the beginning of the signature
n.ccordinglyto the decision made in en.chpoint. To enable such a backtracking,
it is necessary to save the selected predecessor of each point.
The path is formally not a function, but a relation, which reprCtiCotsthe sequen-
tial allocation of feature vectors. If we 3.'isumethat the path ha:; the length Lp,
then the last allocation of the path is

Path(Lp) = (I,l)
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Figure 5.1: DTW transition.", On the left the symmetric DT\V, on the right
the Baklli model.

Starting at (/, J), the (i - 1)''' point of the relation is given by the ;;elected
predece;wr in Path(i):

Path(i -1) = argmin(k,I){c(k,lJl(k,l) EPredp"th(;)} (5.6)

The described algorithm guaranties that the first relation Path(l) will be (I, 1).
If we would like to refer to one of the two oomponents of Path(i), we write
Patko(i) for the first colilponent and Path1(i) for the second component:

Path(i) = (Patho(i), Pathl(i))

By the length of the alignment path it is now possible to normalize the DTW.
distance:

1
D(FR~/,FTe.d = L (F F )C(F&/,Frut)

P Rtf. Tul

Here Lp(FRtf• FTt•t) is the length of the path which aligns the reference and
the test pattern.

5.3 Possible Transitions and Restrictions
As mentioned before, there are several possibilities for permitted transitions. In
this work the following two approaches .••..ere used:
The simple or symmetric DTW

PTed(~J)m= {(i - I,j), (i - I,j - I), (i,j - I)}
and the Daki.;;modeL

(5.7)

PTed8J1j~= {(i - 2,j - 1), (i - I,j - 1), (i,j - 1) (5.8)

Figure 5.1 illustrates both models.
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Figure 5.2; A so called DTW matrix. Each point within the rectangle presents
a single vector-distance by its gray-value. White corresponds to small and black
to big distances. The DTW.path starts in the lower left and ends in the upper
right corner. The search window causes the black triangles which constrain the
valid area for the alignment path. The three vertical and horizontal lines within
the valid area arc due to the distances caused by the pen-clown feature.

The Bakis model does not allow vertical transitions which prevents degener-
ated paths with many consecutive horizontal or vertical transitions. However,
if one ~'quellce is much shorter than the other, then the Bakis model cannot
find an alignment path which ends in (I, J). If the input is II. complete signa.
ture, this is a good indication of a forgery, but if we lL~eshorter segments as
input, relatively big differences in the length of the point sequences are possible.
In this cases we will lL'lCthe symmetric version which leads ill every ca.o;;eto a
DTW-distance and a corresponding alignment path.
Furthermore it is possible to constrain the permitted transitions by a search
window, which allows only those points to be considered which are inside a re-
stricted area. A typical search window is a Ilarrow band along the diagonal of
the DTW-matrix. Such a search window saves It. lot of computations since the
local distances d(i,j) for points outside of the search window do not need to be
calculated. It abo prevents degenerated alignments. Figure 5.2 and figure 5.3
illlllitrate the alignment by the DTW-algorithm.
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(5.9)

Figure 5.3: The alignment of two signatures corresponding to 5.2.

5.4 Weighting of Feature Components
In order to obtain good verification re~;ultswith the DTW, it i;; not sufficient
to copy the features as they have been calculated into the feature vectors. Such
a procedure would ignore the different quality of the features as a c1a&iificatioll
criteria. For this rea.,;()ll a weight wfeat is a'iSigu to each fE'.ature component.
This weight controls the contribution to the total distance between tvro feature
vectors. lIere optimal weights were determined experimentally by systematical
repetition of the test verifications with diffenmt y,:eights.

5.5 Main References
In some of the following experiments a main reference signatures for each person
was needed. The simplest way to find such a main reference is to chose one by
random. This could be sufficient in some cases, but it will sometimes lead
to an untypical main reference. The DTW-distance measurement gives us the
possibility to find a more reasonable main reference. For this we compute the
cumulated distance

Cumj = LD(FR~!;,FRef:)
k#j

of each reference pattern Reil from subject i to all the other reference patterns
and chose the Reference j" with the ~mallest cumulated dista.nce as the main
reference:

j" = argminj {Cum~}
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Chapter 6

Evaluation of a SVS

The performance of a liignuture verification system i:; ,lI;cllcr611y evaluated llC-
cording to the error representation of a two-c1a.'>Spattern recognition problem,
i. e. with the type I (Fill: false rejection rate) and type II (FAR: false accep-
tation rate) error rates. These error ratel; vary with the acceptance/rejection
threshold. The llimal representation of the performance of a system is therefore
a diagram like fi,ll;ure6.1, which illustrates the tradeoff between the two error
rates. Each point in such a diagram corresponds to one threshold ,ralue.
Dependent on the field of application quite different results can be desirable.
A credit card company for example might accept a worse FRR, if the FAR is
near zero, in order 1I0t to bring the customers into unpleasant situations. For
an access control system however a very low FAR would be necessary.
Since different systems have a different FAR and FRR curves, the equal error
rate (EER) was defined as a possibility for comparing systems. The EER is
defined such that it gives the lowest theoretical common error rate possible for
a given data set and is determined as the intersection point of the FAR.FAA
curve and the function f(x) = x . The EEB. was used in many experiments as
the optimization criteria. But this does not nCCC'iSarilymean that the system
with the lo••••-est EEB. is the best choice for a special application.
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Figure 6.1: An example of a faL<>eacceptance. false rejection curve. Here the the
intersection point of the FAR-FAA curve and the function f(x) = x detennines
an equal error rate of 9.0%
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Chapter 7

Experiments

The experiments were evaluated 011 the data-bw;e built up during the project
(see A.2 for details). Seven original signatures of each person were ust.>das refer-
ellcet:i. This is half the signatures collected in olle session and it corresponds to
an effort which every user will readily make. The remaining genuine signature;
and the skilled forgeries were eXChl'iively used for tcst evaluations.
For the time being we asswlle that ''\'R is the general number of reference pat,..
terns for each signature and that Ref] is the j-th reference pattern of the signa-
ture from the individual i. We denote in the following experiment d~riptions
pJ~at respectively pleat for any parameter or function feature. p~~alrespec-,
tively F~~atis the j-th feature or parameter pattern of the subject i. Test; is a,
test pattern for subject i which ca.n be either a genuine signature or a forgery.

7.1 Verification by Global Parameters

Description of the Verification Process
One of the simplest techniques for 1\ signature verification is to consider a sig-
nature as one single segment and to perform the 'Irerification based on the pa-
rameter feature; of thb large segment. One might think that one cannot place
very high expectations against such a procedure, but it will lead, even on a slow
computer, fast and resource-saving to results, which might make more complex
processing steps unnecessary. Thus, in the following experiment it was tried to
detect obvious forgeries by means of global parameters. In other words: It was
tried to achieve an FAR as small as possible at a FRR near O.
Each of the parameter features described above is a candidate for this verifica-
tion task. However, experiments showed, that it is possible to roouce the number
of features without a considerable loss of classification accuracy. Eventuall,}' the
following feature set was used for thb experiment:

pStrok~N, pA~~d, pT,~" pL,~" p~nUpDir
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For each of those features, except the pen-up direction feature, the mean and
standard deviation can be determined by the following two formula.,;:

(7.1 )

pI'"
U. =

",Nil (p/~at _ p,••••)'
L..J=1 R~/; {I,

NR-l
(7.2)

Since every feature hll.liits own characteristic, the threshold for the clas.sification
wao;;set for each feature separately to 8/~at. \\'ith this definitions we can de-
scribe the verification decision of a test pattern Test; by the feature feat with
the following rule:

Ip/~al PI"', 8/~at pl'~'
T~8t'- II, < u. (7.3)

The pell-up f{'-atureis a Sel:luenceof coded directions, so it is not possible to
compute something like a lllellJlor standard deviatioll. III order to detect crude
forgeria; by this feature, we determine the well.known edition distllJlce between
the feature of the test signature and thO';('of all the reference signatures. The
edition distance is a special case of the DTW-algorithm described above and
determines here the minimal number of necessary deletions, sub;;titutiolls and
insertions for a mapping of t\\'O pen-up direction features. A signature is ac-
cepted by this fE'-Rture,if the smallest distance between the pen-up dirt-"Ctionsof
the test and reference signatures is below a previously defined threshold:

. d'td' t(p~ ••UpDir pP"nUpDir) < eP"nUpDirmine l IS Tul' 'R~/; (7.4)

A signature b accepted, if each of the fi\'Cparameter feature indicates a genuine
signature.

Experimental Results
The described procedure is extremely e&;y to implement, resource-saving and it
achieves surprisingly good results &; olle can see in figure 7.1. ~Iore than 60%
of the forgeries can be detected at a false rejection rate of 0% and with a false
rejection rate of 1% even 76.6% of the forgeries can be found. Al'iOthe equal
error rate of 10.2% is remarkable good for such a liimple procedure. A second
experiment (see figure B.l for details) where only the total time wa<;taken into
account for the verification re\'Caled the rea<;onfor the performance: Most 'writ.
ers tried to imitate the appearance of the signature they had to forge as good
ICl po8!iible and neglected the dynamical aspects. So it is possible to achieve
IlJlERR of 11.2%just by considering the total duration of the signatures. The
third experiment with global parameters (see figure 8.2) applied the described
procedure 011 random forgeries, which are usually f&;t written, but with few
similarity to the origillal signature. An equal error rate of 6.5% is good, but
only 60% of the obvious forgeries can be detected at an fabe rejection rate of



'00

•

• ........

----,...'-
•.7':"

.,,/

..'/....,..

""
• • '00

Figure 7.1: Verification by global parameters.

0%.
One can see, the procedure is all the one hand able to dbcover obvious forgeries,
on the other hand it is by means of the global scope able to determine deviations
that might not be noticed by a procedure with an exclusively local scope. It
supposed itself to use the described technique liS a pre-selection for a locally
operating procedure in order to profit from both scopes. Corresponding exper-
iment.~ are described below. In each of th06e experiments the thresholds were
set to values that correspond to fabe rejection rates of 0%. The verification by
global parameters was then u..'>edas a pre-selection which tried to detect obvious
forgeries. Subsequently only those signatures that passed the pre-selection were
tested by the mOTC sophisticated procedures.

7.2 Verification by DTW-Distance

Description of the Verification Process
A very widespread way for verifying signatures is the classification by the DTW.
distance. After choosing a set of function features, the patterns FR~r for each,
reference signature j from subject i can be computed accordingly to the described
feature extraction (see chapter 4). Subsequently, an average rli:-;tance JlRrf'
between two references of each subject is calculated:

(7.5)
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Figure 7.2: DTW applied to geometrical features.

This avera!/;edbtauce tells us, in which order of magnitude the distance between
genuine signatures can be expl.-'Cted. SUQ-;equently,the resulting valuCll are used
to determine the standard deviations as a mCll.'mremellt for the expected <levi.
ation of the distance to the average value:

C1/leI' = (7.6)

By comparing II. test pattern FTe&I; with a reference pattern FRe/, , the classifi-,
cation should assign the test pattern to the genuine signatures, if the following
rule is fulfilled:

D(FRefj,FTut') -flR"f' < SORer (7.7)

Hereby 8 is a previously defined threshold which controls the trade-off between
false acceptance and the false rejection.
There are now different possibilities of combining the single results from the
comparisons of the te;t sample with the references into a total result. It showed
up that the best performance can be obtained if tbe rule hao;; to be fulfilled for
one or more reference patterns. This in combination with a very low threshold
8 is superior to the majority decision rule and other cOIl.';ents-lindingmethods
te;ted.
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Figure 7.3; Verification by DT\V and Global Parameters.

Experimental Results
In the preceding experiment with global parameters it became clear that the dy-
Ilamic feature;; supply a very substantial contribution to the verification process.
For this reason the DT\\-' war first applied exc1u.'..;ive!yto geometrical features.
Here it showed up that satisfying results (sec figure 7.2) CUll be obtained without
dynamic features.
If olle adds the velocity and acceleration feature, then the procedure comes to
an EER of amazingly 2.7% (figure B.3). Together with a pre-selection based on
global parameters the EER cannot be further reduced, hut the FAR at a FRR
of 0% drops form 27,5% to les!i than 13%. Figure 7.3 exhibits the performance
in detail.

7.3 Verification by Average Patterns

Description of the Verification Process
Instead of comparing a. test sample with several refcrence samples and perform-
ing a consent finding afterwards, in this experiment we try to determine an
averaged reference pattern. This averaged reference pattern will consist of two
••-ectors per frame; mean vectors and standard deviation vectors. Thus the av-
eraged reference sample SIIOWS the expected values and deviations of the feature
components for each time frame.
We select the main representative j"of each individual a.~described in section
5.5. Afterwards we compute an alignment Path Pathu.,j) for all reference sam-
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pIes j. Since each path ~igns ~vt'ral feature vectOl"/;to each feature vector of
the main referenC'.esample, a set Fi of feature vectors result for each point i in
the main reference sample:

The Illotivation is, as already mentioned, to determine a "statistical feature
vector" in the form of aVE'fagevalu~ and standard deviations. The average
pattern will have the same length as the main reference. Now we can compute
the mean vectors Pi by

1I'. ~ IFI L f
• lET.

(7.9)

Subsequently each component k of the standard deviation vector 0"; is calculated
by

E/ET, (11,1; - !k)2
1.1'.1-1 (7.10)

The verification of an unknown sample can now dOlleby means of a single DTW
distance between the test and the averaged reference sample. The only thing
which has to be modified in the DTW distance is the determination of the
distance d. We replace d by d' which is calculated a.~

(7.11)

We can extend this approach by taking an neighborhood into account when
we compute the means and variances. This can ell..~ilybe done by means of a
neighborhood-window.

Experimental Result!)
With an ERR of 5,2% (st-'C figure 7.4), the described procedure achieves sat-
isfying re:,;ults. Also here an improvement can be obtained by a combination
with the verification by global parameters (figure 0.4). Even though the results
cannot keep up with those obtained with the DTW approach, it hi worthwhile
pursuing the approach further. In particular with more than the seven refer-
ellce patterns u~ here, the performance lihould increa.'ieclearly. Furthermore
no improvement could be obtained so far by different weighting of the feature as
well as the introduction of a neighborhood betwecn the sets of feature vectors.
Doth ideas are still promising.
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7.4 Verification by Neural Networks on Segment
Level

Description of the Verification Process
Segmentation

So far we have compared signatures all two different level,,_ Either we have
compared the features of single points of a signature, or the parameters features
of an entire signature. Thus it is obvious to regard a unit bet\\'een these two
extremes. In order to be able to do this, the signatures must be segmented.
That means divided into different parts. In the literature, different possibili-
tiel; for such a segmentation are described. The lIlrn-;t common methods take
local extremals, local minima or minima of the horizontal or tangential. velocity
as boundaries between segments. Unfortunately, many procedures described
by other scientists have the problem that many errors are caused by different
segmentations of two signatures from the same writer. Here another way was
cilOlien which prevents this. We start by selecting the main reference (see 5.5)
and segment only this signature by local vertical position extremas. Thus a
sequence of N~segments for the main reference j" of the individual i results;

SR.,; (O), ... ,SR~'; (l\'~),. ,.
Now we make usc of the good results of the DT'V and compute the alignment
paths for every reference to the main reference. Oy the means of theM' alignment
paths we can afterward .•transform the segment boundaries of the main reference
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feature to the other references. As the result we get several examples for each
&-')I;ment.

A Data-driven approach

We will see that there are a lot of features which can be computed for the
determined l;egments. So the question arises how to use all these f('-atures for a
good verification. There are .several attempts to select only those features that
are very typical for each individual. Unfortunately, these proccdurffi are not
very convincing and neither are the results. Another popular approach i!;based
on rules how to ••••-eight the featuf(.'l;.However, these rule based approaches have
well-known difficulties and usually show a worse perfortllll.liccthan data-driven
methods. For this reason, a neural network was implemented in order to decide
for a segment whether it belongs to a genuine or a forged oue.

Organization of test and training set

The neural network makes it necessary to rearrange the allocation of the training
and test data. This is ncce;sary becalL';ewe will train the neural network with
genuine signatures and forgeries. Since the reference samples ••••-ere u;;ed for
the calculation of input-features (St.'e next section), we need further genuine
signatures beside the reference samples and forgeries for the training-process.
For this refL'lOnthe .set of indi\'icluals for the training and test was divided. In
order to get more representative results, the experiments were done by different
organizations of test and training sets. Qlle single individual WfL'lused in each
case for the test and the remaining individuals for training. The organization
of the references is preserved as described in the beginning of this chapter.

Input feature vectors

\Ve can use e\-ery parameter feature as input feature. The observed parameter
features are not sufficient as an input for the Ileuralnetwork, since the net needs
some information ahout the references. For this reason ••••-e u..o;;ethe references
from each individual j to compute the mean I-l~:~~iand standard deviation

•O"~::~lof each feature feat and each segment k. Then we get a normalized
•di~ta.nce-feature value for a test pattern by

v~~:~"=•
(7.12)

So we get for a test pattern three values for each feature a.nd ~egmcnt:

f~at f~at f~41
"sr"l;' /ISI<./" °sl<</'~ . ..
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The DTW-distancc gives us a second pos.~ibility to describe the deviations be-
tween a reference and a test pattern. One can simply lL'-;C the the DT\V-dL<;tances
to the Nn references to get further components, We define

D!"aISd(F F )S. TeAl', lklj (7.13)

(7.14)DTWd;.ll"'S" =
v R.J'
S. '

as the :;egment DTW-distauce for segment k betwt.'en the test pattern and ref-
erence pattern j from individual i based on the feature set featSet. Dy means
f I ' h d' DT1Vdi~tJ.~'s•••...o t Ie re,erencc patterns we compute t e average L<;tanceJt S".I' UI,,'-

•
tween two reference patterns and the standard deviation uDTW"di.IJ ••• s•• , Now

s"'
the DTW-distance can be normalized: •

D!eaISel(F F ) DTWdi.tl"'S,'
s. Tut', R"J; - /lS".I'•

uDTWdi.t
S;:<I'

All the measured deviations are put together into one large vector 0:

(7.15)

DTWdi.t,..,S<'~
V RoJ'

S ""•

Dimension reduction

With all the available features, a tOO-dimensional feature space is easily possible.
This means the neural net will have 100 input units and a several times higher
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number of transitiOlL~into the hidden layer, which is equivalent to a high number
of free parameters. After a rule of thumb, one n~.h; at least tell training
patterns for each free parameter in a neural net. If we use only ten units in
one hidden layer, we would need ten thousand segments to fulfill the minimal
requirements. After these thoughts it is obvious to employ onf!of the well-known
dimension rl-'<!uctiOIltechniques. For this experiment, the linear discriminant
analysis (LDA) (9) was chosen. This transformation is suitable for dimension
reduction and it increases additionally the separability of the t •••.-ocla.<;.<;ft;.After
computing the LOA-matrix LDA with all the available training data, a linear
transformation can be done by multiplying the feature-vector J with the LOA-
matrix:

(7.16)

Nowa dimension reduction can be doue by taking the first lllinp vector elements.

The Net Configuration

The lIeurainetwork architecture used is a time delay neural network (TONN) [81.
Figure 7.5 exhibits the selected configuration. The input layer has no time dPiay
and a width of N;np input units according to the previous dimension reduction.
The single hidden layer ha.'l l\'hid units and also no tillie delay. The segment-
output layer delivers the output in the first training stage. It ha.,>two neurons
in each frame, one indicated a genuine signature and one a forgery. During the
training iterations of the first stage the netwurk is trained to decide whether a
segment is part of a genuine signature ur a forgery. After several iteration ..'l the
second training stage starts. In this stage the final output layer decides whether
a sequence of consecutive segments belongs to a genuine signature or forgery.
This layer has also two neurons with the saIlle meaning as in the segment output
layer.

Training and Testing

Training takes place in two stages. In the first stage the segment output layer is
trained in such a way that 11 genuine signature cau:;es the upper neurons of this
layer to output a 1 and the lower neurons neurons to output Ii O. For a forgery
this target-output is inverted.
The second stage of the training process makes use of the time delay. Here
the output layer is trained to combine successive results of the segment output
layer into a single result. In tbe test plll\.~ethe outputs of the upper neurons
are summed-up with the negatively weighted outputs of the lower neurons. The
resulting value is then divided by the number of summed values and compared
afterwards with a threshold ••..alue. If the summed valUe is larger than the
threshold, then the neural network detects a genuine signature, otherwise Ii
forgery.
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Figure 7.5: The architecture of the implemented TDNN .
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Experimental Results
The following feature;;;were chosen for this experiment:

pl'lidlh, pT,.,

P"'''',,/tG' , p •••a:l; "I••' , jX'''9,,/ •• , ,feat E {abs", CQsO~in9, co.~<p,sill<p, velr, 'vel,,}

The DT\V.distance was computed only for the feature set COlL~istillgof all avail-
able function features (see 4.1).
This experiment was executed with the described network architecture with
Ni"p = 20 and Nhid = 15.
With the presented procedure an EEH of 4, 5% was obtained. Thu~, the perfor-
mance is worse than those of the DT\V approach. However, if one reglU'ds the
faL'iCacceptance rate with a false rejection close zero, then the neural network
is clearly ~uperior to the DTW.
Also here, improving this proct.->Jure~ecms to be worthwhile. Since all networks
were trained with the same number of iterations and the same parameters, some
percents of accuracy were lost due to the missing fine tuning. Furthermore a
neural network is dcpendent on the available amount of data. \\'hile the DTW
approach will not get better just by adding more data, olle call a.",";umethat the
neural network will exceed its pa.~tresults when more training data is available.

7.5 Verification of Mouse-written Signatures

Experimental Results

Some of the experiments presented above were repeated with the mouse-written
signatures. Since there ""'erefewer mouse-written original signatures of each per-
SOliavailable, only fh'e instead of SC\'Cllreference patterns were used. Due to
the small number of reference patterns, nOlleof the a\'erage pattern experiments
",-ereexecuted.
The first experiment was again the verification by means of global parameters.
Compared with the experiment in 7.1. only the thresholds were slightly changed.
Figure 0.5 shows the results of this experiment. Since it is even difficult to write
the own signature fast with a mouse, the total time lost-'Sas reliable c1a&;ification
criterion, which impairs the total performlillce of the verification negath'ely.
Dy means of the DTW of procedure a1relUlybetter results are obtained (l;t'C

Figure 0.6), which are a!!:ainexeecded by inchL~ionof the global parameters
(Figure 7.7).
As good results as the verification of the pen-written signatures are here hardly
conceivable. That is above all because the mouse-written signatures of an in-
dividual deviate very much from each other. Kevertheless, with a special pre-
processing it seems to be W)6;;ibleto improve tlte remits obtaint.->Jso far. In
particular a sophisticated baseliue uormalization [10]which rotates the written
input to a Ilearly horizontal orientation could bring clear improvements.

38



---•...'
......./

/.-

.../'
...,'

./....

Figure 7.7: Verification of Mouse-Written Si!/;nature. by DTW and Global Pa.
rameters.



Chapter 8

Summary

8.1 Summary

A data ba.;e consisting of almost 800 genuine signature and 1300 forgeries wa.;;
created. This data base enables almost representative results and all extension
of the amount of data is easily possible with the developed programs.
Four basically different approach~ to the problem of OSV were de;cribed. The
approach based on average pattcm.s and the application of neural networks on
the spgment level are ba.o;;edon lIew ideas. Each of the four experiments led
to encouraging result.!;on the available data base (table 8.1). Thus a further
investigation of these approaches seems to be promising. The best re~;ultswere
obtained by the DTW approach in combination with a pre-selection ba..;;edon
global parameters. Here an equal error ratc of 2, 7% could be obtained.
The best remit (8% EER) on mouse-written signatures was also obtained by
the DT\\! together with a pre-seiL'Ctionbased on global parameters. Table 8.2
summarizes the results of the mouse-experiments.

8.2 Related Works
The comparison with results of other scientists is very difficult, since there is no
uniform databa'lC. Furthermore there is only little information about the data-
acquisition proces.~of other researchers available. Besides this some scientists
improve their results by mixing random and skilled forgeries or by collecting an
extremely high number of signatures from one individual.
The most extensive outline with many literature references can be found in [2)
and [31. Additionally I would like to refer to the following works:
1Iario E. ~lunich and Pietro Perona ([11]) developed a continuous version of the
DTW for a translation-invariant curve alignment. The database consisted of 56
persons with 25 signatures each. Ten signatures from each writer were used for
the test, 15 as references. As result it was stated that the EER was 0.3% won;e
by application of the new technique than by the original DT\\'. The EER of the
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Experiment Figure EER FRRO% FRR 2 Q FRR 5~
total time B.l 11.2% 45.9 Q 24.5 Q 16.0 Q

global parameters 7.1 10.2% 36.7 Q 20.0% 11.5 Q
DTW (geom. 7.2 5.9% 40.9 Q 13.0% 6.5 Q

DTW B.3 2.7% 27.3 Q 6.0% 0.9 Q
DTW & glob. par. 7.3 2.7 Q 12.7 Q 3.7% 0.9 Q
average patterns 7.4 5.4 Q 40.3% 13.0% 5.3 Q

avg. pat. & glob. par. B.4 4.5 Q 18.7 Q 7.6"1Q 3.9 Q
neural network 7.6 4.5% 18.2"1Q 10.2% 4.6%

Table 8.1: A summary of the experimental results. The first column describes
the experiment, the second refers to the figure with the detailed results, the
third column contains the equal error rate and tbe remaining columns show the
error rates at different false rejection rates.

Experiment Figure EER FRRO% FRR 2 Q FRR5%
global parameters 85 21.4% 52.3 Q 50.0 36.07Q

DTW B.6 13.4 Q 55.5% 50.8 0 3l.0"1Q
DTW & glob. par. 7.7 8.0 Q 26.6% 24.6Yo 14.5%

Table 8.2: Summary of the results obtained on mouse-written signatures.

unmodified DT\\' wlU;2.6%.
Luan L. Lee and Toby Berger [41worked with personalized feature sets and a
majority-decision-rule that classified by glohal parameters. The feature-selection
took place under consideration of forgeries. This technique yield 2.5% EER and
an asymptotic performance of 7% FAR at a zero FRR. The data ba..'ieconstisted
of 105 subjects and 5600 genuine signatures (13-1000 per subject).
Seong Hoon Kim, l\Iyoung Soo Park and Jaihie Kim ((14]) also applil.-'<!person-
alized feature sets. With 9 ~ubjects with in each ca.'ie 120 genuine signatures
and 120 forgeries they obtained an EER of 4.28%.
Kai Huang and Hong Van ([12])have chosen the local speed minima as segmen-
tation points. They applied a pre-selection by global parameters and a DTWon
segment-features. The scientists indicate a FRR of 5% at 2% FAR a.s their best
retiult. For the test and training were 394 genuine ~ignaturcs from 20 people and
466 forgeries available. Nine of the original signatures were used as references.
In [15] Kai Huang and Hong Van describe a verification by mealls of a fractal
transformation-technique. They obtained a FRR of 2.3% at 2.7% FAR for ran-
dom forgeries.
Mil.Mingming and Sharda Wijesoma ([13]) examined three models: a frequency
function model, a shape-related parameter model and a dynamics-related pa-
rameter model. They obtained remIts behveen 4.62% and 8.96% EER on their
data-ba.o;e collsisting of 1230 genuine signatures from 41 persons and 410 skilled.
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forgery samples generated by two different forgers.
Brigitte Wirtz ([161 and [17]) developed a time- and positiou-based averaging
of represantive input signatures for a stroke-ba.-;edverification approach. Ba.'led
on 6000 origingal signatures from 20 writen; and 6000 forgeries from 100 forgen;
an EER of 9.89% wa."obtained.

8.3 Future Work

This was the first febCarchproject at the Iuteractive S.ystems Lab:; which dealt
with signature verification. Thus, there are still many questions open and a
lot of n~ardl to be done. The most important topics for future work can be
summarizt--das follows:

• Data ba.-;e
The created data billieis still much too small in order to be able to indicate
representative results. In particular because it concerns a ;;t-'Curityi:ssue,a
datablilie consisting of signatures from far more than 100 different individ-
uals would be desirable. Additionally high-quality forgeries are missing.
Especially the dynamic features were quite neglected. How the results
with the global parameters show, many forgeries can be detected merely
by the total duration with the help of very simple procedures. Thus, fu-
ture data collections should increa.<;ethe acquisition of timing forgeries.
FUture data collections should 81;;0 try to collect a larger number signa-
tures from some persons. This would enable investigations with the goal
to observe how an increa."ing number of reference patterns can reduce the
error rates .

• Additional fE'-atures
Due to the missing hardware not all possible features could be recorded
during the data collection. Thus the pressure of the pen-tip on the paper
was only binary encoded. ~leanwhi1e there are already instrWllented pens
which measure this pressure in 256 or more levels. In particular this fea-
ture &'ems to be very promising, what is acknowledged by several papers.
Furthermore features like air movement and the inclination angles of the
pen have not been recorded yet .

• Adaptation
A commercial system should be able to adapt to over the time slightly
changing signatures. On the one hand additional data is needed which
represent modifications of signatures over several months or years. On the
other hand the procedures represented in this work have to be adjusted .

• Intelligent Reference Acquisition
In some CaM'S very untypical signatures result from a lack of hardware
or a mistake of the u.~er. These patterns arc particularly harmful for the
system if they are added to the reference samples. In this ca...ethey will
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negatively influence the verification process as long <18 the system operates.
For this reason a good system should test whether the digitized sa.mple;
are consistent. If the system discovers lUIinconsistency, it should inquire
with the user and replace the pC6Sibleincorrect signature by a new one.
H is evident that some signatures are more easily to forge than others.
For this reason an intelligent reference acquisition should approximate the
complexity of the signature by a IIlell..~urewhich ha.."to be defined and
~t the number of necessary reference signatures accordingly. By a higher
number of reference samples for an easily to imitate signature, there is
some good reason to believe that a more precise model of the si.ltJlaturecall
be determined which compensates the lacking complexity. Whether such
a procedure really improves the verification accuracy, has to be examined .

• Verification on a PDA
As a.1readymentioned in the introduction, the PDAs represent a potential
market for OSVS. However, to build an OSVS for PDAs is a cha.1lenging
tll.."k,since the scrC('n is often very small, the digitizatiotl is quite crude
and PDA.••have usually slower processors and less memory than desk-
top computers. AL'>Ohere there are special adjustments of the described
procedures necessary to build a system which is executable 011 a PDA.
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Appendix A

Data Bases

ID #genuinc signatures #skilk'd forgeries
000 10 15
001 10 15
002 10 15
003 10 15
004 10 15
005 10 15
006 10 15
007 10 15
008 10 15
009 10 15
010 10 15
011 10 15
012 10 15
013 10 15
014 10 15
015 10 15
016 10 12
017 10 •
018 10 6
01' 10 3
020 10 0

210 I 270 I

Table A.I: The data base of the mouse-\Hittcn signatures. One line contains
the writer identity number, the number of signatures made by this writer and
the number of available forgeries for the signature from the corcPBpondingiudi.
vidual.
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~ #gen. sign. I #rand. forgo I #~killedforgo I #sessions I
()()() 55 25 25 4
001 35 25 30 3
002 75 25 3U 2
003 35 15 25 2
004 15 15 30 1
006 35 10 39 1
007 35 10 25 1
008 35 10 30 1
009 15 10 30 1
010 15 10 30 1
100 15 15 25 1
101 0 0 0 2
102 15 15 25 1
103 15 15 25 1
104 15 15 25 1
105 15 15 25 1
106 55 15 25 3
107 35 15 25 2
108 15 15 25 1
109 15 15 25 1
110 15 10 25 1
111 15 10 25 1
112 35 10 25 2
113 15 10 25 1

"' 15 10 30 1
115 15 10 30 1
116 20 10 25 1
117 40 10 25 2
118 20 10 25 1
119 20 10 30 1
120 20 10 30 1
121 20 10 30 1

795 I ,130 I 865 I 50 I

Table A.2: The data. base of the pell-written signatures. E<lchline consists of a.1l
identity-numher, the number of signa.tures from the corresponding individual,
the number of random and skilled forgeries of the signature from this individual
and the number of scssioIlBdone by the corresponding individual.
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Appendix B

Further Results

'00 r-----------~---"""':_;;:;,,~.~_=.7.,
',,:'"""

./,,/

••
'"'

00 00

Figure B.1: Verification by total time as the only global parameter,
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Figure 8.5: Verification of ~Iouse-Written Sip;llatures by global parameters.
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