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finding an optimal solution in a huge space of possible
network configurations quickly assumes unmanageable
proportions. In an effort to extend our models from small
recognition tasks to large scale speech recognition
systems, we must therefore explore modularity and
incremental learning as design strategies to break up a
Jarge learning task into smaller subtasks. Breaking up
large tasks into subtasks to be tackled by individual black
boxes interconnected in ad hoc arrangements, on the other
hand, would mean to abandon one of the most attractive

ts of connectionism: the ability to perform complex
constraint satisfaction tasks in a massively parallel and

interconnected fashion, in view of an overall optimal
performance goal. In this paper we demonstrate based on

a set of experiments aimed at phoneme recognition that it
is indeed possible to construct large neural networks by
exploiting the hidden structure of smaller trained
subcomponent networks. A set of successful techniques
is developed that bring the design of practical large scale
connectionist recognition systems within the reach of
today’s technology-

The present paper has five parts: In the next section
we review Time-Delay Neural Networks as a technique to
achieve accurate, reliable classification of phonemes in
small but ambiguous phonemic subcategories (€.g., BDG,
PTK, etc.)- Excellent performance results are reported for
all phonemic coarse classes found in a Japanese large
vocabulary word database. In section 3, we then explore
techniques for the modular extension of'small networks to
larger "connectionist systems”. In secton 4, we validate
the usefulness of these techniques by applying them to
harder and larger tasks. We summarize our results in the

1ast section of this paper.

2. Small Phonemic Classes by T

Neural Networks il
To be useful for the proper classification of speech
neural network must have a number of

roperties. First, it should have m_ulti.ple layers and
sufficient interconnections Detween units in each of these
layers. This is to ensuré that the network will have the

i Jearn complex non-linear  decision
ability Second, the network should

to

ippmann 87].
;:lf:c:\i [a];bg?ty 1o represent relationships between events
in time. These events could .be spectral coefficients, but
might also pe the output of higher Iev_el feature detectors.
Third, the actual features OF abstractions learned by the
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network should be invariant under translation in time.
Fourth, the learning procedure should not require precise
temporal alignment of the labels that are to be learned.
Fifth, the number of weights in the network should be
small compared to the amount of training data so that the
network is forced to encode the training data by extracting
regularity. In the following, we review Time-Delay
Neural Networks (TDNNs) as an architecture that
satisfies all of these criteria and was designed explicitly
for the classification of phonemes within small phonemic
classes such as the voiced stops, "B", "D", "G", the
voiceless stops "P", "T", "K", etc.

2.1. Review of a Time-Delay Neural Network’s

Architecture

The basic unit used in many neural networks
computes the weighted sum of its inputs and then passes
this sum through a non-linear function, most commonly a
threshold or sigmoid function [Lippmann 87, Rumelhart
86a]. In our TDNN, this basic unit is modified by
introducing delays D, through Dy as shown in Fig.1. The
J inputs of such a unit now will be multiplied by several
weights, one for each delay and one for the undelayed
input. For N =2, and J = 16, for example, 48 weights will
be needed to compute the weighted sum of the 16 inputs,
with each input now measured at three different points in
time. In this way a TDNN unit has the ability to relate
and compare current input with the past history of events,
The sigmoid function was chosen as the non-linear output
function F due to its convenient mathematical
properties [Rumelhart 86a, Rumelhart 86b].

For the recognition of phonemes, a three layer net is
constructed. Its overall architecture and a typical set of
activities in the units are shown in Fig.2 based on one of
the phonemic subcategory tasks (BDG).

Al the lowest level, 16 melscale spectral coefficients
serve as input to the network. Input speech, sampled at
12 kHz, was hamming windowed and a 256-point FFT
computed every 5 msec. Melscale coefficients were
computed from the power spectrum [Waibel 87, Waibel
89] and adjacent coefficients in time collapsed resulting in
an overall 10 msec frame rate. The coefficients of an
input token (in this case 15 frames of speech centered
around the hand labeled vowel onset) were then
normalized to lie between -1.0 and +1.0 with the average
at 0.0. Fig.2 shows the resulting coefficients for the
speech token "BA" as input to the network, where
positive values are shown as black and negative values as
grey squares.

This input layer is then fully interconnected to g
layer of 8 time delay hidden units, where J = 16 and N = 2
(i.e., 16 coefficients over three frames with time delay 0,
1 and 2). An alternative way of seeing this is depicted in
Fig.2. It shows the inputs to these time delay units
expanded out spatially into a 3 frame window, which is

Figure 1: A Time Delay Neural Network (TDNN) unit

passed over the input spectrogram. Each unit in the first
hidden layer now receives input (via 48 weighted
connections) from the coefficients in the 3 frame window-
The particular delay choices were motivated by earlier
studies [Lang ~ 87) [Waibel 87] [Waibel 89] [Makino
86] [Blumstein 79] [Blumstein 80] [Kewley-Port 83].

In the second hidden layer, each of 3 TDNN units
looks at a 5 frame window of activity levels in hidden
la}’er 1 (i.e.,J =8, N =4). The choice of a larger 5 frame
window in this layer was motivated by the intuition that
higher level units should learn to make decisions over 4

wider range in time based on more local abstractions at
lower levels,

Finally, the output is obtained by integrating
(summing) the evidence from each of the 3 units in
hidden layer 2 over time and connecting it to its pertinent
output unit (shown in Fig.2 over 9 frames for the "B
output unit). In practice, this summation is implemented
SImply as another TDNN unit which has fixed equal
Wweights to a row of unit firings over time in hidden layer
2. While the network shown in Fig.2 was designed for a 3
class problem (e.g, BDG or PTK), variations L0
accommodate 2, 4 or 5 classes are easily implemented by
allowing for 2, 4 or 5 units in hidden layer 2 and in the
output layer,

When the TDNN has learmed its internal
fepreseniation, it performs recognition by passing input




Connectionist Glue: Modular Design of Neural Speech Systems

Output Layer

integration

Hidden Layer 2

3 units

Hidden Layer 1

8 units

N — (Mn)

R IRUL
asar
ey
i Dt B e R L] R
o e[ fg oy w262
.-1‘"-..-!'!'.]1‘0
e mwm w1922
- mEEE®RE

[ |
[EEN
o

23
aa
.

& Input Layer
N mpamo
e d i ed R
e L L L L L

"~ SEEN . e

4133 23
i
a3

16 melscale filterbank coefficients

e
Bl
o wfhe - smeEmNEEED 0
m e T R LU LLLL
B R R WEBEE R 6E
.lw - I e - a2
L] I---lI-IIIIII m
seda] ] E e el elin e n); 141
15 frames

10 msec frame rate

Figure 2: The TDNN architecture (input: "BA")

speech over the TDNN units. In terms of the i}lustration
of Fig.2 this is equivalent to passing the ume delay
windows over the lower level units’ firing patterns. At
the lowest level, these firing patterns simply consist of the
sensory input, i.¢., the spectral coefficients.

Each TDNN unit outlined in this sgc@on has the
ability to encode temporal relationships within the range
of the N delays. Higher layers can attend to larger time
spans, so local short duration features will be fon'ned“ at
the lower layer and more complex lopger duration
features at the higher layer. The learning .proce.dure
ensures that each of the units in each layer has its weights
adjusted in a way that improves the network’s overall

performance. '

The network described is trained using the Back-
propagation Learning Procedure (Rumelhart
86a, Rumelhart 86b]. This procedure iteratively adjusts
all the weights in the network so as to 'decrease_the error
obtained at its output units. For translation invanance, we
need to ensure during learning that the npwyork is exposed
lo sequences of patterns and that it is allowed (or
encouraged) to learn about the most powerful cues and
sequences of cues among them. Conceptually, the back-
propagation procedure is gpphed to speegh patterns that
are stepped through in time. An equivalent way of

achieving this result is to use a spatially expanded input
pattern, i.e., a spectrogram plus some constraints on the
weights. Each collection of TDNN-units described above
is duplicated for each one frame shift in time. In this way
the whole history of activities is available at once. Since
the shifted copies of the TDNN-units are mere duplicates
and are to look for the same acoustic event, the weights of
the corresponding connections in the time shifted copies
must be constrained to be the same. To realize this, we
first apply the regular back-propagation forward and
backward pass to all time shifted copies as if they were
separate events. This yields different error derivatives for
corresponding (time shifted) connections. Rather than
changing the weights on time-shifted connections
separately, however, we actually update each weight on
corresponding connections by the same value, namely by
the average of all corresponding time-delayed weight
changes?. Fig.2 illustrates this by showing in each layer
only two connections that are linked to (constrained to
have the same value as) their time shifted neighbors. Of
course, this applies to all connections and all time shifts.
In this way, the network is forced to discover useful
acoustic-phonetic features in the input, regardless of when
in time they actually occurred. This is an important
property, as it makes the network independent of
errorprone  preprocessing  algorithms, that otherwise
would be needed for time alignment and/or segmentation.

2.1.1. Experimental Conditions, Database

For performance evaluation, we have used a large
vocabulary database of 5240 common Japanese
words [Waibel 87, Waibel 89]. The data used in this
paper was uttered in isolation by one male native
Japanese speaker (MAU). All utterances were recorded
in a sound proof booth and digitized at a 12 kHz sampling
rate. The database was then split into a training set and a
testing set of 2620 utterances each, from which the actual
phonetic tokens were extracted. The training tokens (up
to 600 tokens per phoneme?®) were randomized within
each phoneme class. For a given training run they were
then presented, alternating between each class to be
leamed. If a phoneme class was represented by an
insufficient number of available training tokens, random
tokens from its set were repeated, in order to preserve the
alternating sequence of presentations among all training
tokens. For performance evaluation, we have run all

2Note that weight changes were carried out after presentation of all
training samples [Rumelhart 86b].

3Note, that for some phoneme categories an unnecessarily large
number of tokens was found in the database (e.g., vowels), while for
some others (e.g., "P") only few tokens were extracted. While excessive
tokens are simply discarded at random to reduce the data.s_et size, a lack
of tokens leads to poor generalization. The low recognition scores for
"P" are therefore a result of the limited training data.
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experiments on the testing tokens only, i.e., on tokens not
included during training.

The entire database was  phonetically
handlabeled [Sagisaka 87]. These labels were used in the
experiments reported below to center a given phoneme in
the input range used for learning and evaluation. No
attempt was made to correct for improper handlabels.
Since all networks described here were trained in a
translation invariant fashion, possible misalignments at
the input are of no serious concern as long as all the
critical features needed for discrimination are present
somewhere in the input range. For consistency among our
networks and efficiency of leaming, we continued 1o
employ a 150 msec input range. Note, however, that
longer input ranges are possible and might in fact be
preferable to exwract all useful features of a given
phoneme. All tokens in the database were included in the
test set or the training set, respectively, and no
preselection was done. The resulting data included a
considerable amount of variability (see [Waibel
87, Waibel 89] for examples) due to its position within an
utterance or phonetic context.

2.2. Discrimination Performance in Phonemic

Subclasses

To evaluate our TDNNs on all phoneme classes (for
an in depth discussion and comparative performance
evaluation for voiced stops see [Waibel 87, Waibel 89])
recognition experiments have been carried out for seven
phonemic subclasses found in the database. For each of
these classes, TDNNs with an architecture similar o the
one shown in Fig.2 were trained. A 1otal of seven nets
aimed at the major coarse phonetic classes in Japanese
were trained, including voiced stops B, D, G, voiceless
stops P,T,K, the nasals M, N and syllabic nasals
fricatives S, SH, H and Z, affricates CH, TS, liquids ang
glides R, W, Y and finally the set of vowels A,L U, E and
O. Each of these nets was given between LwWo ar;d five
phoneme classes to distinguish and the pertinent input
data was presented for learning. Note, that each net was
trained only within each respective coarse class and has
no notion of phonemes from other classes yet. Table 2-1
shows the recognition results for each of these major
coarse classes.

3. Scaling TDNNs to Larger Phonemic
Classes

We have seen in the previous section that TDNNs
achieve superior recognition performance on difficylt but
small recognition tasks. To train these networks
however, substantial computational resources were;
needed. This raises the question of how our good but
admittedly limited networks could be extended to
encompass all phonemes or handle speech recognition in
general.  To shed light on this question of scaling, we
consider first the problem of extending our networks from

TDNN
phoneme
L —
b 5/2217 97.8
d o179 | a9 | 986
g 2252 | 99.2
p 6/15 60.0
t 6/440 T L
k 0/500 1000
m 14/481 97.1
n 16/265 940 Lty
N 12/488 97.5
s 6/538 98.9
sh 0/316 100.0 Sl
h 1/207 99.5
z /115 99.1 ]
ch 0/123 100.0 100
ts 0/177 1000 |  —
r 0/722 100.0
w 0/78 100.0 i
y 1/174 99.4 Iy
a 0/600 1000
i 11600 | 998
u 25/600 95.8 &
e 8/600 98.7
o 7/600 98.8 | R

Table 2-1: Recognition Results for 7 Phoneme CI355¢*

s the
the task of voiced stop consonant recognition (hen¢®
g all stop

BDG-task) to the task of distinguishing amon
consonants (the BDGPTK-task).

3.1. The Problem of Training Time sk cithe

For a network aimed at the discrimination 06000
voiced stops (a BDG-net), approximately ining
connections had 10 be trained over about .800 lmn60OO
tokens. An identical net (also with aPProxl.ma[-e)'] ation
connections to be traincd“) can achieve discrimin

S S S e E
pass

4 : tion
. "Note, that these are connections over which a back-propagd same
1s Qerfonned during each iteration. Since many of the .
weights, only a small fraction (about 500) of them are
parameters.

m share L
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Figure 6: Combination of a BDG-net and a PTK-net
using 4 additional units in hidden layer 1
as free "Connectionist Glue".

class distinctive features that were missing in our second
experiment. In a fourth experiment, we have now
examined an approach that allows for the network to be
free to discover any additional features that might be
useful to merge the two component networks. In stead of
previously training a class distinctive network, we now
add four units to hidden layer 1, whose connections to the
input are free to learn any missing discriminatory features
to supplement the 16 frozen BDG and PTK features. We
call these units the " connectionist glue" that we apply to
merge two distinct networks into a new combined net.
This network is shown in Fig.6. The hidden units of
hidden layer 1 from the BDG-net are shown on the_left
and those from the PTK-net on the right. The connections
from the moving input window to these units have been
trained individually on BDG- and PTK-data, respectively
and -as before- remain fixed during combination learning.
In the middle on hidden layer 1 we show the 4 free "Glue"
units. Combination learning now finds an optimal
combination of the existing BDG- and PTK-features and
also supplements these by learning additional interclass
discriminatory features. In doing so we have raised the
number of connections to be trained to 8,000, which is
only a small increase in number of connections (and
learning time) over the original component nets.
Performance evaluation of this network over the
BDGPTK test database yielded a recognition rate of

98.4%.

3.2.5. All-Net Tuning :
In addition to the techniques described so far, it may

be useful to free all connections in a large modularly
constructed network for an additional small amount of
fine tuning. This has been done for the BDGPTK-net

shown in Fig.6 yielding some additional perforr
improvements. The resulting network finally act
(over testing data) a recognition score of 98.6%.

3.3. Steps for the Design of Large Scale Neur
Nets

Method bdg ptk bdgp
Individual TDNNs 98.3 % 98.7 %
TDNN:Max. Activation 60.5
Retrain BDGPTK 98.3
Retrain Combined
Higher Layers 98.1
Retrain with V/UV-units 984"
Retrain with Glue 98.4
All-Net Fine Tuning 98.6

Table 3-1: From BDG to BDGPTK;
Modular Scaling Methods.

Table 3-1 summarizes the major results fro
experiments. In the first row it shows the recoj
performance of the two initial TDNNs |
individually to perform the BDG- and the PTK
respectively. Underneath, we show the results frc
Hidden Markov Model, as discussed in the pr
section. The third row shows that simply adding T
and selecting the unit with the largest output act
does not lead to acceptable performance (only
correct). We have observed before that this is in
negative consequence of inhibition in these net
While inhibition of incorrect output categories le
good, robust and confident performance, it
erroneous results when additional networks are
added without consideration of the interaction bx
them. We have then retrained a complete BDGP
which achieves good recognition performance (
correct), but found that it requires excessive amol
training time. As an alternative, we have then ex
three methods that exploit the hidden struct
previously learned subcomponent networks, e.f
BDG- and PTK-networks. With small additional v
at the higher layers these networks could be merg
achieve good recognition performance (98.1%).
additional hidden units from a class dist
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voiced/unvoiced TDNN were added, recognition results
improve to 98.4%. Similarly, through the application of
"connectionist glue", a 98.4% performance score is
achieved. Finally, when all the connections in the latter
network are freed to perform small additional adjustments
over a few additional training iterations, recognition
results improve further t0 98.6%.

The results indicate, that larger TDNNs can indeed
be trained incrementally, without requiring excessive
amounts of training and without loss in performance. In
fact, the resulting incrementally trained networks appear
to perform slightly better than the monolithically trained
BDGPTK-net. Moreover, they achieve performance as
high as the subcomponent BDG- and PTK-nets alone. As
a strategy for the efficient construction of larger networks
we have found the following concepts to be extremely
effective: modular,incremental learning, class
distinctive learning, connectionist glue, partial and
selective learning and all-net fine tuning.

4. Extensions to Harder and Larger Tasks

To verify the general usefulness of the techniques
described in the previous sections, we have now begun 1o
experiment with tasks other than the stop consonants.
What, for example, is the outcome when two
subcategories are not as clearly separable by a potentially
easily detectable and independent acoustic feature ag
might have been the case with the voicing distinction in
our stop consonant experiments ? To answer this
question, we have applied our techniques to the task of
merging a voiced stop network (BDG) and a nasal
network (M, N and syllabic nasals). It has been observed
elsewhere [Waibel 87, Waibel 89], that the voiced stops
"G" found in our Japanese database include numerous
nasalized phoneme tokens (NG) depending on their
position in the uttereance. During learning, our BDG-net
successfully developed a complex non-linear decision
surface to allow for both acoustic realizations as legal
pronounciations of the voiced stop "G". In doing so the
BDG-net has developed nasal features as cues to help
discriminte a "G" from other stop consonants. When we
attempt to combine a BDG-net with a nasal net, however
the nasal features of the BDG-net are then likely to
conflict with those of an all nasal net. The burden of
suitably merging these two nets therefore lies
predominantly on hidden units acting as connectionis
glue and their ability to fill in missing information and/or
resolve conflicting information.  This experiment has
actually been carried out and we report its results in table
4-1. The top row shows again the Iecognition rate
achieved by either network over testing data from the
corresponding subclasses (voiced stop, nasal). The
second row shows the recognition rate achieved by a
merged net that employed connectionist glue as described

1in the previous section. A recognition score of 96.7% was

achieved, which is again comparable to the perform
of the original subcomponent nets. e

Method bdg

Individual TDNNs 98.6 %

Retrain with Glue

Table 4-1: Merging a Nasal-and a BDG-net

B i
The results further support the idea that .pl;[ggfsdc
use previously discovered abstractions "(here- toge "
phonetic features) and allowing them to "&f ks effective
by means of connectionist glue provides a0
strategy for the modular incremental design i
neural systems. In speech, these notions At ural nets
extended to the design of large phonemic neeliminafy
aimed at the recognition of all consonans. pe achiev®
results indicate that superior performance can
for these systems as well [Waibel 88].

5. Conclusion :

We summarize the major technical res
work: from
We have reported further experimental resllgll\lss) for
the use of Time Delay Neural Networks ( s in 2 18°
recognition in all major phonemic categoﬂee excellent
vocabulary speech database and have measur ¢ the good
recognition performance. We believe, roperties g
performance results are due to the 'key B propet
TDNNs, including: shift invariance. roperis of
representation of the dynamic time-vary mgfp alternd*:
speech and the automatic discovery ©

ults from this

These
ch.
complementary internal features of S doCumﬁ‘“Bd

properties  have  been extensively
elsewhere [Waibel 87, Waibel 89]. - gmallef
The serious problems associated with SCahnghonem‘c

phonemic subcomponent networks 0 largC; pModuw{
tasks are overcome by careful modular de s i
design is achieved by several imporid
selective and incremental learning © jdden SITW
tasks, exploitation of previously learnéd '
the application of connectionist glue OF Cks o
features 10 allow for separate NetWOr large’
together, partial training of portions 0 amall a
finally, all-net fine twuning for making

adjustments in a large net. . arion Of &
vt Jicat!
Our findings suggest, that judicious ;plc)o leadajg
number of connectionist design [cch"r'iunce e 5O

the successful design of high perto Sa
connectionist speech recognition systems-
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