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ABSTRACT

Eigenspace MLLR is effective for fast adaptation when the
amount of adaptation data is limited, e.g., less than 5s. The
general motivation is to represent the MLLR transform as a
linear combination of basis matrices. In this paper, we
present a framework to estimate a speaker-independent
discriminative transform over the combination coefficients.
This discriminative basis coefficients transform (DBCT) is
learned by optimizing discriminative criteria over all the
training speakers. During recognition, the ML basis
coefficients for each testing speaker are firstly found, on
which DBCT is applied to give the final MLLR transform
discrimination ability. Experiments show that DBCT results
in consistent WER reduction in unsupervised adaptation,
compared with both standard ML and discriminatively
trained transforms.

Index Terms— Speaker adaptation, discriminative
training, speech recognition

1. INTRODUCTION

Speaker adaptation is widely used to build speaker-
dependent models which can recognize speech from
unknown speakers. The most commonly used approach for
speaker adaptation is maximum likelihood linear regression
(MLLR), which involves estimation of speaker-specific
linear transforms over acoustic model parameters [1]. MLLR
can perform robustly given limited adaptation data. However,
when the amount of adaptation data becomes really small,
say less than 5s, speaker adaptation based on MLLR does
not always lead to improved recognition performance. This
is because the estimation of MLLR transforms is too noisy
and does not generalize well to the testing data. To solve this
problem, eigenspace-based methods have been proposed [2,
3, 4]. Generally, there are two stages in this type of methods.
During the training stage, an appropriate set of basis
matrices are computed on the training data, using ML-
fashion [4] or PCA-like algorithms [2, 3]. During testing, the
adaptation transform of a specific speaker is represented as a
combination of the basis matrices. Since the number of free

parameters, i.e., combination coefficients, is reduced greatly,
these methods can improve the robustness of MLLR.

Meanwhile, there has been considerable interest in
exploiting discriminative criteria for improving MLLR
adaptation. In the supervised mode, it has been shown that
discriminative linear transforms (DLT) can bring significant
improvement over ML transforms [5, 6]. However, the gains
of DLT drop dramatically in unsupervised adaptation
because DLT is very sensitive to supervision errors. A more
recent work is to learn a global discriminative mapping
transform (DMT) on the training data, which can map ML-
estimated adaptation transforms to discriminative transforms
[7, 8]. Since only ML estimation is performed during
adaptation, this DMT method is found to be less sensitive to
hypothesis errors and thus more suitable for unsupervised
speaker adaptation.

In this paper, we combine these two lines of work and
propose a framework which estimates a discriminative linear
transform over the basis coefficients in eigenspace MLLR
adaptation. This global speaker-independent transform,
referred to as DBCT, acts as a linear mapping function from
ML-estimated basis coefficients to discriminative ones.
During training, this DBCT is learned by optimizing
discriminative criterion on the training speakers. During
recognition, DBCT is used to transform speaker-specific
basis coefficients estimated in a normal ML manner. The
final adaptation matrix derived from DBCT-transformed
coefficients becomes discriminative in nature and at the
same time robust to hypothesis errors. We use the maximum
mutual information (MMI) criterion [9] for DBCT training
and only examine MLLR adaptation of HMM-GMM means.
However, this approach can be extended easily to the
minimum phone error (MPE) criterion [9] and other forms
of adaptation transforms such as fMLLR. Experiments with
Switchboard data show the effectiveness of DBCT in
improving unsupervised adaptation.

2. EIGENSPACE MLLR ADAPTATION

The idea of eigenspace MLLR adaptation is to estimate
MLLR transforms in a subspace constrained by the basis
matrices. These basis matrices are learned on the training set
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either with PCA or iterative MLE. Specifically, the MLLR
transform ( )sW for speaker s is represented as

( ) ( )
( )
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N s
s s

n n

n

dW W (1)

where nW represents the n-th basis matrix. Speaker-specific
basis coefficients ( )s

nd are estimated to optimize the ML
objective on the adaptation data. If the feature dimension is
D, the number of basis coefficients ( )sN is generally much
smaller than D(D+1), i.e., the size of parameters in the
conventional MLLR adaptation. Therefore, this type of
eigenspace methods perform robustly under inadequate
adaptation data.

In principle, our DBCT approach can be used with any
eigenspace MLLR methods. In this paper, we deal with a
specific implementation derived from the basis
representation of fMLLR described in [10]. The basis
matrices are obtained via singular value decomposition
(SVD) on top of MLLR statistics collected from the training
speakers, together with appropriate precon-ditioning. Totally
we estimate D(D+1) basis matrices which are sorted by a
decreasing order on their eigenvalues. For each testing
speaker, an iterative line search algorithm is adopted to find
the basis coefficients (equivalently the MLLR transform)
which optimize the ML objective on the adaptation data.
Compared with others, this implementation has the
advantage that the number of basis matrices to be used, i.e.,

( )sN , can be decided dynamically according to the amount
of available adaptation data. For example, ( )sN is set to the
minimum of D(D+1) and ( )sηβ , where ( )sβ is the number
of adaptation speech frames for this speaker and η is a
constant such as 0.2 [10]. In this paper, we call this method
basis-MLLR. Interested readers can refer to [10] and the
implementation of basis-fMLLR in the Kaldi toolkit1.

3. DISCRIMINATIVE BASIS COEFFICIENTS
TRANSFORM

This section formally describes how to learn the
discriminative DBCT over the basis coefficients. After using
basis-MLLR on the training set, we can get the ML basis
coefficients for each training speaker s. Since basis matrices
have been sorted by their importance [10], the first P
coefficients represent the most important ones, i.e.,

( ) ( ) ( )
1 1[ 1], , ,s s s

Pd dȜ (2)

which has been extended with an additional 1. The
remaining coefficients form the second vector

( ) ( ) ( )
2 1 ( )[ , , ]s s s

P N sd dȜ (3)

1 http://sourceforge.net/projects/kaldi/

Applying DBCT, denoted as dbctW , to ( )
1
sȜ , the transformed

coefficients vector is
( ) ( )

dbctdbct1, 1
s sȜ W Ȝ (4)

where dbctW has the size of P(P+1). Considering DBCT on
a small subset of P coefficients has two notable benefits.
First, in testing adaptation, the actual coefficient dimensions
to be used may be much less than D(D+1). Thus, the DBCT
transform modeled on the most important dimensions can
still be applicable even under highly limited adaptation data.
Second, if using the whole set of coefficients, the affine
DBCT has the size of [D(D+1)+1][D(D+1)], which is
expensive to manipulate.

To facilitate the estimation of dbctW , we isolate basis
matrices from coefficients by integrating basis matrices into
GMM mean vectors. For Gaussian component m, we have
the D P matrix ( )

1
mM = ( ) ( )

1[ , , ]m m
Pm m and the D (N(s)

– P) matrix ( )
2
mM = ( ) ( )

1 ( )[ , ]m m
P N sm m , where the i-th

column vector ( )m
im represents the mean vector ( )mȝ

transformed by the basis matrix iW , i.e.,
( )m
im = ( )m

iW ȟ (5)

where ( )mȟ is the extended vector of ( )mȝ . Then, it’s natural
to derive the speaker-specific means ( )m

sȝ , with the DBCT

dctW applied, as follows:
( ) ( ) ( ) ( ) ( )

dbct1 1 2 2
m m s m s

sȝ M Ȝ M ȜW (6)

Our goal is to obtain the speaker-independent dbctW which
can optimize the discriminative criterion on the training data.
The standard MMI optimization scheme, based on the weak-
sense auxiliary function [9], is used. The auxiliary function

w.r.t. dbctW is formulated as:
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where ( )num
m stγ and ( )den

m stγ are posterior occupancy of
component m being at time st given the numerator and
denominator lattices, st is the speech frame of speaker s,

( )m
sD is a smoothing term with respect to speaker s and

component m to ensure the convergence of the
discriminative updates. Following [8], we set this term to be

( ) ( )
s

den
m s

m
s t

tD E γ where the constant E = 0.8. Also,
( )ˆ m
sȝ is the adapted mean which is calculated using Eq. (6)

and the current dbctŴ , rather than the mean adapted by
basis-MLLR.

The above DBCT can be estimated efficiently with an
expectation maximization (EM) style algorithm. For limit of
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space, we are omitting the detailed derivations. In the E step,
the following two types of speaker-specific statistics are
collected for all the training speakers:
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where ( ) ( ) ( )num den
m s m s m st t tγ γ γ , the accumulated

component occupancy is
( ) ( ) ( )m s

s

m m
s s tD tγ γ (9)

and the two component specific terms in ( )sK can be

calculated as
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In the M step, it can be proved that DBCT estimation has
the following updating formula to optimize the
discriminative auxiliary function in Eq. (7):

1( ) ( ) ( )
dbctvec ( ) vec,s s s

s s
kronW G P K

where the vec(.) operator stacks the rows of a matrix into a
single vector, kron(.) is the Kronecker product of two
matrices, ( )sP is the scatter of the first-part coefficient
vector defined in Eq. (2), that is, ( ) ( ) ( )

1 1
Ts s sP Ȝ Ȝ . Given

a well trained acoustic model, for example discriminatively
trained HMM-GMM, iterative estimation procedures for
DBCT are summarized as follows:

(1) Estimate the ML basis coefficients ( )
ml
sd for each

training speakers s with basis-MLLR.
(2) Initialize ( )0

dbct ;[ ]I 0W and set k = 0.
(3) Collect statistics using Eq. (8) and estimate ( )1

dbct
kW

according to Eq. (11).
(4) k = k + 1. Go to step 3 if not converged.

After obtaining the DBCT, we can use it in recognition. For
a testing speaker s, discriminative adaptation with DBCT is
performed as follows:

(1) Perform first-pass decoding to generate the supervision
hypothesis for the utterances of speaker s.

(2) Estimate ML basis coefficients ( )
ml
sd with basis-MLLR.

(3) Adapt the acoustic model parameters using dbctW and
the ML coefficients ( )

ml
sd according to Eq. (6).

(4) Decode the testing set with the adapted model.

From the training process, we can see that DBCT depends
on specific acoustic models. If the acoustic model changes,
DBCT needs to be re-estimated.

4. EXPERIMENTS

The performance of DBCT is evaluated on an English
conversational telephone speech task. The training data
contains 898 speakers (conversation sides), around 72 hours,
from the Switchboard-1 corpus. The testing data comes from
a subset of the 2001 HUB5 evaluation set, consisting of 20
speakers and 1 hour of speech. Acoustic modeling is based
on a 13-dimensional MFCC front-end including the C0
energy and its first, second derivatives with per-speaker
mean normalization. An LDA transform reduces the feature
dimension to 40, on which MLLT is applied. The ML model
has 3000 clustered triphone states, with an average of 12
Gaussians per state. The MMI criterion [9] is used on top of
the ML baseline and generates the speaker-independent
MMI model. In MMI training, the numerator lattices are
built from the reference, while the denominator lattices are
produced by the ML model with a heavily pruned unigram
language model. Our experiments are conducted with this
MMI-SI model, which has a first-pass WER of 38.5% on the
testing set. During unsupervised adaptation, basis-MLLR
estimation is performed given the hypothesis output from
MMI-SI. For all the decoding runs, we use a trigram
language model built only with the training transcriptions.

4.1. Effectiveness of DBCT

As discussed in Section 3, DBCT is applied on a small
subset of the basis coefficients. Therefore, it can be robustly
estimated with limited training data. To verify this, we
perform DBCT learning on various training sets with
different sizes. Table 1 presents the results for the adapted
MMI model, using standard basis-MLLR and basis-MLLR
+DBCT respectively. The coefficient dimension P, on which
DBCT is applied, is set to 10. On each training set, we run
DBCT estimation for 4 iterations and give the final MMI
objective. Note that we are not reporting the actual MMI
objective as computed in [9]. Instead, the objective here
equals the parts in Eq. (7) dependent on dbctW .

We can see that using DBCT in addition to basis-MLLR
adaptation yields further reduction on WER. Reducing the
amount of training data results in superior recognition
performance and MMI objectives. The best WER is
achieved on the 9-hour set, where DBCT brings 0.7%
absolute improvement to basis-MLLR. With more training
data available, we observe decreased MMI objectives, which
indicate that DBCT may not reach the optimal point. Thus,
for the 72-hour set, we run DBCT estimation for more
iterations and achieve the best WER in the 6th iteration.
Despite a larger MMI objective, the recognition perform-
ance is only 0.1% better than using 9 hours data. This
confirms that we are able to learn DBCT only with a small
training set. If we shrink the training set further to 3 hours,
the performance of DBCT degrades significantly.

(11)
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Table 1. Performance (WER%) of basis-MLLR with DBCT in
unsupervised adaptation.

WER MMI Obj

Basis-MLLR 37.1 ---

+ DBCT 72Hrs 36.6 1.415

+ DBCT 36Hrs 36.6 1.463

+ DBCT 18Hrs 36.8 1.706

+ DBCT 9Hrs 36.4 2.033

+ DBCT 3Hrs 37.2 1.959

+ DBCT 72Hrs
(6th iteration)

36.3 2.129

4.2. Sensitivity to Supervision Errors

The following two subsections examine properties of DBCT.
Unless stated otherwise, we show the results of DBCT
trained with 9 hours data. As a global transform, DBCT
should be less sensitive to supervision errors compared with
DLT [5, 6]. To investigate this point, three types of
adaptation supervisions are used. The baseline hypothesis
are from MMI-SI in the first-pass decoding. Hypothesis of
worse quality are generated by the ML model. Finally, the
correct reference is also taken as supervision. These
supervisions are used to estimate basis-MLLR coefficients,
on which DBCT is applied. During DLT training, the
numerator lattices are built from these supervisions and the
denominator lattices are generated by MMI-SI.

Table 2 presents the WER comparison with various
supervisions. For basis-MLLR, using the reference obtains
1.4% absolute gains over the ML-SI and MMI-SI
supervisions. This is similar to DBCT performance
differences. In contrast, for DLT, the reference has 3.9%
absolute improvement over ML-SI and 3.5% over MMI-SI
supervisions. This shows that DBCT is less sensitive to the
quality of supervisions and thus suitable for unsupervised
adaptation. It can also be observed that DBCT always
outperforms DLT under erroneous supervisions. But with
reference supervision, DLT is significantly better than
DBCT. This is because DBCT is learned on the training set
and is not tuned to the reference during adaptation.

4.3. Training Stability

Another notable observation is that DBCT may encounter
instability in discriminative updates. In Fig. 1, we plot the

Table 2. WER% of DBCT and DLT with different supervisions.
Supervision

ML-SI MMI-SI Ref

WER 41.3 38.5 ----

Basis-MLLR 37.1 37.1 35.7

+DBCT 36.5 36.4 35.2
DLT 37.1 36.7 33.2

MMI objectives for 10 iterations of DBCT estimation and
the corresponding WER. With E=0.8, there is a dramatic
rise in the MMI objective after 5 iterations, while the
performance of DBCT on the testing set begins to drop. This
instability can be relieved by setting the const E to a larger
value, which corresponds to a smaller step size in each
iteration. Fig. 1 also shows the MMI objectives and WER
with E=1.2. In this case, DBCT estimation remains stable
within the 10 iterations. But we need more iterations to
reach the optimal recognition results. Moreover, we observe
that increasing the coefficient dimension P to 20 or 30
introduces more instability into DBCT training. That is, the
testing WER goes up quickly to 50% after several iterations.
That's why we set P to 10 in our experiments.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we propose an approach to estimating DBCT
for eigenspace MLLR adaptation. The DBCT transform is
learned on top of basis-MLLR and applied in recognition to
improve the ML adaptation with additional discrimination.
Experiments show the effectiveness of DBCT in improving
unsupervised adaptation. In our future work, we will focus
on the extension of this method to cluster adaptive training
(CAT) [11], where we can learn the discriminative trans-
forms on the cluster combination coefficients.
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Fig. 1. Instability of DBCT estimation in terms of MMI objective
and WER% in 10 iterations.
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