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Abstract
This paper described our handheld two-way speech translation sys-
tem for English and Iraqi. The focus is on developing a field us-
able handheld device for speech-to-speech translation. The com-
putation and memory limitations on the handheld impose critical
constraints on the ASR, SMT, and TTS components. In this pa-
per we discuss our approaches to optimize these components for
the handheld device and present performance numbers from the
evaluations that were an integral part of the project. Since one ma-
jor aspect of the TransTac program is to build fieldable systems,
we spent significant effort on developing an intuitive interface that
minimizes the training time for users but also provides useful infor-
mation such as back translations for translation quality feedback.
Index Terms: English-Iraqi Speech Translation, Handheld De-
vices, Iraqi Speech Recognition, Translation Interface, Pocket
Translation.

1. Introduction
Over the past few years, we have seen substantial improvement
in automatic speech-to-speech translation systems not just in the
large scale, but also on personal handheld devices. Since our first
implementation of speech translation on a consumer PDA in the
context of the Babylon program (Speechalator [1]), we were able
to substantially improve the quality of computer mediated commu-
nication.

As part of the DARPA TransTac program, 6 developers have
built portable systems for English-Iraqi speech communication.
Some groups developed a two-way system, few groups managed
to build the system on consumer PDAs. Here we describe our own
work on producing a field usable system on a standard consumer
PDA (HP iPaq 2755). Our system runs on most platforms, high-
end Pocket PC/Windows Mobile machines and on laptops, under
both Windows and Linux. We have also successfully used Vox-
Tec’s P2 Phraselator hardware, a ruggedized PDA which offers a
built-in audio I/O that is more appropriate for field situations than
off-the-shelf PDAs.

In addition to English-Iraqi, which most of this paper is about,
the system also supports English-Thai (based on the system de-
scribed in [2]) and English-Spanish.

Although many will say making speech translation work on
standard consumer PDAs is a challenging task, apart from port-
ing the software, the computation and memory limitations of these
devices require a substantial redesign of parts of the algorithms
and data structures. Our core engines for ASR, SMT and TTS
have all had substantial work to make them efficient on a machine
with limited memory, slow “disk”, and no floating point hardware.
Our models, trained on desktop machines, have to appropriately
be tuned (in vocabulary, beam width, etc), in order to work well on

the target platform.
As evaluations with typical end users have shown, high quality

components alone are not sufficient to make a device usable in the
field, issues in user interface, microphones, training of users are
critical in making a successful two-way portable speech-to-speech
translation system.

This paper is organized as follows. In section 2, an overview
of our system is provided and we will discuss our user interface.
Section 3 is about the ASR. Some considerations for speedup on
PDA are also covered. SMT decoder and its training procedure are
described in section 4. In section 5, the TTS module in our system
is introduced. A summary of our work is provided in section 6.

2. Intuitive Field-System Interface
Since the translation system is designed to be used in tactical envi-
ronments and should not require too much training, we developed
an intuitive user interface. To translate an utterance, the user sim-
ply presses a button on the device, speaks the utterance, which gets
translated and spoken in the target language. The user can switch
between automatic and verification mode. In the former mode, the
system automatically translates the spoken utterance and plays the
synthesized output to the recipient. In the latter mode, the sys-
tem asks the speaker for verification of the translation. Only if the
speaker confirms the translation, the system presents the synthe-
sized output. To enable users to tell about the translation quality
in the other language (that they normally do not speak) we added
the functionality of “back translation”. Here, the translation of
the target language is translated back into the source language. By
comparing the original spoken utterance/ASR output with the back
translation, the user can judge on the translation quality. Finally,
the interface supports logging of all recordings and corresponding
component output for later investigation.

Figure 1 shows a screenshot of the Graphical User Interface
(GUI) of the system. The GUI window is divided in two boxes,
the upper one shows English the lower one shows Iraqi text. These
boxes can be populated by either the recognized speech output
(ASR), translation output (SMT), or by directly typing in text us-
ing the virtual PDA keyboard. This last option is very convenient,
e.g. for correcting eventual ASR errors before translation. The
“translate” buttons on the touch screen can be used to initiate trans-
lation of text in the corresponding box. The “speak” button syn-
thesizes the content of the text box. The button labels “o” is a soft-
ware record button which can be used if no hardware buttons for
recordings are supported by the device. The most convenient us-
age however, hardware buttons are recommended. In user studies
and evaluations, we found that the most intuitive use is to run the
PDA in a walkie/talkie modus, i.e. the user pushes and holds one
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Figure 1: Screenshot of the English/Iraqi speech-to-speech system.

recording button while speaking. The two languages are assigned
different buttons. The software allows for easy button configura-
tion. Decoding of the recording can be stopped at any time by re-
pressing the button, which turned out to be beneficial since in case
of unintended input, the user does not have to wait until the speech
is processed before starting over. The GUI indicates the system’s
state by color-coding squares. In waiting state, the squares show
the signal level of mic input. While recording the square of the
corresponding language turns red. ASR is then shown by yellow,
and blue and green squares are for SMT and TTS respectively.

3. Automatic Speech Recognition (ASR)
As the main input modality, we implemented speaker independent
speech recognition using the integrated microphone of the mo-
bile device. The ASR system uses the Janus Recognition Toolkit
(JRTk) featuring the IBIS decoder [3] for the laptop version, and a
PDA-optimized port [4] for the PDA version, that runs around 2-
5x real-time on the 624MHz Intel XScale PXA270 processor. This
is the standard processor found in most commercial PDAs. Be-
cause the ASR runs over the utterance in one pass, the recognition
can immediately begin after the user starts recording. Adaptation
steps, that are needed for the Feature Space Adaptation (FSA) or
Maximum Likelihood Linear Regression (MLLR), are processed
hidden for the user during the synthesized voice is speaking. How-
ever, we use adaptation in our laptop version only, because on the
PDA the required calculations are either too slow or too inaccurate
for reliable performance improvements.

3.1. English ASR

The English ASR system is a three-state sub-phonetically tied
semi-continuous recognizer composed of 2000 context dependent
distributions with as many codebooks. Each codebook has 16
Gaussians and it takes 32 dimensional Mel Frequency Cepstral
Coefficients (MFCC) after linear discriminant analysis (LDA) as
input. The acoustic model was trained on the Hub4 BN data and
meeting transcriptions from ICSI, NIST and CMU [5]. It uses a
trigram language model with approximately 600K trigrams and a
vocabulary size of 8K words. The language model was trained on
several text corpora in force protection domain, which sum up to
1.7M words. A subsequent interpolation with a medical and touris-
tic language model of a lower weight was performed, in order to
gain a wider coverage of vocabulary and domain.

The laptop version achieves a WER of 8.8% on the TransTac
March 2006 evaluation data. The PDA version uses the same lan-
guage and acoustic models, but has tighter search beam settings
and no incremental FSA or MLLR adaptation. It uses several
speedup techniques (described in 3.3) that result in an overall WER

of 14.6%. The TransTac March 2006 evaluation data consists of
2880 utterances for each English and Iraqi. Each language has
around 3 hours of audio data.

3.2. Iraqi ASR

The acoustic model uses the same topology of English ASR. It
consists of 2000 codebooks with 32 Gaussians, hence, it is larger
than the English ASR model. The feature extraction process re-
mains the same. The acoustic model is trained with around 93
hours of Iraqi speech data including data sets from Appen/BBN,
Cepstral, IBM/DLI Pendleton, and Marine Acoustics Inc. A lap-
top version is built using the same data but larger codebook size of
3000 with 32 Gaussians.

The language model for Iraqi ASR is a smoothed trigram
model using modified Kneser-Ney method [6]. The training set
consists of 1.2M words, including data from different domains in
force protection and medical process such as, common community
interest, medical screening, traffic control point, and some less re-
stricted topics, such as rapport building. The vocabulary is based
on frequency count and the size is around 7K words.

Compared to the English ASR, there is less data for the Iraqi
language model. To improve performance and have broader cover-
age, we explored the possibility of incorporating modern standard
Arabic (MSA) data into the language model. Arabic Gigaword
second edition is an archive of Arabic newswire data and it was
used to train a trigram language model. The resulting model is
then interpolated with the Iraqi language model.

Based on the Iraqi vocabulary, 115M words were sampled
from Gigaword corpus by considering whether the sentence has
more than 75% of words which are in the 7K words Iraqi vocabu-
lary. It is then interpolated with the Iraqi language model by using
some heldout data. Table 1 is a summary of perplexity reduction
by using the interpolated language model.

Table 1: Relative perplexity reduction for different scenario.

# tokens Iraqi only Iraqi+MSA Rel. imprv.
CCI 56K 295.01 281.79 4.48%

SWET 46K 486.63 460.94 5.28%
Search 49K 226.28 224.45 0.81%
TCP 49K 305.23 301.76 1.14%

Medical 21K 368.83 350.63 4.93%
Joint 11K 412.49 355.24 13.88%
RB 8K 354.77 337.06 4.99%

• CCI: common community interest.

• SWET: about sewage, water, electricity and trash.

• Search: searching for people, houses and weapons.

• TCP: conversations with drivers at a traffic control point.

• Medical: about medical attention.

• Joint: joint mission with Iraqi police or special forces.

• RB: rapport building.

This experiment is based on the data collected by DLI and the data
is divided into different categories as described in table 1. The in-
terpolated model has mild improvement on different scenarios, and
the improvement differs a lot on different topics. It may suggest
MSA data can be helpful for certain domains in Iraqi speech recog-
nition. However, in overall, we found that the system achieves the
same WER by using the interpolated model. We decided to use the
interpolated model in order to improve the coverage, but to reduce
the size of the language model, only 550K words of MSA data
were used in the PDA system.
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The PDA system achieves a WER of 34.0% on the TransTac
March2006 evaluation, and the laptop system has a WER of
15.4%. On a test set based on Cepstral, Appen/BBN and Marine
Acoustics data in force protection domain, our PDA system scores
27.7% WER. This test set consists of around two hours of audio
data and 2246 Iraqi utterances.

3.3. PDA Specific Speedup Techniques

The processor clock of our target mobile devices at the time this
paper is written ranges from 400 to 624MHz, with a small memory
cache of 64KB and without floating point hardware. Compared to
a laptop or a desktop machine, a simple recompile of the ASR
system for the PDA results in an almost unusable system, mainly
because of the emulated floating point operations, but also because
of the slow CPU and memory access.
To compensate the limited resources of the PDA, several speedup
and memory saving techniques are implemented, while keeping
the same acoustic and language models.

All CPU intensive preprocessing steps are performed using in-
teger arithmetic, in order to avoid software emulation of floating
point calculations, which typically take 10 to 20 times longer than
their integer equivalents. Functions that benefit from this kind of
optimization are the FFT and the matrix multiplication, and also
the calculation of Mahalanobis distances in the acoustic model
during decoding. In general, the integer calculations do not seem
to harm the performance significantly, if a proper pre-scaling and
overflow protection is applied.

A Gaussian selection algorithm is used to speed up the eval-
uation of the acoustic model. As a small modification compared
to [7], we generated the disjunct clusters using Euclidean distance,
and used Mahalanobis distance between a feature vector and the
cluster centroids to find the active clusters for each frame during
decoding. The covariance of each centroid is calculated by aver-
aging over all Gaussians’ covariances that belong to the centroid’s
cluster. In our system, 128 clusters were used and only the Gaus-
sians in the top 25% of best matching clusters were evaluated for
each frame.

The Early Feature Vector Reduction [4] (EFVR) is used to re-
move redundant consecutive feature vectors, as found in silence
and static vowels or noises, which results in a reduction of 25 to
50% of the feature vectors before they are fed into the decoder.

The Gaussians (means and covariances values) of the code-
books are compressed from 32-bit floating point values to 8-bit
integers, saving 75% of the memory to store the acoustic model.

4. Statistical Machine Translation (SMT)
We used a statistical machine translation (SMT) system as the
translation component in the S2S system. The decoding algo-
rithm used in the SMT decoder follows the CMU SMT system
[8]. The translation model leverages underlying technology de-
veloped in [9] with morphological splitting techniques from [10]
implemented to improve English to Iraqi translation. Parameters
of the SMT system were trained on development data from the
2005 DARPA TransTac evaluation as well as selections from the
spontaneous speech component of the training data.

4.1. Statistical Machine Translation Decoder

The SMT decoder was re-engineered for PDA by rewriting the
program for the Windows CE operating system. More importantly,
we have designed compact data structures for the language model
and the translation model specifically for the PDA to make a two-
way phrase-based translation system fit into the limited memory
and translate in real-time. To make the decoder running efficiently

on the PDA, only monotone decoding is used.
Similar to the situation in ASR, we have to use integers for

all the probabilities since there is no floating point coprocessor in
the PDAs. A pilot study on the standard decoder showed that the
overall translation quality did not degrade when converting all the
probabilities from float/double to integers.

All the words used in the translation/language models are
mapped into unique integer vocIds. Two-byte integers are used
for vocId and the system can handle a vocabulary of 64K words.
The transcription output from the ASR will first be mapped from
text to a sequence of vocIds, and vocIds are used during the decod-
ing to avoid the hassle of mappings. After the decoding, VocIds of
the translation result are mapped into words for the TTS module.

The n-gram language model is converted from its text rep-
resentation to the binary compacted format. By doing this, each
n-gram is represented by n vocIds and a fixed number of bytes
for conditional probabilities and back-off weights. We store all the
n-grams in a binary file in sorted order. The decoder can directly
look up an n-gram for its information in the file without loading
the language model into the RAM. This saves the limited RAM
for other programs such as the decoding process which requires
random access of dynamic data structures.

The translation model requires most of the memory in a SMT
system because the number of phrase pairs can easily go up to mil-
lions. As we are doing two-way translation, there are two transla-
tion models involved: Iraqi to English and English to Iraqi. Both
models have English and Iraqi phrases. To avoid the redundancy
of saving one phrase twice, all English phrases used in both trans-
lation models are sorted and stored in one binary file, and the same
for all the Iraqi phrases. Each English(Iraqi) phrase is then mapped
to an integer “phrase ID” which is used to convert the translation
models into a binary file. Similar to the language model, the de-
coder can access the translation model directly from the binary file
instead of loading it into the RAM. Thus in the SMT module, only
the decoder search process requires memory from the RAM.

In our implementation, the translation models can have up to
1M unique English phrases and 1M Iraqi phrases and 16M phrase
pairs for each translation direction.

With these PDA-specific design and other tailored implemen-
tation in the decoder, the translation speed is impressively fast. On
average translating a sentence takes less than 10 ms.

4.2. Training for SMT

While our desktop based systems support multiple floating point
translation model scores for each phrase translation, our PDA
based decoder operates with a single integer range score. Our tra-
ditional SMT system [9] uses six translation models scores and an
additional phrase counter. We collapse these scores into a single
score by taking the dot product of each score with their respective
scaling factors trained by MER [11]. We then adjust all the scaling
factor to limit the number of entries that are above the converted
integer range.

The parallel data for the SMT component used approximately
20K parallel sentences representing 670K words of Iraqi and 982K
words of English. The majority of this data (18K sentence pairs)
are transcripts from spontaneous speech interactions, while the re-
maining data are primarily transcribed from English to Iraqi ques-
tion answer sessions.

Iraqi to English SMT models are trained on parallel corpora
in the Force Protection and Water Electricity and Sewage do-
mains. Unlike typical parallel corpora used for SMT, the Iraqi
data consists mainly of question/answer and command/response
exchanges, many of them collected in situ. As a result, the content
and nature of English sentences that have been translated into Iraqi,
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are distinctly different from sentences that were originally spoken
(and then transcribed) into English. We account for this difference
within the language model, by interpolating a model built on all
the target (English for Iraqi→English system) with the subset of
the data that has been translated from source to target language.

4.2.1. Iraqi to English

Iraqi, like most Arabic dialects exhibits significant morphological
inflection, which is a cause for concern when building statistical
translation models.

We address issues in Iraqi morphology by applying the tech-
niques presented in [10] to split Iraqi surface forms into multi-
ple segments that are better suited to alignment to English sur-
face word forms. Once the alignment models are built, we use
the techniques described in [9] to extract phrase translations from
the parallel corpus. Since we built our models on the fragmented
Arabic morphological elements, we map them back to their sur-
face form (by storing a lookup table at the time of initial splitting).
These corrections yield significant improvements in score, approx-
imately 4.8% on the NIST metric resulting in a test set score on the
240 sentence December 2005 TransTac Eval of 7.05 (when MER
optimized with development data sampled from the parallel cor-
pus).

4.2.2. English to Iraqi

The English to Iraqi direction presents challenges in translating
into a morphologically rich language. We primarily mitigate this
issue by allowing a larger portion of the final phrase table to rep-
resent phrases from English to Iraqi and changing the parameters
for the phrase extraction. In phrase extraction, we set the extrac-
tion parameters in [9] to those calculated after 3 iterations of MER
training that began with default parameters (2.0, 1.0, 0.5 in both
directions) selecting relatively shorter Iraqi phrases as determined
by the MER optimal parameters. This step increases the NIST
score on the December 2005 Evaluation data from 5.0 to 5.68.

5. Text-to-Speech (TTS)
The text to speech component uses the Swift engine from Cepstral
LLC, with English and Iraqi Arabic voices. The English voice
is around 20M and the Iraqi voice around 12M. The Iraqi dialect
has the addition issue that it is not normally written. Thus a stan-
dard for writing, using standard Arabic script, Iraqi was defined
for the whole TransTac project. However as that standard did not
include explicitly vowels in the text (as is common in MSA), and
that we only have a complete pronunciation lexicon for one large
subset of the data, we had to augment our pronunciation models
with a statistical method for predicting the pronunciation of un-
known words. We built statistical models using our letter-to-sound
CART tree methods [12]. On held out data of 12K words, this
technique achieves 52.31% words correct and 86.51% letter cor-
rect. We use this same pronunciation model to construct the lexi-
con for the ASR.

6. Conclusions
In this paper, we have presented our two-way handheld speech-to-
speech translation system in limited domain. We found that hand-
held devices have severe constraints on computation and memory,
and these issues have to be considered in optimizing the ASR,
SMT and TTS engines.

User interface is another important factor for a successful de-
vice. It needs to be simple and clear so that the time for training
a new user is minimal. Our system adopts a push-to-talk mecha-
nism, a simple layout and a back-translation scheme which allow

people to use our system reliably in a few minutes.
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