
Letter N-Gram-based Input Encoding for Continuous Space Language
Models

Henning Sperr†, Jan Niehues? and Alexander Waibel?
Institute of Anthropomatics

KIT - Karlsruhe Institute of Technology
Karlsruhe, Germany

? firstname.lastname@kit.edu
† henning.sperr@student.kit.edu

Abstract

We present a letter-based encoding for
words in continuous space language mod-
els. We represent the words completely by
letter n-grams instead of using the word
index. This way, similar words will au-
tomatically have a similar representation.
With this we hope to better generalize
to unknown or rare words and to also
capture morphological information. We
show their influence in the task of machine
translation using continuous space lan-
guage models based on restricted Boltz-
mann machines. We evaluate the trans-
lation quality as well as the training time
on a German-to-English translation task of
TED and university lectures as well as on
the news translation task translating from
English-to-German. Using our new ap-
proach a gain in BLEU score by up to 0.4
points can be achieved.

1 Introduction

Language models play an important role in natural
language processing. The most commonly used
approach is n-gram-based language models (Chen
and Goodman, 1999).

In recent years Continuous Space Language
Models (CSLMs) have gained a lot of atten-
tion. Compared to standard n-gram-based lan-
guage models they promise better generalization
to unknown histories or n-grams with only few
occurrences. Since the words are projected into
a continuous space, true interpolation can be per-
formed when an unseen sample appears. The stan-
dard input layer for CSLMs is a so called 1-of-
n coding where a word is represented as a vector
with a single neuron turned on and the rest turned
off. In the standard approach it is problematic to
infer probabilities for words that are not inside the

vocabulary. Sometimes an extra unknown neu-
ron is used in the input layer to represent these
words (Niehues and Waibel, 2012). Since all un-
seen words get mapped to the same neuron, no real
discrimination between those words can be done.
Furthermore, rare words are also hard to model,
since there is too few training data available to es-
timate their associated parameters.

We try to overcome these shortcomings by
using subword features to cluster similar words
closer together and generalize better over unseen
words. We hope that words containing similar let-
ter n-grams will yield a good indicator for words
that have the same function inside the sentence.
Introducing a method for subword units also has
the advantage that the input layer can be smaller,
while still representing nearly the same vocabulary
with unique feature vectors. By using a smaller in-
put layer, less weights need to be trained and the
training is faster. In this work we present the letter
n-gram approach to represent words in an CSLM,
and compare it to the word-based CSLM presented
in Niehues and Waibel (2012).

The rest of this paper is structured as follows:
First we will give an overview of related work.
After that we give a brief overview of restricted
Boltzmann machines which are the basis of the
letter-based CSLM presented in Section 4. Then
we will present the results of the experiments and
conclude our work.

2 Related Work

First research on neural networks to predict word
categories has been done in Nakamura et al.
(1990) where neural networks were used to pre-
dict word categories. Xu and Rudnicky (2000)
proposed a language model that has an input con-
sisting of one word and no hidden units. This
network was limited to infer unigram and bigram
statistics. There has been research on feed for-
ward neural network language models where they



achieved a decrease in perplexity compared to
standard n-gram language models (Bengio et al.,
2003). In Schwenk and Gauvain (2005) and later
in Schwenk (2007) research was performed on
training large scale neural network language mod-
els on millions of words resulting in a decrease of
the word error rate for continuous speech recog-
nition. In Schwenk et al. (2006) they use the
CSLM framework to rescore n-best lists of a ma-
chine translation system during tuning and testing
steps. Usually these networks use short lists to
reduce the size of the output layer and to make
calculation feasible. There have been approaches
to optimize the output layer of such a network,
so that vocabularies of arbitrary size can be used
and there is no need to back off to a smaller n-
gram model (Le et al., 2011). In this Structured
Output Layer (SOUL) neural network language
model a hierarchical output layer was chosen. Re-
current Neural Networks have also been used to
try and improve language model perplexities in
Mikolov et al. (2010), concluding that Recurrent
Neural Networks potentially improve over classi-
cal n-gram language models with increasing data
and a big enough hidden unit size of the model.
In the work of Mnih and Hinton (2007) and Mnih
(2010) training factored restricted Boltzmann ma-
chines yielded no gain compared to Kneser-Ney
smoothed n-gram models. But it has been shown
in Niehues and Waibel (2012), that using a re-
stricted Boltzmann machine with a different layout
during decoding can yield an increase in BLEU
score. There has also been a lot of research in
the field of using subword units for language mod-
eling. In Shaik et al. (2011) linguistically moti-
vated sub-lexical units were proposed to improve
open vocabulary speech recognition for German.
Research on morphology-based and subword lan-
guage models on a Turkish speech recognition task
has been done by Sak et al. (2010). The idea
of Factored Language models in machine transla-
tion has been introduced by Kirchhoff and Yang
(2005). Similar approaches to develop joint lan-
guage models for morphologically rich languages
in machine translation have been presented by
Sarikaya and Deng (2007). In Emami et al. (2008)
a factored neural network language model for Ara-
bic was built. They used different features such as
segmentation, part-of-speech and diacritics to en-
rich the information for each word.

3 Restricted Boltzmann Machine-based
Language Model

In this section we will briefly review the con-
tinuous space language models using restricted
Boltzmann machines (RBM). We will focus on
the parts that are important for the implementa-
tion of the input layers described in the next sec-
tion. A restricted Boltzmann machine is a gener-
ative stochastic neural network which consists of
a visible and a hidden layer of neurons that have
unidirectional connections between the layers but
no inner layer connections as shown in Figure 1.

Visible

Hidden

Figure 1: Restricted Boltzmann Machine.

The activation of the visible neurons will be de-
termined by the input data. The standard input
layer for neural network language models uses a
1-of-n coding to insert a word from the vocabulary
into the network. This is a vector, where only the
index of the word in the vocabulary is set to one
and the rest to zero. Sometimes this is also referred
to as a softmax layer of binary units. The activa-
tion of the hidden units is usually binary and will
be inferred from the visible units by using sam-
pling techniques. In Niehues and Waibel (2012)
an n-gram Boltzmann machine language model is
proposed using such a softmax layer for each con-
text. In this work, we want to explore different
ways of encoding the word observations in the in-
put layer. Figure 2 is an example of the original
model with three hidden units, two contexts and
a vocabulary of two words. In this example the
bigram my house is modeled.

To calculate the probability of a visible config-
uration v we will use the definition of the free en-
ergy in a restricted Boltzmann machine with bi-
nary stochastic hidden units, which is

F (v) = −
∑
i

viai −
∑
j

log(1 + exj ) (1)

where ai is the bias of the ith visible neuron vi and



Visible

<s> </s> my house <s> </s> my house

Hidden

Figure 2: RBMLM with three hidden units and a
vocabulary size of two words and two word con-
texts, where activated units are marked as black.

xj is the activation of the jth hidden neuron. The
activation xj is defined as

xj = bj +
∑
i

viwij (2)

where bj is the bias of the jth hidden neuron and
wij is the weight between visible unit vi and hid-
den unit xj . Using these definitions, the probabil-
ity of our visible configuration v is

p(v) =
1

Z
e−F (v) (3)

with the partition function Z =
∑

v e
−F (v) being

the normalization constant. Usually this normal-
ization constant is not easy to compute since it is
a sum over an exponential amount of values. We
know that the free energy will be proportional to
the true probability of our visible vector, this is
the reason for using the free energy as a feature
in our log-linear model instead of the true prob-
ability. In order to use it as a feature inside the
decoder we actually need to be able to compute
the probability for a whole sentence. As shown in
Niehues and Waibel (2012) we can do this by sum-
ming over the free energy of all n-grams contained
in the sentence.

3.1 Training

For training the restricted Boltzmann machine lan-
guage model (RBMLM) we used the Contrastive
Divergence (CD) algorithm as proposed in Hinton
(2010). In order to do this, we need to calculate the
derivation of the probability of the example given
the weights

δ log p(v)

δwij
= <vihj>data −<vihj>model (4)

where <vihj>model is the expected value of vihj
given the distribution of the model. In other
words we calculate the expectation of how often
vi and hj are activated together, given the dis-
tribution of the data, minus the expectation of
them being activated together given the distribu-
tion of the model, which will be calculated us-
ing Gibbs-Sampling techniques. Usually many
steps of Gibbs-Sampling are necessary to get an
unbiased sample from the distribution, but in the
Contrastive Divergence algorithm only one step of
sampling is performed (Hinton, 2002).

4 Letter-based Word Encoding

In this section we will describe the proposed in-
put layers for the RBMLM. Compared to the word
index-based representation explained above, we
try to improve the capability to handle unknown
words and morphology by splitting the word into
subunits.

4.1 Motivation

In the example mentioned above, the word index
model might be able to predict my house but it
will fail on my houses if the word houses is not in
the training vocabulary. In this case, a neuron that
classifies all unknown tokens or some other tech-
niques to handle such a case have to be utilized.

In contrast, a human will look at the single let-
ters and see that these words are quite similar. He
will most probably recognize that the appended s
is used to mark the plural form, but both words re-
fer to the same thing. So he will be able to infer
the meaning although he has never seen it before.

Another example in English are be the words
happy and unhappy. A human speaker who does
not know the word unhappy will be able to know
from the context what unhappy means and he can
guess that both of the words are adjectives, that
have to do with happiness, and that they can be
used in the same way.

In other languages with a richer morphology,
like German, this problem is even more important.
The German word schön (engl. beautiful) can have
16 different word forms, depending on case, num-
ber and gender.

Humans are able to share information about
words that are different only in some morphemes
like house and houses. With our letter-based input
encoding we want to generalize over the common
word index model to capture morphological infor-



mation about the words to make better predictions
for unknown words.

4.2 Features

In order to model the aforementioned morpholog-
ical word forms, we need to create features for
every word that represent which letters are used
in the word. If we look at the example of house,
we need to model that the first letter is an h, the
second is an o and so on.

If we want to encode a word this way, we have
the problem that we do not have a fixed size of
features, but the feature size depends on the length
of the word. This is not possible in the framework
of continuous space language models. Therefore,
a different way to represent the word is needed.

An approach for having a fixed size of features
is to just model which letters occur in the word.
In this case, every input word is represented by a
vector of dimension n, where n is the size of the
alphabet in the text. Every symbol, that is used
in the word is set to one and all the other features
are zero. By using a sparse representation, which
shows only the features that are activated, the word
house would be represented by

w1 = e h o s u

The main problem of this representation is that
we lose all information about the order of the let-
ters. It is no longer possible to see how the word
ends and how the word starts. Furthermore, many
words will be represented by the same feature vec-
tor. For example, in our case the words house and
houses would be identical. In the case of houses
and house this might not be bad, but the words
shortest and others or follow and wolf will also
map to the same input vector. These words have
no real connection as they are different in mean-
ing and part of speech.

Therefore, we need to improve this approach
to find a better model for input words. N-grams
of words or letters have been successfully used to
model sequences of words or letters in language
models. We extend our approach to model not
only the letters that occur in the in the word, but
the letter n-grams that occur in the word. This
will of course increase the dimension of the fea-
ture space, but then we are able to model the order
of the letters. In the example of my house the fea-

ture vector will look like

w1 = my <w>m y</w>

w2 = ho ou se us <w>h e</w>

We added markers for the beginning and end of
the word because this additional information is im-
portant to distinguish words. Using the example
of the word houses, modeling directly that the last
letter is an s could serve as an indication of a plural
form.

If we use higher order n-grams, this will in-
crease the information about the order of the let-
ters. But these letter n-grams will also occur more
rarely and therefore, the weights of these features
in the RBM can no longer be estimated as reliably.
To overcome this, we did not only use the n-grams
of order n, but all n-grams of order n and smaller.
In the last example, we will not only use the bi-
grams, but also the unigrams.

This means my house is actually represented as

w1 = m y my <w>m y</w>

w2 = e h o s u ho ou se us <w>h e</w>

With this we hope to capture many morpholog-
ical variants of the word house. Now the represen-
tations of the words house and houses differ only
in the ending and in an additional bigram.

houses = ... es s</w>

house = ... se e</w>

The beginning letters of the two words will con-
tribute to the same free energy only leaving the
ending letter n-grams to contribute to the different
usages of houses and house.

The actual layout of the model can be seen in
Figure 3. For the sake of clarity we left out the
unigram letters. In this representation we now do
not use a softmax input layer, but a logistic input
layer defined as

p(vi = on) =
1

1 + e−xi
(5)

where vi is the ith visible neuron and xi is the in-
put from the hidden units for the ith neuron de-
fined as

xi = ai +
∑
j

hjwij (6)

with ai being the bias of the visible neuron vi and
wij being the weight between the hidden unit hj
and vi.



Visible

Hidden

<w>m my <w>h usse<w>m my y</w> se<w>h

…

us y</w>

…

Figure 3: A bigram letter index RBMLM with
three hidden units and two word contexts, where
activated units are marked as black.

4.3 Additional Information
The letter index approach can be extended by
several features to include additional information
about the words. This could for example be part-
of-speech tags or other morphological informa-
tion. In this work we tried to include a neuron
to capture capital letter information. To do this we
included a neuron that will be turned on if the first
letter was capitalized and another neuron that will
be turned on if the word was written in all capital
letters. The word itself will be lowercased after we
extracted this information.

Using the example of European Union, the new
input vector will look like this

w1 =a e n o p r u an ea eu op pe ro ur

<w>e n</w><CAPS>

w2 =u i n o un io ni on

<w>u n</w><CAPS>

This will lead to a smaller letter n-gram vocab-
ulary since all the letter n-grams get lowercased.
This also means there is more data for each of the
letter n-gram neurons that were treated differently
before. We also introduced an all caps feature
which is turned on if the whole word was written
in capital letters. We hope that this can help detect
abbreviations which are usually written in all cap-
ital letters. For example EU will be represented
as

w1 = e u eu <w>e u</w><ALLCAPS>

5 Evaluation

We evaluated the RBM-based language model
on different statistical machine translation (SMT)
tasks. We will first analyze the letter-based word

representation. Then we will give a brief descrip-
tion of our SMT system. Afterwards, we de-
scribe in detail our experiments on the German-
to-English translation task. We will end with addi-
tional experiments on the task of translating Eng-
lish news documents into German.

5.1 Word Representation

In first experiments we analyzed whether the
letter-based representation is able to distinguish
between different words. In a vocabulary of
27,748 words, we compared for different letter n-
gram sizes how many words are mapped to the
same input feature vector.

Table 1 shows the different models, their input
dimensions and the total number of unique clus-
ters as well as the amount of input vectors con-
taining one, two, three or four or more words that
get mapped to this input vector. In the word index
representation every word has its own feature vec-
tor. In this case the dimension of the input vector
is 27,748 and each word has its own unique input
vector.

If we use only letters, as done in the unigram
model, only 62% of the words have a unique repre-
sentation. Furthermore, there are 606 feature vec-
tors representing 4 or more words. This type of
encoding of the words is not sufficient for the task.

When using a bigram letter context nearly each
of the 27,748 words has a unique input represen-
tation, although the input dimension is only 7%
compared to the word index. With the three let-
ter vocabulary context and higher there is no input
vector that represents more than three words from
the vocabulary. This is good since we want similar
words to be close together but not have exactly the
same input vector. The words that are still clus-
tered to the same input are mostly numbers or typ-
ing mistakes like “YouTube” and “Youtube”.

5.2 Translation System Description

The translation system for the German-to-English
task was trained on the European Parliament cor-
pus, News Commentary corpus, the BTEC cor-
pus and TED talks1. The data was preprocessed
and compound splitting was applied for German.
Afterwards the discriminative word alignment ap-
proach as described in Niehues and Vogel (2008)
was applied to generate the alignments between
source and target words. The phrase table was

1http://www.ted.com



#Vectors mapping to
Model Caps VocSize TotalVectors 1 Word 2 Words 3 Words 4+ Words
WordIndex - 27,748 27,748 27,748 0 0 0
Letter 1-gram No 107 21,216 17,319 2,559 732 606
Letter 2-gram No 1,879 27,671 27,620 33 10 8
Letter 3-gram No 12,139 27,720 27,701 10 9 0
Letter 3-gram Yes 8,675 27,710 27,681 20 9 0
Letter 4-gram No 43,903 27,737 27,727 9 1 0
Letter 4-gram Yes 25,942 27,728 27,709 18 1 0

Table 1: Comparison of the vocabulary size and the possibility to have a unique representation of each
word in the training corpus.

built using the scripts from the Moses package de-
scribed in Koehn et al. (2007). A 4-gram language
model was trained on the target side of the parallel
data using the SRILM toolkit from Stolcke (2002).
In addition, we used a bilingual language model as
described in Niehues et al. (2011). Reordering was
performed as a preprocessing step using part-of-
speech (POS) information generated by the Tree-
Tagger (Schmid, 1994). We used the reorder-
ing approach described in Rottmann and Vogel
(2007) and the extensions presented in Niehues et
al. (2009) to cover long-range reorderings, which
are typical when translating between German and
English. An in-house phrase-based decoder was
used to generate the translation hypotheses and
the optimization was performed using the MERT
implementation as presented in Venugopal et al.
(2005). All our evaluation scores are measured us-
ing the BLEU metric.

We trained the RBMLM models on 50K sen-
tences from TED talks and optimized the weights
of the log-linear model on a separate set of TED
talks. For all experiments the RBMLMs have been
trained with a context of four words. The devel-
opment set consists of 1.7K segments containing
16K words. We used two different test sets to
evaluate our models. The first test set contains
TED talks with 3.5K segments containing 31K
words. The second task was from an in-house
computer science lecture corpus containing 2.1K
segments and 47K words. For both tasks we used
the weights optimized on TED.

For the task of translating English news texts
into German we used a system developed for the
Workshop on Machine Translation (WMT) eval-
uation. The continuous space language models
were trained on a random subsample of 100K sen-
tences from the monolingual training data used for

this task. The out-of-vocabulary rates for the TED
task are 1.06% while the computer science lec-
tures have 2.73% and nearly 1% on WMT.

5.3 German-to-English TED Task
The results for the translation of German TED lec-
tures into English are shown in Table 2. The base-
line system uses a 4-gram Kneser-Ney smoothed
language model trained on the target side parallel
data. We then added a RBMLM, which was only
trained on the English side of the TED corpus.

If the word index RBMLM trained for one iter-
ation using 32 hidden units is added, an improve-
ment of about 1 BLEU can be achieved. The let-
ter bigram model performs about 0.4 BLEU points
better than no additional model, but significantly
worse then the word index model or the other let-
ter n-gram models. The letter 3- to 5-gram-based
models obtain similar BLEU scores, varying only
by 0.1 BLEU point. They also achieve a 0.8 to
0.9 BLEU points improvement against the base-
line system and a 0.2 to 0.1 BLEU points decrease
than the word index-based encoding.

System Dev Test
Baseline 26.31 23.02
+WordIndex 27.27 24.04
+Letter 2-gram 26.67 23.44
+Letter 3-gram 26.80 23.84
+Letter 4-gram 26.79 23.93
+Letter 5-gram 26.64 23.82

Table 2: Results for German-to-English TED
translation task

Using the word index model with the first base-
line system increases the BLEU score nearly as
much as adding a n-gram-based language model
trained on the TED corpus as done in the base-



line of the systems presented in Table 3. In these
experiments all letter-based models outperformed
the baseline system. The bigram-based language
model performs worst and the 3- and 4-gram-
based models perform only slightly worse than the
word index-based model.

System Dev Test
Baseline+ngram 27.45 24.06
+WordIndex 27.70 24.34
+Letter 2-gram 27.45 24.15
+Letter 3-gram 27.52 24.25
+Letter 4-gram 27.60 24.30

Table 3: Results of German-to-English TED trans-
lations using an additional in-domain language
model.

A third experiment is presented in Table 4. Here
we also applied phrase table adaptation as de-
scribed in Niehues et al. (2010). In this experiment
the word index model improves the system by 0.4
BLEU points. In this case all letter-based models
perform very similar. They are again performing
slightly worse than the word index-based system,
but better than the baseline system.

To summarize the results, we could always im-
prove the performance of the system by adding
the letter n-gram-based language model. Further-
more, in most cases, the bigram model performs
worse than the higher order models. It seems to be
important for this task to have more context infor-
mation. The 3- and 4-gram-based models perform
almost equal, but slightly worse than the word
index-based model.

System Dev Test
BL+ngram+adaptpt 28.40 24.57
+WordIndex 28.55 24.96
+Letter 2-gram 28.31 24.80
+Letter 3-gram 28.31 24.71
+Letter 4-gram 28.46 24.65

Table 4: Results of German-to-English TED trans-
lations with additional in-domain language model
and adapted phrase table.

5.3.1 Caps Feature
In addition, we evaluated the proposed caps fea-
ture compared to the non-caps letter n-gram model
and the baseline systems. As we can see in Ta-
ble 5, caps sometimes improves and sometimes

decreases the BLEU score by about ±0.2 BLEU
points. One reason for that might be that most
English words are written lowercased, therefore
we do not gain much information.

System Dev Test
Baseline 26.31 23.02
+Letter 3-gram 26.80 23.84
+Letter 3-gram+caps 26.67 23.85
Baseline+ngram 27.45 24.06
+Letter 3-gram 27.52 24.25
+Letter 3-gram+caps 27.60 24.47
BL+ngram+adaptpt 28.40 24.57
+Letter 3-gram 28.31 24.71
+Letter 3-gram+caps 28.43 24.66

Table 5: Difference between caps and non-caps
letter n-gram models.

5.4 German-to-English CSL Task
After that, we evaluated the computer science lec-
ture (CSL) test set. We used the same system as
for the TED translation task. We did not perform
a new optimization, since we wanted so see how
well the models performed on a different task.

The results are summarized in Table 6. In this
case the baseline is outperformed by the word in-
dex approach by approximately 1.1 BLEU points.
Except for the 4-gram model the results are similar
to the result for the TED task. All systems could
again outperform the baseline.

System Test
Baseline 23.60
+WordIndex 24.76
+Letter 2-gram 24.17
+Letter 3-gram 24.36
+Letter 4-gram 23.82

Table 6: Results the baseline of the German-to-
English CSL task.

The system with the additional in-domain lan-
guage model in Table 7 shows that both letter
n-gram language models perform better than the
baseline and the word index model, improving the
baseline by about 0.8 to 1 BLEU. Whereas the
word index model only achieved an improvement
of 0.6 BLEU points.

The results of the system with the additional
phrase table adaption can be seen in Table 8. The



System Test
Baseline+ngram 23.81
+WordIndex 24.41
+Letter 2-gram 24.37
+Letter 3-gram 24.66
+Letter 4-gram 24.85

Table 7: Results on German-to-English CSL cor-
pus with additional in-domain language model.

word index model improves the baseline by 0.25
BLEU points. The letter n-gram models improve
the baseline by about 0.3 to 0.4 BLEU points also
improving over the word index model. The letter
bigram model in this case performs worse than the
baseline.

System Test
BL+ngram+adaptpt 25.00
+WordIndex 25.25
+Letter 2-gram 24.68
+Letter 3-gram 25.43
+Letter 4-gram 25.33

Table 8: Results on German-to-English CSL with
additional in-domain language model and adapted
phrase table.

In summary, again the 3- and 4-gram letter mod-
els perform mostly better than the bigram version.
They both perform mostly equal. In contrast to the
TED task, they were even able to outperform the
word index model in some configurations by up to
0.4 BLEU points.

5.5 English-to-German News Task
When translating English-to-German news we
could not improve the performance of the base-
line by using a word index model. In contrast, the
performance dropped by 0.1 BLEU points. If we
use a letter bigram model, we could improve the
translation quality by 0.1 BLEU points over the
baseline system.

System Dev Test
Baseline 16.90 17.36
+WordIndex 16.79 17.29
+Letter 2-gram 16.91 17.48

Table 9: Results for WMT2013 task English-to-
German.

5.6 Model Size and Training Times

In general the letter n-gram models perform al-
most as good as the word index model on English
language tasks. The advantage of the models up to
the letter 3-gram context model is that the training
time is lower compared to the word index model.
All the models were trained using 10 cores and
a batch size of 10 samples per contrastive diver-
gence update. As can be seen in Table 10 the letter
3-gram model needs less than 50% of the weights
and takes around 75% of the training time of the
word index model. The four letter n-gram model
takes longer to train due to more parameters.

Model #Weights Time
WordIndex 3.55 M 20 h 10 min
Letter 2-gram 0.24 M 1h 24 min
Letter 3-gram 1.55 M 15 h 12 min
Letter 4-gram 5.62 M 38 h 59 min

Table 10: Training time and number of parameters
of the RBMLM models.

6 Conclusions

In this work we presented the letter n-gram-based
input layer for continuous space language models.
The proposed input layer enables us to encode the
similarity of unknown words directly in the input
layer as well as to directly model some morpho-
logical word forms.

We evaluated the encoding on different trans-
lation tasks. The RBMLM using this encod-
ing could always improve the translation qual-
ity and perform similar to a RBMLM based on
word indices. Especially in the second configu-
ration which had a higher OOV rate, the letter n-
gram model performed better than the word index
model. Moreover, the model based on letter 3-
grams uses only half the parameters of the word
index model. This reduced the training time of the
continuous space language model by a quarter.

Acknowledgments

This work was partly achieved as part of the
Quaero Programme, funded by OSEO, French
State agency for innovation. The research lead-
ing to these results has received funding from
the European Union Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement
n◦ 287658.



References
Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and

Christian Jauvin. 2003. A Neural Probabilistic Lan-
guage Model. Journal of Machine Learning Re-
search, 3:1137–1155.

Stanley F. Chen and Joshua Goodman. 1999. An
empirical study of smoothing techniques for lan-
guage modeling. Computer Speech & Language,
13(4):359–393.

Ahmad Emami, Imed Zitouni, and Lidia Mangu. 2008.
Rich morphology based n-gram language models for
arabic. In INTERSPEECH, pages 829–832. ISCA.

Geoffrey E. Hinton. 2002. Training products of ex-
perts by minimizing contrastive divergence. Neural
Comput., 14(8):1771–1800, August.

Geoffrey Hinton. 2010. A Practical Guide to Training
Restricted Boltzmann Machines. Technical report,
University of Toronto.

Katrin Kirchhoff and Mei Yang. 2005. Improved Lan-
guage Modeling for Statistical Machine Translation.
In Proceedings of the ACL Workshop on Building
and Using Parallel Texts, pages 125–128, Ann Ar-
bor, Michigan, USA.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexan-
dra Constantin, and Evan Herbst. 2007. Moses:
Open Source Toolkit for Statistical Machine Trans-
lation. In ACL 2007, Demonstration Session,
Prague, Czech Republic.

Hai Son Le, Ilya Oparin, Abdelkhalek Messaoudi,
Alexandre Allauzen, Jean-Luc Gauvain, and
François Yvon. 2011. Large vocabulary soul neural
network language models. In INTERSPEECH 2011,
12th Annual Conference of the International Speech
Communication Association, Florence, Italy.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
Cernocký, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In IN-
TERSPEECH 2010, 11th Annual Conference of the
International Speech Communication Association,
Makuhari, Chiba, Japan.

Andriy Mnih and Geoffrey Hinton. 2007. Three new
graphical models for statistical language modelling.
In Proceedings of the 24th international conference
on Machine Learning, ICML ’07, pages 641–648,
New York, NY, USA. ACM.

Andriy Mnih. 2010. Learning distributed representa-
tions for statistical language modelling and collabo-
rative filtering. Ph.D. thesis, University of Toronto,
Toronto, Ont., Canada. AAINR73159.

Masami Nakamura, Katsuteru Maruyama, Takeshi
Kawabata, and Kiyohiro Shikano. 1990. Neural

network approach to word category prediction for
english texts. In Proceedings of the 13th conference
on Computational linguistics - Volume 3, COLING
’90, pages 213–218, Stroudsburg, PA, USA.

Jan Niehues and Muntsin Kolss. 2009. A POS-Based
Model for Long-Range Reorderings in SMT. In
Fourth Workshop on Statistical Machine Translation
(WMT 2009), Athens, Greece.

Jan Niehues and Stephan Vogel. 2008. Discriminative
Word Alignment via Alignment Matrix Modeling.
In Proceedings of the Third Workshop on Statisti-
cal Machine Translation, StatMT ’08, pages 18–25,
Stroudsburg, PA, USA.

Jan Niehues and Alex Waibel. 2012. Continuous
Space Language Models using Restricted Boltz-
mann Machines. In Proceedings of the International
Workshop for Spoken Language Translation (IWSLT
2012), Hong Kong.

Jan Niehues, Mohammed Mediani, Teresa Herrmann,
Michael Heck, Christian Herff, and Alex Waibel.
2010. The KIT Translation system for IWSLT 2010.
In Proceedings of the Seventh International Work-
shop on Spoken Language Translation (IWSLT),
Paris, France.

Jan Niehues, Teresa Herrmann, Stephan Vogel, and
Alex Waibel. 2011. Wider Context by Using Bilin-
gual Language Models in Machine Translation. In
Sixth Workshop on Statistical Machine Translation
(WMT 2011), Edinburgh, UK.

Kay Rottmann and Stephan Vogel. 2007. Word Re-
ordering in Statistical Machine Translation with a
POS-Based Distortion Model. In TMI, Skövde,
Sweden.

Hasim Sak, Murat Saraclar, and Tunga Gungor. 2010.
Morphology-based and sub-word language model-
ing for Turkish speech recognition. In 2010 IEEE
International Conference on Acoustics Speech and
Signal Processing (ICASSP), pages 5402–5405.

Ruhi Sarikaya and Yonggang Deng. 2007. Joint
Morphological-Lexical Language Modeling for Ma-
chine Translation. In Human Language Technolo-
gies 2007: The Conference of the North American
Chapter of the Association for Computational Lin-
guistics; Companion Volume, Short Papers, pages
145–148, Rochester, New York, USA.

Helmut Schmid. 1994. Probabilistic Part-of-Speech
Tagging Using Decision Trees. In International
Conference on New Methods in Language Process-
ing, Manchester, UK.

Holger Schwenk and Jean-Luc Gauvain. 2005. Train-
ing neural network language models on very large
corpora. In Proceedings of the conference on Hu-
man Language Technology and Empirical Methods
in Natural Language Processing, HLT ’05, pages
201–208, Stroudsburg, PA, USA.



Holger Schwenk, Daniel Dchelotte, and Jean-Luc Gau-
vain. 2006. Continuous Space Language mModels
for Statistical Machine T ranslation. In Proceedings
of the COLING/ACL on Main conference poster ses-
sions, COLING-ACL ’06, pages 723–730, Strouds-
burg, PA, USA.

Holger Schwenk. 2007. Continuous Space Language
Models. Comput. Speech Lang., 21(3):492–518,
July.

M. Ali Basha Shaik, Amr El-Desoky Mousa, Ralf
Schlüter, and Hermann Ney. 2011. Hybrid language
models using mixed types of sub-lexical units for
open vocabulary german lvcsr. In INTERSPEECH
2011, 12th Annual Conference of the International
Speech Communication Association, Florence, Italy.

Andreas Stolcke. 2002. SRILM - an extensible
language modeling toolkit. In 7th International
Conference on Spoken Language Processing, IC-
SLP2002/INTERSPEECH 2002, Denver, Colorado,
USA.

Ashish Venugopal, Andreas Zollman, and Alex Waibel.
2005. Training and Evaluation Error Minimization
Rules for Statistical Machine Translation. In Work-
shop on Data-driven Machine Translation and Be-
yond (WPT-05), Ann Arbor, MI, USA.

Wei Xu and Alex Rudnicky. 2000. Can artificial neural
networks learn language models? In Sixth Interna-
tional Conference on Spoken Language Processing,
ICSLP 2000 / INTERSPEECH 2000, Beijing, China,
pages 202–205. ISCA.


