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Abstract

This work presents a local appearance-based approach to open-set face recognition. The
open-set recognition task is formulated as a multi-verification problem. The recognition
task is carried out as a series of verifications, every new probes’ identity is established
by performing identity verifications against each known subject in the gallery. The
classification is based on local appearance-based face recognition approach using DCT.
Input images are divided into local blocks to which the discrete cosine transform is
applied. A feature vector is then generated by combining selected local feature coe�-
cients and classification is performed using either support vector machines or nearest
neighbor method. Progressive accumulation of confidence scores from each verifier is
used to enhance video-based identification. Additionally, a data set has been collected
in front of the entry to an o�ce to evaluate the performance of the proposed approach.
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1 Introduction

Face recognition plays an important role in human-machine interaction. Especially
smart environments need robust and unobtrusive means of identifying interaction part-
ners in order to achieve the goal of assisting the user without interference.

Face recognition is a natural and innate ability of humans and is used daily by every-
body. Usually, we visually identify our communication partner. This further influences
our behavior and helps to improve interaction. Once the identity has been established,
it is possible to tap background knowledge in order to better interpret intentions,
statements and gestures or modify the own behavior.

Allowing a system to identify its interaction partners helps it to adapt to the user. A
sample application domain is customized services based on the user’s preferences. For
example, a car can recognize its driver and adjust cockpit and seat settings to the user’s
taste or a smart living room that adjusts ambient lighting and favorite TV channels.

This work focuses on an open-set face recognition scenario. Open-set recognition is the
task of identifying a set of known people from an open set of possible probes, closed-set
recognition on the other hand assumes that every probe is from a closed set of subjects
that the system was trained on. The di↵erence is therefore that arbitrary people may
be presented to the open-set system which has to decide whether the person is known or
unknown and then, in case the probe is known, determine the identity. Generally, most
identification problems are not of a closed-set nature, therefore open-set recognition
presents an approach that is more applicable to real-world problems. Nonetheless,
open-set recognition is not a common research topic.

The first step to building a biometric system for face recognition is to extract biometric
information from samples of the subject that the system later has to recognize and to
store these feature templates in a database (or gallery) - these belong to the known
set. The set of unknowns are all those probes presented to the system that do not have
a mate in the gallery. Then, during matching, the system is presented a probe sample
that it has to classify.

The main challenges lie in changing illumination, varying pose and varying appearance.
Change of illumination is a problem because di↵erent lighting levels may yield very
di↵erent gray value distributions in faces, i.e. the same face looks very di↵erent under
artificial lighting and in direct sunlight. So much that two di↵erent faces may look more
similar under the same lighting than the same face under di↵erent lighting conditions.

Pose variation occurs very frequently because the user cannot be expected to look
straight into the camera at all time without moving, tilting or turning the head. The
head may rotate out of image plane, if the user looks at another person instead of the
camera, or in plane, if the user tilts his head. All these distortions shift the positions
of local features because for example in a slightly out of plane rotated face the eyes lie
closer.

Appearance may also change over time. For one, people may be wearing di↵erent
accessories like glasses or sunglasses, may grow a beard or makeup. All these change
the overall appearance of the face and they have to be taken into account. Additionally,
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parts of the face may be covered, e.g. the mouth by the user’s hand. And di↵erent
facial expressions like laughing or speaking may also alter the appearance. A number
of approaches have been developed to recognize and identify faces. These range from
facial feature based methods, to appearance based models. Some of these systems
perform quite well in closed set identification tasks but open set recognition is more
challenging.

Face recognition or identification is the task of establishing a person’s identity by means
of a presented face image. Face detection is the task of determining whether a given
image contains faces and finding the locations and sizes of all faces. Therefore face
detection is the first step in order to find and extract the face, followed by registration
where the detected face is extracted, cropped and aligned. Then, usually a feature
extraction step that reduces the data dimensionality follows because an N ⇥M sized
image spans a classification space of N ⇥M dimensions, and dimensionality increases
the need for more training data. Consequently, the feature extraction usually maps
the input image into a lower-dimensional space. After feature extraction classification
takes place. This is the final step in the recognition process where the extracted feature
is compared with the previously learned or stored features in a database.

Di↵erent classes of face recognition problems exist.

1. Closed-set recognition: For a fixed, finite set of known individuals decide who
the presented sample is most similar to.

2. Face verification: Given a sample and a claimed identity decide whether the claim
is correct.

3. Open-set recognition: For an arbitrary set of individuals (known and unknown)
decide whether the given sample is known and, if known, which person he/she is.

Closed-set face recognition works on a fixed set of known subjects and has to distinguish
just between these known individuals. Open-set face recognition is a more challenging
problem than closed-set recognition because an additional decision has to be made
whether the person is known or unknown. Open-set recognition can be seen as an
extension of face verification to n subjects where every subject has to be verified against
an open set of impostors. This work implements open-set face recognition as a multi-
verification task. This is done by building a face verification classifier for every known
subject. Then, every new probe is tested against these verifiers to establish the identity.

1.1 Previous work

According to [11] face recognition algorithms can be classified as feature-based and
appearance-based algorithms. Feature-based algorithms extract facial characteristics
like proportions and distances of facial features. Appearance-based algorithms directly
work with pixel intensities, e.g. neural networks as in [12]. Additionally, appearance-
based algorithms can be divided into holistic and local approaches.

Holistic approaches represent the entire face in a single feature vector whereas local
appearance based approaches work on smaller portions of the face - either dividing the
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Figure 1: Face recognition tasks as described in [8]

whole face into regions which are analyzed independently or focusing on prominent
regions such as eyes or nose.

1.1.1 Holistic approaches

Holistic face recognition approaches analyze the entire face at once. The most well-
known holistic approach is the eigenfaces approach [9]. A Karhunen-Loeve transform
(KLT) - also known as principal component analysis (PCA) - is applied to a training
set of previously aligned and cropped faces. Then, the first m principal components
(eigenfaces) are selected thereby reducing the dimensionality of the recognition task.
Now, new faces can be expressed as a linear combination of this eigenface base so
comparing an unknown face with previously learned faces is just a matter of comparing
coe�cients that associate with each eigenface. Drawbacks of this approach are its
sensitivity to lighting and pose variations as well as registration errors. Fisherfaces [6],
[7] is a similar holistic approach that uses Fisher linear discriminant analysis (LDA)
for dimensionality reduction. The eigenfaces approach maximizes the overall scatter,
whereas fisherfaces uses class information and maximizes the ratio of between-class
scatter to within-class-scatter. The eigenfaces approach aims at best reconstruction of
face images in a mean square error sense. Fisherfaes on the other hand deals directly
with classification.
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1.1.2 Local appearance-based approaches

It has been found that holistic approaches are more sensitive to lighting and pose
changes and su↵er from occlusion and changes in facial expression. Therefore local ap-
pearance based approaches were introduced. Modular eigenfaces [9] for example that
focuses on eye and nose regions only for recognition has been shown to outperform
the holistic eigenface approach. Another example that is using local appearance-based
features is [10]. There support vector machines are used as classifiers on local face com-
ponents which partially overlap. The local component-based approaches outperformed
holistic approaches using support vector machines as well.

1.1.3 Face verification

Face verification plays an important role in secure biometric applications and has been
studied extensively. It is also important in this work because a multi-verification ap-
proach is used to implement open-set face recognition. Support vector machines were
used to implement high-security verification systems, examples are approaches by Jon-
sson et al. [17], Kim et al. [19], Lee et al. [20], Phillips [22] and Cardinaux et al.
[21].

Phillips [22] applies SVMs to face verification. The work introduces a parametrized de-
cision surface in order to optimize the trade-o↵ between the probability of correct verifi-
cation P

V

and false acceptance P

F

, the decision surface {x✏S : wx+b = 0, (w, b)✏S⇥R}
is changed to wx + b = �, where � allows variation of P

V

and P

F

. Classification is
performed in di↵erence space consisting of within-class di↵erences modeling di↵erences
within the same class and between-class di↵erences that model di↵erences between dif-
ferent classes. Then, the SVM is trained to build a decision surface separating these
classes. This SVM can be used to estimate similarities between two facial images.

Jonsson et al. [17] employ support vector machines and explore their discriminatory
capabilities. Faces are both represented in principal component and linear discriminant
subspaces for comparison. They show that SVMs can extract the relevant information
and outperform benchmark approaches on non-discriminatory representation but lose
this advantage if discriminatory features like those obtained by LDA are used. Unlike
[22] this approach uses client-specific support vectors.

Kim et al. [19] build a verification framework considering real-world applicability. They
try to limit memory consumption and consider easy removal and addition of clients.
The approach is based on a feature set comprised of several PCA-based features and an
additional edge map. The work describes the new features as eigenUpper, consisting of
forehead, eyes and nose that tries to minimize influence of expression, and eigenTzone,
consisting of eyes and nose that tries to compensate illumination. Instead of training
one SVM per enrolled client an SVM monitor is trained to model an intra-/extra-person
similarity space on eight di↵erent simple similarity measures. By using a similarity
space and a single SVM memory consumption and computational overhead are reduced.

Cardinaux et al. [21] train SVM and MLP classifiers on features consisting of raw-pixel
values of resized and normalized face images and a skin color distribution vectors. In
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this case the MLP outperformed the SVM approach.

1.1.4 Open-set face recognition

Open Set Face Recognition Using Transduction is one of the few papers [4] that ex-
plicitly addresses the issue of open-set recongition.
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2 Methodology

This section gives an overview of the basic principles and techniques used in this work.

2.1 Haar cascade classifiers

Haar cascade classifiers, developed by Viola and Jones (2001) [18], present a fast and
e�cient object detection framework. The framework utilizes Haar-like features and
boosted classifier cascades. Haar-like features are simple rectangle features inspired by
Haar basis functions. AdaBoost is then used to select the most promising Haar-like
features e�ciently. In order to further improve performance a cascaded structure was
introduced. A cascade is a degenerate decision tree that assesses a limited combination
of features at every stage. Early stages try to reject as many negative samples as
possible while accepting nearly all positive samples. The advantage is then that only
few search windows have to descend through the whole cascade.

2.1.1 Haar-like features

Haar-like features are simple rectangle features inspired by Haar basis functions. Com-
puted features have advantages over using pixel intensities directly. Although far more
rectangle features than pixels exist, once a set of discriminative features has been se-
lected they can be evaluated faster and they reduce the classification complexity by
utilizing a lower dimensional feature spaces and thus allow better results using a finite
amount of training examples. Examples of these rectangle features can be seen below.

Figure 2: The following sample Haar-like features consist of up to four boxes whose
gray value di↵erences are computed

Haar-like features consist of up to four rectangular image regions and they are computed
as di↵erences of rectangular image regions. These features can be of arbitrary size and
position within the search window. Therefore even relatively small search windows
yield a large number of possible features.

Albeit being simpler than other possible feature representations Haar-like features have
one distinct advantage. They can be computed very e�ciently due to their simple
nature. In order to keep computation overhead at a minimum so-called integral images
were introduced.
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2.1.2 Integral image

In order to compute rectangle features very rapidly the integral image is used. The
integral image is a di↵erent representation of images that allows to compute intensity
sums of rectangles very e�ciently. Every point of the integral image corresponds to
the sum of all intensities within the rectangle that is spanned from the image origin to
the current point’s location.

The integral image can be calculated according to

ii(x, y) =
X

x

0x,y

0y

i(x0, y0) (1)

where x, y are the integral image positions and i(x0, y0) represents the image intensity
value at (x’, y’). This formula can be computed with a single pass over the im-
age by temporarily storing the current row’s intensity sum and referencing previously
calculated rectangle sums, the row sum being s(x, y) = s(x, y � 1) + i(x, y) and then
calculating the integral image value at (x, y) according to ii(x, y) = ii(x�1, y)+s(x, y).

The integral image will quickly provide rectangle intensity sums for rectangles starting
at the origin, but arbitrary rectangles also have to be computed. These rectangle sums
can be calculated easily by means of the integral image as can be seen by the illustration
below - the empty area on top of and left of the intended rectangle have to be subtracted
from the large rectangle that spans from top-left to the current point whose area can
easily be obtained from the integral image. Because these subtractions overlap we need
to add a small top-left portion where the subtraction occurred twice. Therefore, only
four array lookups are needed to calculate the intensity sum of a rectangle.

Figure 3: Integral image representation ii(x; y) is the sum of all pixel intensities con-
tained in the box from the upper-left corner to the current point. Computing the
intensity sum of an arbitrary box is achieved by subtracting the sum of pixel intensi-
ties of boxes B and C from the main box and adding the sum of A, because A, B, C
overlap.
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2.1.3 Boosted classifier cascades

Even rather small search windows yield up to 180,000 possible feature combinations.
Therefore an e↵ective feature selection algorithm needs to select the most promising
features. Viola and Jones [18] proposed to use a modified AdaBoost algorithm.

AdaBoost builds strong classifiers from so-called weak classifiers. It combines several
of these weak classifiers via linear combination into a strong classifier that can fulfill
a given classification task even though the weak classifiers it consists of need only be
slightly better than chance. It does so by selecting the most discriminative features
greedily. In the framework presented by Viola and Jones in [18] thresholded Haar-like
features are used as weak classifiers. And according to [18] the great challenge is to
find those features that can be combined to form a good classifier.

Consequently, those weak learners are chosen that separate positive and negative exam-
ples as good as possible. This is achieved by using a thresholded classification function
that tries to minimize misclassifications of examples. Thus a weak classifier h

j

(x) con-
sists of a feature f

j

, a threshold ✓

j

and a parity sign p

j

that indicates the direction of
the inequality and x being a 24x24 search window:

h

j

(x) =

⇢
1 if p

j

f

j

(x) < p

j

✓

j

0 otherwise
(2)

Selecting many features will increase classification performance as many sample details
can be modeled but at the same time many features lead to higher computation times.
That results from the fact that in the current framework all features are evaluated
over every possible search window in the image. To avoid evaluating all selected,
discriminating features cascades are introduced. They are basically degenerate decision
trees where at every stage a search window is either rejected or passed to the next stage,
a window is finally accepted if it passes the whole cascade. The idea is to have early
stages that discard many negative samples while still accepting all positive samples
and to have more discriminative stages later that were trained on harder examples.
Ideally many easy negative search windows are discarded early on and only hard to
classify windows proceed further through the cascade. Therefore, the entire cascade
will be evaluated in the rare case of positive samples and not for every search window
while still retaining all of its discriminative power.

Cascade training is done accordingly. The first stage is usually trained with random
non-object class negative samples and object class positive samples. The first stage
tries to accept nearly 100% positives while rejecting as many negatives as possible.
Then the next stage is only trained with the falsely accepted negatives that the first
stage missed and this continues through all further stages. Therefore every stage faces
a harder classification task than the stage before and thus is better at rejecting false
positives while still trying to accept nearly all true positives. Now, the overall correct
detection rate D and false detection rate F of a cascade with n stages can computed
according to

D =
nX

i=1

d

i

(3)



Open-set Face Recognition 9

F =
nX

i=1

f

i

(4)

where d

i

is the correct detection rate of stage i and f

i

is the false acceptance rate of stage
i. individual stage false acceptance and correct acceptance rates can be calculated from
(3) and (4). For every stage additional weak classifiers (thresholded Haar-like features)
are added until the stage meets its desired rates. If the overall classifier fails to achieve
the overall desired rates more stages are added.

Figure 4: Haar classifier cascades.

2.2 Discrete cosine transformation

The discrete cosine transformation (DCT) is a frequency transformation of discrete-
time signals, similar to the discrete Fourier transform. A di↵erence is that the DCT
works with real valued coe�cients. It is widely used in signal processing and im-
age compression because it has e�cient implementations and provides compact data
representation. Because most of the image information is usually concentrated in low-
frequency components, it can be used to e�ciently compress image data. It is almost as
successful as the Karhunen-Loeve transform for image comrpression, in addition it uses
data-independant bases and is faster to compute. The compression can be achieved
by leaving out high-frequency coe�cients and therefore smoothing the reconstructed
signal.

DCT transforms a signal into a sum of cosinusoidal signals with di↵erent amplitudes
and frequencies. As computer vision problems usually deal with images and therefore
two-dimensional data, the 2-D DCT is defined as

F (u, v) = C(u)C(v)
2

X

X�1X

x=0

Y�1X

y=0

f(x, y) cos

✓
⇡u(2x + 1)

2X

◆
cos

✓
⇡v(2y + 1)

2Y

◆
(5)

where X ⇥ Y is the input data size and C(i) is defined as

C(i) =

⇢ 1p
2

if i = 0

1 otherwise
(6)

Figure 5 shows all precomputed DCT image bases for 8x8 input data size.
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Figure 5: DCT image bases, width and height are 8 pixels.

2.3 Local appearance-based face recognition using DCT

Usually, one necessity for recognition is a transformation into a lower dimensional
feature space because working with raw pixel intensities has several disadvantages.
Classifiers trained on raw pixel intensity input are not robust against image noise and
are strongly dependent on appearance, therefore large amounts of training data are re-
quired. The discrete cosine transformation (DCT) is such a transformation. One reason
to prefer DCT over PCA is that DCT utilizes data-independent bases. As opposed to
the subspace methods, the DCT bases do not have to be constructed from the training
data first because the bases are predetermined. The e↵ect of slightly misaligned train-
ing images for base construction is shown in [1], the resulting base images have more
noise than those constructed from well-aligned training images. Therefore, alignment
errors in the training data do not have a large impact on DCT-based classification per-
formance. Even though discrete cosine transform employs data-independent bases, it
approaches PCA’s compact data representation ability where PCA is proved to be op-
timal. When DCT is used for feature extraction in a local appearance-based approach,
recognition rates outperform those of holistic approaches [2]. Local appearance-based
recognition using DCT splits an aligned face image into blocks of 8x8 pixels and applies
the DCT transform on each block. Then, each block is reordered by zig-zag-scanning
the coe�cients (see Figure 10) and the top-left DCT coe�cient of each block is dis-
carded as it represents the block’s average intensity value. Next, appropriate coe�-
cients are selected in each block that yield the best classification results, in [2] it is
shown that removing the first coe�cient and selecting the following five provides good
results. Then, fusion occurs either at feature level or at decision level - i.e. first con-
catenating the individual features into a single feature vector before classification or



Open-set Face Recognition 11

classifying locally and then fusing the local decisions.

2.4 Support vector machines

Support vector machines (SVMs) are maximum margin binary classifiers that solve a
classification task using a linear separating hyperplane in a high-dimensional projection-
space. This hyperplane is chosen to maximize the distance between positive and neg-
ative samples. Real-world problems seldom present linearly separable data, therefore
a transformation into a higher-dimensional space is applied before classification with
hopes of being able to linearly separate data in the new space. The great advantage
is that the hyperplane does not need not be projected down into the original space,
instead the classification takes place right in the high-dimensional space implicitly.
SVMs are conceptually simple yet powerful and the results are interpretable, all good
reasons to employ SVMs. Further introduction into SVMs can be found in [14] and
[15].

2.4.1 Linear classification

Figure 6: Linear classifier and margins - the margin is proportional to the expected
generalization ability. Taken from [15].

Let {(x1, y1), (x2, y2), . . . , (xm

, y

m

)} again denote the training data, consisting of a
training vector x

i

and a corresponding classification class y

i

✏{�1, 1}. Under the as-
sumption that the provided data can be separated linearly in an n-dimensional space,
we can construct an infinite amount of n � 1-dimensional hyperplanes that correctly
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separate the training data, because there are no restrictions on placement or orienta-
tion of the hyperplane as long as the data is correctly classified. The idea of maximum
margin classification is then to choose the hyperplane with the maximum separating
margin between the two classes because it can be expected that this maximum margin
hyperplane is best at generalization, i.e. the margin is proportional to generalization
ability of the classifier.

A hyperplane can be described as

{x✏S : wx + b = 0, (w, b)✏S⇥ R} (7)

and the maximum margin separating hyperplane has to minimize the condition
min

i=1...n

|wx

i

+ b| = 1 where x

i

are the training examples. Consequently, the dis-
tance between two samples x

i

and x

j

relative to the hyperplane can be defined as
w·(xi�xj)

kwk . Then the distance between the two classes is 2
kwk . So in order to classify

training data correctly the hyperplane can be found by maximizing 2
kwk or minimizing

kwk2 under the condition

y

i

(wx

i

+ b) � 1 for i = 1 . . . n, (8)

that guarantees that all samples are correctly classified. This minimization can be
achieved using Lagrange multipliers once rewritten into

L

p

= L(w, b, a) =
1

2
kwk2 �

nX

i=1

↵

i

(y
i

(wx

i

+ b)� 1) . (9)

with ↵1, ↵2, . . . ,↵n

being Lagrange multipliers. After solving the optimization prob-
lem most ↵

i

are zero because their conditions are fulfilled. Those x

i

whose ↵

i

> 0
are chosen as support vectors to represent the margins, they are the closest vectors
to the hyperplane. Then w can be computed as a linear combination of these ↵

i

:
w =

P
n

i=1 ↵

i

y

i

x

i

.

2.4.2 Soft-margin linear classification

In order to allow a certain number of misclassifications a soft-margin is introduced. The
optimization condition is changed to y

i

(wx

i

+ b) � 1� ⇠

i

for i = 1 . . . n, ⇠

i

� 0, where
⇠

i

is the sample x

i

’s distance from the correct margin, it is sometimes also referred to
as slack term. Therefore if ⇠

i

> 1 the sample is misclassified, if 0 < ⇠

i

< 1 the sample
is correctly classified but within the margin (margin error) and if ⇠

i

= 0 the vector lies
on the margin. Consequently, the minimization term becomes

min
w,b,⇠i

kwk2 + C

 
nX

i=1

⇠

i

!
(10)

where C is a weighting parameter that controls the rate of misclassifications - small C

maximizes the margin, large C yields few misclassifications.

So soft-margin classifiers allow a certain number of misclassifications and can therefore
better cope with data that is not exactly linearly separable.
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2.4.3 Non-linear classification

Given that most real-world data is not linearly separable, the data has to be altered
in some way in order for the previous linear maximum-margin classifiers to be useful.
The idea is to transform the data into a higher-dimensional space and scatter the data
suitably so that it can then be classified using linear separation.

The transformation is usually of the form � : Rn ! Rm

, m > n. But transformations
and computations in high-dimensional spaces are usually computationally expensive.
Therefore the so-called ”kernel-trick” is employed, a kernel function is defined as the
dot product of the projection of two vectors - K(x, y) = �(x) · �(y). As the previous
equations exclusively use dot products in the high-dimensional space there is no need
to explicitly transform the data or to transform the hyperplane. Instead, all equations
can be evaluated using kernel functions. Popular kernel functions are
Polynomial:

K(x, y) = (x · y + c)d (11)

Radial basis functions:

K(x, y) = exp
�kx� yk2

2�2
(12)

Sigmoid:
K(x, y) = tanh((x · y) + ✓) (13)

c, d, �,  and ✓ are parameters and have to be chosen to optimize the classification.

Figure 7: Non-linear classification using kernel function. A kernel function is used to
transform data into a higher-dimensional space where the data is linearly separable.

2.5 Nearest neighbor classification

Nearest-neighbor (NN) classification is a delayed or lazy learning algorithm. It employs
simple instance-based learning where the learning itself consists of storing the training
data samples. The actual work is done later during classification. This makes NN
classification easy to implement and non-parametric. On rather small data sets NN
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classification is on par computationally with other classifiers and may even outperform
complex classification algorithms.

Given the training data {(x1, y1), (x2, y2), . . . , (xm

, y

m

)}, consisting of a training vector
x

i

and a corresponding classification class y

i

, and a vector x that is to be classified,
NN is defined as

c = argmin
i✏1,...,m

kx� x

i

k (14)

.

The result is the class of sample x

c

, namely y

c

. This approach can easily be extended to
k nearest neighbors. In that case, the decision is made by combining the each nearest
neighbor’s decision in some way.

Usually, nearest-neighbor classification is performed in an Euclidean space using the
Euclidean distance metric, also known as L2 norm. Other norms may be used, such as
the L1 or city-block distance. It is defined as

d(x1, x2) =
NX

b=1

|x1[b]� x2[b]| (15)

where x

i

[b] is the bth component of the vector x

i

and N is the length of vectors x

i

.

A detailed evaluation of the use of di↵erent distance metrics in nearest-neighbor clas-
sification for local appearance-based face recognition is performed in [2]. The paper
states that usually the L1-norm outperforms other norms. Therefore we use L1-norm
in nearest-neighbor classification later in this work.

2.6 K-Means clustering

The k-means algorithm is an unsupervised learning algorithm that is used to cluster
data, i.e. classify objects into di↵erent categories, into k partitions. It was introduced
by MacQueen [16] and is related to the expectation-maximization algorithm. In the
k-means approach clusters are represented by their respective centroid or mean. Due
to its conceptual simplicity and e�ciency it is used widely.

K-means tries to reduce the sum-squared distance of all data-points x

j

and its associ-
ated cluster mean µ

i

. The error term can be formulated as

SSE =
kX

i=1

X

xj2Si

d(x
j

, µ

i

)2 (16)

where d(x1, x2) denotes the distance between a data-point and a cluster-mean. Gener-
ally, Euclidian and city block distance are used as the distance metric.

The simplest form of the algorithm starts by selecting k random cluster means, e.g.
by selecting k random data points as initial cluster means. Then, every data point is
assigned to its nearest centroid according to the distance function. The next step is
to update the centroid locations by calculating the mean of all assigned data points
to each current cluster. These steps are iterated until either the centroids’ values no
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longer change, until the data points do not switch between clusters or until a certain
number of iterations is reached.

K-means may in fact converge to local minima. One solution to avoid only locally
optimal solutions is to start with di↵erent random centroids and run the algorithm
several times.
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3 Open-Set Face Recognition

This chapter covers the implementation and is organized as follows. Section 3.1 de-
scribes how the face registration component works, Section 3.2 explains the feature
extraction procedure. Then, Section 3.3 introduces the classifiers that were employed
and Section 3.4 provides information about the use of additional video-based informa-
tion.

3.1 Face registration

Face registration is the task of aligning the faces such that di↵erent faces are trans-
formed to a common coordinate system. This task is a crucial preparation step for
face recognition. Since most recognition algorithms are quite sensitive to even small
changes in orientation or position correct registration is very important. If registration
fails recognition cannot be performed successfully.

Face registration can be considered as a normalization step and consists of two phases.
First, a face detection algorithm needs to find the face. Then, an eye detection algo-
rithm is used to detect the eyes. The eye locations are used as reference points, and
the images are transformed so that eye locations in the registered images are the same.

3.1.1 Face detection

Face detection is done by using Haar cascade classifiers. The classifiers were trained on
several face and randomly chosen non-face images. The detected outline is usually not
suited to be taken directly for recognition. The final Haar cascade classifier output is
a fusion of multiple detections that can occur at di↵erent scales and slightly di↵erent
positions for same face, so it can be rather crude. Therefore further steps need to be
taken.

In order to be able to handle multiple persons appearing and disappearing, in case of
multiple face detections the largest hit with the least distance from the last detection
is selected.

3.1.2 Eye detection

As stated above, face detection is just a rough first step to estimate face position. The
returned rectangle can vary significantly in size and sometimes location, a first detection
may cover just the skin-colored face area, whereas the next detection may cover the
whole face including neck and hair. It is di�cult to establish robust recognition if
the variation between two consequent detections of the same person may already be
larger than the overall di↵erences between two totally di↵erent people. Therefore, in
addition to face detection, eyes are detected as well to provide more robust cues about
face orientation and size.

Eye detection is also done using Haar cascade classifiers. Eyes seem to pose a greater
problem than faces for the Haar cascade classifiers because they contain less discrimi-
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natory intensity features. Fortunately, once a face is detected there are not too many
other similar facial features. Nonetheless, false positive detections may occur around
the nose or far more often e.g. on curly hair. Haar cascade detection may fail completely
if the eye-brows are covered by hair. That is because just the eyeball’s appearance by
itself contains too few discriminatory information to robustly detect eyes and therefore
additionally eyebrows were included in training images as there is usually a high con-
trast di↵erence between the eye brows and the surrounding area, which improves the
detector.

Additionally, to improve robustness a few checks were included. The eye detection has
to be within the upper half of the face, the left eye must be within the left upper half,
and the right eye within the right upper half of the face. In order to minimize the
jitter of eye detections the newly detected eye coordinates are compared with the last
detection and the closest hit is chosen.

If the eye detector fails to detect either eye an educated guess is made based on the
current face location and old eye positions. This ensures that infrequent mismatches
can be compensated.

3.1.3 Alignment

After face and eye positions have been established alignment is straight forward. The
image is rotated and then cropped according to the distance between the eyes. The
output of the aligner is a cropped and rotated face image of 128x150 pixels size, the
distance between eyes is 70 pixels and the eyes are located 45 pixels from the top of
the image. The resulting registered image is then scaled to 64x64 pixels size, the eye
locations in registered images are the same.

3.1.4 Sample augmentation

Imperfect registration may decrease recognition performance but perfect registration
is very hard to achieve and not always possible. The advantage of creating additional
samples is that a classifier trained with these samples becomes more robust against
registration variations. This is important because registration in real-world applications
is usually not perfect. In order to overcome this di�culty an additional processing step
is performed. Before applying the DCT transform to an aligned and cropped face
image a set of related images are generated by slightly varying detected eye locations
and therefore creating new images with slightly di↵erent alignment.

In order to simulate the influence of imprecise registration, each eye’s location is varied
individually by a few pixels in each direction, for example in the 4-neighborhood of the
detection. A variation of the eye location by a single pixel in each direction ({�1, ..., 1}
in x direction and {�1, ..., 1} in y direction per eye) yields 24 additional samples.
Consequently, 25 times more registered face images are available with just a variation
of a single pixel. Increasing the amount of data may cause problems, it may lead to
sample data imbalances. So, after creating these additional samples and extracting
the features k-means clustering is applied to reduce the amount of positive samples.
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(a) Daylight (b) Artificial light, head pose varia-
tion

(c) Daylight, motion blur

Figure 8: Face and eye detections

Figure 9: Face with failed eye detection

K-means clusters the samples into k clusters represented by their means and these
cluster means may then be used as the representative samples.

The approach is therefore to create additional samples by varying eye detections in
the 4-neighborhood of the original detection, this step yields 24 additional samples
per original training image. Then, every sample is divided into blocks, discrete cosine
transformed and the relevant coe�cients are extracted to form a feature vector as
described in Section 3.2. Each feature vector represents a point in the feature space so
the standard k-means algorithm can be applied to the set of all extracted features for
each client individually. In order to reduce the size of additional samples to the initial



Open-set Face Recognition 19

amount of data, the clustering parameter k is chosen as N

25 , where N is the number of
initial samples and clustering is done using the L1 distance metric. After clustering,
the usual training and classification steps can be performed.

3.2 Feature extraction

Every cropped and aligned face image of 64x64 pixels resolution may be interpreted as
a single point in a 64x64 dimensional space. But too many training examples would
be needed to perform classification in such a high-dimensional space. Therefore the
dimensionality of the features has to be reduced. The standard approaches to dimen-
sionality reduction include principle component analysis (PCA), linear discriminant
analysis (LDA) and discrete cosine transformation (DCT). DCT has the advantage
of utilizing data-independent bases which limit the influence of registration errors be-
cause these bases do not have to be constructed from automatically registered input
images during training. Misaligned training images decrease the performance of sub-
space methods because noise is introduced in the basis images, see [2] for examples.
OpenCV was used to extract DCT features.

3.2.1 Local DCT coe�cients

Every aligned and cropped face image to be classified is first converted into a grayscale
image of 64x64 pixels and then divided into 8x8 pixel blocks, then DCT is performed on
each of these local blocks. A block size of 8x8 pixels provides a reasonable compromise
between compression and processing overhead.

After dividing the image into 8x8 blocks DCT is performed on each block. Then, each
block’s coe�cients are ordered using zig-zag-scanning, see Figure 10. From that sorted
list, the first, so-called DC, component is skipped because it represents the average
pixel intensity of the entire block. The following five coe�cients are retained and the
remaining coe�cients are discarded. Especially these low-frequency coe�cients have
been shown to perform well as features for classification tasks. The process then yields
five DCT coe�cients for every image block. There are in total local 64 blocks in 64x64
input images, so the dimensionality is reduced from 4096 to 320.

3.2.2 Feature normalization

DCT preserves the total image energy of the processed input block, therefore blocks
with di↵erent brightness levels lead to DCT coe�cient with di↵erent magnitude values.
In order to balance each local block’s contribution to the classification the local feature
vector is normalized to unit norm. The magnitude of feature vector f is transformed
into the normalized feature vector f

n

:

f

n

=
f

||f || (17)
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Figure 10: Zig-zag scanning coe�cients and construction of the DCT feature vector.

3.3 Classification

Both support vector machine and nearest-neighbor classifiers are used to perform the
open-set classification task. LibSVM was used as the SVM implementation.

When classifying a known person in open-set recognition, the system may either cor-
rectly accept the person as known and identify him or her correctly, correctly accept but
falsely classify the person or the person may be falsely rejected. An unknown person
may be correctly rejected or falsely accepted. Taking these into account, the perfor-
mance measures are defined as: CCR (correct classification rate, correct acceptance and
identification of known), CRR (correct rejection rate, correct rejection of unknown),
FAR (false acceptance rate, false acceptance of unknown), FRR (false rejection rate,
false rejection of known) and FCR (false classification rate, correct acceptance but
misclassification of known).

The error rates are defined as

FAR =
n

impostor,accepted

n

impostor

(18)

FCR =
n

genuine,misclassified

n

genuine

(19)

FRR =
n

genuine,rejected

n

genuine

(20)

where n

genuine

and n

impostor

represent the number of genuine and impostor samples
presented to the recognition system.
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3.3.1 SVM based classification

Open-set recognition is a multi-class classification problem, support vector machines
on the other hand are binary classifiers. Traditionally, two ways were employed to solve
multi-class problems with SVMs, either a one-vs-one or one-vs-all approach.

The one-vs-one solution works by training m(m�1)
2 classifiers to solve an m-class prob-

lem. Each classifier is trained to separate two single classes, this is a pairwise approach.

In the one-vs-all approach m classifiers are trained to solve the m-class problem. Each
SVM separates one class from all other remaining classes.

This work formulates the open-set recognition problem as a multi-verification task. As
described by McKenna et al. in [8], open-set face recognition can be formulated as a
series of 2-class verification problems. Given a claimed identity, the result of an identity
verification is whether the claimed identity is true or false. Given a number of positive
and negative samples it is possible to train a classifier that models the distribution of
faces for both cases. In order to carry out open-set recognition, an identity verifier
is trained for every one of the n known subjects in the database. Then in order to
perform open-set recognition, the probe is presented to each verifier and n verifications
are performed. Once a new probe is presented to the system, it is checked against all
classifiers, if all of them reject, the person is reported as unknown; if one accepts, the
person is accepted with that identity, if more than a single verifier accepts, the identity
with the highest score wins. Scores are inversely proportional to the nearest-neighbor
distance. For the n-best list creation, all distances are converted into scores and then
a min-max normalization is performed on the list.

The two-class nature of SVM classification lends itself to formulating the open-set
recognition task as a verification problem. Although one-class SVMs exist they were
not used because there is a su�ciently large set of training data that can be used to
model the class of unknown individuals. Providing samples for both classes allows the
SVM classifier to choose the optimal separating support vectors and therefore provide
a better model of the probability density function than a one-class model that has to
estimate the boundary without actually having negative examples.

Since this work focuses on video-based classification, n-best lists are used instead of
a single frame-based score as will be explained later. The advantage of using n-best
lists is that no hard decisions are made immediately so that initial false decisions
may be revised later. N-best lists are lists containing the n best classification results
ordered by classification score. Therefore scores need to be derived, in case of SVM
classification the score is the distance from the hyperplane. Unlike calibrated sigmoid
posterior probabilities as proposed by Platt in [24] these do not represent posterior
probabilities. In order to reduce variation of distances between frames, the score is
min-max-normalized [25] as

s

0
i

= 1� s

i

� s

min

s

max

� s

min

i = 1, 2, ..., n. (21)

This maps scores to [0, 1] and then all scores are renormalized to yield
P

n

i=1 s

0
i

= 1 so
that each frame has an equal contribution.
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Training data imbalance consideration

A large set of negative samples, i.e. training samples of unknown clients, is necessary
to capture the large variance of the unknown class in the multi-verification approach.
Every recording session consists of roughly 150 frames, unknown people have a single
recording session which is used for training, whereas four sessions are used for known
training. In order to have balanced data, i.e. an equal number of positive (known) and
negative (unknown) training images we would need to have as many recordings of the
single known person as from all unknowns combined. Therefore, if we use four session
per known for training with ⇡ 600 frames against 20 unknown individuals with ⇡ 150
frames each (⇡ 3000 total) we would have a 1:5 imbalance. In case of only a single
available session per known the imbalance is 1:20.

This problem was tackled by undersampling the unknown sequences here. Under-
sampling works by selecting only every nth frame to train the classifier if there is an
imbalance of 1:n.

As Akbani et al. state in [13] undersampling shows a significant performance gain.
Undersampling is inferior to the proposed SDC algorithm presented in [13] but outper-
forms pure SVM classification on unbalanced datasets.

3.3.2 Nearest-neighbor based classification

The nearest-neighbor based classification method uses the same sort of multi-verification
approach. Again, for every person to be recognized an individual classifier is trained.

The problem is that the samples of some subjects may have a larger variance in distance
than the samples of some other individual. Nonetheless, we would like to use a common
threshold that can be tuned globally - for example by finding the equal error rate.

Each nearest-neighbor classifier calculates a normalized distance, this normalized dis-
tance is simply shifted by the mean and divided by the standard deviation that is based
on the distances obtained on the training samples:

d

0 =
d� µ

ci

�

ci

(22)

where d is the distance of the classifier’s input vector to the nearest training sample in
class c

i

and µ

ci and �

ci are mean and variance of distances of class c

i

estimated using
the training data. If this normalized distance is lower than the global threshold the
probe sample is accepted by the verifier.

3.4 Video information incorporation

This section explains how additional information from video sequences is used to im-
prove classification performance.
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3.4.1 Temporal fusion with progressive scores

Since a person’s identity does not change during the video capture, one may try to
enforce temporal consistency. In order to make it possible to revise a preliminary
decision later on, instead of relying on a single classification result for every frame an
n-best list is used. N-best lists store the first n highest ranked results, n may be chosen
freely, n = 3 was used in this work. Then, for each recognized identity a cumulated
score is stored that develops over time.

First, the frame n-best list is computed as described in Section 3.3.1 - scores of all
accepting classifiers are gathered into a list, that list is min-max-normalized and then
renormalized so that the sum of all entries is 1. Then, the scores of the current frame
are added to sequence scores. Then, a decision may be made based on sequence scores.
Given enough time the real identity should accumulate the highest score because it
should have highest individual frame scores and should have most acceptances.

If there is no face detection over multiple frames in the live system the cumulated
scores are reset because it is assumed that the person has left. Resetting scores allows
the whole process to restart once another person is located.
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4 Experiments

This section presents the data set and the experiments that were conducted on the
data.

The following section is organized as follows: first the data set is described, then the
open-set face recognition performance of both nearest neighbor and SVM-based base-
line systems is compared. After evaluating these baseline systems further optimizations
are introduced and evaluated.

4.1 Experimental setup

The experiments were conducted on a data set that was recorded between January
and May 2007. The data set consists of real-world data collected in a wide hallway in
front of an o�ce. The system consists of a portable laptop computer and a connected
webcam that was used to capture short video sequences of the subjects.

The following experiments were performed on an implementation based on LibSVM for
SVM-based classification. The SVM parameters were chosen by performing a simple
grid search to find the optimal combination of parameters that yield the best results on
an independent cross-validation set based on the FRGC data. The parameter values
are listed in Table 1.

SVM parameters
SVM type C-SVM classifcation
SVM kernel Polynomial (�x

i

x

j

+ coef0)d

Polynomial degree d 2
� 2
C 32
coef0 0
✏ 10�10

Table 1: SVM parameters

The nearest-neighbor-based classification was performed using the L1 distance metric
as supported by results from Ekenel and Stiefelhagen [2].

4.2 Data set

55 people were recorded in front of the o�ce. Lighting was natural or artificial, de-
pending on the time of the day. These recordings were split into two groups, a group
of known people and a group of unknown people. From now on, we will use the term
known for those subjects that are added to the database during training, i.e. those
probes that have mates in the gallery (or database), unknown will refer to subjects
who are not present in the gallery.
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Each recording session consists of approximately 150 registered frames, i.e. frames in
which both face and eyes were detected. The recordings are split into training and
testing data. Recordings were executed over a series of four months, so some sessions
are months apart.

Di↵erent sets of data were used for training and testing. Known people’s recording
were split into training and testing sessions which do not overlap. Unknown subjects
used for training are di↵erent from those used for testing.

Di↵erent experiments required slightly di↵erent partitionings of the data, please refer
to each experiment for a short explanation of the corresponding data set. Depending
on the experiment, either two or four training sessions were used to train known people.
25 clients’ sessions were used as unknown training data, the remaining known sessions
and 20 di↵erent unknown clients were used for testing.
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Data set
# sessions per client # clients
1 session 36 clients
2 sessions 4 clients
3 sessions 7 clients
4 sessions 2 clients
5 sessions 1 client
7 sessions 3 clients
8 sessions 1 client
11 sessions 1 client

Table 2: The data set

(a) Artificial light,
far away

(b) Artificial light,
motion blur

(c) Daylight, brighter (d) Daylight, darker

Figure 11: Recordings from the data set, di↵erent illumination and face sizes
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4.3 Open-set face recognition performance

In this subsection, the open-set identification performance of the proposed system is an-
alyzed. SVM-based and nearest-neighbor-based classification approaches are compared
and contributions of error types are analyzed based on a baseline system.

4.3.1 Comparison of baseline SVM-based and NN-based open-set face
recognition

The types of errors that can occur during open-set recognition are explained in Section
3.3 and defined in Equations 18, 19, 20.

In open-set recognition three error terms, namely FAR, FRR and FCR, have to be
traded o↵ against each other and it is not possible to minimize them at the same time.
Therefore the equal error rate (EER) performance measure is employed as a combined
error rate measure.

The EER can be found by choosing a threshold for which

FAR = FRR + FCR. (23)

Support vector machines automatically minimize the overall error and try to find the
global minimum. Therefore if the decision hyperplane is not altered these errors are
all automatically minimized. Nonetheless, it may be desirable to fine-tune the system.
Depending on the intended use of the system - either for pure recognition or secure
applications - it may be desirable to reduce the number of false rejections and false
classifications or the number of false acceptances. The ROC curve for SVM-based
classification was created by using a parametrized decision surface as introduced by
Phillips [22]. The decision hyperplane {x✏S : wx + b = 0, (w, b)✏S ⇥ R} is modified
to wx + b = �, where � allows to adjust the false acceptance rate and the correct
classification rate accordingly.

Nearest-neighbor-based classification does not automatically yield the best perfor-
mance, a good threshold value has to be selected first. As the nearest-neighbor-based
classification uses normalized distances a global threshold can be used, the threshold
defines the maximum distance of a test sample to the closest stored training sample of
a given class up to where this test sample is accepted as known. This global threshold
is chosen to satisfy EER criterion.

4.3.2 Performance comparison

This subsection compares open-set classification performance of nearest-neighbor and
SVM-based classification. The classification results reported in Table 4 and Table 5
were obtained using the data explained in Table 3 and the baseline algorithm using
frame-based classification and undersampling.

Nearest-neighbor-based classification
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Training data
Known 5 subjects 4 sessions and ⇡ 600 frames per person
Unknown 25 subjects 1 session, 30 frames per subject

Testing data
Known 5 subjects 3 – 7 sessions per person and 3646 frames overall
Unknown 20 subjects 1 session per person and 3563 frames overall

Table 3: Data set for open-set performance experiments

Classification CCR FRR FAR CRR FCR
Frame-based 81.6 % 15.5 % 17.8 % 82.2 % 2.9 %

Table 4: Nearest-neighbor classification results

The above results were obtained using a global threshold of 2.37 that was chosen using
the equal error rate criterion as in Equation 23.

SVM-based classification

Classification CCR FRR FAR CRR FCR
Frame-based 90.9 % 8.6 % 8.5 % 91.5 % 0.5 %

Table 5: SVM classification results, with parametrized hyperplane � = �0.12

The SVM-based classification results were calculated using � = �0.12 for the para-
metric hyperplane, according to EER criterion.

Table 4 and Table 5 show that SVM-based classification outperforms nearest-neighbor
classification. Studies like [17] suggest that support vector machines perform well in
extracting relevant discriminatory information. The nearest-neighbor-based classifica-
tion could be further optimized by employing client-specific thresholds and determining
individual thresholds by means of the EER criterion for each client.

Receiver Operating Characteristic (ROC) curves for both SVM- and nearest-neighbor-
based classification are given in Figure 12. The ROC curve plots the correct classi-
fication rate against the percentage of impostors accepted by the system. In Figure
12, the FAR is represented as the value on the x-axis and correct classification rate is
plotted on the y-axis.

Figure 12 a) and b) allows to examine the errors made during classification more closely.
The individual contributions of the FRR and FCR can be seen from the graphs. Figure
12 shows that at the point of equal error the SVM-based classifier outperforms the NN-
based classifier as the CCR is higher.
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(a) SVM Receiver Operating Characteristics curve
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(b) Nearest-neighbor Receiver Operating Characteristics curve

Figure 12: Receiver Operating Characteristics curves
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4.4 Further experiments

This section describes further experiments that were conducted to analyze the per-
formance of the proposed system. Unless otherwise stated, SVM-based classification
was performed using the frame-based baseline approach without optimizations, the
hyperplane parameter was kept at � = 0.

4.4.1 Influence of the number of training sessions

The number of training sessions has an influence on the classification results. The
more training sessions are used the more likely is a good coverage of di↵erent poses and
lighting conditions. This results in a better client model with more correct acceptances
and less false rejections.

The results in Table 6 were generated using frame-based classification without any
progressive accumulation of scores. The data set used is described in Table 3. Four
sessions were set aside for training of which not all were used depending on the desired
amount of training sessions. Therefore multiple combinations of training sessions are
possible if less than the maximum of four sessions are used for training. In order
to obtain meaningful results, all possible combinations were generated - 1024 for a
single training session, 7776 and 1024 for two and three training sessions and only a
single combination for four training sessions per person. Of these, thirty combinations,
if available, were randomly selected for every run. Table 6 reports the mean (µ) of
the classification rates and their standard deviation (�) that were computed from the
results of each of these thirty combinations for every run.

Table 6 and Figure 4.4.1 show that the classification results improve when more data
is available. Figure 4.4.1 plots average classification rates and standard deviations for
di↵erent number of training sessions. More training data covers a greater range of
variations of the subject in pose, illumination and expression and allows the classifier
to better model the subject.

Training
sessions µCCR �CCR µFRR �FRR µFAR �FAR µCRR �CRR µFCR �FCR
1 sess. 29.0 % 8.6 % 71.0 % 8.6 % 0.3 % 0.2 % 99.7 % 0.2 % 0.1 % 0.1 %
2 sess. 57.0 % 12.1 % 42.8 % 12.1 % 1.5 % 1.2 % 98.5 % 1.2 % 0.2 % 0.1 %
3 sess. 73.8 % 7.8 % 25.8 % 7.8 % 2.6 % 1.1 % 97.4 % 1.1 % 0.4 % 0.1 %
4 sess. 87.2 % 0.0% 12.5 % 0.0% 3.7 % 0.0% 96.3 % 0.0% 0.3 % 0.0%

Table 6: Influence of the number of training sessions

4.4.2 Influence of the number of subjects

In order to explore the influence of the number of known subjects in the training
database the following tests were conducted. Again, frame-based classification was
used and the results can be boosted by using progressive scores.
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Figure 13: Development of classification scores with number of training sessions. See
Table 6.

In order to evaluate the influence of the number of known subjects the system can
recognize additional data had to be collected.

Training data
Known up to 9 subjects 4 sessions per person
Unknown 25 subjects 1 session, 30 frames per subject

Testing data
Known up to 9 subjects 2 sessions per person
Unknown 20 subjects 1 session per person

Table 7: Data set for testing the influence of the number of subject

Again, a fixed amount of training data was set aside for training. This time not the
number of sessions was varied but the number of known subjects in the database. In
order to generate meaningful results, again all possible combinations of known clients
were generated for every experiment run. Here, all runs were evaluated and a total
of 511 di↵erent training combinations were examined, Table 8 details the number of
generated combinations. As in the previous section, Table 9 reports the mean (µ) of
the classification rates and their standard deviation (�) that were computed from the
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results of each of these combinations for every run.

Due to limited available data only tests with up to nine known subjects could be
performed. Security applications on the other hand have to recognize hundreds of
known people but that is not the objective of this work. Table 7 explains the data
set that was used in this experiment. Figure 4.4.2 displays the change in classification
performance as more known subjects are added to the gallery. Table 9 presents the
same results in numeric form and shows that CCR is mostly consistent on average with
up to nine known subjects, the CRR decreases slightly as more subjects are added.

# Known subjects # combinations
1 known id 9
2 known ids 36
3 known ids 84
4 known ids 126
5 known ids 126
6 known ids 84
7 known ids 36
8 known ids 9
9 known ids 1
Overall 511

Table 8: Number of examined combinations

Subjects µCCR �CCR µFRR �FRR µFAR �FAR µCRR �CRR µFCR �FCR
1 subj. 80.9 % 19.4 % 19.1 % 19.4 % 1.1 % 0.9 % 98.9 % 0.9 % 0.0 % 0.0 %
2 subj. 80.4 % 12.9 % 19.4 % 12.8 % 2.1 % 1.2 % 97.9 % 1.2 % 0.2 % 0.5 %
3 subj. 80.5 % 9.6 % 19.1 % 9.5 % 3.1 % 1.4 % 96.9 % 1.4 % 0.4 % 0.6 %
4 subj. 80.8 % 7.5 % 18.6 % 7.3 % 4.0 % 1.4 % 96.0 % 1.4 % 0.6 % 0.6 %
5 subj. 80.4 % 6.0 % 18.9 % 5.8 % 5.2 % 1.4 % 94.8 % 1.4 % 0.7 % 0.6 %
6 subj. 81.1 % 4.8 % 18.0 % 4.6 % 6.0 % 1.4 % 94.0 % 1.4 % 1.0 % 0.5 %
7 subj. 80.7 % 2.9 % 18.8 % 2.6 % 7.9 % 0.3 % 92.1 % 0.3 % 0.6 % 0.3 %
8 subj. 79.6 % 0.5 % 18.9 % 0.4 % 8.4 % 0.4 % 91.6 % 0.4 % 1.6 % 0.1 %
9 subj. 80.6 % 0.0 % 17.8 % 0.0 % 9.1 % 0.0 % 90.9 % 0.0 % 1.5 % 0.0 %

Table 9: Influence of the number of training sessions

4.4.3 Influence of time span between training and testing

As data was recorded over a time span of four months another interesting experiment
would be to assess the influence of the period of time between training and testing on
the performance. For most knowns there were di↵erent sessions which were recorded
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Figure 14: Development of classification scores with number of subjects. See Table 9.

up to three days after the first recordings, around ten days after initial recordings and
around three months after initial recordings.

Table 10 shows that performance does not seem to degrade as the period of time
between training and testing is increased. Due to the limited amount of available data
there is variation in the results, the 10-day scenario performs better than the other
scenarios. Overall it seems as if the age of the data (if less than three months) does not
seem to degrade performance much. This is reflected by impressions from ”live” testing
sessions where old training data was used and the known person was still recognized
from live video images some time later. This experiment suggests that a time span of
three months between training and testing works well.

Time gap training-testing CCR FRR FAR CRR FCR
< 3 days 63.7 % 36.1 % 0.3 % 99.7 % 0.2 %
⇡ 10 days 77.2 % 22.8 % 0.5 % 99.5 % 0 %
⇡ 3 months 65.3 % 34.7 % 0.8 % 99.2 % 0 %

Table 10: Influence of time span between training and testing
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4.4.4 Influence of undersampling

Akbani et al. [13] apply undersampling to di↵erent imbalanced data sets and show a
performance gain. In this work undersampling was chosen as a simple way to avoid
large imbalances.

The following experiment was conducted with the data set configuration explained in
Table 3. Undersampling the unknown training data to 30 frames per session provides
a balanced ratio with roughly 600 positives versus 750 negatives by using only every
nth unknown frame, where n = N

nu
and N is the total number of frames in the current

unknown training session and n

u

is the desired number of frames to be used for train-
ing. The results in Table 11 indicate that undersampling does improve classification
performance.

# frames CCR FRR FAR CRR FCR
30 87.2 % 12.5 % 3.7 % 96.3 % 0.3 %
60 85.2 % 14.7 % 2.7 % 97.3 % 0.1 %
90 83.5 % 16.5 % 2.4 % 97.6 % 0.0 %
150 83.5 % 16.5 % 2.3 % 97.7 % 0.0 %

Table 11: E↵ect of undersampling. Originally, 150 frames were available.

4.5 Classification performance optimization

This subsection explores possibilities to improve the classification performance of the
simple frame-based baseline system.

4.5.1 Improvement of video-based classification

The availability of video data allows classification to be performed in three di↵erent
ways, frame-based, progressive-score-based and video-based. In the frame-based ap-
proach every single frame is classified by itself, uninfluenced by other preceding frames.
Therefore these results return some insight on the general performance of the classifi-
cation scheme employed. On the other hand, this simple approach does not make any
use of the additional information contained in video sequences.

The progressive-score-based approach is a simple extension of the previous approach.
Instead of classifying frames independently, a simple temporal fusion is applied by
accumulating frame scores over time. This can be thought of as classifying every frame
as if it were the end of a sequence and taking the final score.

The video-based scheme is much like the progressive-score-based approach but does not
return classification results on a frame level, instead classification is done at sequence
level. That is, the decision is made based on the final score at the end of the sequence.

Figure 15 demonstrates the development of accumulated scores over a sequence. A
reduced training set as explained in Table 12 was used. Even though a few frames are
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Figure 15: Development of scores for client and impostors

Training data
Known 5 subjects 2 sessions and ⇡ 300 frames per person
Unknown 25 subjects 1 session, 30 frames per subject

Testing data
Known 5 subjects 3 – 7 sessions per person and 3646 frames overall
Unknown 20 subjects 1 session per person and 3563 frames overall

Table 12: Reduced data set

rejected as unknown or misclassified, the decision is made in favor of the client at the
end of the sequence. Training with four sessions would significantly reduce the number
of false classifications and rejections.

As can be seen in Table 13 and Table 14, the progressive-score-based approach does
already yield very good results. Video-based classification does improve results because
decisions are not made on a frame level but on sequence level thus discarding the few
early false classifications and rejections of the progressive-score-based approach.

Frame-based classification indicates the system’s baseline performance, progressive-
score-based classification could be used in systems without fixed decision points, whereas
video-based classification may be used in scenarios with fixed decision points, i.e. when
there are n

i

recorded frames of a person i and the decision is to be made after all
frames have been recorded. A system that uses few still images would use frame-
based classification, an online system that needs a decision every frame could use the
progressive-score-based approach and a system that classifies after a complete sequence
has been captured, i.e. after a person has left from in front of the camera, could use
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the video-based approach.

Classification CCR FRR FAR CRR FCR
Frame-based 87.2 % 12.5 % 3.7 % 96.3 % 0.3 %
Progressive-score 99.5 % 0.5 % 0.1 % 99.9 % 0 %
Video-based 100 % 0 % 0 % 100 % 0 %

Table 13: SVM classification results

Classification CCR FRR FAR CRR FCR
Frame-based 81.6 % 15.5 % 17.8 % 82.2 % 2.9 %
Progressive-score 93.7 % 5.9 % 10.1 % 89.9 % 0.4 %
Video-based 95 % 5 % 15 % 85 % 0 %

Table 14: Nearest-neighbor classification results

Figure 16 illustrates the development of the classification rate on the whole testing
set for a given number of frames, it displays, for example, the progressive video-based
correct classification rate on all testing sequences when only the first 1, 2, 3, 4, . . . were
taken for classification. The data set used for training and testing is explained in Table
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3. Figure 16 shows that after ten frames the correct classification rate is except for one
occasion above 80% and false acceptance rate is at or below 5%.

4.5.2 Sample augmentation

As previously stated, registration plays an important role. The less precise the regis-
tration process is, the more the classification performance decreases. But, it cannot
be assumed that registration is perfect. One scheme to overcome this was proposed
in [3]. The approach is to generate artificial, augmented samples by deliberately ma-
nipulating the alignment. This can be done by shifting the detected eye coordinates
in the 4-neighborhood around the original detection of the original image. As that
is done on the original image the actual shift of eye positions in the registered image
depends on the scale of the original face size because it is enlarged/shrinked to 64x64
pixels in the process of registration. Alternating eye coordinates in the 4-neighborhood
yields 24 additional samples for every original frame, thus 25-fold amount of data. In
order to reduce the amount of data again these samples were clustered with k-means.
For a total of n original frames that were augmented, k = n

25 was chosen in order to
be able to train with the original amount of available data. The experiment results
in Table 15 were obtained with the data set configuration explained in Table 12 that
uses two training sessions per known. The results in Table 16 were obtained by using
the data set configuration in Table 3 that uses four training sessions per known. Both
experiments show improved results.
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Sample type CCR FRR FAR CRR FCR
Non-augmented 68.2 % 31.8 % 0.4 % 99.6 % 0 %
Augmented and clustered 70.3 % 28.6 % 3.1 % 96.9 % 1.1 %

Table 15: Influence of sample augmentation with two known training sessions

Sample type CCR FRR FAR CRR FCR
Non-augmented 87.2 % 12.5 % 3.7 % 96.3 % 0.3 %
Augmented and clustered 92.9 % 6.3 % 12.6 % 87.4 % 0.8 %

Table 16: Influence of sample augmentation with four known training sessions

More samples can be generated by varying the detected eye positions by more than
a single pixel. The results in Table 17 compare the classification results obtained by
varying the detections by either a single pixel or two pixels in the 4-neighborhood of
the original detection on the data set explained in Table 12. Therefore, not 25 times
as much data is available in the second row but the 89-fold amount. The clustering
parameters were modified accordingly. Classification results improve further but the
overall runtime of training and classification triples.

Sample type CCR FRR FAR CRR FCR
Non-augmented 68.2 % 31.8 % 0.4 % 99.6 % 0 %
Augmented 4-neighborhood 1 pixel step 70.3 % 28.6 % 3.1 % 96.9 % 1.1 %
Augmented 4-neighborhood 2 pixel steps 74.9 % 22.3 % 13.2 % 86.8 % 2.8 %

Table 17: Improvement of classification results by increasing the neighborhood which
is used to generate augmentated samples

Sample augmentation seems to provide a substantial improvement in classification
performance. As shown in [3] the augmented training set provides significantly better
classification results.

4.6 Overall system performance

This section sums up the overall system performance when all the previously optimiza-
tions are used simultaneously. These results were generated on the data set described
in Table 3 that was used in most other experiments.

In this experiment sample augmentation, SVM-based classification and progressive
score-based classification were used to obtain the final results in Table 18.
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CCR FRR FAR CRR FCR
Overall system performance 99.6 % 0.2 % 0.2 % 94.2 % 5.8 %

Table 18: Overall system performance using sample augmentation, SVM-based classi-
fication, progressive score-based classification

4.7 System runtime performance

This section will present training and testing times of the proposed system. The
runtimes were measured on an Intel Quadcore Xeon 3.00GHz with 2 GB RAM. The
tests were performed on the full dataset as reported in table 3. The base SVM-based
classification algorithm with frame-based classification was used. The system runs in
real-time, even on much slower laptop computers.

Classification time is 14ms on average including face detection, registration and classi-
fication with 5 known subjects trained.

Table 19: System component’s runtime performance
Operation number of executions average runtime
Adding known training samples 1 2 ms
Adding unknown training samples 1 269 ms
SVM training 1 21470 ms
Image preprocessing 10541 < 1 ms
SVM classification time 7210 14 ms
Clustering of augmented samples 1 359064 ms

Table 19 details the runtime of system components. Training new clients is the single
most time-consuming procedure. Training five subjects with around 600 frames each
takes about 21.5 secs. After training, classification can be performed in about 14 ms,
excluding image frame capturing but including all preprocessing. The algorithm is
su�ciently fast to be run on laptop computers in real-time.

Sample augmentation improves the classification results but also imposes a training
overhead for generating and clustering the additional samples. When sample augmen-
tation is used the generation of new samples and clustering add an additional overhead
of about 6 minutes to the training time. Once the clustering is performed there is no
further performance decrease.
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5 Conclusion

This work presents a fully automatic system for open-set face identification. A multi-
verification based approach was chosen and nearest-neighbor and support vector ma-
chine classifiers were employed. The classification is based on local features extracted
using discrete cosine transform. Local features were extracted from image blocks by
DCT and concatenated into a feature vector that was additionally normalized.

Experiments were conducted on a data set that was collected for this study. We found
that support vector machines outperform the nearest-neighbor classifier which has been
shown to be a good classifier in closed-set recognition as reported in [1]. Nearest-
neighbor-based classification produced quite good results as well, probably due to the
rather large amount of available data.

The performance of the proposed system could be further improved, especially by
sample augmentation which increases training time but yields much improved results.
Video-based classification and progressive scores also significantly improved the per-
formance. The approach seems to work for larger sets of trained identities but further
investigation is necessary to determine the performance with more than ten clients.
From the experimental results it has been observed that the system copes well with a
time gap of three months between recording of training and testing data.

The approach worked well in the designated scenario. It seems to cope well with
illumination changes. Di↵erent poses seem to be a greater problem. Future work
is necessary to improve the handling of di↵erent viewing angles in order to further
improve results.
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