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Abstract

Translating noisy inputs, such as the output of a speech rec-
ognizer, is a difficult but important challenge for neural ma-
chine translation. One way to increase robustness of neu-
ral models is by introducing artificial noise to the training
data. In this paper, we experiment with appropriate forms
of such noise, exploring a middle ground between general-
purpose regularizers and highly task-specific forms of noise
induction. We show that with a simple generative noise
model, moderate gains can be achieved in translating erro-
neous speech transcripts, provided that type and amount of
noise are properly calibrated. The optimal amount of noise
at training time is much smaller than the amount of noise in
our test data, indicating limitations due to trainability issues.
We note that unlike our baseline model, models trained on
noisy data are able to generate outputs of proper length even
for noisy inputs, while gradually reducing output length for
higher amount of noise, as might also be expected from a hu-
man translator. We discuss these findings in details and give
suggestions for future work.

1. Introduction
Many natural language processing tasks require applying se-
quence models on corrupted or noisy input sequences. A
typical example is machine translation of erroneous outputs
from an automatic speech recognizer (ASR). Ideally, we
would like the translation process to ignore or even correct
the corrupted inputs. Translation models are usually trained
on wellformed parallel sentences that do not exhibit such
noise. This results in a harmful mismatch between training
and test data, and further aggravates the difficulty of hav-
ing to transform malformed inputs in the first place. The
now prevalent neural sequence-to-sequence models [1, 2, 3]
have been identified to be especially sensitive to noisy data
[4, 5, 6], and more specifically to corrupted inputs due to er-
roneous ASR [7].

Robustness at test-time may be improved by inducing
suitable forms of noise during the training process. The spec-
trum of suitable approaches ranges from general-purpose
regularizers1 such as dropout [9] to task-specific approaches

1In this paper, we use the notions of good generalization (avoiding over-
fitting, e.g. via regularization) and robustness (stability w.r.t. noisy data)

that alter the training data to resemble the corrupted inputs
at test-time. Task-specific approaches can make stronger
assumptions about the data distribution and are potentially
more effective or provide additive gains when combined with
general-purpose methods. As a disadvantage, they are also
more complex and may require task-specific knowledge or
resources. Another tradeoff to consider concerns trainabil-
ity. Neural sequence-to-sequence models are known to suf-
fer from explaining-away effects, where models may learn to
generate outputs by relying on the target-side context while
ignoring the source-side context [10, 11], especially when the
source side provides only a weak or noisy signal. As a result,
careful calibration of type and amount of induced noise may
be necessary.

Prior work on speech translation attempted inducing
task-specific noise by training on actual ASR outputs paired
with their correct translations. Unfortunately, such data is
scarce, and exploiting it may not be straightforward (see [12]
and §4.1; but [13]). Alternatively, it has been proposed to
synthesize realistic ASR error patterns and suitable trans-
lations thereof, and augment the training data accordingly
[14, 15]. However, this approach has not yet been shown to
transfer to neural machine translation, and is relatively com-
plex, requiring availability of resources such as pronuncia-
tion dictionaries and suitable language models.

In this paper, we seek to improve robustness of a neural
machine translation model applied to speech recognition in-
put by exploring tradeoffs between general-purpose and task-
specific methods. For this purpose, we introduce a simple
noise model that is inspired by the word error rate (WER),
which categorizes the common ASR error types into sub-
stitutions, insertions, and deletions. Accordingly, our noise
model artificially corrupts the source side of a parallel train-
ing corpus by randomly introducing substitutions, insertions,
or deletions. Our noise model is simpler than the prior ap-
proaches [14, 15], but nonetheless effective, and provides a
flexible test bed that allows exploring the middle ground be-
tween task specificity and generality in the context of neu-
ral sequence-to-sequence models. In addition, we discuss
preliminary efforts toward refining the noise model to cap-
ture more task-specific intuitions similar to these prior ap-

loosely interchangeably. In fact, both are strongly linked in the sense that in
general, good generalization implies robustness [8].



proaches.

We conduct experiments on the Fisher and Callhome
Spanish–English speech translation corpus [12] and observe
minor improvements in robustness when applying our noise
model. We find that increasing the amount of noise during
training up to a certain point helps translation of noisy inputs
but hurts translation of clean inputs. Strikingly, the optimal
amount of noise is much smaller than the amount of noise
in our test data, indicating trainability issues. Increasing the
amount of noise further leads to a drop in recall but slight
increase in precision, leading to the question of to what ex-
tent it is desirable from a usability perspective to drop uncer-
tain source-side content as opposed to guessing a translation
for it. We conclude with discussing shortcomings of our ap-
proach and give suggestions for future work.

2. Related Work

Inducing noise in the training inputs can be seen as a form of
data augmentation, which has been used in several applica-
tions such as acoustic modeling [16], computer vision [17],
language modeling [18], and statistical machine translation
where data can be augmented by paraphrases [19]. It has
been described as more powerful than general-purpose reg-
ularization in the context of deep learning [17]. Note that
these approaches aim at inducing label-preserving noise, in
contrast to our noise model which may alter or destroy the
meaning of an input despite keeping targets unchanged. Data
augmentation has also been used specifically to improve ro-
bustness to noisy inputs as in our work, such as research on
speech recognition under noisy conditions [20] and translat-
ing spelling mistakes [5, 6]. The latter work demonstrates the
importance of using natural (as opposed to synthetic) noise
to make models robust to realistic noisy test-time conditions.

Several works have identified noisy or mismatched text
inputs as a challenge for neural models: [21] mention domain
mismatch as a challenge for neural machine translation, [4]
show that NMT suffers from noisy training data, [22] show
that recurrent neural networks can be sensitive to corrupted
input sequences.

Our approach is methodologically inspired by reward-
augmented maximum likelihood (RAML) [23]. We use a
similar sampling procedure on the source side, instead of
the target side as in RAML. However, RAML is very dif-
ferently motivated, aiming at fixing exposure bias whereas
we are concerned with noise from upstream components. In
addition, sampling according to [23]’s approach is biased to-
ward producing less deletions than substitutions and inser-
tions, which our noise model purposefully avoids.

Finally, prior work has dealt with uncertain inputs from
upstream components through explicit representation of the
uncertainty, for example by directly translating word lattices
produced by the speech recognizer [24, 25, 26, 27].

3. Noise Model
This section introduces a noise model that will be applied to
every input sentence of the training data. The general idea
follows the intuitions behind the WER, according to which
ASR errors can be categorized into substitutions, insertions,
and deletions. Design goals are flexibility to capture various
levels of refinement, and convenient control of the amount
of noise and other properties. We first describe the vanilla
model, and then present several refinements.

3.1. Vanilla Noise Model

The vanilla noise model, outlined in Algorithm 1, can be
summarized as follows. For each sentence, we first decide on
the number of edits, while considering the desired amount of
overall noise. The edits are then randomly divided into sub-
stitutions, insertions and deletions. Finally, for each edit a
position is randomly chosen along with a new word for sub-
stitutions and deletions.

More formally, let hyperparameter τ∈[0, 1] denote
the amount of noise to be induced, let V be a sam-
pling vocabulary, and assume a sentence of length n as
〈w0=sos, w1, · · · , wn, wn+1=eos〉. We first draw the num-
ber of edits e (line 1). The Poisson distribution is a suitable
choice because it is defined over non-negative integers and
has probability mass centered around its mean. For simplic-
ity, we allow a maximum of n edits for a sentence of length
n. Thus, we sample according to a n-truncated Poisson dis-
tribution [28], defined as Pλ(k) ∝ exp(−λ)λ

k

k! with support
k ∈ {0, · · · , n}, where we set λ := τ · n. The mean of
this distribution is approximately λ. Because of the finite
support, this distribution reduces to a categorical distribution
and is thus trivial to sample from.

Next, we draw the number of substitutions ns, num-
ber of insertions ni, and number of deletions nd such that
ns+ni+nd = e and ns, ni, nd ∈ N0 (line 2). This defines
a space over 〈ns, ni, nd〉, known as the discrete 3-simplex
[29]. We sample from a uniform distribution over this space
(§3.1.1).

We then draw without replacement a position for each
substitution, insertion, and deletion (lines 3, 4, 5). Finally,
we corrupt the original sentence accordingly (lines 6 through
16), sampling new words for substitutions and insertions uni-
formly from the sampling vocabulary (lines 7 and 14).

3.1.1. Sampling from the Discrete Simplex

In order to determine the number of edit operations
n1, · · · , nd for each operation type (here: ns, ni, nd, cor-
responding to substitutions, insertions, and deletions), we
uniformly sample 〈n1, · · · , nd〉 ∼ DiscrSimplex (d, e) such
that

∑d
i=1 nd = e and ni ∈ N0. This can be accomplished

by slightly adjusting the sampling approach for the continu-
ous simplex [30] to the discrete simplex as follows. Sample
auxiliary random variables x1, · · · , xd−1 uniformly without
replacement from {1, 2, · · · , e+d−1}. Let x0=0, xd=e+d.



Algorithm 1 Vanilla Noise Model.
– given magnitude of noise: τ ∈ [0, 1]
– given sentence 〈w0=sos, w1, · · · , wn, wn+1=eos〉
– given vocabulary V

1: sample distance e ∼ TruncPoisson (τ · n, n)
2: sample 〈ns, ni, nd〉 ∼ DiscrSimplex (3, e)
3: sample substitution positions s1, · · · , sns uniformly

without replacement from {1, · · · , n}
4: sample insertion positions i1, · · · , ini uniformly without

replacement from {0, · · · , n}
5: sample deletion positions d1, · · · , dnd uniformly without

replacement from {1, · · · , n} \ {s1, · · · , sns
}

6: for i← 1 · · ·ns do
7: uniformly sample w̃ ∼ V
8: replace wi ← w̃ . substitution
9: end for

10: for i← 1 · · ·nd do
11: replace wi ← ε . deletion
12: end for
13: for i← ni · · · 1 do
14: uniformly sample w̃ ∼ V
15: insert w̃ between wi and wi+1 . insertion
16: end for

Finally, let ni = xi−xi−1−1,∀i∈{1, 2, . . . , d}. Proof of
correctness directly follows argumentation in [30].

3.2. Refinements

The following discusses several simple steps, all aiming at
making the sampled noise more similar to the ASR outputs.
For more elaborate refinements, we refer to prior work [14,
15].

3.2.1. Sampling Vocabulary: Linguistic Conditioning

The vanilla model draws substitutions and insertions uni-
formly from the vocabulary (lines 7 and 14), causing a large
portion of induced noise to be drawn from the long tail of
rarely occurring words. As a more linguistically informed
strategy, we can draw from a unigram instead of a uniform
distribution over the vocabular, replacing lines 7 and 14 ac-
cordingly.

3.2.2. Sampling Vocabulary: Acoustic Conditioning

Preferably, substitutions would be chosen based on acous-
tic similarity to the original input. Here, we use nega-
tive character edit distance as an approximation for acoustic
similarity, and sample according to exponentiated distances
p(w̃|w) ∝ exp(−dist(w, w̃)), replacing lines 7 and 14.

3.2.3. Sampling Positions

ASR tends to err more often for certain types of words than
others. For example, shorter tend to be confused more often

because these words can suffer from linguistic and acous-
tic ambiguity. We can model this by substituting or deleting
short words more often, again working with an exponentiated
distribution p(pos = j) ∝ exp(−|wj |) (lines 3 and 5).

3.2.4. Proportion of Error Types

ASR usually produces more substitutions than insertions and
deletions. We may wish to reflect this in our noise distri-
bution, for example by drawing edit operations from a 7-
simplex and assigning 1 bucket to insertions, 1 bucket to
deletions, and 5 buckets to substitutions2 (lines 1 and 2).

4. Experiments
We conduct experiments on the Fisher and Callhome
Spanish–English speech translation corpus [12], a corpus
of Spanish telephone conversations that includes ASR tran-
scripts. The Fisher portion consists of telephone conversa-
tions between strangers, while the Callhome portion contains
telephone conversations between relatives or friends. The
training data size of Fisher/Train is 138,819 sentences, we do
not make use of the much smaller Callhome/Train part of the
corpus. We use Fisher/Dev as held-out testing data for most
of our experiments, which has a WER of 41.3%. The rela-
tively high WER is due to the spontaneous speaking style and
challenging acoustics. It should also be noted that the ASR
model used by [12] is slightly outdated by now and better
WER are achieved with recent advancements [31, 32]. Here,
our main concern is handling of noisy inputs, not achieving
the most competitive end-to-end BLEU scores.

For preprocessing, we tokenized and lowercased source
and target sides. We removed punctuation from the refer-
ence transcripts on the source side for consistency with the
automatic transcripts which also do not contain punctuation.
Although punctuation is removed, we use the manual seg-
mentation as given in the corpus, and leave dealing with
noisy segmentation boundaries to future work. Our source-
side vocabulary contains all words from the automatic tran-
scripts for Fisher/Train, replacing singletons by an unknown
word token, totaling 14,648 words. Similarly, on the tar-
get side we used all words from the reference translations
of Fisher/Train, replacing singletons by the unknown word,
yielding 10,800 words in total.

Our implementation uses the eXtensible Neural Machine
Translation (XNMT) toolkit,3 which is based on DyNet [33].
We use a standard attentional encoder-decoder architecture
with one encoder and decoder layer. The encoder is a bidirec-
tional LSTM with 256 hidden units per direction, the decoder
is an LSTM with 512 hidden units. We used 128-dimensional
word embeddings. We use variational dropout [34] in en-
coder and decoder LSTMs (p=0.5). To obtain a more noise-

2This particular choice of distribution is motivated by our experimental
data containing about 5 times as many substitutions as insertions or dele-
tions.

3github.com/neulab/xnmt
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Figure 1: BLEU scores (4 references) on Fisher/Dev, using
ASR transcripts as inputs, varying the amount of induced
noise.

robust baseline, we also apply word type dropout [34] to the
source word embeddings (p=0.1).

Training was performed with Adam [35]. For all experi-
ments, we first pretrained a model using reference transcripts
only, starting from an initial learning rate of 0.0003, restart-
ing Adam and halving learning rates when perplexities did
not improve for 2 consecutive epochs [36]. We then fine-
tuned the model weights by training on noisy data accord-
ing to the proposed noise model. Fine-tuning used an initial
learning rate of 0.00001 and the same learning rate decay and
restarting strategy as during pre-training. The pretraining-
finetuning scheme was used in part to make experimental
effort manageable, and in part because we observed better
BLEU scores in preliminary experiments.

4.1. Main Results

Figure 1 compares our baseline model against several mod-
els trained using our noise model. VANILLA NOISE in-
duces varying amounts of noise using the basic model and
yields substantial improvements over the BASELINE, which
is trained only on clean data. UNIGRAM NOISE replaces the
uniform sampling distribution with a unigram distribution
and yields similar gains. Perhaps surprisingly, DELETION-
ONLY NOISE, a simplified model that induces only deletions,
produces strong results as well. We present a possible expla-
nation later. Note that improvements are achieved only for
small to moderate amounts of noise. For τ = 0.4, which
is close to the WER of the test data, results are rather poor.
This indicates that we are facing a trade-off between better
trainability for small values for τ , and better distributional
similarity with the test data for higher values for τ . We also
trained a model by fine-tuning on actual 1-best transcripts
rather than using the proposed noise model. Results are
rather poor at 32.55 BLEU points, which may be explained
by the amount of noise being so high that trainability is com-
promised, and possibly by some proneness to overfitting be-
cause the same noise is used in every epoch.

Figure 2 shows performance of the same models when
using clean reference transcripts as inputs. Translation of
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Figure 2: BLEU scores (4 references) on Fisher/Dev, using
clean reference transcripts as inputs, varying the amount of
induced noise.
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Figure 3: ngram precision (BLEU without brevity penalty)
on Fisher/Dev, using ASR transcripts as inputs, varying the
amount of induced noise.

clean inputs is improved for one configuration of inducing
noise, in which case the induced noise can be understood to
act as a general-purpose regularizer.4 However, note that per-
formance drops quickly when increasing the noise parameter
τ , again highlighting both the importance of distributional
similarity between training and test data, and potential train-
ability issues.

Figure 3 evaluates models in terms of n-gram precision,
which we compute identically to the BLEU score but drop
the brevity penalty. Comparing results to Figure 1, we can
clearly observe some interactions that lead to trading off pre-
cision for recall. Most notably, DELETION-ONLY NOISE per-
forms substantially worse than VANILLA NOISE and UNI-
GRAM NOISE when measuring only precision. Closer anal-
ysis showed that models generally tend to produce shorter
outputs the more noise is contained in the inputs. The BLEU
metric’s brevity penalty is known to punish such short out-
puts quite severely. DELETION-ONLY NOISE, on the other
hand, is trained on inputs where words are deleted. In other
words the training-time inputs are shorter than the test-time
inputs, counteracting the tendency to produce shorter outputs
and thereby avoiding a severe brevity penalty. While this
helps BLEU score, arguably producing shorter outputs for

4This explanation is supported by prior work relating data noising to
traditional smoothing methods [18].
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Figure 4: Length ratio of translations when binning test in-
puts according to their WER.

noisier inputs is a desirable behavior that we would expect
also from a human translator, and BLEU may thus not be
sufficient as ground for model selection in our task.

4.2. Impact of ASR Quality

For this experiment, we combined all available test data
(Fisher/Dev, Fisher/Dev2, Fisher/Test, Callhome/Devtest,
Callhome/Evltest), and divided it into bins according to ASR
WER. Figure 4 shows the length ratio of translations pro-
duced for these inputs for two different models. It can be seen
that both BASELINE and UNIGRAM NOISE produce length ra-
tios close to 1.0 for clean inputs. However, when inputs con-
tain even moderate amounts of noise, uncertainty in BASE-
LINE seems to become problematic and outputs quickly be-
come rather short. UNIGRAM NOISE on the other hand ap-
pears to handle noisier inputs much more gracefully, while
also exhibiting a tendency for shorter outputs when inputs
are noisy.

While this demonstrates greater robustness of the noise-
induced model, it also raises the question as to what extent
shorter outputs for noisy inputs are desirable. Arguably, a
human translator may exhibit the same tendency, but further
research is required to answer the question of what behav-
ior is desired by a user: dropping uncertain inputs and thus
erring on the side of better precision, or trying to guess trans-
lations for those inputs anyways and erring on the side of
better recall.5

4.3. Negative Results for Model Refinements

Our analysis so far only considered the unigram-sampling re-
finement of the vanilla noise model. We also tested acoustic

5Consider a typical example we found in an English ASR transcript,
Boesch as ever his son decides to have a feast. While the first 3 or 4 words
are clearly recognition mistakes (caused by a rare name in the audio), the
rest makes sense and a human might choose to only translate the latter part.
Another example is buildings and boundaries around the location very part,
where the last 2 words are easily recognizable as mistakes and could be
dropped before translating. However, an experienced translator might guess
correctly that very part should be replaced by where to park. We suggest
investigation of desirable translation strategies from a usability perspective
for future work.

conditioning (§3.2.2), better sampling positions (§3.2.3), and
more realistic proportion of error types (§3.2.4), but did not
observe noticeable improvements and do not present details
here. Future work may attempt using even more realistic er-
ror patterns along the lines of prior work [14, 15]. How-
ever, a possible difficulty when trying this may be that, un-
like phrase-based machine translation, neural machine trans-
lation has been known to be ineffective at learning from rare
training examples [11]. Permutations of error patterns po-
tentially consist of mainly such hard-to-learn rarely occur-
ring patterns. Counteracting this by increasing the amount
of noise may lead to trainability issues as observed in our
experiments as well. Instead, it may be necessary to repre-
sent knowledge about confusability more explicitly and effi-
ciently in the model.

5. Conclusion
We identified robustness to noisy inputs as a challenge for
neural sequence-to-sequence models, and proposed to intro-
duce randomized noise into the training using a simple gen-
erative noise model. We found that this improves robustness
when properly calibrating type and amount of noise, and that
type and amount of noise at training and test time affect the
length of the outputs. We highlighted the trade-off between
trainability and distributional data similarity, and found that
the amount of induced noise must be much smaller than the
expected noise at test time for good results. Future work may
investigate appropriate trade-offs between precision and re-
call when translating noisy inputs from a user perspective,
use our method for different tasks such as translating user-
generated content, and experiment with more refined types
of noise or other ways of modeling acoustic similarity in the
context of neural machine translation of ASR outputs.
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