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Chapter 1

Introduction

1.1 Biometrics

Along with the growing automation of our modern life, there is an increasing
need for reliable identity verification. Currently there are two popular ways for
solving this security problem. One is related to something ”that you have”, such
as credit cards, physical keys, etc., and the other depends on "something that
you know”, such as passwords, Personal Identification Number (PIN), etc. [6].
As a Result of the extensive usage of these methods, people have to keep various
cards and remember tens of passwords. Losing a card or forgetting a password
may bring users into great trouble. In the meanwhile, banks, telecommunication
companies and governments are suffering from losing hundreds of millions of
dollars per year due to the breaches of current card or password based security
systems [1]. Biometrics based verification systems solve these problems as they
rely on "something that you are”. They use features such as signature, face
profile, fingerprint, voice print, eye retina and hand geometry to identify a
person by something that cannot be lost, forgotten or stolen.

1.2 On-line Signature Verification

This work deals with the automatic signature verification which belongs to the
biometric based methods. In contrast to a writer identification system where
the system must establish a writer’s identity by comparing attributes of his
handwriting with all the writers enrolled in a reference data base, a verification
system decides on the claimed identity of a writer by a one-to-one comparison
process.

There are two types of signature verification systems, on-line and off-line, that
are differentiated by the data acquisition method. In an off-line system, the
signature image is digitized with a scanner or camera after the complete sig-
nature has been written on paper. An on-line system acquires the signature
trace in real time with a digitizing tablet or an instrumented pen. Since an



on-line system can utilize not only the shape information of the signature but
also the dynamic information, it is also called a dynamic verification system,
whereas an off-line system is called a static verification system. With special
hardware, dynamic verification systems can acquire additional features such as
the air movement of the pen, the pen pressure on the paper or the pen inclina-
tion angles. All these dynamic features reflect the unique habits of the signer
and are extremely hard to observe and imitate. A static verification systems
cannot, recover these features with good accuracy. Therefore on-line signature
verification systems usually show a better performance than off-line systems.
Here we focus on identity verification by on-line signature verification (OSV).
Such a system has all the advantages of a biometrics based system, is extremely
user-friendly and the dynamic features give reason for a possible high security
level, Furthermore there are, as we will see in the next section, more and more
computers equipped with the necessary hardware. Besides the great opportuni-
ties of an on-line signature verification system (OSVS) there are also difficulties
we have to solve. The biggest problem is the fact that signature patterns vary
very much even those patterns of a same individual. Thus, signature verification
is a challenging task in the biometric-based authentication.

1.3 Possible Applications

Already today many package delivery companies use special devices in order
to record signatures. Likewise some shops are already equipped with devices
which record the signature necessary for the purchase by credit card by means
of a graphics tablet. In both cases is the hardware for an on-line signature ver-
ification system already available and by the application of such a system large
saving potentials possible.

Another large field of possible applications are mobile computers, which use a
pressure sensitive screen instead of a keyboard and a mouse. Also in combina~
tion with these ever more widespread devices, the OSV is the only biometrie
procedure, which can be applied without any additional hardware.

1.4 Objective of this Work

In this report the development of an on-line signature verification system is
described. This development covers the steps of data acquisition, preprocessing,
feature extraction and classification experiments.

The report is organized as follows. Chapter 2 describes the data acquisition,
Chapter 3 and 4 deal with the preprocessing respectively the feature extraction.
Since the dynamic time warping algorithm is a core technology for almost each of
the experiments, Chapter 5 describes the algorithm and its different applications
for signature verification. Chapter 6 introduces the evaluation of a signature
verification system (SVS) and Chapter 7 exhibits the experiments done. Finally,
Chapter 8 summarizes the results and outlines future work.

o



Chapter 2

Data Acquisition

2.1 Types of Genuine Signatures and Forgeries

In on-line signature verification one can distinguish between two kinds of genuine
signature and three kinds of forgeries [4]. The first type of genuine signatures
corresponds to signatures written by the subjects in the way they do it most
of the time without any restrictions. The second type are the so-called ”fast”
signatures where the subjects were told to write their signatures as fast as pos-
sible. The major idea behind that is, that customers will occasionally accelerate
their writing. Furthermore these fast written signatures aré useful to evaluate
the robustness of a system with respect to variations in writing speed.

As mentioned, the forgeries can also be divided into three groups: random,
skilled and timing forgeries. A forgeries is considered random, when the forger
only knows how to spell the name of the subject whose signature he tries to forge.
A random forgery is done without any prior knowledge about the appearance
of the genuine signature. An imitation attempt is considered skilled, when the
forger posses information about the appearance of a genuine signature and goes
through a training process which consists of exercising imitations. The last cat-
egory, the timing forgery, is a skilled forgery where the forgers are provided with
additional information about dynamic properties of the genuine signature. In
the simplest case this is the average duration of a genuine signature.

2.2 The Data Collection

For the data collection a C++ program was developed which enables the collec-
tion of all types of genuine signatures and forgeries. The dynamic information
for the timing forgeries are implemented as a repeatable animation of a genuine
signature. Figure 2.1 shows the start page of a collection session. If the writer
has used the program before, his settings can be loaded or a previous session
displayed. Besides some personal information like the sex and hand, the date
is saved. Furthermore, every session can be individually configured by the ses-



Figure 2.1: The start page of the signature collection program.

sion settings. During the collection there is a short instruction and in case of
a forgery the necessary information is displayed above the input canvas. The
pen trace is displayed on the computer monitor as the signing takes place. Each
signature is saved as a sequence of points

Pi = (Piz: Piys Pips Pit)

where p; . is the horizontal and p; , the vertical position on the screen in pixel,
Pi,p the binary pressure value which indicates the pen status (p;, = 0 for a pen
up and p;, = 1 for a pen down) and p;,; the system-intern time value in ms.
Using this program, a data base consisting of 795 genuine signatures from a
population of 31 subjects and 1295 forgeries written by 32 individuals was built
up (see appendix A.1 for details). Some genuine signature were collected with
a time delay of several months, which enables experiments that deal with the
changing of signature during a long period of time. Figure 2.3 exhibits some
examples of genuine signatures and corresponding forgeries.
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Figure 2.2: Within a session: The user is asked to forge a signatures.
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Figure 2.3: An excerpt of the data base. The upper three signatures are origi-
nals, the row below exhibits corresponding forgeries.



Figure 2.4: The collection applet in an internet browser. Below the input canvas
are several instructions.

2.3 Mouse-written Signatures

The input of an OSVS is a sequence of points which could also be sampled with
an ordinary computer mouse instead of special pen-input hardware. Of course,
mouse-input looses some natural properties of a human signature. But never-
theless it is interesting to see, whether the developed methods are capable of
doing a reliable signature verification on mouse-written signatures. As almost
every computer has a mouse, it was obvious to develop a program which allows
the users to take part in the data collection through the internet. The resulting
program is written in Java and consists of a so-called servlet which organizes
the data base on the server and an applet which is the user interface on the
client side (see Figure 2.4). This solution makes the program for many people
conveniently accessible.

Since it is more time consuming to sign with a mouse, the data collection con-
centrated merely on genuine signatures and skilled forgeries. The program was
kept simple, so loading or individual configuration of sessions is not yet possible.
The resulting data base consists of 210 genuine signatures written by 21 indi-
viduals and 270 forgeries (see appendix A.2 for details).



Chapter 3

Preprocessing

Although all the procedures used for preprocessing originate from on-line hand-
writing recognition, there is a substantial difference concerning the target of
preprocessing. That is the preprocessing in an OSVS may not eliminate under
any circumstances writer specific peculiarities. Thus only such processing steps
are executed, which do not eliminate the peculiarities of the subject, but sup-
press coincidental noise and intra-personal variations. Figure 3.1 exhibits the
preprocessing steps described below.

3.1 Normalization

The size of a signature is not a writer dependent habit. For this reason a
linear normalization is performed that normalized the height of each signature
to 1. After the normalization process the lowest p,-value is 0 and the highest
1. The p;-values are normalized accordingly with the same factor. Thus, the
most left point has the p,-value of 0, the highest p.-value is dependent on the
signature. With miny as the index of the point with the smallest p,-value,
maxy the index of the biggest py-value and minz, mint accordingly the index
of the smallest p,- respectively p, value, the transformation of a single point
p?"g of the original point sequence to a point pV°™™ of the normalized point
sequence can be formalized as follows:

pOriy _ g Orig
Norm __ iz mine, s
Piz - _Org Orig (31)
Pty = Pt
Orig _ _Orig
Norm _ Piy pminy,y (3 2)
Ly —  Orig Orig .
mazy,y — Pming.y
Orig Orig
Norm _ _Pit 7 Prantt (3.3)
pl,! - Orig _ Orig =
Pmazyy pnu’.ny.y
N Orig
Py " =Pip (3.4)
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3.2 Smoothing

In order to get rid of noise originated form erratic hand motions or inaccuracies
of the input device, a smoothing is performed on the normalized data point
sequence. The smoothing method averages the position and time of every data
point within a smoothing window. The smoothing process is formalized by the
following equations:

i+Wena
pipeth = N wphe™ (3.5)
jzi-“’-aluri
p,?:;woth e p;l'\.-f;rm (36)

pimooth and pFyecth are defined accordingly to piTo". Here Witare respec-
tively W4 stand for the first and last element of the window function w which
are taken into account to get the new values.

3.3 Resampling

The pen-input device samples a sequence of data points which can be either
equidistant in time or in space, where the equidistant intervals vary dependent
on the used hardware. In order to eliminate this variability, the point sequence
is resampled by a linear interpolation algorithm to be equidistant in space. This
means that after resampling the Euclidean Distance d between two consecutive
points has the same value:

sa R fid Re Resam
Ipfeeme — p e = [ — T+ Gl — p e = d
(3.7)

Hereby is d a fixed value dependent on the normalized height of each signa-

ture.

11
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Figure 3.1: Preprocessing steps.



Chapter 4

Feature Extraction

The input of the feature extraction step is the preprocessed data point sequences
pf”“mp . As we will only use this point sequence in further processing steps, we
will shorten the notation and write p; instead of p/****™".

The extracted features should help the system to distinguish between genuine
signatures and forgeries. For an on-line signature verification system, these fea-
tures can be divided into two classes: parameter and function features.
Parameter features are also known as static features which describe the pro-
cess of writing for a segment within a signature or for the whole signature. Ex-
tracted parameters can be the number of strokes, the maximal writing speed,
the height-length-ratio of the signature, ete.

Function features regard the signature as a function of time and are for this
reason sometimes called dynamic features. Features of this class such as the
absolute y-position F%%* (i) or the horizontal velocity Fv¢'=(i) are represented
as functions where the time is implicitly given by the point-index i.

4.1 Function Features

4.1.1 Relative x-Position

After the preprocessing, the possible x-values depend on the length of a signa-
ture. The absolute x values are not useful as features because tight or wide
written beginnings of a signature can lead to different x values at the end of the
signature. For this reason, the relative x-position to the predecessor point was
chosen as a more robust feature for x-positions, We define this feature formally
by

0 : i=0

g 4.1
Pix —Pli-1)z - 1> 0 ( ]

o=

13



4.1.2 Absolute y-Position

The vertical position of each point is an extremely important feature. This fea-
ture needs no extra computation, we can simply use the normalized y-position:

F% (i) =py (4.2)

4.1.3 Pen-down Feature

The pen-down feature FPenPewn (i) indicates the pressure of the pen at point
i. Likewise as the y-position, we can copy the corresponding value of the data
point sequence:

FpEnDcwn(i) =Dip (4‘3)

4.1.4 Direction and Curvature

The following features provide information about the direction and the curvature
of the trajectory for each point.

The direction is a translation invariant feature which is determined by a discrete
approximation of the first derivatives with respect to the arc length, % and %E,
where ds = \/drz + dyz. The direction feature consists of two components:

Feos0(i) = ‘zg; (4.4)
Py = 20 (45)

where
Az(i) = piy12 — Pi-10

Ay(i) = piy1,y —Pi-1y
As(i) = Azx(i)? + Ay(i)?

Figure 4.1 illustrates the definition of the direction feature.
The curvature feature (Figure 4.2) is not only translation, but also rotation

invariant. It is defined as the second derivatives ﬁ;fr and %;!1 which are approxi-
mated by the angle between two elementary segments: ¢(i) = 8(i+1)—6(i—1).
This angle is encoded by its cosine and sine, Using the subtraction formulas for
sine and cosine these values can be computed as:

F*(i) = cos (i + 1) cos O(i — 1) +sinf(i + 1) sin6(i — 1) (4.6)

Fo9(i) = sinf(i + 1) cos (i — 1) + cosB(i + 1) sinf(i — 1) (4.7)

14
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Figure 4.1: Estimation of writing direction

Figure 4.2: Estimation of curvature
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4.1.5 Velocity and Acceleration

These two features represent local dynamic properties of a signature. In the
literature, two ways for computation of these features can be found. The first
way leads to one dimensional features that approximate tangential velocity or
acceleration. As there are several good reasons to believe that the dynamic
properties measured by this feature can be crucial, we use two dimensional
features that measure the horizontal and vertical velocity and speed components
separately instead of the one dimensional ones, The implementation of these
features is straight forward with the definitions from physies. The horizontal
velocity for example is computed as

IP(i-1).c = Piel + |Piz — Plit1),2) _As
Pli+1)e — Pli-1)t At

Foel=(i) = (4.8)

F**h (1) can be computed accordingly. Acceleration is the derivation of velocity
and thus the corresponding horizontal acceleration feature is defined as
vel. _ pwvel.
poeca(iy = —0=0 ~ Foviy _ Av

= 4.9
Pli+1)e — Pli-1ye At (4.9)

Here F%“¢4({) is also defined accordingly. In order to get smoother features for
velocity and acceleration, a time-window can be used instead of taking merely
the neighboring values,

4.2 Parameter Features

We define parameter features for segments which are sequences of consecutive
points within a signature. This work makes use of two different segmentations.
In 7.1 we will use the whole signature as one single segment and in 7.4 we
will use local vertical position extremas as segment boundaries. The following
description is independent of the implemented segmentation-technique.

A segment S; is defined by a sequence of points:

Si = (PSc.arares = PSi ena) (4.10)

where S; sar¢ is the index of the first point of the sequence inside the prepro-
cessed point sequence and S ¢nq4 is the index of the last point. This definition
allows every unit from a single point to a whole signature to be one segment.
Furthermore the segments can be overlapping and space between two neighbor-
ing sequences is also possible. Additionally, we define S; sninz to be the index of
the point inside the segment with the smallest p, value. Accordingly, we define
S mazx + Si;miny +Si,mazy +Simint a0d 8; mare. To express that a point j is inside
the Segment S; we simply denote j € S; which is equal to S start < 7 < Siend

16



dizplayFuncltionF eatures

filename el [d./sv/signT est/data/000/000_0GS001. ik Update I

=

Figure 4.3: Ilustration of the computed function features. Here a black point
corresponds to a hight features value, a white one to a low value.
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4.2.1 Number of Strokes

This feature counts the number of pen-lifts within the segment and can be
formalized by

PStokeN(6) = |{jlpis = 1,4ty = 0.7 € S} (4.11)

Hereby |{.}| stands for the number of elements in a set.

4.2.2 Width

The width of a segment is simply the maximal horizontal distance between two
points of the segment:

P“f‘dth (S‘) = psl.llruu‘xw:I7 - psi,mnnt-T (4'12)

4.2.3 Aspect

We define the aspect of a segment as the length-width ratio. This feature is
undefined if there is no vertical expansion within the segment. Otherwise the
feature is given by

p/\npcct(si) = PS. maiwit — P8iminsit (413)
ps._mu_zpﬂ _’P-‘:'i,mm.y

4.2.4 Duration Features

There are three durations of interest: The total duration PTt(S;) is the time
that was needed to write the whole segment. The other durations measure the
time the pen was on the paper respectively in the air during the writing process.

P14 (80) = P8, cuasit = PSisrarert (4.14)

P?"‘ow"(si} = Z Pii+1).t — Pjt (4.15)

Hi atart SIS end
PiptPli+1).p=!

PTur(S;) = b P(i+1),e — Pit (4.16)
Sy mtort SI<5 and
(=rjp)=(1=Pi+1),9) =1

4.2.5 Trace Length Features

Likewise the duration, the trace length can also be specified for the total segment
or the part the pen was on the paper respectively in the air. These three trace
lengths can be denotated as:

Plus(5) = > Ilpg+1) = 2ill (4.17)

S:,-Inrt “:‘J <Si,-nd

18



Plewn(S)= > lpgsy —pill (4.18)

Siatart SI<S; end
PiptPli41),p=t

Pler(S;) = > P41y — psll (4.19)
Si atart Ci<F{ end

(= ple(1=P(j41),p)=1

Where ||.|| is the Euclidian distance between two points.

4.2.6 Pen-up Direction

In most cases only the picture of a signature will be available for a forger. Of
course this is not sufficient to find out the correct order of the delayed strokes
i.e. i-dots or t-lines. In particular in context of names with several letters which
permit delayed strokes, there is a multiplicity of different combinations in which
the delayed lines can be made. The pen-up direction feature codes the sequence
of horizontal movements between two strokes. This permits testing whether
the delayed strokes of two signatures were written in the same sequence. We
formally represent the pen-up direction to feature as a sequence of directions. A
threshold value controls thereby with which significance one of the two directions
B (for backward movement) or F (for forward movement) is present. If this
significance is not achieved, then it is a horizontal neutral movement, which is
coded with an N.

prenUeDyr () = (diry, diry, ...), dir € {B, N, F} (4.20)

4.2.7 Function Feature Extremals and Average

Based on the function feature there are several possibilities to define parameter
features. The following features pick out one of the extremals or determine an
average value of one feature.

PMinprent (G,) = min{F’“‘(j)]j € S:) (4.21)
P™MaTgreat (S_‘J — maiﬂ{F”“c(j]lj € S‘} (422)
szS‘ Ffeut(j)

Si end — Si.star't
Hereby feat is a placeholder for any of the function features described above.

PAV9pseat (S‘) = (4‘23)

18



Chapter 5

The DTW-Algorithm

The Dynamic time warping (DTW) algorithm (7] is a well known technique,
which had its first application in speech recognition. Since this algorithm was
used as one of the core technologies for almost every experiment of this work,
this section describes the algorithm, the modifications made for an efficient OSV
and the different possibilities the DTW can be used within the verification pro-
Ccess.

A major problem of signature verification is the fact that each signature is writ-
ten with different speed. Unfortunately, a linear time adjustment cannot elim-
inate this effect, since there are parts in each signature, which are temporally
more or less strongly shortened by a faster signature. The DTW-algorithm
solves this problem since the algorithm enables a nonlinear time adjustment.
This is accomplished by evaluating various permitted pairings between the
n-dimensional points of two sequences and selecting the best alignment path
through these points based on some optimally criteria and search constraints.

5.1 DTW-Distance

The experiments use different combinations of function features as input. A
combination of function features builds a feature vector

Fleati(j)
Fli) = Fleata ()
F;c;}'n(z-)
All the feature vectors of one signature are put together in one pattern
F=(F(1),F(2),..., F(N))

where NNV is the length of the preprocessed data point sequence. Since the DTW
compares two patterns, we write

FR!:f = (FREI(I)!FRﬂf{z)- “'rFRB}'(I))

20



for the reference pattern and
Frest = (FTesf(”' Frest (2}‘ wiy Freq (J)J

for the test pattern.

As a measure of the difference between two feature vectors Fr.s(#) and Freq(j),
a distance d(i,j) is employed between them. The definition of this distance
is crucial for the system-performance. Performed experiments showed that a
quadratic distance with a maximal component distance leads to the best re-
sults. Such a maximal compoenent distance prevents that a single component
dominates the total distance by extremely large values. Thus, the following
distance measurement was implemented:

d(i.j) = Y min{(Ff3™* (i) — Ffci* (1)), mazDist) (5.1)
k=1

Hereby max Dist is the upper boundary for the distance a single component can
contribute to the total vector-distance.

The cumulative distance ¢(7, j) between two sequences from the beginning of
the signature to point (i, j) is calculated as

oli, j) = min{c(k,)|(k,1) € Pred;; ;,} + d(i, j) (5.2)

Hereby is Pred; ;) the set of permitted predecessors of point (i, 7). The initial-
ization of the above recursion is done by

e(1,1) = d(1,1) (5.3)

There are a lot of different possibilities for defining the set of predecessors. We
will discuss this topic in a later section.
With the cumulative distance the overall distance between two sequences is

C(FREfs FT&E[) = C(Is J) (5.4)

The next section will introduce the alignment path which enables a normaliza-
tion by the number of accumulated distances.

5.2 DTW-Alignment Path

Sometimes we are not interested in the distance between two patterns, but in
the alignment path. The optimal warping path can then be found recursively
by starting at point (7,J) and backtracking to the beginning of the signature
accordingly to the decision made in each point. To enable such a backtracking,
it is necessary to save the selected predecessor of each point.

The path is formally not a function, but a relation, which represents the sequen-
tial allocation of feature vectors. If we assume that the path has the length Lp,
then the last allocation of the path is

Path(Lp) = (I, J) (5.5)

21
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Figure 5.1: DTW transitions. On the left the symmetric DTW, on the right
the Bakis model.

Starting at (1,J), the (i — 1) point of the relation is given by the selected
predecessor in Path(i):

Path(i = ]) = argmin{k‘n{c(k, f)l(k, I) (S P‘J‘Edpnm(;)} (56)

The described algorithm guaranties that the first relation Path(1) will be (1,1).
If we would like to refer to one of the two components of Path(i), we write
Pathg(i) for the first component and Path, (i) for the second component:

Path(i) = (Patho(i), Pathy (1))

By the length of the alignment path it is now possible to normalize the DTW-
distance: i
Lp(Freg, Frea)

Here Lp(Freg, Frest) is the length of the path which aligns the reference and
the test pattern.

D(Fpeg, Frest) = C(Fhrey, Frest)

5.3 Possible Transitions and Restrictions

As mentioned before, there are several possibilities for permitted transitions. In
this work the following two approaches were used:
The simple or symmetric DTW

Pred 3™ = {(i—1,4),(i— 1,5 = 1),(i,j — 1)} (5.7)

(i)
and the Bakis model.
Pred2i* = {(i—2,j - 1),(i— 1,5 - 1), (4,5 — 1) (5.8)

Figure 5.1 illustrates both models.

22



Figure 5.2: A so called DTW matrix. Each point within the rectangle presents
a single vector-distance by its gray-value. White corresponds to small and black
to big distances. The DTW-path starts in the lower left and ends in the upper
right corner. The search window causes the black triangles which constrain the
valid area for the alignment path. The three vertical and horizontal lines within
the valid area are due to the distances caused by the pen-down feature.

The Bak

ated paths with many consecutive horizontal or vertical transitions. However,

;s model does not allow vertical transitions which prevents degener-

if one sequence is much shorter than the other, then the Bakis model cannot
find an alignment path which ends in (7,J). If the input is a complete signa-
ture, this is a good indication of a forgery, but if we use shorter segments as
input, relatively big differences in the length of the point sequences are possible.
In this cases we will use the symmetric version which leads in every case fo a
DTW-distance and a corresponding alignment path.

Furthermore it is possible to constrain the permitted transitions by a search
window, which allows only those points fo be considered which are inside a re-
stricted area. A typical search window is a narrow band along the diagonal of
the DTW-matrix. Such a search window saves a lot of computations since the
local distances d(1, j) for points outside of the search window do not need to be
calculated. Tt also prevents degenerated alignments. Figure 5.2 and figure 5.3
illustrate the alignment by the DTW-algorithm.
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Figure 5.3: The alignment of two signatures corresponding to 5.2,

5.4 Weighting of Feature Components

In order to obtain good verification results with the DTW, it is not sufficient
to copy the features as they have been calculated into the feature vectors. Such
a procedure would ignore the different quality of the features as a classification
criteria. For this reason a weight w/%e* is assign to each feature component.
This weight controls the contribution to the total distance between two feature
vectors. Here optimal weights were determined experimentally by systematical
repetition of the test verifications with different weights.

5.5 Main References

In some of the following experiments a main reference signatures for each person
was needed. The simplest way to find such a main reference is to chose one by
random. This could be sufficient in some cases, but it will sometimes lead
to an untypical main reference. The DTW-distance measurement gives us the
possibility to find a more reasonable main reference. For this we compute the
cumulated distance .

Cum} =Y D(Fpg, 16 Fregy) (5.9)

k#j

of each reference pattern Re f} from subject i to all the other reference patterns
and chose the Reference j* with the smallest cumulated distance as the main

reference: )
3" = argmin;{Cum}} (5.10)
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Chapter 6

Evaluation of a SVS

The performance of a signature verification system is generally evaluated ac-
cording to the error representation of a two-class pattern recognition problem,
i. e. with the type I (FRR: false rejection rate) and type II (FAR: false accep-
tation rate) error rates. These error rates vary with the acceptance/rejection
threshold. The usual representation of the performance of a system is therefore
a diagram like figure 6.1, which illustrates the tradeoff between the two error
rates. Each point in such a diagram corresponds to one threshold value.
Dependent on the field of application quite different results can be desirable.
A credit card company for example might accept a worse FRR, if the FAR is
near zero, in order not to bring the customers into unpleasant situations. For
an access control system however a very low FAR would be necessary.

Since different systems have a different FAR and FRR curves, the equal error
rate (EER) was defined as a possibility for comparing systems. The EER is
defined such that it gives the lowest theoretical common error rate possible for
a given data set and is determined as the intersection point of the FAR-FRR
curve and the function f(x) = 2 . The EER was used in many experiments as
the optimization criteria. But this does not necessarily mean that the system
with the lowest EER is the best choice for a special application.
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Example of a FAR-FRR Curve
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Figure 6.1: An example of a false acceptance - false rejection curve. Here the the
intersection point of the FAR-FRR curve and the function f(x) = = determines

an equal error rate of 9.0%
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Chapter 7

Experiments

The experiments were evaluated on the data-base built up during the project
(see A.2 for details). Seven original signatures of each person were used as refer-
ences. This is half the signatures collected in one session and it corresponds to
an effort which every user will readily make. The remaining genuine signatures
and the skilled forgeries were exclusively used for test evaluations.

For the time being we assume that Ng is the general number of reference pat-
terns for each signature and that Ref ; is the j-th reference pattern of the signa-
ture from the individual i. We denote in the following experiment descriptions
PJeat regpectively F/€% for any parameter or function feature. Pé;“" respec-

tively F, éf“‘ is the j-th feature or parameter pattern of the subject i. Test’ is a
S
test pattern for subject ¢ which can be either a genuine signature or a forgery.

7.1 Verification by Global Parameters

Description of the Verification Process

One of the simplest techniques for a signature verification is to consider a sig-
nature as one single segment and to perform the verification based on the pa-
rameter features of this large segment. One might think that one cannot place
very high expectations against such a procedure, but it will lead, even on a slow
computer, fast and resource-saving to results, which might make more complex
processing steps unnecessary. Thus, in the following experiment it was tried to
detect obvious forgeries by means of global parameters. In other words: It was
tried to achieve an FAR as small as possible at a FRR near 0.

BEach of the parameter features described above is a candidate for this verifica-
tion task. However, experiments showed, that it is possible to reduce the number
of features without a considerable loss of classification accuracy. Eventually the
following feature set was used for this experiment:

PStf‘uch‘ PﬂspectrPT}n;'PL,“!Ppeu[,n'pﬂir
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For each of those features, except the pen-up direction feature, the mean and
standard deviation can be determined by the following two formulas;

P‘r'“'l = feat
Z Pher: (7.1)

I D ey
P! =J el (7.2)

Np—1

Since every feature has its own characteristic, the threshold for the classification
was set for each feature separately to ©/¢%*, With this definitions we can de-
seribe the verification decision of a test pattern Test' by the feature feat with
the following rule:

ea feu feat
|PLee — uf"™"| < ©eatgP (7.3)

The pen-up feature is a sequence of coded directions, so it is not possible to
compute something like a mean or standard deviation. In order to detect crude
forgeries by this feature, we determine the well-known edition distance between
the feature of the test signature and those of all the reference signatures. The
edition distance is a special case of the DTW-algorithm described above and
determines here the minimal number of necessary deletions, substitutions and
insertions for a mapping of two pen-up direction features. A signature is ac-
cepted by this feature, if the smallest distance between the pen-up directions of
the test and reference signatures is below a previously defined threshold:

min editdist(PRno PP P;f;f" i = e (7.4)
A signature is accepted, if each of the five parameter feature indicates a genuine
signature.

Experimental Results

The described procedure is extremely easy to implement, resource-saving and it
achieves surprisingly good results as one can see in figure 7.1. More than 60%
of the forgeries can be detected at a false rejection rate of 0% and with a false
rejection rate of 1% even 76.6% of the forgeries can be found. Also the equal
error rate of 10.2% is remarkable good for such a simple procedure. A second
experiment (see figure B.1 for details) where only the total time was taken into
account for the verification revealed the reason for the performance: Most writ-
ers tried to imitate the appearance of the signature they had to forge as good
as possible and neglected the dynamical aspects. So it is possible to achieve
an ERR of 11.2% just by considering the total duration of the signatures. The
third experiment with global parameters (see figure B.2) applied the described
procedure on random forgeries, which are usually fast written, but with few
similarity to the original signature. An equal error rate of 6.5% is good, but
only 60% of the obvious forgeries can be detected at an false rejection rate of
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Figure 7.1: Verification by global parameters.

0%.

One can see, the procedure is on the one hand able to discover obvious forgeries,
on the other hand it is by means of the global scope able to determine deviations
that might not be noticed by a procedure with an exclusively local scope. It
supposed itself to use the described technique as a pre-selection for a locally
operating procedure in order to profit from both scopes. Corresponding exper-
iments are described below. In each of those experiments the thresholds were
set to values that correspond to false rejection rates of 0%. The verification by
global parameters was then used as a pre-selection which tried to detect obvious
forgeries. Subsequently only those signatures that passed the pre-selection were
tested by the more sophisticated procedures.

7.2 Verification by DTW-Distance

Description of the Verification Process

A very widespread way for verifying signatures is the classification by the DTW-
distance. After choosing a set of function features, the patterns Fpg, 1 for each
reference signature j from subject i can be computed accordingly to the described
feature extraction (see chapter 4). Subsequently, an average distance pg.
between two references of each subject is calculated:

2, s=x D(Fpepys Fregsy)

k<=Npg
HBRefi = Nr—1 - (75)
EJ‘:RI J
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Verificaton by DTW (only Geometrical Features)
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Figure 7.2: DTW applied to geometrical features.

This average distance tells us, in which order of magnitude the distance between
genuine signatures can be expected. Subsequently, the resulting values are used
to determine the standard deviations as a measurement for the expected devi-
ation of the distance to the average value:

ZHJ;;H (D(Fpregss Freg) = Mrest)?

OReft = Nr—1 .
2;:2 J

(7.6)

By comparing a test pattern Fr. . with a reference pattern Fp, fio the classifi-
cation should assign the test pattern to the genuine signatures, if the following
rule is fulfilled:

D(Fregss Frestt) — Ppesi < ©0peys (7.7)

Hereby © is a previously defined threshold which controls the trade-off between
false acceptance and the false rejection.

There are now different possibilities of combining the single results from the
comparisons of the test sample with the references into a total result. It showed
up that the best performance can be obtained if the rule has to be fulfilled for
one or more reference patterns. This in combination with a very low threshold
© is superior to the majority decision rule and other consents-finding methods
tested.
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Figure 7.3: Verification by DTW and Global Parameters.

Experimental Results

In the preceding experiment with global parameters it became clear that the dy-
namic features supply a very substantial contribution to the verification process.
For this reason the DTW war first applied exclusively to geometrical features,
Here it showed up that satisfying results (see figure 7.2) can be obtained without
dynamic features.

If one adds the velocity and acceleration feature, then the procedure comes to
an EER of amazingly 2.7% (figure B.3). Together with a pre-selection based on
global parameters the EER cannot be further reduced, but the FAR at a FRR
of 0% drops form 27,5% to less than 13%. Figure 7.3 exhibits the performance
in detail.

7.3 Verification by Average Patterns

Description of the Verification Process

Instead of comparing a test sample with several reference samples and perform-
ing a consent finding afterwards, in this experiment we try to determine an
averaged reference pattern, This averaged reference pattern will consist of two
vectors per frame: mean vectors and standard deviation vectors. Thus the av-
eraged reference sample shows the expected values and deviations of the feature
components for each time frame.

We select the main representative j*of each individual as described in section
5.5. Afterwards we compute an alignment Path PathU™9) for all reference sam-
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ples j. Since each path assigns several feature vectors to each feature vector of
the main reference sample, a set F; of feature vectors result for each point ¢ in
the main reference sample:

Fi = {Fpey,(Path{ (k)| Path§ (k) =i,j = 1,...Nr}  (7.8)

The motivation is, as already mentioned, to determine a "statistical feature
vector” in the form of average values and standard deviations. The average
pattern will have the same length as the main reference. Now we can compute

the mean vectors p; by
b= S 1 (79)
I}-il i

Subsequently each component k of the standard deviation vector o; is calculated
by

E;Ef, (pie — fie)?

F (7.10)

Ok =

The verification of an unknown sample can now done by means of a single DTW
distance between the test and the averaged reference sample. The only thing
which has to be modified in the DTW distance is the determination of the
distance d. We replace d by d' which is calculated as

d'(i,j) = Z(;%]FTulU)k = fhikl) (7.11)
k 1

We can extend this approach by taking an neighborhood into account when
we compute the means and variances. This can easily be done by means of a
neighborhood-window.

Experimental Results

With an ERR of 5,2% (see figure 7.4), the described procedure achieves sat-
isfying results. Also here an improvement can be obtained by a combination
with the verification by global parameters (figure B.4). Even though the results
cannot keep up with those obtained with the DTW approach, it is worthwhile
pursuing the approach further. In particular with more than the seven refer-
ence patterns used here, the performance should increase clearly. Furthermore
no improvement could be obtained so far by different weighting of the feature as
well as the introduction of a neighborhood between the sets of feature vectors.
Both ideas are still promising.
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Figure 7.4: Verification by average patterns.

7.4 Verification by Neural Networks on Segment
Level

Description of the Verification Process
Segmentation

So far we have compared signatures on two different levels. Either we have
compared the features of single points of a signature, or the parameters features
of an entire signature, Thus it is obvious to regard a unit between these two
extremes. In order to be able to do this, the signatures must be segmented.
That means divided into different parts. In the literature, different possibili-
ties for such a segmentation are described. The most common methods take
local extremals, local minima or minima of the horizontal or tangential velocity
as boundaries between segments. Unfortunately, many procedures described
by other scientists have the problem that many errors are caused by different
segmentations of two signatures from the same writer. Here another way was
chosen which prevents this, We start by selecting the main reference (see 5.5)
and segment only this signature by local vertical position extremas. Thus a
sequence of N segments for the main reference j* of the individual i results:

Sﬂcf;. (0); s Shes:, (N§)

Now we make use of the good results of the DTW and compute the alignment
paths for every reference to the main reference. By the means of these alignment
paths we can afterwards transform the segment boundaries of the main reference
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feature to the other references. As the result we get several examples for each
segment.

A Data-driven approach

We will see that there are a lot of features which can be computed for the
determined segments. So the question arises how to use all these features for a
good verification. There are several attempts to select only those features that
are very typical for each individual. Unfortunately, these procedures are not
very convincing and neither are the results. Another popular approach is based
on rules how to weight the features. However, these rule based approaches have
well-known difficulties and usually show a worse performance than data-driven
methods. For this reason, a neural network was implemented in order to decide
for a segment whether it belongs to a genuine or a forged one.

Organization of test and training set

The neural network makes it necessary to rearrange the allocation of the training
and test data. This is necessary because we will train the neural network with
genuine signatures and forgeries. Since the reference samples were used for
the calculation of input-features (see next section), we need further genuine
signatures beside the reference samples and forgeries for the training-process.
For this reason the set of individuals for the training and test was divided. In
order to get more representative results, the experiments were done by different
organizations of test and training sets. One single individual was used in each
case for the test and the remaining individuals for training. The organization
of the references is preserved as described in the beginning of this chapter.

Input feature vectors

We can use every parameter feature as input feature. The observed parameter
features are not sufficient as an input for the neural network, since the net needs
some information about the references. For this reason we use the references

from each individual i to compute the mean p; f,;:ﬁ,. and standard deviation
k
Jeat

T hegt of each feature feat and each segment k. Then we get a normalized

k
distance-feature value for a test pattern by

pfeatf qTest'y _  feat P
fegi _ P (Sk ) ﬂ"sfg'u
tls’l"n-!‘ = Teat (7.12)
L S.Fh:_fi
ke

So we get for a test pattern three values for each feature and segment:

feat feat feat

vS{"“ 1 .usf,,p L ] asfdi

34



The DTW-distance gives us a second possibility to deseribe the deviations be-
tween a reference and a test pattern. One can simply use the the DTW-distances
to the Np references to get further components. We define

Dé:aISﬂ(FTest'yFRef;} (?13}

as the segment DTW-distance for segment k between the test pattern and ref-
erence pattern j from individual i based on the feature set featSet. By means

A DTWdistgoarse
of the reference patterns we compute the average distance H re I,-d” festfet be-

3
DTW‘““] entSat

Refi
- i

tween two reference patterns and the standard deviation o . Now

the DTW-distance can be normalized:

featSet DTWdisty.urser
) DS,, (FTest‘ H FR&[!) - R i e
DTWdist fearser _ i s} (7.14)
Ref} - o DTWdist :
S, Sf"‘f‘

All the measured deviations are put together into one large vector é:
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Dimension reduction

With all the available features, a 100-dimensional feature space is easily possible.
This means the neural net will have 100 input units and a several times higher

35



number of transitions into the hidden layer, which is equivalent to a high number
of free parameters. After a rule of thumb, one needs at least ten training
patterns for each free parameter in a neural net. If we use only ten units in
one hidden layer, we would need ten thousand segments to fulfill the minimal
requirements. After these thoughts it is obvious to employ one of the well-known
dimension reduction techniques. For this experiment, the linear discriminant
analysis (LDA) [9] was chosen. This transformation is suitable for dimension
reduction and it increases additionally the separability of the two classes. After
computing the LDA-matrix LDA with all the available training data, a linear
transformation can be done by multiplying the feature-vector § with the LDA-
matrix:

8.pA(SL%*%) = LDA % §(STe*) (7.16)

Now a dimension reduction can be done by taking the first Ny,,, vector elements.

The Net Configuration

The neural network architecture used is a time delay neural network (TDNN) [8].
Figure 7.5 exhibits the selected configuration. The input layer has no time delay
and a width of Ny, input units according to the previous dimension reduction.
The single hidden layer has Njy;4 units and also no time delay. The segment-
output layer delivers the output in the first training stage. It has two neurons
in each frame, one indicated a genuine signature and one a forgery. During the
training iterations of the first stage the network is trained to decide whether a
segment is part of a genuine signature or a forgery. After several iterations the
second training stage starts. In this stage the final output layer decides whether
a sequence of consecutive segments belongs to a genuine signature or forgery.
This layer has also two neurons with the same meaning as in the segment output
layer.

Training and Testing

Training takes place in two stages. In the first stage the segment output layer is
trained in such a way that a genuine signature causes the upper neurons of this
layer to output a 1 and the lower neurons neurons to output a 0. For a forgery
this target-output is inverted.

The second stage of the training process makes use of the time delay. Here
the output layer is trained to combine successive results of the segment output
layer into a single result. In the test phase the outputs of the upper neurons
are summed-up with the negatively weighted outputs of the lower neurons. The
resulting value is then divided by the number of summed values and compared
afterwards with a threshold value. If the summed value is larger than the
threshold, then the neural network detects a genuine signature, otherwise a
forgery.
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Figure 7.5: The architecture of the implemented TDNN.
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Figure 7.6: Verification by Neural Networks.
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Experimental Results
The following features were chosen for this experiment:

P“’idlh‘ PT""

PMiNpteat PMATpseat PAVpfeat font € {abs,, cosfi sin 8, cos, sing, vel., vely}

The DTW-distance was computed only for the feature set consisting of all avail-
able function features (see 4.1).

This experiment was executed with the described network architecture with
Ninp = 20 and Np;q = 15.

With the presented procedure an EER of 4, 5% was obtained. Thus, the perfor-
mance is worse than those of the DTW approach. However, if one regards the
false acceptance rate with a false rejection close zero, then the neural network
is elearly superior to the DTW.

Also here, improving this procedure seems to be worthwhile. Since all networks
were trained with the same number of iterations and the same parameters, some
percents of accuracy were lost due to the missing fine tuning. Furthermore a
neural network is dependent on the available amount of data, While the DTW
approach will not get better just by adding more data, one can assume that the
neural network will exceed its past results when more training data is available.

7.5 Verification of Mouse-written Signatures

Experimental Results

Some of the experiments presented above were repeated with the mouse-written
signatures. Since there were fewer mouse-written original signatures of each per-
son available, only five instead of seven reference patterns were used. Due to
the small number of reference patterns, none of the average pattern experiments
were executed,

The first experiment was again the verification by means of global parameters.
Compared with the experiment in 7.1. only the thresholds were slightly changed.
Figure B.5 shows the results of this experiment. Since it is even difficult to write
the own signature fast with a mouse, the total time loses as reliable classification
criterion, which impairs the total performance of the verification negatively.
By means of the DTW of procedure already better results are obtained (see
Figure B.6), which are again exceeded by inclusion of the global parameters
(Figure 7.7).

As good results as the verification of the pen-written signatures are here hardly
conceivable. That is above all because the mouse-written signatures of an in-
dividual deviate very much from each other. Nevertheless, with a special pre-
processing it seems to be possible to improve the results obtained so far. In
particular a sophisticated baseline normalization [10] which rotates the written
input to a nearly horizontal orientation could bring clear improvements.
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Figure 7.7: Verification of Mouse-Written Signatures by DTW and Global Pa-
rameters.
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Chapter 8

Summary

8.1 Summary

A data base consisting of almost 800 genuine signature and 1300 forgeries was
created. This data base enables almost representative results and an extension
of the amount of data is easily possible with the developed programs.

Four basically different approaches to the problem of OSV were described. The
approach based on average patterns and the application of neural networks on
the segment level are based on new ideas. Each of the four experiments led
to encouraging results on the available data base (table 8.1). Thus a further
investigation of these approaches seems to be promising. The best results were
obtained by the DT'W approach in combination with a pre-selection based on
global parameters. Here an equal error rate of 2, 7% could be obtained.

The best result (8% EER) on mouse-written signatures was also obtained by
the DTW together with a pre-selection based on global parameters. Table 8.2
summarizes the results of the mouse-experiments.

8.2 Related Works

The comparison with results of other scientists is very difficult, since there is no
uniform database. Furthermore there is only little information about the data-
acquisition process of other researchers available. Besides this some scientists
improve their results by mixing random and skilled forgeries or by collecting an
extremely high number of signatures from one individual.

The most extensive outline with many literature references can be found in [2|
and [3]. Additionally I would like to refer to the following works:

Mario E. Munich and Pietro Perona ([11]) developed a continuous version of the
DTW for a translation-invariant curve alignment. The database consisted of 56
persons with 25 signatures each. Ten signatures from each writer were used for
the test, 15 as references. As result it was stated that the EER was 0.3% worse
by application of the new technique than by the original DTW. The EER of the
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Experiment | Figure | EER | FRR 0% | FRR 2% | FRR 5% |
total time B.1 | 11.2% 45.9% 24.5% 16.0%
global parameters 7.1 [ 10.2% 36.7% 20.0% 11.5%
DTW (geom.) 72 | 5.9% 40.9% 13.0% 6.5%
DTW B3| 27% 27.3% 6.0% 0.9%

DTW & glob. par. 73| 2% 12.7% 3.7% 0.9%
average patterns 74 | 54% 40.3% 13.0% 5.3%

avg. pat. & glob. par, B4 | 4.5% 18.7% 7.6% 3.9%
neural network 76 | 4.5% 18.2% 10.2% 4.6%

Table 8.1: A summary of the experimental results. The first column describes
the experiment, the second refers to the figure with the detailed results, the
third column contains the equal error rate and the remaining columns show the
error rates at different false rejection rates.

Experiment | Figure [ EER | FRR 0% | FRR 2% | FRR 5%

global parameters B.5 | 21.4% 52.3% 50.0% 36.0%
DTW B.6 | 13.4% 55.5% 50.8 % 31.0%

DTW & glob. par. 7.7 8.0% 26.6% 24.6% 14.5%

Table 8.2: Summary of the results obtained on mouse-written signatures.

unmodified DTW was 2.6%.

Luan L. Lee and Toby Berger [4] worked with personalized feature sets and a
majority-decision-rule that classified by global parameters. The feature-selection
took place under consideration of forgeries. This technique yield 2.5% EER and
an asymptotic performance of 7% FAR at a zero FRR. The data base constisted
of 105 subjects and 5600 genuine signatures (13-1000 per subject).

Seong Hoon Kim, Myoung Soo Park and Jaihie Kim ([14]) also applied person-
alized feature sets. With 9 subjects with in each case 120 genuine signatures
and 120 forgeries they obtained an EER of 4.28%.

Kai Huang and Hong Yan ([12])have chosen the local speed minima as segmen-
tation points. They applied a pre-selection by global parameters and a DTW on
segment-features. The scientists indicate a FRR of 5% at 2% FAR as their best
result. For the test and training were 394 genuine signatures from 20 people and
466 forgeries available. Nine of the original signatures were used as references.
In [15] Kai Huang and Hong Yan describe a verification by means of a fractal
transformation-technique. They obtained a FRR of 2.3% at 2.7% FAR for ran-
dom forgeries.

Ma Mingming and Sharda Wijesoma ([13]) examined three models: a frequency
function model, a shape-related parameter model and a dynamics-related pa-
rameter model. They obtained results between 4.62% and 8.96% EER on their
data-base consisting of 1230 genuine signatures from 41 persons and 410 skilled
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forgery samples generated by two different forgers.

Brigitte Wirtz ([16] and [17]) developed a time- and position-based averaging
of represantive input signatures for a stroke-based verification approach. Based
on 6000 origingal signatures from 20 writers and 6000 forgeries from 100 forgers
an EER of 9.89% was obtained.

8.3 Future Work

This was the first research project at the Interactive Systems Labs which dealt
with signature verification. Thus, there are still many questions open and a
lot of research to be done. The most important topics for future work can be
summarized as follows:

® Data base

The created data base is still much too small in order to be able to indicate
representative results. In particular because it concerns a security issue, a
database consisting of signatures from far more than 100 different individ-
uals would be desirable. Additionally high-quality forgeries are missing.
Especially the dynamic features were quite neglected. How the results
with the global parameters show, many forgeries can be detected merely
by the total duration with the help of very simple procedures. Thus, fu-
ture data collections should increase the acquisition of timing forgeries.
Future data collections should also try to collect a larger number signa-
tures from some persons. This would enable investigations with the goal
to observe how an increasing number of reference patterns can reduce the
error rates,

e Additional features

Due to the missing hardware not all possible features could be recorded
during the data collection. Thus the pressure of the pen-tip on the paper
was only binary encoded. Meanwhile there are already instrumented pens
which measure this pressure in 256 or more levels. In particular this fea-
ture seems to be very promising, what is acknowledged by several papers.
Furthermore features like air movement and the inclination angles of the
pen have not been recorded yet.

e Adaptation
A commercial system should be able to adapt to over the time slightly
changing signatures. On the one hand additional data is needed which
represent modifications of signatures over several months or years. On the
other hand the procedures represented in this work have to be adjusted.

o Intelligent Reference Acquisition
In some cases very untypical signatures result from a lack of hardware
or a mistake of the user. These patterns are particularly harmful for the
system if they are added to the reference samples. In this case they will
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negatively influence the verification process as long as the system operates.
For this reason a good system should test whether the digitized samples
are consistent. If the system discovers an inconsistency, it should inquire
with the user and replace the possible incorrect signature by a new one.

It is evident that some signatures are more easily to forge than others.
For this reason an intelligent reference acquisition should approximate the
complexity of the signature by a measure which has to be defined and
set the number of necessary reference signatures accordingly. By a higher
number of reference samples for an easily to imitate signature, there is
some good reason to believe that a more precise model of the signature can
be determined which compensates the lacking complexity. Whether such
a procedure really improves the verification accuracy, has to be examined.

Verification on a PDA

As already mentioned in the introduction, the PDAs represent a potential
market for OSVS. However, to build an OSVS for PDAs is a challenging
task, since the screen is often very small, the digitization is quite crude
and PDAs have usually slower processors and less memory than desk-
top computers. Also here there are special adjustments of the described
procedures necessary to build a system which is executable on a PDA.
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Appendix A

Data Bases

ID | #genuine signatures | #skilled forgeries
000 10 15
001 10 15
002 10 15
003 10 15
004 10 15
005 10 15
006 10 15
007 10 15
008 10 15
009 10 15
010 10 15
011 10 15
012 10 15
013 10 15
014 10 15
015 10 15
016 10 12
017 10 9
018 10 6
019 10 3
020 10 0
[ 21 210 270 |

Table A.1: The data base of the mouse-written signatures. One line contains
the writer identity number, the number of signatures made by this writer and
the number of available forgeries for the signature from the corresponding indi-
vidual.
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[ ID | #gen. sign. [ #rand. forg. | #skilled forg. | #sessions |
000 55 25 25 4
001 35 25 30 3
002 75 25 30 2
003 35 15 25 2
004 15 156 30 1
006 35 10 39 1
007 35 10 25 1
008 35 10 30 1
009 15 10 30 1
010 15 10 30 1
100 15 15 25 1
101 0 0 0 2
102 15 15 25 1
103 15 15 25 1
104 15 15 25 1
105 15 15 25 1
106 55 15 25 3
107 35 15 25 2
108 15 15 25 1
109 15 15 25 1
110 15 10 25 1
111 15 10 25 1
112 35 10 25 2
113 15 10 25 1
114 15 10 30 1
115 15 10 30 1
116 20 10 25 1
1T 40 10 25 2
118 20 10 25 1
119 20 10 30 1
120 20 10 30 1
121 20 10 30 1
32 | 9 430 865 50 |

Table A.2: The data base of the pen-written signatures. Each line consists of an
identity-number, the number of signatures from the corresponding individual,
the number of random and skilled forgeries of the signature from this individual
and the number of sessions done by the corresponding individual.



Appendix B

Further Results

Verification by Total Time
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Figure B.1: Verification by total time as the only global parameter.
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Verification by Giobal Parameters (Random Forgaries)
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Figure B.2: Verification of random forgeries by global parameters.
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Figure B.3: Verification by DTW.
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Verification by Average Patterns and Global Paramaters
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Figure B.4: Verification by average patterns and global parameters.
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Figure B.5: Verification of Mouse-Written Signatures by global parameters.



Verification of Mouse-Written Signatures by DTW
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Figure B.6: Verification of Mouse-Written Signatures by DTW.
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