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Abstract—We investigate several optimizations to a recently
published architecture for extracting bottleneck features for
large-vocabulary speech recognition with deep neural networks.
We are able to improve recognition performance of first-pass
systems from a 12% relative word error rate reduction reported
previously to 21%, compared to MFCC baselines on a Tagalog
conversational telephone speech corpus. This is achieved by
using different input features, training the network to predict
context-dependent targets, employing an efficient learning rate
schedule and varying several architectural details. Evaluations
on two larger German and French speech transcription tasks
show that the optimizations proposed are universally applicable
and yield comparable gains on other corpora (19.9% and 22.8%,
respectively).

I. INTRODUCTION

Bottleneck features (BNFs) obtained from multi-layer per-
ceptrons (MLPs) have become an inherent part in many
automatic speech recognition systems. This success is due to
their discriminative power and robustness regarding speaker
and environment variations. In the standard setup as proposed
by Grézl [1], the MLP has three hidden layers. One of those
layers is typically very small (the bottleneck) and provides the
final features that can be used by Gaussian Mixture models
for phoneme state estimation.

Recently, deep learning algorithms that deal with training
deep neural networks (DNNs) consisting of many hidden
layers have been successfully applied to many signal pro-
cessing tasks, including computer vision [2] and acoustic
modeling [3]. A popular approach is to pre-train individual
layers as restricted Boltzmann machines (RBMs), which are
unsupervised generative models [4]. Ideally, the pre-training
procedure initializes the network parameters in a space that
is beneficial for subsequent supervised training towards the
actual classification task [5]. It has also been shown that other
network models such as auto-encoders can be used for pre-
training as well [6].

A natural extension to extract better bottleneck features
is thus the replacement of the standard MLP consisting of
three hidden layers with a deep neural network. This was first
attempted in 2011 by Yu and Seltzer, which embedded the
bottleneck as a small RBM in the middle of a deep network [7].
After pre-training the network layer by layer on windows of
MFCC features, the whole network was trained to estimate
either context-independent or context-dependent HMM target
states. They found that pre-training produced better features,
and that the use of context-dependent targets was helpful as
well. Their architecture could not make use of more than 5
hidden layers, which was presumably caused by placing the
bottleneck layer in the middle of the network.

A different approach has been proposed by Sainath et
al. [8], in which the bottleneck is placed in an auto-encoder
network trained on HMM state posterior probabilities esti-
mated by a separate deep neural network. As they added more
hidden layers to the DNN, they obtained a better prediction
of phonetic states and consequently better bottleneck features
extracted by the auto-encoder network.

Gehring et al. recently introduced an architecture that
consists of a single network and that is able to exploit
the increased modeling power of deep networks [9]. When
extracting bottleneck features from raw log mel scale filterbank
coefficients with sufficiently large and pre-trained networks,
they could significantly out-perform several MFCC baseline
systems. They stated that in their experiments, mel scale
features generally worked better than MFCCs but did not per-
form further feature engineering or task-specific architectural
optimizations. Furthermore and in contrast to [7], they did not
use context-dependent targets for supervised network training.

Regarding input feature optimization for BNF networks,
Kilgour et al. recently presented a study regarding warped
Minimum Variance Distortionless Response (wMVDR) fea-
tures [10]. They investigated the effect of using different
features for the neural network input, and found that combining
MFCC and wMVDR features resulted in improved bottleneck
features. Plahl et al. also investigated several input feature
combinations [11], and reported gains by merging MFCC, PLP
and Gammatone filter outputs at the network input compared
to performing a system combination from lattices generated
by BNF systems trained on the individual features. None of
these works incorporated deep learning techniques, though.

In this work, we try to apply several recently proposed
optimizations for bottleneck feature extraction to the archi-
tecture proposed by Gehring et al [9]. We show that as
in [10], improvements can be obtained by combining MFCC
and wMVDR input features and that using context-dependent
targets generally produces better features. By scheduling the
learning rate for supervised fine-tuning, we are able to lower
final word error rates as well as the total required training time.
We also show that adjusting to the size of the hidden layers
(excluding the bottleneck layer) can yield additional gains.

II. DEEP BOTTLENECK FEATURES

In this section, we briefly describe the deep neural network
architecture for bottleneck feature extraction proposed in [9]
and depicted in Figure 1. The network consists of a variable
number of moderately large, fully connected hidden layers and
a small bottleneck layer which is followed by an additional
hidden layer and the final classification layer. The architecture
differs from setups previously described, where the bottleneck



Fig. 1: Deep network architecture propsed by Gehring et al. [9]

layer has been placed in the middle of a deep network [7], [12]
or added as a second model trained on the output values of
the original network [8].

The hidden layers in front of the bottleneck are initialized
using unsupervised, layer-wise pre-training. Thanks to their
success in the deep learning community, restricted Boltzmann
machines have become the default choice for pre-training
the individual layers of deep neural networks used in speech
recognition. Gehring et al. demonstrated that denoising auto-
encoders [13], which are straight-forward models that have
been successfully used for pre-training neural architectures
for computer vision and sentiment classification [14], are
applicable to speech data as well.

We follow their training scheme and initialize the hidden
layers as denoising auto-encoders, too. Like regular auto-
encoders, these models consist of one hidden layer and two
identically-sized layers reprsenting the input and output values.
The network is usually trained to reconstruct its input at the
output layer with the goal to generate a useful intermediate
representation in the hidden layer. In denoising auto-encoders,
the network is trained to reconstruct a randomly corrupted
version of its input, which can be interpreted as a regularizing
mechanism that facilitates the learning of large and over-
complete hidden representations [13].

For denoising auto-encoders working on binary data (i.e.
grayscale images or sigmoid activations of a previous hidden
layer), Vincent et al. proposed the use of masking noise
for corrupting each input vector [13]. Every element of the
input vector is randomly set to zero with a fixed proba-
bility (we settled with 20% here). The cross-entropy error
objective LH(x, z) =

∑
i xi log zi + (1 − xi) log zi is then

used to compare the reconstructed output with the original,
uncorrupted input in order to obtain the gradients necessary
for adjusting the network weights. When training a network
on speech features like MFCCs, the first layer models real-
valued rather than binary data, so the mean squared error
L2(x, z) =

∑
i(xi − zi)

2 is selected as the training criterion.
In this work, we also apply masking noise to the first layer,
although other types of noise could be used as well [13].

After a stack of auto-encoders has been pre-trained in this
fashion, a deep neural network can be constructed. The bot-
tleneck layer, an additional hidden layer and the classification
layer are initialized with random weights and connected to
the hidden representation of the top-most auto-encoder. While
all out hidden units use sigmoid non-linearities, the classifi-

cation layer output is obtained with the softmax activation
function. The resulting network is then trained with supervision
to estimate either context-independent or context-dependent
HMM tri-phone states. For this last training step, errors are
obtained with the cross-entropy function. Finally, the last two
layers of the network can be discarded as the units in the
bottleneck layer provide the final features used for training
standard Gaussian mixture (GMM) acoustic models.

III. BASELINE SYSTEMS

A. Corpora Description

We performed experiments on several datasets that differ
in language as well as speaking style and recording condition.
For tuning the bottleneck feature extraction, we worked with a
challenging Tagalog conversational speech corpus. This dataset
was released in 2012 under the identifier “babel106-v0.2f”
in the IARPA BABEL program [15]. It contains 79 hours
of narrow-band speech, of which 69 were used to train the
feature extraction networks and acoustic models. The numbers
reported were obtained by decoding the remaining 10 hours.

The best architectures were also evaluated on two larger
Quaero datasets containing broadcast news speech in German
and French. These corpora were released between 2010 and
2012 and contain 188 and 267 hours of wide-band speech,
respectively.

B. Baseline Systems

Baseline system training and decoding was performed with
the Janus Recognition Toolkit (JRTk) developed at Karlsruhe
Institute of Technology and Carnegie Mellon University [16].
For the baseline, samples consisting of 13 MFCCs were
extracted from the audio signal with a frame shift of 10 ms
and stacked with 15 adjacent samples. This resulted in feature
vectors consisting of 195 elements. LDA was applied to reduce
those to 42 dimensions, which constituted the final input
features for the recognition system. Acoustic model training
was performed in a context-dependent setup with three states
per phoneme, and a left-to-right topology without skip states.

For Tagalog, all models used 10000 clustered HMM states
and were trained using incremental splitting of Gaussians
(MAS) training, followed by optimal feature space and Viterbi
training. The German and French setups are similar, but
6000 and 8000 HMM states were used here, respectively.
Furthermore, the broadcast news systems made use of vocal
tract length normalization (VTLN).

Bottleneck features were extracted from different features
as described below. Unless otherwise noted, context windows
were constructed by concatenating the feature vectors of 11
neighboring samples. Each of the hidden layers contained 1000
units, while 42 units were placed in the bottleneck layer and
149 context-independent target states were used for supervised
training on the Tagalog dataset. Six pre-trained auto-encoder
layers were placed in front of the bottleneck layer. The acoustic
model training for BNF systems was identical to the baseline
systems described above.



IV. OPTIMIZATIONS

In this section, we describe and evaluate the individual
optimizations proposed in order to improve the performance of
the deep bottleneck feature (DBNF) extraction setup described
previously.

First, we experimented with MFCC and wMVDR neural
network input features as they have been successfully applied
for shallow bottleneck networks before [10]. We then inves-
tigated whether the neural network can benefit from larger
hidden layers. Third, we applied learning rate scheduling using
the “newbob” schedule in order to speed up the network
training procedure. Finally, we replaced the monophone targets
used in the supervised training stage with context-dependent
HMM states and tuned the number of hidden layers as well as
the input context window size.

A. Input features

In Table I, we compare the recognition performance in
word error rate (WER) of GMMs trained on DBNFs ex-
tracted from different features. We trained DBNF networks
for the Tagalog corpus on 20 mel-frequency cepstrum cof-
ficients (MFCC20), 40 log mel scale coefficients (lMEL40)
and cepstral wMVDR coefficients [17] (wMVDR20). With
MFCC and log mel features, a relative reduction in word
error rate of 11.7% is obtained. This result is similar to the
original experiment reported in [9] on the same corpus, where
a reduction of 12.0% was achieved. With wMVDR features,
the error rate can be decremented further to 59.4%. The
combination of MFCC and wMVDR features was found to
be helpful in [10] but resulted in slightly worse recognition
performance compared to wMVDRs only in this experiment.

TABLE I: Recognition performance for the Tagalog system
with various input features

Features WER (%)

MFCC baseline 68.0
DBNF-MFCC20 60.0
DBNF-lMEL40 60.0
DBNF-wMVDR20 59.4
DBNF-MFCC20+wMVDR20 59.6

B. Learning Rate Scheduling

In [9], a small learning rate of 0.05 was used to train the
neural network for 50 epochs once the auto-encoder layers had
been pre-trained. In order to speed up the training procedure
we evaluated the performance of DBNF networks trained with
the “newbob” schedule, which is a popular choice for setting
learning rates in the speech recognition community. An initial
high learning rate is kept fixed as long as the increase in frame-
level accuracy on a held-out validation set between successive
epochs is higher than 0.5%. The learning rate is then halved
for epoch until the validation accuracy drops below a second
threshold (we used 0.01% here). At this point, the network
training stops. As in [9], DBNF networks were trained with
stochastic gradient descent on mini-batches, using a batch size
of 256.

As can be seen in Table II, small improvements over the
results in Table I were obtained (59.6% to 59.2% WER for the
combination of MFCCs and wMVDRs). More importantly, the
training time for the networks dropped from 50 to 15 epochs
on average, which is a significant speed-up of 70%. Here, the
combination of MFCCs and wMVDRs performs slightly better.

TABLE II: Word error rate on Tagalog with “newbob” learn-
ing rate scheduling

Features WER (%)

DBNF-wMVDR20 59.3
DBNF-MFCC20+wMVDR20 59.2

The remaining experiments in this paper were performed
with the “newbob” learning rate schedule only.

C. Architecture

We further examined how the size of the hidden layers
(exluding the fixed-size bottleneck layer and the classification
layer) impacts the final recognition performance. As is shown
in Table III, decreasing the number of units in the hidden layers
from 1000 as proposed in [9] to 800 increased the word error
rate by 0.4% absolute, while increasing the number of units
to 1200 reduced the WER to 59.0%. Adding more units does
not help for this setup with 69 hours of training data (almost
25 million frames) and context-dependent monophone targets.

TABLE III: Effects of varying the number of units in the hidden
layers of the DBNF network

Features Layer Size WER (%)

DBNF-MFCC+wMVDR 800 59.6
1000 59.2
1200 59.0
1400 59.0

D. Context-Dependent Targets

The usage of context-dependent HMM target states for net-
work training has significantly contributed to the recent success
of deep neural network acoustic models [18] and has been
found to work well for bottleneck features, too [7]. According
to the results listed in Table IV, the deep bottleneck feature
extraction scheme benefits from using senone targets as well:
for the MFCC+wMVDR system with 4000 target states and
1000 units in the hidden layers, recognition performance could
be increased by 5.3% relative to 55.9% WER when compared
to the results obtained with context-independent targets shown
in Table III. By increasing the number of context-dependent
states to 10000, the error rate could be lowered to 54.4%.
Further improvements were obtained by training networks with
larger hidden layers. In contrast to the previous experiment,
the network was able to make use of larger hidden layers
with up to 16000 units (53.5% WER). Features extracted from



TABLE IV: Resulting error rates when using context-
dependent targets for network training

Features Targets Layer WER (%)
Size

DBNF-MFCC+wMVDR 4000 1000 55.9
10000 1000 54.4
10000 1200 54.1
10000 1400 53.8
10000 1600 53.5
10000 1800 53.8

DBNF-wMVDR 10000 1000 56.0

both MFCCs and wMVDRs outperformed those obtained from
wMVDRs by 1.6% absolute when using 10000 states.

With the setup containing 1400 units per hidden layer
and 10000 target states, we performed further architectural
optimizations and varied the number of auto-encoder layers
placed in front of the bottleneck. As shown in Table V, the
best result could be achieved by using either 5 or 6 layers
(resulting in a DBNF network with 8 or 9 layers, respectively),
with no additional gains obtained by adding further layers.

TABLE V: Error rates for DBNFs trained with context-
dependent targets and different numbers of layers

Layers 2 3 4 5 6 7
WER (%) 55.3 54.2 54.2 53.8 53.8 54.3

E. Context Window

The size of the context window that the DBNF extraction
network is able to observe directly influences the frame-level
accuracy during training. A larger context window increases
the accuracy at which the network is able to predict the HMM
state at a given sample. We thus varied the window size in
order to investigate whether the improved accuracy would
result in more useful bottleneck features. The numbers in
Table VI were obtained using DBNFs trained on MFCCs and
wMVDRs with 1400 units per hidden layer. Increasing the
context window to 13 frames (130 ms) reduced the recognition
error by 0.6% to 53.2% WER. Further enlargements resulted
in worse recognition performance.

TABLE VI: Influence of varying the size of the input context
window

Frames 11 13 15 17 19 21
WER (%) 53.8 53.2 53.9 53.9 53.9 54.2

F. General Applicability

The optimizations described above were performed on a
relatively small corpus with a baseline that was among our

early system builds. We thus evaluated a well-performing con-
figuration against stronger baseline systems on larger datasets
in order to check its general applicability.

For the German and French Quaero corpora, we trained
networks observing 15 neighboring frames and 5 auto-encoder
layers containing 1600 hidden units each. The same number
of states as for the baseline systems were used to obtain errors
to adjust the network parameters during supervised training.
As can be seen in Table VII, the improvements obtained by
optimizing the networks on Tagalog could be carried over to
these setups. For the MFCC+wMVDR feature combination,
comparable gains of 19.9% relative in German and 22.8% in
French could be achieved.

TABLE VII: Performance with optimized DBNF networks for
larger broadcast news corpora

Features Language Baseline DBNF
WER (%) WER (%)

MFCC+wMVDR German 20.7 16.6
MFCC+wMVDR French 25.1 19.4

V. CONCLUSION

In this work, we have evaluated several enhancements
to a previously published scheme for extracting bottleneck
features with deep neural networks. The largest increase in
performance was obtained by training the DBNF network
on a large number of context-dependent targets, followed
by combining MFCC and wMVDR input features. The time
required to train the neural networks with supervision could be
reduced significantly by scheduling the learning rate with the
“newbob” algorithm. Further gains were achieved by enlarging
the hidden layers of the network and the context window of
accessible input features.

The DBNF extraction was tuned on a medium-sized and
challenging Tagalog conversation speech corpus, which in-
creased the relative improvement in word error rate over the
MFCC baseline from 11.8% to 21%. Evaluations on two larger
corpora containing broadcast news speech demonstrated that
the optimizations performed can be successfully applied to
other tasks as well.

Since architectural optimizations change the number of
trainable parameters in the neural network, they partially
depend on the amount of data available for training. It might
therefore be worthwhile to re-run certain optimizations on the
two larger datasets in order to obtain even better bottleneck
features. In the future, we would like to directly compare
the performance of our DBNF extraction scheme with other
network architectures as well as hybrid DNN/HMM systems.
Furthermore, we are interested in integrating recently proposed
hierarchical and multi-lingual network training approaches into
our architecture.
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[12] Z. Tüske, R. Schlüter, and H. Ney, “Deep hierarchical bottleneck mrasta
features for lvcsr,” 2013.

[13] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extract-
ing and composing robust features with denoising autoencoders,” in
ICML08, 2008, pp. 1096–1103.

[14] X. Glorot, A. Bordes, and Y. Bengio, “Domain adaptation for large-scale
sentiment classification: A deep learning approach,” in Proceedings of
the 28th International Conference on Machine Learning (ICML-11),
2011, pp. 513–520.

[15] Intelligence Advanced Research Projects Activity, “IARPA-BAA-11-
02,” http://www.iarpa.gov/Programs/ia/Babel/babel.html, 2011, last ac-
cessed July 16, 2013.

[16] H. Soltau, F. Metze, C. Fugen, and A. Waibel, “A one-pass decoder
based on polymorphic linguistic context assignment,” in Automatic
Speech Recognition and Understanding, 2001. ASRU ’01. IEEE Work-
shop on, 2001, pp. 214–217.

[17] M. Wölfel and J. McDonough, “Minimum variance distortionless re-
sponse spectral estimation,” Signal Processing Magazine, IEEE, vol. 22,
no. 5, pp. 117–126, 2005.

[18] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition,”
Audio, Speech, and Language Processing, IEEE Transactions on,
vol. 20, no. 1, pp. 30–42, 2012.


