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Abstract. Simultaneous tracking of multiple persons in real world en-
vironments is an active research field and several approaches have been
proposed, based on a variety of features and algorithms. In this work,
we present 2 multimodal systems for tracking multiple users in a smart
room environment. One is a multi-view tracker based on color histogram
tracking and special person region detectors. The other is a wide angle
overhead view person tracker relying on foreground segmentation and
model-based tracking. Both systems are completed by a joint proba-
bilistic data association filter-based source localization framework using
input from several microphone arrays.
We also very briefly present two intuitive metrics to allow for objec-
tive comparison of tracker characteristics, focusing on their precision in
estimating object locations, their accuracy in recognizing object config-
urations and their ability to consistently label objects over time.
The trackers are extensively tested and compared, for each modality sep-
arately, and for the combined modalities, on the CLEAR 2006 Evaluation
Database.

1 Introduction and Related Work

In recent years, there has been a growing interest in intelligent systems for in-
door scene analysis. Various research projects, such as the European CHIL or
AMI projects [17, 18] or the VACE project in the U.S. [19], aim at developing
smart room environments, at facilitating human-machine and human-human
interaction, or at analyzing meeting or conference situations. To this effect, mul-
timodal approaches that utilize a variety of far-field sensors, video cameras and
microphones, to gain rich scene information gain more and more popularity. An
essential building block for complex scene analysis is the detection and tracking
of persons in the scene.

One of the major problems faced by indoor tracking systems is the lack of
reliable features that allow to keep track of persons in natural, evolving and
unconstrained scenarios. The most popular visual features in use are color fea-
tures and foreground segmentation or movement features [2, 1, 3, 6, 7, 16], each
with their advantages and drawbacks. Doing e.g. blob tracking on background
subtraction maps is error-prone, as it requires a clean background and assumes
only persons are moving. In real environments, the foreground blobs are often
fragmented or merged with others, they depict only parts of occluded persons
or are produced by shadows or displaced objects. When using color informa-
tion to track people, the problem is to create appropriate color histograms or



models. Generic color models are usually sensitive and environment-specific [4].
If no generic model is used, one must at some point decide which pixels in the
image belong to a person to initialize a dedicated color histogram [3, 7, 15, 16].
In many cases, this still requires the cooperation of the users and/or a clean and
relatively static background.

On the acoustic side, although actual techniques already allow for a high
accuracy in localization, they can still only be used effectively for the tracking
of one person, and only when this person is speaking. This naturally leads to
the development of more and more multimodal techniques.

Here, we present two multimodal systems for the tracking of multiple persons
in a smart room scenario. A joint probability data association filter is used in
conjunction with a set of microphone arrays to determine active speaker posi-
tions. For the video modality, we investigate the advantages and drawbacks of
2 approaches, one relying on color histogram tracking in several corner camera
images and subsequent triangulation, and one relying on foreground blob track-
ing in wide angle top view images. For both systems, the acoustic and visual
modalities are fused using a state-based selection and combination scheme on
the single modality tracker outputs. The systems are evaluated on the CLEAR’06
3D Multiperson Tracking Database, and compared using the MOTP and MOTA
metrics, which will also be briefly decribed here.

The next sections introduce the multi-view and single-view visual trackers,
and the jpdaf-based acoustic tracker. Section 6 gives a brief explanation of the
used metrics. Section 7 shows the evaluation results on the CLEAR database,
while section 8 gives a brief summary and concludes.

2 Multi-View Person Tracking using Color Histograms
and Haar-Classifier Cascades

The developed system is a 3D tracker that uses several fixed cameras installed
at the room corners [11]. It is designed to function with a variable number of
cameras, with precision increasing as the number of cameras grows. It performs
tracking first separately on each camera image, using color histogram models.
Color tracks are initialized automatically using a combination of foreground
maps and special object detectors. The information from several cameras is
then fused to produce 3D hypotheses of the persons’ positions. A more detailed
explanation of the system’s different components is given in the following.

2.1 Classifier Cascades and Foreground Segmentation

A set of special object detectors is used to detect persons in the camera images.
They are classifier cascades that build on haar-like features, as decribed in [9,
8]. For our implementation, the cascades were taken from the OpenCV [20]
library. Two types of cascades are used: One trained to recognize frontal views
of faces(face), and one to recognize the upper body region of standing or sitting
persons (upper body). The image is scanned at different scales and bounding
rectangles are obtained for regions likely to contain a person. By using these
detectors, we avoid the drawbacks of creation/deletion zones and are able to
initialize or recover a track at any place in the room.

Further, to reduce the amount of false detector hits, a preprocessing step is
made on the image. It is first segmented into foreground regions by using an



adaptive background model. The foreground regions are then scanned using the
classifier cascades. This combined approach offers two advantages: The cascades,
on the one hand, increase robustness to segmentation errors, as foreground re-
gions not belonging to persons, such as moved chairs, doors, shadows, etc, are
ignored. The foreground segmentation, on the other hand, helps to decide which
of the pixels inside a detection rectangle belong to a person, and which to the
background. Knowing exactly which pixels belong to the detected person is use-
ful to create accurate color histograms and improve color tracking performance.

2.2 Color Histogram Tracking and 2D Hypotheses

Whenever an object detector has found an upper or a full body in the image,
a color histogram of the respective person region is constructed from the fore-
ground pixels belonging to that region, and a track is initialized. The actual
tracking is done based only on color features by using the meanshift algorithm
[5] on histogram backprojection images. Care must be taken when creating the
color histograms to reduce the negative effect of background colors that may
have been mistakenly included in the person silhouette during the detection and
segmentation phase. This is done by histogram division, as proposed in [12]. Sev-
eral types of division are possible (division by a general background histogram,
by the histogram of the background region immediately surrounding the person,
etc, see Fig. 1). The choice of the best technique depends on the conditions at
hand and is made automatically at each track initialization step, by making a
quick prediction of the effect of each technique on the tracking behavior in the
next frame.

To ensure continued tracking stability, the histogram model for a track is also
adapted every time a classifier cascade produces a detection hit on that track.
Tracks that are not confirmed by a detection hit for some time are deleted, as
they are most likely erroneous.

The color based tracker, as described above, is used to produce a 2D hypoth-
esis for the position of a person in the image. Based on the type of cascade that
triggered initialization of the tracker, and the original size of the detected region,
the body center of the person in the image and the person’s distance from the
camera are estimated and output as hypothesis. When several types of trackers
(face and upper body) are available for the same person, a combined output is
produced.

2.3 Fusion and Generation of 3D Hypotheses

The 2D hypotheses produced for every camera view are triangulated to produce
3D position estimates. For this, the cameras must be calibrated and their po-
sition relative to a general room coordinate system known. The lines of view
(LOV) coming from the optical centers of the cameras and passing through the
2D hypothesis points in their respective image planes are intersected. When no
exact intersection point exists, a residual distance between LOVs, the triangu-
lation error, can be calculated. This error value is used by an intelligent 3D
tracking algorithm to establish likely correspondences between 2D tracks (as
in [13]). When the triangulation error between a set of 2D hypotheses is small
enough, they are associated to form a 3D track. Likewise, when it exceeds a
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Fig. 1. Color histogram creation, filtering and tracking. a) Face, upper and full body
detections (rectangles) in one camera view. b) Foreground segmentation (in white).
Only foreground pixels inside the rectangles are used. c) Histogram backprojection for
the upper body track of the leftmost person. d), e), f) and g) Effects of different types
of histogram division. Background: Overall background histogram. Border: Histogram
of the background region immediately surrounding the detected rectangle. h) Tracker
output as seen from another view

certain threshold, the 2D hypothesis which contributes most to the error is dis-
sociated again and the 3D track is maintained using the remaining hypotheses.
The tracker requires a minimum of 2 cameras to produce 3D hypotheses, and
becomes more robust as the number of cameras increases.

Once a 3D estimate for a person’s position has been computed, it is further
used to validate 2D tracks, to initiate color histogram tracking in camera views
where the person has not yet been detected, to predict occlusions in a camera
view and deactivate the involved 2D trackers, and to reinitialize tracking even
in the absence of detector hits.

The developed multiperson tracker draws its strength from the intelligent
fusion of several camera views. It initializes its tracks automatically, constantly
adapts its color models and verifies the validity of its tracks through the use
of special object detectors. It is capable of tracking several people, regardless if
they are sitting, moving or standing still, in a cluttered environment with uneven
lighting conditions.

3 Single-View Model-Based Person Tracking on
Panoramic Images

In contrast to the above presented multi-view system, a single-view tracker work-
ing on wide angle images captured from the top of the room was also designed.
The advantage of such images is that they reduce the chance of occlusion by
objects or overlap between persons. The drawback is that detailed analysis of
the tracked persons is difficult as person-specific features are hard to observe
(see Fig. 2).



Fig. 2. The output of the top camera tracker. The colored circles represent the person
models

The tracking algorithm is essentially composed of a simple but fast foreground
blob segmentation followed by a more complex EM algorithm based on person
models:

First, foreground patches are extracted from the images by using a dynamic
background model. The background model is created on a few initial images of
the room and is constantly adapted with each new image with an adaptation
factor α. Background subtraction and thresholding yield an initial foreground
map, which is morphologically filtered. A connected component analysis provides
the foreground blobs for tracking. Blobs below a certain size are rejected as
segmentation errors.

The subsequent EM tracking algorithm tries to find an optimal assignment
of the detected blobs to a set of active person models, instantiating new models
or deleting unnecessary ones if need be. A person model, in our case is composed
of a position (x, y), a velocity (vx, vy), a radius r and a track ID. In our imple-
mentation, the model radius was estimated automatically using the calibration
information for the wide angle camera and rough knowledge about the room
height. The procedure is as follows:

– For all person models Mi, verify their updated positions (x, y)Mi
. If the

overlap between two models exceeds a maximum value, fuse them.
– For each pixel p in each foreground blob Bj , find the person model Mk which

is closest to p. If the distance is smaller than rMk
, assign p to Mk.

– Iteratively assign blobs to person models: For every foreground blob Bj

whose pixels were assigned to at most one model Mk, assign Bj to Mk

and use all assigned pixels from Bj to compute a position update for Mk.
Subsequently, consider all assignments of pixels in other blobs to Mk as
invalid. Repeat this step until all unambiguous mappings have been made.
Position updates are made by calculating the mean of assigned pixels (x, y)m
and setting (x, y)Mk,new

= αM (x, y)m + (1 − αM ) (x, y)Mk
, with αM the

learnrate for model adaptation.
– For every blob whose pixels are still assigned to several models, accumulate

the pixel positions assigned to each of these models. Then make the position



updates based on the respectively assigned pixels only. This is to handle the
case that two person tracks coincide: The foreground blobs are merged but
both person models still subsist as long as they do not overlap too greatly,
and can keep track of their respective persons when they part again.

– For each remaining unassigned foreground blob, initialize a new person
model, setting its (x, y) position to the blob center. Make the model ac-
tive, only if it subsist for a minimum period of time. On the other hand, if
a model stays unassigned for a certain period of latency, delete it.

– Repeat the procedure from step 1.

The two stage approach results in a fast tracking algorithm that is able to
initialize and maintain several person tracks, even in the event of moderate over-
lap. Relying solely on foreground maps as features, however, makes the system
relatively sensitive to situations with heavy overlap. This could be improved by
including color information, or with e.g. temporal templates, as proposed in [1].

By assuming an average height of 1m for a person’s body center, and using
calibration information for the top camera, the positions in the world coordinate
frame of all N tracked persons are calculated and output.

The system makes no assumptions about the environment, e.g. no special
creation or deletion zones, about the consistency of a person’s appearance or the
surrounding room. It runs in realtime, at 15fps, on a Pentium 3GHz machine.

4 A JPDAF Source Localizer for Speaker Tracking

In parallel to the visual tracking of all room occupants, acoustic source localiza-
tion was performed to estimate the position of the active speaker. For this, the
system relies on the input from four T-shaped microphone clusters installed on
the room walls. They allow a precise localization in the horizontal plane, as well
as height estimation. Two subtasks are accomplished:

– Speaker localization and tracking. This is done by estimating time delays of
arrival between microphone pairs using the Generalized Cross Correlation
function (GCC).

– Speech detection and segmentation. This is currently done by thresholding
the GCC function, but techniques more robust to non-speech noise and cross-
talk are already being experimented with. Our system uses a variant of the
GCC, the GCC-PHAT, defined as folows:

R12(τ) =
1
2π

∫ π

−π

X1(ejωτ )X∗
2 (ejωτ )

|X1(ejωτ )X∗
2 (ejωτ )|

ejωτdω

where X1(ω) and X2(ω) are the Fourier transforms of the signals of a mi-
crophone pair in a microphone array.
As opposed to other approaches, Kalman or particle-filter based, this ap-
proach uses a Joint Probabilistic Data Association Filter that directly re-
ceives as input the time delays that maximize the correlation results from
the various microphone pairs, and performs the tracking in a unified proba-
bilistic way for multiple possible target hypotheses, thereby achieving more
robust and accurate results. The details of the source localizer can be found
in [10].



The output of the speaker localization module is the tracked position of the
active speaker in the world coordinate frame. This position is compared in the
fusion module to those of all visually tracked persons in the room and a combined
hypothesis is produced.

5 State-Based Fusion

The fusion of the audio and video modalities is done at the decision level. Track
estimates coming from the visual and acoustic tracking systems are combined
using a finite state machine approach, which considers the relative strengths
and weaknesses of each modality. The visual trackers are generally very accurate
at determining a person’s position. In multiperson scenarios they can, however,
miss persons completely because their faces are too small or invisible, or because
they are not well discernable from the background by color, shape or motion. The
acoustic tracker on the other hand can precisely determine a person’s position
when this person speaks. In the current implementation, it can, however, only
track one active speaker at a time and can produce no estimates when several
or no persons are speaking.

Based on this, the fusion of the acoustic and visual tracks is made using a
finite state machine weighing the availability or reliability of the single modality
tracks.

For multimodal tracking, two main conditions are to be evaluated: For con-
dition A, only the position of the active speaker in a multi-participant scenario
is to be estimated. For condition B, on the other hand, all participants have to
be tracked. Consequently, the states for the fusion of modalities differ slightly
depending on the task condition. For condition A, they are as follows:

– State 1: An acoustic estimate is available, for which no overlapping visual
estimate exists. Here, estimates are considered overlapping if their distance
is smaller than 500mm. In this case, assume the visual tracker has missed the
speaking person and ouptut the acoustic hypothesis. Store the last received
acoustic estimate and keep outputting it until an overlapping visual estimate
is found.

– State 2: An acoustic estimate is available, and a corresponding visual es-
timate exists. In this case, output the average of the acoustic and visual
positions.

– State 3: After an overlapping visual estimate had been found, an acoustic
estimate is no longer available. In this case, we consider the visual tracker has
recovered the previously undetected speaker and keep ouputting the position
of the last overlapping visual track.

For condition B, where all participants must be tracked, the acoustic estimate
serves to increase the precision of the closest visual track, whenever available.
The states are:

– State 1: An acoustic estimate is available, for which no overlapping visual es-
timate exists. In this case, assume the visual tracker has missed the speaking
person and ouptut the acoustic hypothesis additionally to the visual ones.
Store the last received acoustic estimate and keep outputting it until an
overlapping visual estimate is found.



– State 2 and State 3 are similar to condition A, with the exception that here,
all other visual estimates are output as well.

Using this fusion scheme, two multimodal tracking systems were designed:
System1, fusing the JPDAF acoustic tracker with the single-view visual tracker,
and System2, fusing it with the multi-view tracker. Both systems were evaluated
on conditions A and B, and the results compared in section 7.

To allow better insight into the evaluation scores, the following section now
gives a brief overview of the used metrics.

6 Multiple Object Tracking Metrics

Defining good measures to express the characteristics of a system for continuous
tracking of multiple objects is not a straightforward task. Various measures exist
and there is no consensus in the literature on the best set to use. Here, we
propose a small expressive set of metrics and show a systematic procedure for
their calculation. A more detailed discussion of these metrics can be found in
[14].

Assuming that for every time frame t a multiple object tracker outputs a set
of hypotheses {h1 . . . hm} for a set of visible objects {o1 . . . on}, we define the
procedure to evaluate its performance as follows:

Let the correspondence between an object oi and a hypothesis hj be valid
only if their distance disti,j does not exceed a certain threshold T , and let
Mt = {(oi, hj)} be a dynamic mapping of object-hypothesis pairs.

Let M0 = {}. For every time frame t,

1. For every mapping (oi, hj) in Mt−1, verify if it is still valid. If object oi is still
visible and tracker hypothesis hj still exists at time t, and if their distance
does not exceed the threshold T , make the correspondence between oi and
hj for frame t.

2. For all objects for which no correspondence was made yet, try to find a
matching hypothesis. Allow only one to one matches. To find optimal corre-
spondences that minimize the overall distance error, Munkre’s algorithm is
used. Only pairs for which the distance does not exceed the threshold T are
valid. If a correspondence (oi, hk) is made that contradicts a mapping (oi, hj)
in Mt−1, replace (oi, hj) with (oi, hk) in Mt. Count this as a mismatch error
and let mmet be the number of mismatch errors for frame t.

3. After the first two steps, a set of matching pairs for the current time frame is
known. Let ct be the number of matches found for time t. For each of theses
matches, calculate the distance di

t between the object oi and its correspond-
ing hypothesis.

4. All remaining hypotheses are considered false positives. Similarly, all re-
maining objects are considered misses. Let fpt and mt be the number of
false positives and misses respectively for frame t. Let also gt be the number
of objects present at time t.

5. Repeat the procedure from step 1 for the next time frame. Note that since
for the initial frame, the set of mappings M0 is empty, all correspondences
made are initial and no mismatch errors occur.

Based on the matching strategy described above, two very intuitive metrics
can be defined: The Multiple Object T racking Precision (MOTP ), which shows



the tracker’s ability to estimate precise object positions, and the Multiple Object
T racking Accuracy (MOTA), which expresses its performance at estimating the
number of objects, and at keeping consistent trajectories:

MOTP =

∑
i,t di,t∑

t ct
(1)

MOTA = 1 −
∑

t (mt + fpt + mmet)∑
t gt

(2)

The MOTA can be seen as composed of 3 error ratios:

m =
∑

t mt∑
t gt

, fp =
∑

t fpt∑
t gt

, mme =
∑

t mmet∑
t gt

,

the ratio of misses, false positives and mismatches in the sequence, computed
over the total number of objects present in all frames.

Alternatively, to compare systems for which measurement of identity mis-
matches is not meaningful, an addtitional measure, the A − MOTA can be
computed, by ignoring mismatch errors in the global error computation:

A − MOTA = 1 −
∑

t (mt + fpt)∑
t gt

(3)

7 Evaluation on the CLEAR’06 3D Multiperson Tracking
Database

The above presented systems for visual and multimodal tracking were evaluated
on the CLEAR’06 3D Multiperson Tacking Database. This database comprises
recordings from 3 different CHIL smartrooms, involving up to 6 persons in a
seminar scenario, for a total of approx. 60 min.

Tables 1 and 2 show the results for the Single- and Multi-view based systems,
System1 and System2, for the visual and the mutimodal conditions A and B:

Table 1. Evalution results for the visual and multimodal B conditions

System MOTP m fp mme MOTA
1:Visual 217mm 27.6% 20.3% 1.0% 51.1%
1:AV CondB 226mm 26.1% 20.8% 1.1% 52.0%
2:Visual 203mm 46.0% 24.9% 2.8% 26.3%
2:AV CondB 223mm 44.4% 25.8% 3.3% 26.4%

As Table 1 shows, the single view tracker clearly outperforms the multi-view
approach. As the scenario involved mostly people sitting around a table and
occasionally walking, they were very clearly distinguishable from a top view,
even when using simple features such as foreground blobs for tracking. The
multi-view approach, on the other hand, had more moderate results, stemming
from the considerably more difficult video data. The problems can be summed
up in 2 categories:



Table 2. Evalution results for the multimodal A condition

System MOTP m fp mme MOTA
1:AV CondA 223mm 51.4% 51.4% 2.1% -5.0%
2:AV CondA 179mm 51.4% 51.4% 5.3% -8.2%

– 2D tracking errors: In several seminars, participants were only hardly dis-
tinguishable from the background using color information, or detectable by
the face and body detectors, due to low resolution. This accounts for the
relatively high amount of missed persons.

– Triangulation errors: The low angle of view of the corner cameras and the
small size of most recording rooms caused a considerable amount of oc-
clusion in most seminars, which could not be completely resolved by the
triangulation scheme. A more precise distance estimation, based on the size
of detection hits could help avoid many of the occured triangulation errors,
and reduce the false positive count.

In all cases, the average MOTP error was about 20cm, making the MOTA
the more interesting metric for comparison. As can also be seen, although the
addition of the acoustic modality could bring a slight improvement in tracking
accuracy, the gain is minimal, as it could only help improve tracking performance
for the speaking person at each respective point in time.

Compared to these results, the scores for condition A are relatively low. Both
systems produced a high amount of miss errors (around 50%), as the correct
speaker could not be selected from the multiple available tracks. It is noticeable
that in case the correct speaker was tracked, though, the multi-view System2
achieved a higher precision, reaching 18cm, as compared to 20cm for System1.
This suggest that for the tracking of clearly identifiable persons (such as the pre-
senter in the seminars), the multi-view, face and body-detector based approach
does have its advantages.

8 Summary

In this work, 2 systems for multimodal tracking of multiple users are presented.
A joint probabilistic data association filter for source localization is used in con-
junction with 2 distinct systems for visual tracking: One using multiple camera
images, based on color histogram tracking and haar-feature classifier cascades
for upper bodies and faces. The other using only a wide angle overhead view,
and model based tracking on foreground segmentation features. A fusion scheme
is presented, using a 3-state finite-state machine to combine the output of the
audio and visual trackers. The systems were extensively tested on the CLEAR
2006 3D Multiperson Tracking Database, for the visual and the audio-visual
conditions A and B.

The results show that under fairly controlled conditions, as can be expected
of meeting situations with relatively few participants, an overhead wide angle
view analysis can yield considerable advantages over more elaborate multicamera
systems, even if only simple features, such as foreground blobs are used. Overall,
an accuracy of 52% could be reached for the audio-visual task, with position
errors below 23cm.
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