
MULTILINGUAL DEEP BOTTLE NECK FEATURES
A STUDY ON LANGUAGE SELECTION AND TRAINING TECHNIQUES

Markus Müller?, Sebastian Stüker?, Zaid Sheikh†, Florian Metze† and Alex Waibel?†

International Center for Advanced Communication Technologies
?Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology, Germany
†Language Technologies Institute, Carnegie Mellon University, Pittsburgh PA, U.S.A.

ABSTRACT

Previous work has shown that training the neural networks for
bottle neck feature extraction in a multilingual way can lead to
improvements in word error rate and average term weighted
value in a telephone key word search task. In this work we
conduct a systematic study on a) which multilingual training
strategy to employ, b) the effect of language selection and
amount of multilingual training data used and c) how to find a
suitable combination for languages. We conducted our exper-
iment on the key word search task and the languages of the
IARPA BABEL program. In a first step, we assessed the per-
formance of a single language out of all available languages
in combination with the target language. Based on these re-
sults, we then combined a multitude of languages. We also
examined the influence of the amount of training data per lan-
guage, as well as different techniques for combining the lan-
guages during network training. Our experiments show that
data from arbitrary additional languages does not necessarily
increase the performance of a system. But when combining
a suitable set of languages, a significant gain in performance
can be achieved.

Index Terms— bottle neck features, multilingual acous-
tic modeling, low-resource ASR, time-delay neural networks,
data selection

1. INTRODUCTION

The goal of IARPA’s program BABEL1 is to build systems for
keyword search (KWS) in telephone speech in a rapid manner

Supported by the Intelligence Advanced Research Projects Activity
(IARPA) via Department of Defense U.S. Army Research Laboratory
(DoD / ARL) contract number W911NF-12-C-0015. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon. Disclaimer:
The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of IARPA, DoD/ARL, or the
U.S. Government. This effort uses the IARPA Babel Program language
collection releases IARPA-babel{102b-v0.4,103b-v0.3,101b-v0.4c,201b-
v0.2b,203b-v3.1a,104b-v0.4bY,106-v0.2f,204b-v1.1b,105b-v0.4,107b-
v0.7,206b-v0.1d}.

1http://www.iarpa.gov/index.php/research-programs/babel

and on limited amounts of data. Within the program progress
is measured through annual evaluations. For the primary con-
dition of the evaluation at the end of second year performers
were only allowed to use 10h of transcribed data in the target
language.

Since state-of-the-art key word search systems make
use of Large Vocabulary Continuous Speech Recognition
(LVCSR) systems, the task of rapidly building KWS systems
includes the task of rapidly building LVCSR systems.

Building LVCSR systems for a new language requires
large amounts of data in the target language in order to esti-
mate the system’s model parameters in a robust way. While
the Babel evaluation’s primary condition only allows for us-
ing data from the target language, another condition exists
in which participants are allowed to use any data available
within the BABEL program from any language in addition to
the limited data of the target language.

In previous work we have shown for the Babel task that
using multilingual data for training the neural network of the
bottle neck feature (BNF) component of the pre-processing
of the LVCSR system can either reduce training time [1] or
the system’s word error rate (WER) [2]. To the best of our
knowledge, there has not been a concise analysis about which
languages and data to choose. We therefore conducted a de-
tailed study of how to combine the different languages within
the BABEL program to improve a system given a specific tar-
get language.

In this paper we conduct a systematic series of experi-
ments on training multilingual BNFs for the Babel task study-
ing three aspects: a) which is the best technique for training
the multilingual BNFs, b) is it more important to increase the
total amount of training data or to vary the number of lan-
guages in BNF training, c) which is the best selection of lan-
guages for multilingual training.

The rest of the paper is structured as follows. In Section 2
we review related work. Then in Section 3 we describe how
we trained our DBNFs. Section 4 describes our experimental
set-up while Section 5 presents our experimental results.



2. RELATED WORK

2.1. Bottle Neck Features Extracted via Deep Belief Neu-
ral Networks

State-of-the-art LVCSR systems often use deep belief neural
networks (DNNs) [3] for extracting features with the help of
deep belief bottle neck features (DBNFs) [4, 5, 6]. For DBNFs
a deep-belief network with several hidden layers and one bot-
tleneck layers is trained, that classifies extracted feature vec-
tors as, e.g., phonemes, context-dependent phonemes, or even
model states. The layers of the DBNF are usually pre-trained,
either by using Restricted Boltzmann Machines (RBMs) [4]
or denoising auto-encoders [7]. After that, back-propagation
training, in one of several possible variants, e.g., stochastic
gradient descent combined with mini-batch training, is ap-
plied which we will call fine-tuning in this paper.

Past research has also shown that the use of Time Delay
Neural Networks (TDNNs) for DBNF front-ends, which we
sometimes also call shifting DBNFs, leads to performance
improvements over the standard feed-forward networks used
for DNNs [2].

2.2. Multilingual DBNFs

Recently the concept of multilingual acoustic modeling has
also been extended to feature extraction via DBNFs. This is
motivated by the fact that neural networks have been shown
to be good at learning shared hidden representations across
different tasks. With respect to multilingual modeling for
DBNFs, the different languages that might partly overlap and
partly differ in their phoneme inventory correspond to the dif-
ferent tasks, while the aspects common to the sounds across
languages are the hidden aspects learned by the network. E.g.,
[8] has shown that the pre-training stage of the training of DB-
NFs is language independent. Training multilingual DBNFs
can either be done by using one shared phoneme set [9], as
it is done for ML-Mix [10], or by using different language
dependent output layers, one for every language [11, 12, 13,
14]. The latter is possible, as the output layer is later dis-
carded anyway and only the bottle neck layer of the network
is retained for constructing the final feature vector. And just
like the regular DBNFs, DBNFs using TDNNs can also be
trained in multilingual fashion and lead to performance im-
provements [2].

Several strategies combining data from different lan-
guages have been explored. Thomas et al. analyzed the
influence of varying the amount of data used from the target
language in [15]. They built a multilingual system using a
fixed amount of data from two training languages and studied
the influnce of adding different amounts of data from the
target language. Knill et al. merged the data from different
languages during training thus creating a common phoneme
set in [16]. They used a fixed set of multilingual data for
training the acoustic model as well as the neural network

and obtained an increase in performance. Grezl et al. used a
similar approach in [17]. They trained a neural network using
a fixed set of multilingual training data in combination with a
limited set of data from the target language for adaptation.

While the work cited here has shown that multilingual
training of DBNFs can lead to performance improvements, to
the best of our knowledge no systematic study has been con-
ducted that answers the three questions we aim to answer in
this paper: a) is it more important to have more training data
or to vary the number of languages in training, b) what is the
best combination of multilingual training and the two stages
of pre-training and fine tuning in DBNF training, c) and how
important is the selection of languages when performing the
multilingual training.

3. DEEP BOTTLE NECK FEATURES

3.1. Input Features for the DBNF Neural Network

There are several approaches towards the preprocessing the
audio data before feeding it into the DBNF network. Among
them are features such as mel-scaled cepstral coefficients
(MFCC) and logarithmic mel-scaled spectral coefficients
(lMel). Preliminary experiments have shown, that the use of
MFCCs and lMels lead to similar results. We thus decided
to use only lMels for our experiments. In addition to lMel
features, we also include features derived from the fundamen-
tal frequency variation [18] and a pitch tracker[19]. These
features are then combined and used as input to the DBNF
neural network.

3.2. Deep Bottle Neck Features

The use of Deep Bottle Neck features as part of a speech
recognition system has first been described by Grézl at al. in
[20]. The common approach is to use a feed-forward neural
network which is trained as a discriminative feature extractor.
Our network contains a narrow, so called bottle neck, hidden
layer. That layer consists of only a fraction of neurons in
comparison to the other layers.

This network performs a non-linear discriminative di-
mensionality reduction. It has been shown that the activation
of the bottle neck units are well suited as input features
for HMM/GMM systems leading to improved recognition
accuracy. In our set-up, we pre-train the network in an unsu-
pervised fashion using denoising auto-encoders, and fine-tune
the network via mini-batch training using stochastic gradient
descent, adapting the learning rate via the new-bob algorithm
[7].

3.3. Time-delay Neural Network Features

There are various methods and training strategies for neural
networks. In a study conducted earlier[2] it as been shown
that the use of TDNNs, which we sometimes call Shifting



Deep Bottle Neck features (SDBNFs) leads to improvements
in performance. SDBNFs are based on the idea of a time
delay neural network[21]. The concept of this approach is
to bring the stacking of input features to the neural network
level. Here, in the forward pass of the fine tuning step, the
gradients of adjacent frames are being averaged over a win-
dow of several frames, thereby capturing the information over
a longer period in time than just a single frame [2].

3.4. Multilingual Deep Bottle Neck Features

Data from multiple languages can be included at various
stages of the neural network training. The first step in which
data can be added is the pre-training. [8] showed that the
use of multilingual data in an unsupervised way can be ben-
eficial. In our experiment, the data we use from different
languages has similar properties. It was recorded under the
same recordings conditions. Therefore, the network can learn
to extract features from human speech recorded under similar
conditions in a language independent way. The role of the
pre-training is to initially guide the network parameters into
the right direction prior to the fine-tuning. By using more
data, the network has the ability to generalize more due to the
fact that the network parameters can be estimated in a more
robust way.

The fine-tuning takes place as a second step. It offers the
possibility to add data from multiple languages as well. Like
when pre-training a network, here we also have the opportu-
nity to include data from other languages as well. The same
holds true when applying the shifting step. But since these
steps fine-tune the parameters of the network, they are some-
what more language-dependent as they need to extract fea-
tures resembling the individual sounds of a language. Thus,
the question remains at which stages to work with multilin-
gual data and at which only with the target data.

4. EXPERIMENTAL SETUP

We conducted our experiments with the help of the Janus
Recognition Toolkit (JRTk) [22] which features the IBIS de-
coder [23]. As target language in our experiments we used
Tamil, for which we trained speech recognition systems us-
ing different kinds of multilingual DBFNs. In our experi-
ments, the DBNFs are the only part trained multilingually.
The HMM/GMM system itself is only trained on the LLP
dataset (10h) from Tamil. As we wanted to focus our study to
the DBNF component of the system, we kept everything else
fixed.

We assessed the performance of the systems on the devel-
opment data set provided for Tamil. It consists of 10 hours of
audio data. The systems were evaluated using two different
metrics: Word error rate (WER) and average term weighted
value[24] (ATWV). The latter requires a set of keywords; for
this we used the given development keyword list. ATWV

gives scores in the range between 0 and 1. For better read-
ability, we multiplied the ATWV score by 100. We used a
class based language-model and an automatic segmentation.
Throughout our experiments, we keep the decoding parame-
ters identical.

4.1. Corpora

We used data from the IARPA BABEL project. The IARPA
provided data for several languages. These are: Assamese,
Bengali, Cantonese, Haitian Creole, Lao, Pashto, Tagalog,
Tamil, Turkish, Vietnamese and Zulu. Table 1 provides an
overview of all the languages used, including details about the
language family and the phoneme inventory. The languages
selected for the BABEL program cover a wide variety of dif-
ferent language families. The number of phonemes per lan-
guage ranges from 32 (Haitian Creole) to 68 (Vietnamese).
As Tamil is the target language in our experiments, we also
looked into the amount of phonemes that Tamil shares with
each language. This information is presented in the last col-
umn of table 1

Language Language Family # Ph. # Ph. w. T.

Tamil Dravidian 34 -

Assamese Indo-European 50 20
Bengali Indo-European 51 21
Hait. Creole (French) Creole 32 17
Lao Tai-Kadai 41 20
Pashto Indo-European 43 24
Tagalog Austronesian 46 20
Turkish Turkic 41 25
Vietnamese Austroasiatic 68 18
Cantonese Sino-Tibetan 37 14
Zulu Niger-Congo 47 16

Table 1: Language overview, including the language fam-
ily, size of phoneme set and amount of phonemes that each
language shares with Tamil

For each language, two data sets were provided: a lim-
ited language pack (LLP) and a full language pack (FLP).
The LLP of a language consists of 10h of transcribed con-
versational speech. The FLP of a language consists of ap-
proximately 100h of transcribed data and includes the data
from the LLP. The data itself is mainly narrowband telephone
speech sampled with 8kHz. Some languages from the second
year of the project (Assamese, Bengali, Haitian Creole, Tamil
and Zulu) include some recordings with higher, CD-quality
resolution. For our experiments, we resampled those down
to 8kHz. The recordings contain different types of noises, as
they were performed on the street, while driving a car or in an
office with some machinery running in the background.



4.2. Baseline

The target language for our experiments is Tamil. For our
baseline, we trained a system on the LLP dataset from Tamil
only. First, we built a context-independent system from
scratch using a flatstart approach. On top of that, we built a
context-dependent system with 2,000 models.

Using that context-dependent system, we created the data
required to train a DBNF. Our DBNFs consists of five hid-
den layers. With the exception of the bottle neck layer, each
layer consists of 1,000 neurons. The bottle neck layer has
only 42 neurons. For pre-training, we are using denoising
auto-encoders with Gaussian noise and a corruption rate of
20%. To extract training data from the other languages for
the neural network training, we used the FLP per language to
train systems in a similar manner and to create that data.

In order to create forced alignments for languages other
than Tamil, we trained a context-dependent system on the
FLP dataset of that particular language. For selecting dif-
ferent amounts of training data, we randomly choose sets of
speakers resembling the defined amount of audio data.

5. RESULTS

In our results we examined three different aspects: a) whether
it is more important to use more data in multilingual DBNF
training, or whether it is more important to have data from
more, different languages; b) at which stages in the training of
DBNFs is multilingual training data helpful; c) how to select
the languages from which to train the DBNF for a specific
language.

Therefore, we initially conducted an analysis to determine
the performance of data from a single language in combina-
tion with the target language in Section 5.1. Parallel to that,
we varied in Section 5.2 the amount of data for a selection
of languages. We also investigated the use of additional lan-
guage data at different points of neural network training in
Section 5.3. Finally, we combined the best fitting languages
together and as a contrastive experiment the worst fitting lan-
guages in Section 5.4.

5.1. Combination of a Single Language with Tamil

In order to establish a baseline for multilingual DBNFs we
trained multilingual DBNFs on only two languages, by com-
bining the data from the Tamil LLP with 40h of one other
language. This will give a first impression of the usefulness
of adding training data from other languages and will show
the variance in performance depending on the exact language
that was chosen to be added. We compare the resulting WERs
against a baseline in which the DBNF was trained on Tamil
LLP only. For this experiment, we used the multilingual data
during pre-training, fine-tuning and the shifting step.

The results are shown in Table 2. One can see that the
choice of language is important for the performance of the

resulting DBNF. Some combinations lead to better perfor-
mance, while others decrease the performance. The best re-
sults can be archived using Turkish, Pashto or Haitian Cre-
ole where we see gains of up to 1.6% relative in terms of
WER over the monolingual baseline. Similar gains can be
observed for ATWV. Here the best system (Turkish) improves
from 2.67 to 3.96. However in the worst case, when choos-
ing Vietnamese as additional language, the WER increases by
4.7% relative, while ATWV drops to -1.34.

The gains and losses correspond to some degree with the
amount of shared phonemes between Tamil and each lan-
guage. As shown in Table 2 the best fitting languages (Turk-
ish and Pashto) share the largest amount of phonemes with
Tamil, whereas the worst fitting languages (Vietnamese, Can-
tonese and Zulu) share the least phonemes with Tamil. But
the amount of shared phonemes should only be considered as
an approximation of the expected performance gain since for
example Haitian Creole fits equally well to Tamil like Ben-
gali and Pashto, although it only shares 17 phonemes with the
target language.

Language WER ATWV # Ph. w. T.

Baseline 82.6 2.67 -

+ Assamese 82.7 3.00 20
+ Bengali 81.5 3.26 21
+ Hait. Creole 81.5 3.82 17
+ Lao 82.3 2.97 20
+ Pashto 81.5 3.48 24
+ Tagalog 82.0 3.40 20
+ Turkish 81.3 3.96 25
+ Vietnamese 86.5 -1.34 18
+ Cantonese 83.3 1.53 14
+ Zulu 84.6 -0.04 16

Table 2: Tamil LLP plus additional 40h of another language.
The last column shows the amount of phonemes that each
language shares with Tamil

5.2. Varying the Amount of Additional Data

In the next experiment, we looked into varying the amount
of foreign language data to Tamil LLP. Just as in the experi-
ment before we added only one language to the Tamil training
data, but this time either added the FLP (ca. 100h), 40h or 10h
of training data of that language. We performed these experi-
ments with the languages from the second year of the BABEL
program. We added the language data to the whole training
process of the neural network, including the pre-training, fine-
tuning and shifting step.



Language FLP 40h 10h

Assamese 82.4 / 2.54 82.7 / 2.37 82.0 / 3.28
Bengali 82.0 / 2.61 81.5 / 3.26 81.7 / 3.03
Hait. Creole 82.2 / 2.30 81.5 / 3.82 81.6 / 3.14
Lao 82.5 / 2.20 82.3 / 2.97 81.6 / 3.31

Table 3: Use of different amounts of data in combination with
Tamil LLP. The number on the left denotes WER, the one on
the right ATWV.

Table 3 shows the performance of the resulting systems.
The results show that selecting the right amount of training
data in addition to the 10h of Tamil training data is also im-
portant. Using all available data per language leads to per-
formance degradation over the baseline. Matching the 10h
of Tamil data with 10h of data from another language always
leads to improvements over the baseline. For two out of the
four languages taking 40h instead of 10h improves system
performance even further, while for the other two languages
this seems to be already too much training data, as perfor-
mance starts to degrade again.

5.3. Methods of Using Data from Additional Languages

There are several steps in the training process of the neural
network at which training data is used and therefore data from
multiple languages can be added. Our training setup for neu-
ral networks consists of up to four steps: Pre-training, fine-
tuning, shifting and again a fine-tuning step. For this exper-
iment, we trained the networks used in three different ways,
whereas multilingual data is being used in more and more
steps: a) Using multilingual data only during pre-training,
then performing the fine-tuning and shifting using data from
Tamil LLP only. b) Using multilingual data for pre-training,
fine-tuning and shifting. c) Using multilingual data for pre-
training, fine-tuning, shifting and adding a fine-tuning step
using data from Tamil LLP only.

This time we also looked at not only adding one language,
but multiple languages to the DBNF training. We used 40h
of data per language and the LLP for Tamil. Again, as in
the previous experiment, we used data from the Babel second
year languages Haitian Creole, Lao, Assamese and Bengali.
This results in up to 160h of training data in addition to the
10h of data from the target language Tamil.

H H+L H+L+A H+L+A+B

a) 82.5 / 2.18 83.3 / 1.47 82.3 / 2.93 82.2 / 2.42
b) 81.5 / 3.82 81.2 / 3.63 80.8 / 4.06 80.6 / 4.05
c) 81.2 / 3.85 80.7 / 4.13 80.8 / 4.34 79.9 / 5.05

Table 4: Tamil LLP plus additional languages (Haitian Cre-
ole, Lao, Assamese and Bengali) and training methods: a)
ML pre-training, b) ML pre-training and shifting, c) addi-
tional fine-tuning on Tamil LLP after shifting. The number
on the left denotes WER, the one on the right ATWV.

As shown in Table 4, using the multilingual data in set-up
a) (only for pre-training) yields only small gains, if at all. Set-
up b) (using the multilingual data not only during pre-training,
but also for fine-tuning and shifting) results in a gains of per-
formance in all cases. The WER decreases up to 2.5% rela-
tive and the ATWV increases by 2.16. After applying another
round of fine-tuning on Tamil only, and thus resulting in set-
up c), performance is increased even further, by 0.5% relative
in Terms of WER, and 1.0 in terms of ATWV.

As a general result, using additional data at all steps of the
neural network training increases the performance the best.
Likewise does an extra fine-tuning step on the target language
after the multilingual training improve system performance
further.

5.4. Combining Multiple Languages

Following our initial experiments using multiple languages
and determining the performance of individual languages in
combination with Tamil, we created two sets of four lan-
guages to do a first investigation into the best combination
of multiple languages. One set consists of the best four lan-
guages according to Section 5.1. The second set contains the
worst four languages. The languages are listed in Table 5.

Best fitting Worst fitting

Turkish Vietnamese
Hait. Creole Zulu
Pashto Cantonese
Bengali Assamese

Table 5: Overview of languages fitting best and worst to
Tamil. The best fitting languages are sorted starting with the
best fitting language, the worst fitting languages are starting
with the worst fitting language.

For this experiment, we use two schemes to determine the
performance of the combination of the different languages.
First, we used 40h per language, resulting in an additional
amount of data of 40h, 80h, 120h and 160h of speech data.
In a second set of experiments, we kept the amount additional
data fixed to 40h, resulting in an amount of data per speech



depending on the number of additional languages. This re-
sults in an amount of 40h, 20h, 13h and 10h of additional
data per language .

Language 40h p. l. 40h total # Ph. w. T.

Baseline 82.6 / 2.67 82.6 / 2.67 -

T 81.3 / 3.96 81.3 / 3.96 25
T+H 81.0 / 4.50 80.9 / 4.21 25
T+H+P 80.3 / 5.41 80.5 / 4.66 28
T+H+P+B 79.7 / 5.65 79.9 / 5.52 28

Table 6: Use of additional languages (Turkish, Haitian Cre-
ole, Pashto and Bengali) with either 40h of data per language
or 40h in total for all additional languages. The number on
the left denotes WER, the one on the right ATWV. The last
column shows the amount of phonemes shared with Tamil.

The results for combining the best systems are shown in
Table 6. Integrating the best four languages into system train-
ing in addition to Tamil LLP decreases the WER by 3.6%
relative and improves ATWV by 2.98. The results show that
the more languages one adds, the better the performance gets.
The difference between using 40h per additional languages
and 40h of additional data in total is marginal. We see this as
an indicator that the total amount of data used is not as impor-
tant as the variety in the languages used for the multilingual
training. Thus, when faced with the question of whether it
is better to collect more data in few languages or more lan-
guages with fewer data, it is better to go for language diver-
sity. The amount of shared phonemes corresponds here to
some extent to the gain in recognition performance. Combin-
ing multiple languages increases the phoneme coverage of the
target language.

Language 40h p. l. 40h total # Ph. w. T.

Baseline 82.6 / 2.67 82.6 / 2.67 -

V 86.5 / -1.34 86.5 / -1.34 18
V+Z 82.4 / 1.98 82.5 / 1.91 20
V+Z+C 82.0 / 3.05 81.9 / 3.19 22
V+Z+C+A 81.6 / 3.90 81.7 / 3.85 24

Table 7: Use of additional languages (Vietnamese, Zulu,
Cantonese and Assamese) with either 40h of data per
language or 40h in total for all additional languages. The
number on the left denotes WER, the one on the right ATWV.
The last column shows the amount of phonemes shared with
Tamil.

When comparing the results of adding the best languages
in Table 6 against the results in Table 7 where we added
the worst languages, one sees that in the end, when adding
enough languages, also adding bad performing languages

gives gains over the baseline. Adding more languages in-
creases the coverage of the phonemes here as well. The
observed gain is comparable to using Pashto alone which has
the same amount of shared phonemes with Tamil.

As described in section 2.2, other have also made use of
the different phoneme sets by combining them. Although we
compare the different phoneme sets, our system uses only
the phonemes from the target language. We do not use the
phonemes from the other languages explicitly. They were
only used implicitly during the network training as target
states while fine-tuning the network.

6. CONCLUSION AND OUTLOOK

In this work we have examined the use of multilingual DB-
NFs for Tamil speech recognition on the BABEL task. We
have performed experiments to give insight into three ques-
tions: a) which is the best technique for training the multi-
lingual DBNFs, b) is it more important to increase the total
amount of training data or to vary the number of languages in
DBNF training, c) which is the best selection of languages for
multilingual training.

The experiments show that using multilingual data at all
stages of our DBNFs (pre-training, fine-tuning, shifting stage)
gives the best performance. Also, the total amount of training
data is not as important as the variety of the languages in the
multilingual training dataset. Some experiments suggest that
adding too much data might from a certain point on decrease
system performance again.

With respect to selecting suitable languages we compared
the strategy of selecting those languages that give the best im-
provements when combined individually with the target lan-
guage against selecting those that give the worst. Results
show that selecting the best performing languages seems to
be a reasonable strategy.

With respect to the question of how to select suitable lan-
guages, more experiments need to be performed. We have
identified the amount of shared phonemes as a first indicator
to predict the performance of the resulting system. But our
work has also shown that additional metrics are required. Our
goal is therefore to examine more strategies and try to find
good strategies that are computationally in-expensive.

7. REFERENCES

[1] Sebastian Stüker, Markus Müller, Quoc Bao Nguyen,
and Alex Waibel, “Training time reduction and perfor-
mance improvements from multilingual techniques on
the babel ASR task,” in Acoustics, Speech and Signal
Processing (ICASSP), 2014 IEEE International Confer-
ence on. IEEE, 2014.

[2] Quoc Bao Nguyen, Jonas Gehring, Markus Müller, Se-
bastian Stüker, and Alex Waibel, “Multilingual shift-



ing deep bottleneck features for low-resource ASR,”
in Acoustics, Speech and Signal Processing (ICASSP),
2014 IEEE International Conference on. IEEE, 2014,
pp. 5607–5611.

[3] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye
Teh, “A Fast Learning Algorithm for Deep Belief Nets,”
Neural Computation, vol. 18, no. 7, pp. 1527–1554, July
2006.

[4] Dong Yu and Michael L. Seltzer, “Improved bottleneck
features using pretrained deep neural networks,” in IN-
TERSPEECH, 2011, pp. 237–240.

[5] L. Mangu, Hong-Kwang Kuo, S. Chu, B. Kingsbury,
G. Saon, Hagen Soltau, and F. Biadsy, “The IBM 2011
GALE Arabic Speech Transcription System,” in Pro-
ceedings of the ASRU, Waikoloa, HI, USA, December
2011.

[6] T.N. Sainath, B. Kingsbury, and B. Ramabhadran,
“Auto-Encoder Bottleneck Features Using Deep Be-
lief Networks,” in Proceedings of the ICASSP, Kyoto,
Japan, March 2012.

[7] Jonas Gehring, Yajie Miao, Florian Metze, and Alex
Waibel, “Extracting Deep Bottleneck Features Using
Stacked Auto-Encoders,” in Proceedings of the ICASSP,
Vancouver, Canada, May 2013.

[8] Pawel Swietojanski, Arnab Ghoshal, and Steve Re-
nals, “Unsupervised cross-lingual knowledge transfer
in DNN-based LVCSR,” in Proceedings of the Spo-
ken Language Technology Workshop (SLT), 2012 IEEE.
IEEE, 2012, pp. 246–251, IEEE.

[9] Ngoc Thang Vu, Wojtek Breiter, Florian Metze, and
Tanja Schultz, “Initialization Schemes for Multilayer
Perceptron Training and their Impact on ASR Perfor-
mance using Multilingual Data,” in Proceedings of the
INTERSPEECH, Portland, Oregon, September 2012.

[10] T. Schultz and A. Waibel, “Language Independent
and Language Adaptive Acoustic Modeling for Speech
Recognition,” Speech Communication, vol. 35, no. 1-2,
pp. 31–51, August 2001.

[11] Karel Vesely, Martin Karafiat, Frantisek Grezl, Mi-
los Janda, and Ekaterina Egorova, “The language-
independent bottleneck features,” in Proceedings of
the Spoken Language Technology Workshop (SLT), 2012
IEEE. 2012, pp. 336–341, IEEE.

[12] G. Heigold, V. Vanhoucke, A. Senior, P. Nguyen,
M. Ranzato, M. Devin, and J. Dean, “Multilingual
Acoustic Models Using Distributed Deep Neural Net-
works,” in Proceedings of the ICASSP, Vancouver,
Canada, May 2013.

[13] Stefano Scanzio, Pietro Laface, Luciano Fissore,
Roberto Gemello, and Franco Mana, “On the use of a
multilingual neural network front-end,” in Proceedings
of the Interspeech, 2008, pp. 2711–2714.

[14] Arnab Ghoshal, Pawel Swietojanski, and Steve Renals,
“Multilingual training of Deep-Neural networks,” in
Proceedings of the ICASSP, Vancouver, Canada, 2013.

[15] Samuel Thomas, Michael L Seltzer, Kenneth Church,
and Hynek Hermansky, “Deep neural network features
and semi-supervised training for low resource speech
recognition,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2013 IEEE International Conference on.
IEEE, 2013, pp. 6704–6708.

[16] KM Knill, Mark JF Gales, Shakti P Rath, Philip C
Woodland, Chao Zhang, and S-X Zhang, “Investigation
of multilingual deep neural networks for spoken term
detection,” in Automatic Speech Recognition and Un-
derstanding (ASRU), 2013 IEEE Workshop on. IEEE,
2013, pp. 138–143.

[17] Frantisek Grézl and Martin Karafiát, “Adapting mul-
tilingual neural network hierarchy to a new language,”
in Spoken Language Technologies For Under-resourced
Languages (SLTU), 2014 4th International Workshop
on, 2014, pp. 39–45.

[18] Kornel Laskowski, Mattias Heldner, and Jens Edlund,
“The Fundamental Frequency Variation Spectrum,” in
Proceedings of the 21st Swedish Phonetics Conference
(Fonetik 2008), Gothenburg, Sweden, June 2008, pp.
29–32.

[19] Kjell Schubert, “Grundfrequenzverfolgung und deren
Anwendung in der Spracherkennung,” M.S. thesis, Uni-
versität Karlsruhe (TH), Germany, 1999, In German.

[20] František Grézl, Martin Karafiát, Stanislav Kontár, and
J Cernocky, “Probabilistic and bottle-neck features for
LVCSR of meetings,” in Proceedings of the Acous-
tics, Speech and Signal Processing, 2007. ICASSP 2007.
IEEE International Conference on. IEEE, 2007, pp. V–
757 – IV–760.

[21] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and
K.J. Lang, “Phoneme recognition using time-delay neu-
ral networks,” Acoustics, Speech and Signal Processing,
IEEE Transactions on, vol. 37, no. 3, pp. 328–339, Mar
1989.

[22] Monika Woszczyna, N. Aoki-Waibel, Finn Dag Buø,
Noah Coccaro, Keiko Horiguchi, Thomas Kemp,
Alon Lavie, Arthur McNair, Thomas Polzin, Ivica
Rogina, Carolyn Rose, Tanja Schultz, Bernhard Suhm,
M. Tomita, and Alex Waibel, “Janus 93: Towards spon-
taneous speech translation,” in International Conference



on Acoustics, Speech, and Signal Processing 1994, Ade-
laide, Australia, 1994.

[23] Hagen Soltau, Florian Metze, Christian Fugen, and Alex
Waibel, “A one-pass decoder based on polymorphic
linguistic context assignment,” in Automatic Speech
Recognition and Understanding, 2001. ASRU’01. IEEE
Workshop on. IEEE, 2001, pp. 214–217.

[24] David RH Miller, Michael Kleber, Chia-Lin Kao,
Owen Kimball, Thomas Colthurst, Stephen A Lowe,
Richard M Schwartz, and Herbert Gish, “Rapid and
accurate spoken term detection.,” in INTERSPEECH,
2007, pp. 314–317.


