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Abstract

Analysis of video data usually requires training classi-
fiers in high dimensional feature spaces. This paper pro-
poses a layered Gaussian mixture model (LGMM) to ex-
ploit high dimensional features for classifying various shots
in video. LGMM decomposes a high dimensional feature
space by building a pyramid structure and estimating the
distribution of local partitions in each layer using Gaus-
sian mixtures from the bottom of the pyramid to the top. We
reduce the dimension of features in each local region at a
lower layer by projecting them onto the estimated Gaussian
components. These projected feature vectors are then used
to estimate the Gaussian mixture models at a upper layer.
The final dimension of the feature is adjustable by choosing
the number of Gaussians at the top layer of the pyramid.
We demonstrate the proposed method using motion features
to classify video shots. The proposed method is indepen-
dent from low level features and can be extended to other
classification tasks.

1 Introduction

The booming usage of digital video presents a challenge
to exploit rich information in video processing and content-
based video indexing and retrieval. Many different features,
such as motion, color histogram, text, and edge, have been
utilized for video analysis. These features, however, are
usually in high dimensional spaces. For example, most of
high density motion features developed by computer vision
researchers assign a value to each pixel of an image, i.e.,
the dimension of a feature vector of an image equals to the
number of pixels in the image. Suppose we use image dif-
ferences as the motion feature for a video with 720x480x30
resolution, a feature vector in a one second interval has
10,368,000 dimensions. Such a high dimensionality brings
difficulty for training and classification. In fact, these fea-

ture vectors contain much redundancy, and dimension re-
duction approaches and granulation approaches should be
employed to remove it.

Dimension reduction approaches transform a high di-
mensional feature space into a lower dimensional feature
space without losing much discrimination am0ng classes.
Many dimension reduction approaches use linear criterion,
for example principal component analysis (PCA), factor
analysis, projection pursuit, and independent component
analysis (ICA). Linear approaches can be transformed to
non-linear versions by applying the kernelization [3] tech-
nique, which can reduce non-linear redundancy from the
data. There are also characterized non-linear approaches,
such as principle curves, multidimensional scaling, topo-
graphic mapping, and vector quantization. A survey [2] is a
good reference for the details of these approaches. Granula-
tion approaches treat a document (video or image) as a bag
of local features. Local features can be regular partitions of
the input feature space of local sampling results under some
criterion [4]. Granulation approaches transform the original
high-dimensional problem (the video) into low dimensional
problem (local features). The drawback is that character-
istic structures among local features are not used in these
approaches, which may not very efficient to model motion
information. For example, lifting an arm vs. lifting a leg,
these two motions consist of many similar local motion fea-
tures but can be characterized spatially.

To exploit spatial-temporal information in video, in
this paper, we propose a layered Gaussian mixture model
(LGMM) to address high-dimensionality problem. A
LGMM estimates the distribution of local features in multi-
ple scales. It decomposes a high dimensional feature space
by building a pyramid structure and estimating the distribu-
tion of observed local features in each layer using Gaussian
mixtures from the bottom of the pyramid to the top. The
observed features in each layer are then transformed into
a lower dimensional space by projecting them onto the es-
timated Gaussian components. The projected features are
then treated as the observed feature of the next upper layer.
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Figure 1. An illustration of a pyramid struc-
ture of a feature image with three layers.

The final dimension of the feature is adjustable by choosing
the number of Gaussians at the top layer of the pyramid.

2 A LAYERED GAUSSIAN MIXTURE
MODEL

The intuitive idea of LGMM is to bottom-up model a
high-dimensional spatial-sensitive data by merging local
models step by step. Given a high-dimensional spatial-
sensitive data, e.g., a feature image with n dimensional fea-
ture vectors aligned in regular 2D latices, we can build a
pyramid structure of the data, as shown in the Figure 1. To
simplify the discussion, we only show a three-layer model
in the figure. Each layer of the pyramid is defined as a triple-
unit:

Li = (PARi, Mi, Fi),

where PARi is the partition plan, Mi denotes the Gaussian
mixture model and Fi is the observed feature.

The partition plan contains the partition information of
the layer with Ni dimensions and is denoted as a set of sub-
sets of dimensions PARi = {pi1, ..., piKi}, where pij ⊆
{1, ..., Ni}. The partition plan in each layer is predefined.
Although the partition plan can be adaptive estimated and
partitions can be in irregular shapes, we use only regular
granularity as partition plans in each layer in this paper to
simplify the discussion.

The model Mi is a mixture of mi Gaussians:

Mi ∼
mi∑
h=1

wi
hN(µi

h, Σi
h). (1)

It models the joint probability density function of feature
vectors in different partitions. Since all the partitions have
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Figure 2. An illustration of a pyramid struc-
ture of a feature image with three layers.

the same dimensions, all the mean vectors and variance ma-
trices can keep the same dimensions. The number of Gaus-
sians mi is estimated in the training process, which is dis-
cussed in Section 4.

The observed feature F0 of the bottom layer can be fea-
tures in pixels. The observed feature Fi = {fi1, ..., fiNi}
denotes Ni feature vectors, where each feature vector fij is
computed from the jth partition at the lower layer Li−1.
Given a partition pi−1 j , its observation feature vectors
fi−1 k (k ∈ pi−1 j) in the layer Li−1 and the model Mi−1,
we first concatenate all the observed feature vectors as
fi−1(pi−1 j) = (fi−1 k) (k ∈ pi−1 j) and then compute the
projection of the concatenated feature vector fi−1(pi−1 j)
onto the mi−1 Gaussian components:

yi−1 h = wi−1 hP
(
fi−1(pi−1 j)|N(µi−1

h , Σi−1
h )

)
, (2)

where wi−1 h and N(µi−1
h , Σi−1

h ) are weights and Gaussian
components of the model Mi−1. The feature vector fij in
the current layer Li is then defined as a mi−1 dimensional
vector razed by a specific function R:

fi j = R
(
yi1, ..., yimi−1

)
, (3)

Without considering the razing function, the vector yi is
a projection of the concatenated feature vector onto each
component of the model Mi with the weight of the compo-
nent. The intuitive meaning of this projection is shown in
Fig. 2. Suppose the observed features in the layer Li are
3-dimensional vectors as shown on the left. We choose a
simple partition plan such that each partition contains only
one data point and train the model Mi to have two compo-
nents. Then, the projection vector yi is plotted as the figure
on the left.

The razing function R is used to reduce the variance in
the projected vectors. The basic idea is to set values of
yi−1 h to zero if it is smaller than a threshold τ . We use
adaptive threshold for each vector in this paper by it’s me-
dian value.

The dimension Di of observed features at layer Li (i >
0) equals to the number partitions multiplying the number of



Gaussians in the layer below: Di = mi−1Ni = mi−1Ki−1.
Therefore, in order to reduce the dimension of the feature in
a higher layer, e. g. the layer Li, with predefined numbers
of partitions Ki and Ki−1, the number of Gaussians in the
layer should satisfy the follow condition:

mi < mi−1
Ki−1

Ki
. (4)

Although the lower level feature can be different, in this
paper, we will use motion as an example to illustrate the
concept without losing generality.

3 Initial motion feature extraction

Many types of features have been proposed to charac-
terize motions of various objects and activities with pixel
level precision. In this paper, we use two types of motion
features: image difference and edge motion history image.

3.1 Image difference

A simple way to produce dense motion feature is to com-
pute the difference between two consecutive images. For
any given frame of an image sequence It at time t and its
previous image It−1 at time t − 1, the difference motion
feature at each pixel x is computed as:

Dt(x) = It(x) − It−1(x). (5)

The motion of all pixels between two images can be rep-
resented as a difference image Dt. This feature is easy to
be computed but it has a serious drawback because the value
of Dt(x) indicates neither the direction of the movement of
the pixel x nor the velocity value. Image differencing op-
eration extracts a feature image from very frame, which is
too expensive even for storage. To reduce, amount of the
data, we compute the average of difference image through
a video short.

3.2 Edge motion history image

Edge motion history image, computed by combining
edge detection and motion history image (MHI) techniques,
is another feature we can extract a temporal-compressed
feature vector from a short video sequence

MHI was proposed by [1] to compress temporal infor-
mation of the human activities. An MHI is a binomial
model to represent recent object movements. In [1] an MHI
is computed from silhouettes of objects segmented using
background subtraction and stereo depth subtraction. How-
ever, the background is not easy to be extracted in news
and sports videos with complex background scenes. Stereo

Figure 3. Two examples of EMHIs extracted
from CNN news video.

depth information is usually not available in video data ei-
ther. In this paper, we propose to use edge information de-
tected in each frame image instead of silhouettes to compute
edge motion history image (EMHI).

Let Et(x) be a binary value to indicate if pixel x is lo-
cated on an edge at time t. A EMHI Hτ

t (x) is computed
from the EMHI of the previous frame Hτ

t−1(x) as:

Hτ
t (x) =

{
τ, if Et(x) = 1
max(0, Hτ

t−1(x) − 1), otherwise.
(6)

The EMHI compresses the temporal dimensions using
binomial model of bounded edge frequency at each pixel
to obtain a low dimensional feature vector, for example a
vector with 720×480 dimensions instead of 720×480×30
dimensions. Figure 3 shows some examples of the EMHIs
extracted from CNN news. Another advantage of the EMHI
in comparison with the optical flow is that the computation
of EMHI takes less time for the same mount of video data.

4 Training LGMM

The estimation of LGMM parameters is performed layer
by layer from the bottom to the top. In each layer, the model
is first estimated using Expectation-Maximization (EM) al-
gorithm and then they are used to reduce the feature di-
mensions and to produce observed feature of the layer right
above. The algorithm is described in the following table.

5 Experiments

To evaluate the proposed approach, we choose 60 min-
utes CNN video from the TRECVID’05 data set to estimate
all the GMMs in layer 1 and layer 2. Classification top-
ics of video shots based on the TRECVID’03 data set. We
randomly extract 100 video shots for each of 6 topics: “in-
door”, “out-door”, “news-person”, “news-subject”, “sport”
and “weather” as a training set and 100 video shots for the
first 4 topics, 78 video shots for “sports” and 84 shots for
“weather” (there is no more) as a testing set. There is no



Table 1. Algorithm of LGMM training

• 1. Given the initial motion features F0 of training
videos and the partition plans of each layer {PARi};

• 2. Loop from bottom layer L0 to the top layer LT , do
steps 3 to 7;

• 3. For each layer Li, set step counter the number of
component mi = 1;

• 4. Learn model Mmi

i using EM algorithm;

• 5. Compute BIC value Bmi = −log (P (Fi|Mmi

i ) +
milog(n), where n is the number training samples in
this layer;

• 6. If Bmi < Bmi−1, mi = mi + 1, go to step 4;

• 7. Compte Fi+1 using the model Mmi−1
i ;

• 8. Output the low dimensional features FT+1 for each
training video.

video shot contains more than one topic. There is also no
training data and test data are extracted from the same video
in each topic.

The partition plan of the bottom layer consists of K0 =
36×24 number of 10×10 non-overlapping blocks. The par-
tition plan of the first layer consists of K1 = 6 × 4 number
of 6 × 6 blocks. We treat the layer 2 as one partition.

We extract features of EMHI and temporal averaging im-
age difference (Diff). In comparison, the feature dimen-
sions are reduced by granulation (local) PCA and LGMM.
Figure 4 shows the accuracies of four schemes: Diff.PCA,
the first component of local PCA of Diff features in n × n
cell partitions (n = 1, . . . , 10); Diff.LGMM, the Diff fea-
ture compressed using LGMM; EMHI.PCA, the first com-
ponent of local PCA of EMHI feature in n × n cell par-
titions; and EMHI.LGMM, the EMHI feature compressed
using LGMM. Classifiers are trained by performing 10-fold
cross validation on support vector machines and tested on
the testing set.

In the granulation PCA schemes, the performance of
both features are quite same. The LGMM approaches
improved the accuracies with both EMHI and Diff fea-
tures. The EMHI.LGMM out-performed than all the other
schemes significantly, which indicates that the LGMM ap-
proach better fits the intrinsic structure of the data. The
optimal numbers of Gaussian components found by BIC
in EMHI.LGMM scheme are m0 = 67, m1 = 24 and
m2 = 10.
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Figure 4. Accuracies of a six topics video
shots classification using the proposed ap-
proach.
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5.2 Conclusions

We have proposed a LGMM approach for exploiting
high dimensional features for video shot classification. The
LGMM performs as a non-liner method to reduce dimen-
sions of the data with spatial lattice or temporal order con-
straints. We have shown the improvement of the proposed
approach on top of the conventional PCA schemes. The
proposed approach can be also applied on other high di-
mensional data with The layer stricture provides a feasible
and quick (exponentially) way for dimension reduction by
using more and more layers.
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