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Abstract
In this paper, the application of semi-supervised manifold learn-
ing techniques to the task of verifying hypothesized occurrences
of spoken terms is investigated. These techniques are applied
in a two stage spoken term detection framework where ASR
lattices are first generated using a large vocabulary ASR sys-
tem and hypothesized occurrences of spoken query terms in the
lattices are verified in a second stage. The verification pro-
cess is performed using a fixed dimensional feature represen-
tation derived from each hypothesized term occurrence. Two
semi-supervised approaches namely, manifold regularized least
squares (RLS) classification and spectral clustering, are inves-
tigated for distinguishing correct hypotheses from false alarms.
It is shown that, exploiting unlabeled data in addition to labeled
data using semi-supervised approaches, significantly improves
the verification performance compared to the case where only
the labeled data is used. This improvement in performance in-
creases as the ratio of unlabeled to labeled data augments. It is
also shown that, when training data is very limited, a compara-
ble verification performance can be gained by exploiting only
the acoustic similarity between the test samples using the spec-
tral clustering approach.
Index Terms: spoken term detection, semi-supervised learning,
manifold learning, regularized least squares classifier

1. Introduction
This paper is concerned with the problem of detecting occur-
rences of spoken terms in continuous running speech. Spoken
term detection (STD) is applied to scenarios where users en-
ter query terms into a search engine to identify relevant speech
segments in a collection of audio recordings. The techniques
investigated in this work are applied in the context of a large vo-
cabulary continuous speech recognition (LVCSR) system which
generates lattices of solutions for each speech segment in the
audio collection. Term verification techniques are presented
which verify the hypothesized occurrences of query terms in
the lattices. There has been a great deal of effort devoted to this
problem [1, 2, 3, 4] and there are a number of issues that must
be addressed when applying these techniques in practice. The
most important issue is the availability of enough training data
for training term specific models for verification. While it is as-
sumed in this work that search terms are contained in the ASR
vocabulary, the interest here is in developing term verification
procedures which can operate with only a very small number of
labeled examples of each term.

The goal in semi-supervised training of parametric classi-
fiers is to reduce the requirement for expensive labeled train-
ing examples by exploiting large unlabeled corpora for train-
ing. In ASR applications, obtaining labeled data implies a time-
consuming process of manual transcription of many hours of

speech. Specifically, in the term verification problem, it implies
that users label large numbers of hypothesized term occurrences
from the ASR lattices as correct detections or false alarms. This
is generally impractical in STD applications since query terms
are provided by users in real time and are usually not known
to the system in advance. The assumption in this work is that
users can manually label a small number of these hypothesized
occurrences perhaps through a process of reviewing an initial
set of candidate speech segments. However, there may be an
extremely large number of unlabeled putative hits that can be
incorporated in a semi-supervised training scheme.

Semi-supervised learning for term verification is investi-
gated for use in the second stage of a two stage STD framework.
In the first stage, which is performed off-line, speech segments
of length 20 - 60 seconds are fed to an LVCSR system and a
word lattice is generated for each segment. In the second stage,
upon receiving a query term from a user, hypothesized occur-
rences of the query term are identified in the lattices. This pro-
cess may be made efficient by using any of a number of lattice
indexing schemes [5, 6, 7, 8]. These hypotheses contain true
occurrences of the query terms as well as false alarms and it is
the job of the second stage term verification to detect which of
these hypothesized occurrences correspond to actual term oc-
currences. The advantage of this two stage process is that sec-
ond stage term verification can be performed using completely
different acoustic features and modeling formalisms from those
used in first pass LVCSR.

Two low resource term verification scenarios are consid-
ered in this paper. In both cases, a fixed-dimensional feature
representation based on phonetic event patterns derived from
the decoded term occurrences is used. This feature representa-
tion is described in [9]. The first verification scenario assumes
the existence of a small number of labeled term hypotheses and
a large number of unlabeled hypotheses for training a whole
word-based manifold-regularized least squares (RLS) classifier.
A semi-supervised learning approach for manifold-based RLS
training is described in Section 3. A discussion of the use of
supervised RLS classifiers for term verification has also been
presented in [1]. The impact of varying amounts of labeled and
unlabeled training data on term verification performance is eval-
uated and compared with fully supervised training in Section 6.

The second scenario assumes that no labeled training data
is available, and only the candidate intervals themselves at test
time are available. In this case, spectral clustering is applied
to graphs whose connection weights characterize the acoustic
similarity of hypothesized query term occurrences. Described
in Section 4, this clustering isolates graph nodes correspond-
ing to true occurrences using a single labeled example obtained
from the test set. The term verification equal error rate obtained
for this approach is presented in Section 6.



2. Verification Task
The verification process is performed on the hypothesized oc-
currences of the query term Q in lattices generated by an
LVCSR system. Having extracted the start and end time of each
hypothesis, Ii(Q), from the lattices, a d-dimensional feature
vector, xi ∈ Rd, is generated from the corresponding interval in
the audio recordings. The feature representation used in this pa-
per is based on temporal point process patterns of phone classes
[9]. A temporal point process as described in [10] is a stochastic
or random process composed of a time-series of binary events
that occur in time. In speech, the occurrence of a phone can be
regarded as a binary event and consequently a point process can
be generated for a phone over time.

Having a set of l phones P = p1, p2, . . . , pl, the point pro-
cess pattern of each phone class pi ∈ P over T frames of speech
can be represented by a sparse vector of length T with elements
equal to one when pi occurs and zero otherwise. Here, a neural
network based phone classifier is deployed for finding the oc-
currence times of each phone in speech intervals corresponding
to the hypothesized query term occurrences. The point process
representation of each phone is then normalized with respect to
its length and quantized so that a fixed dimensional representa-
tion is obtained for intervals of different lengths. For the given
hypothesis Ii(Q), the point process representations of all the
phones in the set P are concatenated to form a d-dimensional
feature vector xi. This process is explained in detail in [1]. The
set of N feature vectors, {xi}Ni=1, extracted from all hypothe-
ses of the query term {Ii(Q)}Ni=1 are then classified into two
classes, yi ∈ {1,−1}, corresponding to true occurrence of the
query term and false alarm, respectively.

In [1] the use of fully-supervised RLS based classification
was exploited for this verification task. In this paper, two low
resource verification scenarios are considered and for each sce-
nario a semi-supervised classification approach is presented. In
the first scenario a small number of labeled candidate intervals
and a large number of unlabeled candidate intervals are avail-
able for training a classifier for each query term. The semi-
supervised classification approach deployed for this scenario is
based on the manifold based RLS training. In the second sce-
nario there are no labeled or unlabeled candidate intervals for
training. For this case a graph based semi-supervised classifi-
cation approach based on spectral clustering is used. With this
approach the classification of candidate intervals of the test set
is performed by using the label of only a single arbitrary test
candidate interval. In the following sections these two semi-
supervised classification approaches are explained.

3. Semi-Supervised RLS
In the RLS framework the objective is to learn a function
f : Rd → R that maps the data points into their true classes af-
ter applying an appropriate threshold. In supervised training of
RLS classifiers, where the actual class label of the training sam-
ples is known, this function is learned from a set of l labeled
training samples {(xi, yi)}li=1 as described in [1]. However,
when the number of labeled samples is small the learned func-
tion does not generalize well to unseen data. In semi-supervised
training of RLS classifiers, the objective is to use not only the l
labeled samples but also a set of u unlabeled training samples,
{xj}l+uj=l+1, to characterize the class-independent distribution of
the data for data-driven regularization. In [11] it is shown that if
the distribution of the input data is restricted to a d′-dimension
(d′ < d) manifold, we can apply graph-based manifold reg-

ularization techniques toward this end. In the manifold regu-
larization framework, the function f is learned by solving the
following optimization problem

f? = argmin
f∈HK

1

l

l∑
i=1

[f(xi)− yi]2 + γA||f ||2K

+
γI

(u+ l)2

l+u∑
i,j=1

[f(xi)− f(xj)]2Wi,j .

(1)

On the right hand side of Equation 1 the first term is a loss
function and the second term is an ambient (L2) regularization
term with regularization factor γA whose purpose is to avoid
over-fitting. This optimization problem without the third term
is exactly the same as the one used in the typical supervised
training of RLS.

The third term on the right hand side of Equation 1 is
a manifold regularization term with the regularization factor
γI . This term, is a measure of functional smoothness when
restricted to the manifold, allowing the unlabeled data distri-
bution to influence the classifier learned. The values Wi,j

represent a measure of similarity between each pair of data
points (xi,xj). In the verification problem discussed here
each data point xi corresponds to the feature vector extracted
from candidate interval Ii. The similarity between two fea-
ture vectors is computes using a kernel function of the form
Wi,j=exp(−dist(xi,xj)/2σ2

1), where σ1 is the kernel width
parameter. The distance dist(xi,xj) between two feature vec-
tors is computed using the van Rossum method as described
in [1]. The manifold regularization term of Equation 1 can
also be written in a matrix form as γI

(u+l)2
fTLf , where L is

the graph Laplacian given by L = D − W. The matrix
D is a diagonal matrix whose diagonal elements are given by
Di,i =

∑l+u
j=1Wi,j .

Based on the representer theorem, for a symmetric, positive
semi-definite kernelK the solution to Equation 1 can be written
as

f?(x) =

l+u∑
i=1

αiK(xi,x). (2)

The kernel function K(xi,xj), has the same form as the func-
tion used in computing Wi,j but with a different kernel width
parameter K(xi,xj)=exp(−dist(xi,xj)/2σ2

2). The classifier
parameters αi ∈ R can be obtained from the closed-form ma-
trix solution given by

α = (JK+ γAlI+
γI l

(u+ l)2
LK)−1Y. (3)

In Equation 3, I is an identity matrix, and J is an (l + u) by
(l+ u) diagonal matrix with the first l diagonal entries equal to
one and the remaining u entries equal to zero. The matrix K is
the Gram matrix over labeled and unlabeled samples with ele-
ments Ki,j = K(xi,xj) and Y is an (l+ u) vector containing
the class labels for the l labeled samples and zeros for the unla-
beled samples. After computing the parameters of the classifier,
{αi}l+ui=1 , from Equation 3, each test sample is classified using
Equation 2.

4. Graph Spectral Clustering
The set of feature vectors, {xi}Ni=1, generated for N candidate
intervals {Ii(Q)}Ni=1 for the query term Q can be represented
with an undirected graph G = (V,E,C). In this graph each



vertex vi ∈ V represents a feature vector xi. There is an edge
ei,j between each pair of vertices (vi, vj) with a correspond-
ing weight ci,j ∈ C obtained from the similarity between the
feature vectors. The weight on the edge ei,j is computed using
the kernel function ci,j=exp(−dist(xi,xj)/2σ2

3) with kernel
width parameter σ3. The distance between two feature vectors
dist(xi,xj) that are point process features in this case is com-
puted using the van Rossum method as explained in [1].

Graph G can be partitioned into two sub-graphs A and B,
where A ∪ B = V and A ∩ B = 0, by cutting the edges
connecting A and B. In graph theory the similarity between
two-subgraphs denoted here by sim(A,B) can be computed by
summing the weights of the edges that connect the two as

sim(A,B) =
∑

vi∈A,vj∈B

cvi,vj . (4)

Assuming that the graph vertices belong to two classes y =
{1,−1}, one way for classifying the graph vertices is to parti-
tion the graph into two sub-graphs that have the minimum simi-
larity. However, as it was shown in [12] partitioning a graph by
minimizing Equation 4 can result in having very few vertices
in one of the sub-graphs. For balancing the number of vertices
in each sub-graph, Shi and Malik developed a new approach
known as normalized cuts [13] where an additional constraint
was added to the minimization problem. In this approach the
similarity between A and B is normalized by the number of
edges connecting A and B to the entire graph and the best par-
titioning is obtained by minimizing

argmin
A,B

sim(A,B)∑
vi∈A,vj∈G ei,j

+
sim(A,B)∑
vi∈B,vj∈G ei,j

. (5)

It is shown in [13] that the optimization problem of Equa-
tion 5 can be solved by solving the following problem

argmin
s

sT (D −W )s

sTDs
, (6)

where s is an N -dimensional vector containing the class
labels {−1, 1} assigned to each of theN vertices. The matrixD
is anN×N diagonal matrix with elementsDi,i =

∑N
j=1 ci,j . If

s is relaxed to take on real values, Equation 6 can be minimized
by solving the generalized eigenvalue system,

(D −W )s = λDs. (7)

It is worth noting that this optimization problem is actually
equivalent to the one described in Equation 1 when there are
no labeled examples (i.e. l = 0) and no ambient regularization
(γA = 0). The eigenvector of the above system corresponding
to the minimum eigenvalue is the solution to the optimization
problem in Equation 6. However, the above system has a trivial
solution where the smallest eigenvalue is zero (λ0 = 0) and the
corresponding eigenvector (s0 = 1) assigns all the vertices to
one class. The non-trivial solution is the eigenvector s1 corre-
sponding to the second smallest eigenvalue λ1. After comput-
ing s1, its elements are thresholded and values above and below
the threshold are replaced by {−1, 1}. Next, the vertices are
assigned a class label of 1 or−1 based on the value of their cor-
responding dimensions in s1. The class label of each vertex vi
is then given to the corresponding candidate interval Ii(Q). De-
spite having classified the candidate intervals into two classes,
{1,−1}, it is not clear which class corresponds to true occur-
rence and which one to false alarm. To determine the identity
of the classes, all is needed is the actual label of an arbitrary
candidate interval.

5. Experimental Setup
All the experiments in this paper were conducted on the Aug-
mented Multi-party Interaction (AMI) corpus [14]. The AMI
corpus consist of speech from a set of meetings recorded with
multiple microphones. A subset of the audio files recorded
using lapel microphones was used in this study. This subset
contains approximately 80 hours of audio from 118 meetings
with 121 speakers. For training, development, and evaluation
purposes the recordings were split into three equivalently sized
folds, each consisting of recordings from a unique set of speak-
ers. The fold 1 was used for training, fold 2 for development,
and fold 3 for evaluation. A set of 35 content words with a
high frequency of occurrence in all three folds were selected as
query terms. The word query list consists of short monosyllabic
words (e.g., “shape”) as well as long multisyllabic words (e.g.,
“presentation”).

Three LVCSR systems were trained on fold 1, fold 2 and the
combination of fold 1 and fold 2 as described in [1] to generate
word lattices for fold 2, fold 1, and fold 3 respectively. A word
accuracy of 56.9% was obtained for fold 3 using the LVCSR
system trained on folds 1 and 2. All the occurrences of the query
terms were then extracted from the lattices of the three folds and
the occurrences with substantial overlap were merged. The list
of hypothesized occurrences of the query terms in folds 1 and 2
contained 109433 occurrences out of which 9631 corresponded
to actual occurrences and the rest were false alarms. For fold 3
there were 34013 occurrences of the query terms with 3766 of
them corresponding to actual occurrences. A fixed-dimension
point process representation was generated for each of the oc-
currences following the recipe described in [1].

The feature representations of the hypothesized occur-
rences were used for classifying them into true occurrence and
false alarms using the classifiers described in Section 3 and Sec-
tion 4. A set of globally optimum parameters were obtained for
the classifiers based on their performance on the dev set (fold
2). For the RLS classifier the optimum value derived for the
first and second regularization factors are γA = 1/(l + u) and
γI = 107.5/(l + u), where l + u is the total number of la-
beled and unlabeled training samples. The kernel width param-
eters σ1 used for computing Wi,j in Equation 1 and σ2 used
for computingK(xi,xj) in Equation 2 were set to 0.4 and 0.15
respectively.

In the spectral clustering approach for classifying the hy-
pothesized occurrences first a graph was constructed for each
of the query terms using the feature representation of the hy-
pothesized occurrences. Next, all vertices of each graph were
connected with weights obtained from the similarity of the cor-
responding feature representations using the kernel function de-
scribed in Section 4. The kernel width parameter used in all the
graphs was 0.2. Once the graphs are constructed, the gener-
alized eigenvalue problem of Equation 7 was solved for each
graph and the vertices of the graphs were clustered into two
classes. The identity of the classes (true occurrence or false
alarm) in each graph was then determined using the actual label
of an arbitrary vertex.

6. Experimental Evaluation
In this section the performance of the semi-supervised RLS and
the spectral clustering approaches in verifying hypothesized oc-
currences of a set of query terms is evaluated. Moreover, a
comparison between the performance of the semi-supervised
classifiers and the supervised RLS classifier is made for vari-



Classification Labeled Train Unlabeled Train Labeled Test EER
Supervised RLS 2% 0 0 23.2
Semi-Supervised RLS 2% 98% 0 20.7
Spectral Clustering 0 0 1 20.0

Table 1: EER obtained from spectral clustering and RLS classifiers.

ous ratios of labeled to unlabeled training samples. It should be
noted that the samples contain both true occurrences and false
alarms. Here, the verification performance is measured using
the equal error rate (EER) measure. Since different training
samples affect the classifiers performance differently, the ex-
periments were repeated 10 times, each time with a randomly
selected labeled training samples. The mean EER was then
computed for each of the query terms for each ratio. Figure
1 illustrates the mean EER performance averaged over the 35
query terms for both semi-supervised and supervised classifiers
trained with various ratios of labeled to unlabeled samples.

The top and the bottom curves in Figure 1 correspond to the
performance of the supervised and semi-supervised RLS clas-
sifiers respectively. The single operating point depicted by a
diamond on the vertical axis is the average EER obtained from
the spectral clustering method with using the actual label of one
arbitrary test sample. A number of observations can be made
from this plot. First, it can be seen that the performance of
the semi-supervised RLS is always better than the supervised
RLS with the same number of labeled training samples. This
is more evident as the ratio of the unlabeled to labeled samples
increases. In the range from 30 to 80 percent labeled, manifold
regularization reduces the labeled data requirement by 10% to
achieve a given performance level. For the task studied here,
the 10 percent of training samples amounts to approximately
300 samples for each query term.

Figure 1: The average EER mean obtained from supervised
and semi-supervised classifiers trained with various ratios of
labeled to unlabeled samples.

In Table 1 the performance of spectral clustering and RLS
classifiers trained using 2% labeled training data is illustrated.
Looking at the first two rows of this table, it shows that manifold
regularization of the RLS classifiers results in a relative EER

improvement of 11% in this very low resource regime. Also,
it can be seen that the spectral clustering approach provides a
classification performance comparable to the semi-supervised
RLS classifier by using only 1 labeled test sample. This

7. Conclusions
In this paper two semi-supervised classification approaches for
the task of spoken term verification were investigated. First, the
performance of a manifold based semi-supervised training of
RLS classifiers was evaluated for this task. It was shown that
with the same number of labeled training data, the RLS classi-
fiers trained using the semi-supervised approach always provide
better verification performance than the ones trained using the
supervised approach. Secondly, the performance of the graph
spectral clustering approach for term verification in a very low
resource scenario was evaluated. It was shown that, verification
using the spectral clustering algorithm based on the actual label
of a single arbitrary test sample is as effective as using semi-
supervised RLS classifiers trained with a very small number
of labeled training samples. This suggests that, in verification
scenarios where the amount of data available for training term-
specific models is very limited, the spectral clustering approach
could alternatively be used.
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