
Towards Speaker Adaptive Training of Deep Neural Network Acoustic Models

Yajie Miao, Hao Zhang, Florian Metze

 Language Technologies Institute, School of Computer Science, Carnegie Mellon University
Pittsburgh, PA, USA

{ymiao,haoz1,fmetze}@cs.cmu.edu

Abstract
We investigate the concept of speaker adaptive training (SAT)
in the context of deep neural network (DNN) acoustic models.
Previous studies have shown success of performing speaker
adaptation for DNNs in speech recognition. In this paper, we
apply SAT to DNNs by learning two types of feature mapping
neural networks. Given an initial DNN model, these networks
take speaker i-vectors as additional information and project
DNN inputs into a speaker-normalized space. The final SAT
model is obtained by updating the canonical DNN in the
normalized feature space. Experiments on a Switchboard 110-
hour setup show that compared with the baseline DNN, the
SAT-DNN model brings 7.5% and 6.0% relative improvement
when DNN inputs are speaker-independent and speaker-
adapted features respectively. Further evaluations on the more
challenging BABEL datasets reveal significant word error rate
reduction achieved by SAT-DNN.
Index Terms: Deep neural networks, speaker adaptive
training, automatic speech recognition

1. Introduction
In recent years, DNNs have been used widely for automatic
speech recognition (ASR), showing superior performance than
the state-of-the-art GMM-HMM systems [1, 2, 3]. GMM
models take advantage of speaker adaptation to reduce
mismatch between training and testing conditions. Speaker
adaptation applies affine transforms, such as maximum
likelihood linear regression (MLLR) [4], either to GMM
model parameters or to speech features. However, this idea of
linear transformation is not applicable for DNN adaptation in
the sense that input features of DNNs normally have very high
dimensions. Also, DNNs are trained discriminatively with the
back-propagation (BP) algorithm rather than maximum
likelihood estimation (MLE). How to effectively adapt DNN
acoustic models therefore becomes an active research area.

The first group of methods perform adaptation by
augmenting the speaker-independent DNN (SI-DNN) with an
additional layer. The parameters of such a layer are learned via
BP on the adaptation data. This layer can be inserted between
the input layer and features [3, 5], acting as the new input
layer. Alternatively, it can be placed immediately after the last
hidden layer, which is equivalent to modifying the parameters
of the softmax classification layer [5, 6]. Given insufficient
adaptation data, [6] only updates the bias vector of the softmax
layer for robust adaptation. Competitors of these approaches
are [7, 8] in which no changes are made to the DNN structure.
Instead, the shape of the activation function is adjusted to fit
SI-DNN to the testing condition. Meanwhile, various efforts
have been made to train DNNs on speaker-adapted features.
For example, [3, 9] evaluate the effectiveness of applying
GMM-derived vocal tract length normalization (VTLN) and
feature-space MLLR (fMLLR) [4] transforms to DNN inputs.
Speaker-adapted features can also be obtained by explicitly

incorporating speaker information into DNN training. In [10],
the authors use i-vectors [11, 12, 13] as low-dimensional
representations of speaker characteristics, and concatenate i-
vectors with raw acoustic frames such as MFCCs.

Another key technique to boost GMMs is speaker adaptive
training (SAT) [14]. This paper ports the concept of SAT to
DNN acoustic models. Following the similar steps adopted by
SAT-GMM, SAT-DNN starts from an initial DNN1 which has
been trained over all the speakers. A feature mapping function,
analogous to fMLLR transforms in GMM, is learned to
incorporate i-vectors as extra information and project the
original features into a speaker-normalized space. Finally, the
canonical DNN model is re-finetuned in the new feature space
with the feature mapping applied.

We represent this feature mapping function as a complex
neural network and propose two implementations for it. The
first method AdaptNN inserts multiple adaptation layers above
the input layer of the initial DNN. This idea is related to [15]
with one important difference: we append i-vectors, instead of
the trained speaker codes [15, 16], to adaptation layer outputs.
Benefits of using i-vectors will be discussed in Section 3. The
second method involves training a smaller network which
takes i-vectors as input and produces a linear feature shift at
the output. This shift is added to the original DNN inputs and
the resulting feature space becomes more speaker-normalized.

In the training stage, the two types of feature mappings, as
well as the canonical model, can be learned with the standard
BP. During decoding, the SAT-DNN model is adapted simply
by extracting the i-vector for each testing speaker and feed the
i-vector to the architecture. Speaker adaptation in this manner
is efficient because no initial decoding pass is required. In
contrast, the existing DNN adaptation methods rely on first-
pass decoding hypotheses to get the supervision targets. Since
DNNs are not re-finetuned on the adaptation data, this
approach is less sensitive to hypotheses errors and thus more
suitable for unsupervised adaptation. Experiments with the
Switchboard dataset show that the proposed SAT-DNN
achieves significant improvement over the baseline initial
DNN, regardless of whether the baseline model has been
trained on speaker-independent or speaker-adapted features.
Moreover, we demonstrate the advantage of SAT-DNN on the
more challenging BABEL corpus.

2. Extraction of I-Vectors
The introduction of i-vectors has resulted in state-of-the-art
results in speaker recognition and verification [11, 12, 13].
The i-vector approach differs from the earlier joint factor
analysis (JFA) [17] in that it has a single variability subspace,
rather than separate speaker and channel subspaces. A speaker
independent GMM model, also referred to as universal

1 This initial DNN can be either SI-DNN or a DNN trained over
speaker-adapted features such as fMLLR.

background model (UBM), can be trained on the speech
segments from a group of speakers S. Then, we adapt the
UBM to a specific speaker s and concatenate means of the
speaker-dependent GMM into a supervector which is further
decomposed as

s s= +v m Ti (1)

where m is the supervector of the UBM means, and T is the
total variability matrix subsuming principal components of
variability in the supervector space. Training of the T matrix is
entirely unsupervised, following the similar procedures used to
train the speaker subspace in JFA [17]. The low-dimensional i-
vector is contains factors on each principal component. We
assume a standard normal distribution N(0, 1) over i-vectors.
Then, is can be obtained by maximum a posterior (MAP)
estimation given the speech segments from speaker s.
Previously, i-vectors have been applied successfully for
discriminative adaptation of GMM models [18] and speaker
adaptation of DNNs [10]. In this paper, we exploit i-vectors to
realize SAT of DNNs.

3. Speaker Adaptive Training of DNNs
SAT starts from an initial DNN model built for hybrid systems.
This DNN is trained to classify the input acoustic features into
context-dependent HMM states. DNN outputs are the estimate
of posterior probabilities of the states given each feature vector.
This section first presents two methods for transforming input
features and then elaborates on SAT procedures.

3.1. AdaptNN: Bottom Adaptation Layers
The first method AdaptNN, as shown on the right of Figure 1,
inserts multiple fully-connected adaptation layers under the
initial DNN but above the input features. Given an input
feature vector ot from speaker s, each adaptation layer, except
the highest one, appends the corresponding i-vector is to its
hidden activation. The combined outputs are propagated to the
next layer as inputs. Suppose that Wm is the weight matrix
connecting the m-1-th and m-th adaptation layer. Then, the
size of Wm is Nm×(Nm-1 + d), with Nm denoting the number
of units at the m-th adaptation layer and d denoting the
dimension of i-vectors.

The intuition behind AdaptNN is that by incorporating i-
vectors, the adaptation layers convert the original DNN inputs
into more speaker-independent features. Parameters of the
AdaptNN network, marked with green circles in Figure 1, can
be estimated with BP on the training data by keeping the initial
DNN fixed. The highest adaptation layer generates the new
features and must have the same dimension as the original
feature vectors. Also, this highest layer uses the linear
activation function, while the other adaptation layers use the
sigmoid function.

Although having the similar architecture as [15], AdaptNN
differs on two aspects. First, in [15], representations of speaker
characteristics, also called speaker codes, have to be learned
on both training and testing sets. In contrast, i-vectors can be
extracted in a completely unsupervised way. Therefore,
AdaptNN requires no finetuning over the adaptation data.
Second, speaker codes are appended both to the adaptation
layers and also to the original features [15]. However, we
observe optimal recognition performance when AdaptNN
appends i-vectors only to the adaptation layers.

Figure 1: Illustration of the iVecNN and AdaptNN methods for
input feature mapping. The green circles mark the connection
parameters for the feature mapping networks.

3.2. iVecNN: Linear Feature Shift
For GMM models, linear feature shift has been exploited
extensively for speaker adaptation and feature-space
discriminative training (such as fMPE [19]). A bias vector is
estimated and added to the original features, making the
resulting feature space either speaker independent or
discriminative. Previous work [18] has also attempted to learn
feature shift from i-vectors in order for GMM adaptation. The
idea can be formulated as follows:

()t t sf= +a o i (2)

where ot is the original feature vector from speaker s, and f is
the function which maps the i-vector to a bias vector. After
adding this bias, we can get a speaker independent feature
vector at. In [18], the mapping function f is formulated into
region dependent linear transforms (RDLT) [20].

For DNN acoustic models, we use an i-vector neural
network as f. Our method is depicted on the left of Figure 1.
The i-vector network iVecNN takes i-vectors as input and
generates the feature shift as output. Its output layer has the
same dimension as ot and uses the linear activation function.
The other layers in iVecNN adopt the sigmoid activation
function. This smaller iVecNN network is combined with the
initial DNN via feature addition to form an even deeper
network. We keep the parameters of the initial DNN
unchanged. Parameters of iVecNN are updated through BP
from the top softmax layer of the initial DNN. Note that inputs
to this combined DNN include i-vectors together with the
speech features. Thus, the number of training examples equals
the number of training speech frames, not the number of i-
vectors (i.e., training speakers). A notable advantage of
iVecNN lies in its applicability to convolutional neural
network (CNN) acoustic models [21, 22, 23]. In comparison,
appending i-vectors to convolution layers is difficult because
convolution outputs are generally organized in the form of
feature maps. As a result, the AdaptNN method is not
applicable to CNNs.

3.3. Speaker Adaptive Training
After the feature mappings are learned, speaker adaptive
training is straightforward to accomplish. We apply the feature

⊕

...…

...…

Adapt
NN

Initial
DNN

= i-vectorsiVecNN

mapping, either AdaptNN or iVecNN, to input features. The
upper initial DNN is further updated in the transformed feature
space, while parameters of AdaptNN or iVecNN are kept fixed.
This generates the canonical DNN model more independent of
specific speakers. The procedures for building SAT-DNN can
be summarized as follows.

1) Train the baseline initial DNN over the training data

2) Extract i-vectors for training speakers

3) Learn the feature mapping using i-vectors and based on
the AdaptNN or iVecNN method

4) Update the canonical DNN model in the transformed
feature space

During decoding, we extract i-vectors for testing speakers and
feed the i-vectors to the architecture in Figure 1. This will
adapt SAT-DNN to each testing speaker, without any
finetuning on the adaptation data. Therefore, unlike SAT-
GMM, SAT-DNN only needs to decode the testing data once,
even if unsupervised adaptation is performed.

4. Experiments on Switchboard

4.1. Experimental Setup
The first set of experiments are on the Switchboard
conversational telephone speech. For faster turnaround of
tuning experiments, we select 100k utterances from the entire
Switchboard-1 Phase 2 pack and create a smaller training set
with 110 hours of speech, as described in [9, 24]. Evaluation is
conducted on the eval2000 (Hub5’00) testing set. This testing
set consists of 20 conversations from Switchboard and 20
conversations from CallHome English. We report results on
the Hub5’00-SWB part. All decoding runs use a trigram
language model trained solely from the Switchboard-1
transcripts. During DNN training, a 5-hour validation set,
independent of the 110-hour training set, is employed for
parameter tuning.

The GMM-HMM systems are built with the standard
Kaldi Switchboard recipe [25]. We first train the initial ML
model based on 39-dimensional MFCC+delta+acceleration
features with per-speaker cepstral mean normalization. Then 9
frames of MFCCs are spliced together and projected down to
40 dimensions with linear discriminant analysis (LDA). A
maximum likelihood linear transform (MLLT) is applied on
the LDA features and generates the LDA+MLLT model.
Finally, to deal with speaker variability, SAT is performed
based on fMLLR. The SAT model has 4287 context-
dependent triphone states and an average of 20 Gaussian
components per state.

We turn to the open-source ALIZE toolkit [26] for i-vector
extraction. The i-vector extractor uses 19-dimensional MFCCs
and log-energy as the features, with the frame length of 25 ms
and shift of 10 ms. Computing deltas and accelerations finally
gives a 60-dimensional feature vector on each frame. Both the
UBM model and the total variability matrix are trained on the
entire 318 hours of Switchboard-1 speech. A 100-dimensional
i-vector is generated for each training and testing speaker. One
may argue that we are making use of extra data beyond the
defined 110 hours. However, training of i-vector extractors is
unsupervised and uses no transcripts. In practice, large
amounts of untranscribed speech are easily accessible. Thus,
we think that system comparison in our experiments remains
fair and valid.

4.2. Baseline DNN Systems
On the 110-hour training set, we construct two DNN models
on top of different feature types. The inputs of the first DNN
are 11 neighboring frames of 30-dimensional log-scale
filterbank coefficients with per-speaker cepstral mean and
variance normalization. The second DNN is trained over 9
neighboring fMLLR frames. In both cases, the class labels for
speech frames are generated by the SAT-GMM model through
forced alignment. DNNs have 5 hidden layers, each of which
contains 1024 units. Finetuning of the networks is to optimize
the cross-entropy objective with an exponentially decaying
learning rate schedule. Specifically, the learning rate starts
from an initial value and remains unchanged for 15 epochs.
Then the learning rate is halved at each epoch until the frame
accuracy on the validation set stops to improve. A momentum
of 0.5 is adopted for fast convergence, and we use the mini-
batch size of 256 for stochastic gradient descent (SGD).

It’s worth pointing out that DNN parameters are initialized
randomly to rule out impact of pre-training on system
comparison. We achieve the best WER of 19.9% on Hub5’00-
SWB, while the authors of [9] report 19.7% under the similar
setting. This 0.2% gap may come from differences in language
model pruning, number of targets, scoring configuration, etc.
After doing pre-training with Stacked Denoising Autoencoders
(SDAs) [27], we are able to bring the WER down to 19.3%, a
slightly better number than [9]. This means that if only
acoustic modeling is concerned, we are working with a
reasonable baseline. A more competitive baseline is the
approach proposed in [10]. However, we experiment with this
approach on our setups and fail to get gains out of it. We will
continue to work on replicating the numbers reported by [10].

4.3. Results of SAT-DNN
When SAT-DNN is deployed, AdaptNN and iVecNN have the
following configurations: their output layers have the same
dimension as the original features (330 for filterbanks and 360
for fMLLR); each of the other layers has 512 units. Figure 2
shows SAT-DNN results as we vary the number of layers in
AdaptNN and iVecNN. In general, DNNs with speaker-
adapted fMLLR features get better performance than DNNs
with speaker-unadapted filterbank features. For each feature
type, the SAT-DNN model consistently outperforms the
baseline DNN (see Table 1), even when the baseline is trained
on fMLLR features. On both feature types, SAT-DNN
achieves its optimal WER when AdaptNN has 3 layers
(including the output layer). When switching to iVecNN,
SAT-DNN performs best if iVecNN has 4 layers.

Figure 2: Performance of SAT-DNN as the number of layers in
AdaptNN and iVecNN increases. WER(%) is measured on the
HUB’00-SWB set.

Table 1 presents results corresponding to the best
configuration from Figure 2. The AdaptNN method performs
better than iVecNN in terms of WER of the final SAT-DNN.
We think this is because the linear shift from iVecNN is not
powerful enough to transform the original features
sophisticatedly. With the filterbank features, SAT-DNN with
AdpatNN achieves the WER of 19.8%, i.e., 7.5% relative
improvement over the baseline model. When fMLLR features
are used, the improvement of SAT-DNN becomes less
significant (6.0% relative), simply because speaker variability
has been partly modeled by fMLLR transforms.

The last two rows in Table 1 show the results when we
don’t update the canonical DNN model after estimating the
feature mappings. In this case, we get better WER than the
baseline, demonstrating the benefits of AdaptNN and iVecNN
for feature normalization. However, the numbers are worse
than the complete SAT-DNN model. Another natural question
is: how does SAT-DNN perform without adding the i-vectors?
We build SAT-DNN following the same steps (Section 3.3)
but without appending i-vectors to the AdaptNN network. On
the filterbank (fMLLR) features, SAT-DNN gives the WER of
20.9% (19.7%). This is marginally better than the baseline
DNN but significantly worse than SAT-DNN with i-vectors.

5. Experiments on BABEL
We further evaluate SAT-DNN on the BABEL corpus that has
been collected under the IARPA BABEL research program.
The corpus consists of a variety of languages including
Cantonese, Tagalog, Turkish, etc. Each language contains
around 80 hours of conversational telephone speech for
training and 10 hours for system development. The data
collection covers a variety of acoustic conditions, speaking
styles and dialects. Also, a large portion of the audio data are
either non-speech events (e.g., breath, laugh, cough) or non-
lexical speech (e.g., hesitations, fragments and foreign words).
Due to all these factors, speech recognition on the BABEL
corpus is a very difficult task [28, 29, 30].

In this paper, we conduct our experiments on Tagalog
(IARPA-babel106-v0.2f) and Turkish (IARPA-babel105b-
v0.4). We follow the similar setups as on Switchboard to build
the GMM and DNN models. The SAT models of the two
languages have 3890 and 3880 triphone tied states respectively.
On each language, the i-vector extractor is trained only on its
training data, without utilizing any external speech. During
decoding, we select approximately 2 hours of speech from the
entire 10-hour development data as the testing set. The trigram
language model is built from training transcripts.

Table 1. WER(%) of various DNN models on HUB’00-SWB.
Results are reported with filterbank and fMLLR features
respectively. Numbers in brackets are relative improvement
over the baseline, which holds for Table 2 and 3.

Models Filterbank fMLLR

Initial DNN (Baseline) 21.4 19.9

SAT-DNN (AdaptNN) 19.8 (7.5%) 18.7 (6.0%)
SAT-DNN (iVecNN) 19.9 (7.0%) 19.0 (4.8%)

AdaptNN + Initial DNN 20.8 (2.8%) 19.2 (3.5%)
iVecNN + Initial DNN 21.2 (0.9%) 19.7 (1.0%)

We observe that on BABEL data, the fMLLR front-end
does not hold a clear advantage over the filterbank features.
Therefore, we only present the results of SAT-DNN with
filterbanks in Table 3. On both Tagalog and Turkish, the SAT-
DNN model displays better recognition performance
compared with the corresponding baseline DNN. For example,
on Tagalog, SAT-DNN with AdaptNN achieves 2.2% absolute
(or 4.5% relative) improvement in terms of WER. On Turkish,
the improvement is enlarged to 2.7% absolute or equivalently
5.3% relative.

Table 3. WER(%) of SAT-DNN on the BABEL Tagalog and
Turkish datasets. The features are filterbanks.

Models Tagalog Turkish

Initial DNN (Baseline) 49.3 51.3

SAT-DNN (AdaptNN) 47.1 (4.5%) 48.6 (5.3%)
SAT-DNN (iVecNN) 47.3 (4.1%) 49.3 (3.9%)

6. Conclusions and Future Work
In this paper, we present an effective framework to perform
SAT for DNN acoustic models. Two types of neural networks,
AdaptNN and iVecNN, are proposed in order for feature
transformation. These networks take speaker i-vectors as
additional information and are trained to map speech features
into a speaker-normalized space. The canonical DNN is
further updated in the new feature space to generate the final
SAT-DNN model. Experiments show that SAT-DNN achieves
nice gains when the initial DNN has been trained over both
speaker-independent and speaker-adapted features.

The SAT-DNN model is likely to be more advantageous
with improved i-vector exaction. In our future work, we will
explore training of the i-vector extractor on more external data
[18]. Also, as discussed in Section 3.2, the iVecNN method is
applicable to CNNs. We will extend SAT to CNN acoustic
models [21, 22, 23] and examine the effectiveness of the
resulting SAT-CNN model.

7. Acknowledgments
This work was supported by the Intelligence Advanced
Research Projects Activity (IARPA) via Department of
Defense U.S. Army Research Laboratory (DoD / ARL)
contract number W911NF-12-C-0015. The U.S. Government
is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright
annotation thereon. Disclaimer: The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of IARPA,
DoD/ARL, or the U.S. Government. This work used the
Extreme Science and Engineering Discovery Environment
(XSEDE), which is supported by National Science Foundation
grant number OCI-1053575.

8. References
[1] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-

dependent pre-trained deep neural networks for large
vocabulary speech recognition,” IEEE Transactions on
Audio, Speech and Language Processing, vol. 20(1), pp.
30-42, 2012.

[2] F. Seide, G. Li, and D. Yu, “Conversational speech
transcription using context-dependent deep neural
networks,” in Proc. Interspeech, pp. 437–440, 2011.

[3] F. Seide, G. Li, X. Chen, and D. Yu, “Feature
engineering in context-dependent deep neural networks
for conversational speech transcription,” in Proc. ASRU,
pp. 24–29, 2011.

[4] M. Gales, “Maximum likelihood linear transformations
for HMM-based speech recognition,” Computer Speech
and Language, vol. 12, pp. 75–98, 1998.

[5] B. Li, and K. C. Sim, “Comparison of discriminative
input and output transformations for speaker adaptation in
the hybrid NN/HMM systems,” in Proc. Interspeech, pp.
526–529, 2010.

[6] K. Yao, D. Yu, F. Seide, H. Su, L. Deng, and Y. Gong,
“Adaptation of context-dependent deep neural networks
for automatic speech recognition,” in Proc. IEEE Spoken
Language Technology Workshop, pp. 366–369, 2012.

[7] S. M. Siniscalchi, J. Li, and C.-H. Lee, “Hermitian-based
hidden activation functions for adaptation of hybrid
HMM/ANN models,” in Proc. Interspeech, pp. 526–529,
2012.

[8] S. M. Siniscalchi, J. Li, and C.-H. Lee, “Hermitian
polynomial for speaker adaptation of connectionist
speech recognition systems,” IEEE Transactions on
Audio, Speech and Language Processing, vol. 21, no. 10,
pp. 2152-2161, 2013.

[9] S. P. Rath, D. Povey, K. Vesely, and J. Cernocky,
“Improved feature processing for deep neural networks,”
in Proc. Interspeech, 2013.

[10] G. Saon, H. Soltau, D. Nahamoo, and M. Picheny,
“Speaker adaptation of neural network acoustic models
using i-vectors,” in Proc. ASRU, pp. 55-59, 2013.

[11] N. Dehak, R. Dehak, P. Kenny, N. Brummer, P. Ouellet,
and P. Dumouchel, “Support vector machines versus fast
scoring in the low-dimensional total variability space for
speaker verification,” in Proc. Interspeech, pp. 1559–
1562, 2009.

[12] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P.
Ouellet, “Front-end factor analysis for speaker
verification,” IEEE Transactions on Audio, Speech and
Language Processing, vol. 19, no. 4, pp. 788-798, 2011.

[13] O. Glembek, L. Burget, P. Matejka, M. Karafiat, and P.
Kenny, “Simplification and optimization of i-vector
extraction,” in Proc. ICASSP, pp. 4516-4519, 2011.

[14] T. Anastasakos, J. McDonough, and J. Makhoul,
“Speaker adaptive training: a maximum likelihood
approach to speaker normalization,” in Proc. ICASSP, pp.
1043-1046, 1997.

[15] O. Abdel-Hamid, and H. Jiang, “Fast speaker adaptation
of hybrid NN/HMM model for speech recognition based
on discriminative learning of speaker code,” in Proc.
ICASSP, pp. 7942-7946, 2013.

[16] O. Abdel-Hamid, and H. Jiang, “Rapid and effective
speaker adaptation of convolutional neural network based
models for speech recognition,” in Proc. Interspeech,
2013.

[17] P. Kenny, P. Ouellet, N. Dehak, V. Gupta, and P.
Dumouchel, “A study of interspeaker variability in
speaker verification,” IEEE Transactions on Audio,
Speech and Language Processing, vol. 16, no. 5, pp. 980-
988, 2008.

[18] M. Karafiat, L. Burget, P. Matejka, O. Glembek, and J.
Cernocky, “iVector-based discriminative adaptation for

automatic speech recognition,” in Proc. ASRU, pp. 152-
157, 2011.

[19] D. Povey, B. Kingsbury, L. Mangu, G. Saon, H. Soltau,
and G. Zweig, “fMPE: discriminatively trained features
for speech recognition,” in Proc. ICASSP, pp. 961-964,
2005.

[20] B. Zhang, S. Matsoukas, and R. Schwartz, “Recent
progress on the discriminative region-dependent
transform for speech feature extraction,” in Proc.
Interspeech, 2006.

[21] O. Abdel-Hamid, A. Mohamed, H. Jiang, and G. Penn,
“Applying convolutional neural networks concepts to
hybrid NN-HMM model for speech recognition,” in Proc.
ICASSP, pp. 4277-4280, 2012.

[22] T. N. Sainath, A. Mohamed, B. Kingsbury, and B.
Ramabhadran, “Deep convolutional neural networks for
LVCSR,” in Proc. ICASSP, pp. 8614-8618, 2013.

[23] T. N. Sainath, B. Kingsbury, A. Mohamed, G. Dahl, G.
Saon, H. Soltau, T. Beran, A. Aravkin, and B.
Ramabhadran, “Improvements to deep convolutional
neural networks for LVCSR,” in Proc. ASRU, 2013.

[24] K. Vesely, A. Ghoshal, L. Burget, and D. Povey,
“Sequence-discriminative training of deep neural
networks,” in Proc. Interspeech, 2013.

[25] D. Povey, A. Ghoshal, et al., “The Kaldi speech
recognition toolkit,” in Proc. ASRU, 2011.

[26] J.-F. Bonastre, N. Scheffer, D. Matrouf, C. Fredouille, A.
Larcher, A. Preti, G. Pouchoulin, N. Evans, B. Fauve, and
J. Mason, “ALIZE/SpkDet: a state-of-the-art open source
software for speaker recognition,” in Proc. ISCA/IEEE
Speaker Odyssey 2008.

[27] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.
Manzagol, “Stacked denoising autoencoders: learning
useful representations in a deep network with a local
denoising criterion,” Journal of Machine Learning
Research, vol. 11, pp. 3371-3408, 2010.

[28] J. Gehring, Y. Miao, F. Metze, and A. Waibel,
“Extracting deep bottleneck features using stacked auto-
encoders,” in Proc. ICASSP, 2013.

[29] J. Gehring, W. Lee, K. Kilgour, I. Lane, Y. Miao, and A.
Waibel, “Modular Combination of Deep Neural
Networks for Acoustic Modeling,” in Proc. Interspeech,
pp. 94-98, 2013.

[30] Y. Miao, F. Metze, and S. Rawat, “Deep maxout
networks for low-resource speech recognition,” in Proc.
ASRU, 2013.

