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:Abstract: ln this paper, the problem of large vocabulary word recognition is addressed from a
:conneclionisl perspective. The problem is not only of practical interest but also ol scientific importance,

§ince a workable solulion must integrate pattern recognition under consideration ol sequential, symbolic

constraints. We have developed two large vocabulary word recognition systems based on different

speech recognition philosophies. One of the systems exploits ihe power of neural nehvorks in performing

accurate classification, lhe other the power of producing good non-linear function approximation and

signal prediction. We present each system's operation and evaluate ils performance. Both achieved

respectable recognition scores in excess of 907o correct lor vocabularies of up to 5000 words. We

suggesl further avenues towards improvement of either system and in the process discuss the relative

strengths ol either approach.
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l lntroduction

Recognition of speech by machine has.been a fascinating topic of research that has {or many years given

rise to some of the most innovative and exciting models. lt has always been driven by a mix of intuitions

relating to syslem design and engineering on one side and human cognitive modeling on the other. lt has

always drawn a great deal of ideas, motivation and inspiration from a desire to understand human

communication, while imposing the realism of practical engineering constraints and comparative

performance measures. Connectionist models or "neural networks" have recently attracted considerable

(and renewed) attenlion in speech recognition as they provide speech scientlsts with a cognitively

plausible model of speech processing while at the same time introducing a novel, yet realistic engineering

solution to the problem. A number of initial designs have produced in a short time performance results

that compared favorably or exceeded those obtained by traditional speech processing

lechniques[i,2,3,4]. On the other hand, most of these experiments were limited to small tasks or

subproblems ol the speech recognition problem such as phoneme classification[1 ,2,5] or small

vocabulary word recognition [6, 7, B].

While these resulls are encouraging given those limited domains, the question remains to be answered

il and how this technology may be used elfectively for the design of whole speech understanding
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sy§tems. Indeed, a common criticism argues that connectionist models are but good classifiers bul
cannot handle the temporal, sequential nature oi speech. As such, connectionist models may be
attraclive only in limited domains or toy problems, but would scale poorly to large vocabulary speech
understanding systems. Although this criticism has been valid for a number of initial simple networks,
extensions that overcome these limitations have been proposed and are beginning to produce
respectable results on larger problems as well.

ln this paper we will describe current research activity that addresses the large vocabulary recognition
problem. we present two large vocabulary word recognition systems that illustrate that neural networks
1.) can be used productively for large vocabulary speech recognilion by way of classification but also by
way of non-linear mapping and system idenlification 2.) neural networks can be integrated with
connectionist as well as non-connectionist strategies to handle temporal, sequenlial processing to form
chains of subword units, words and sentences.

2 The Large Vocabulary Word Recognition problem

Early on connectionist word recognition experimenls were carried out that have exploited the
classification capabilities of neural nets by applying an entire word's coefficient matrix to the inputs of
static full word networks with output units for each word to be classified. Good results were achieved, but
the resulting systems required precise time alignment and a preprocessing stage that determines the
endpoints of an input word, both unacceplable requirements in practice in the light of conlinuous speech,
noise and varying §peaking rates. Similarly limiting is the fact that only small vocabularies can be
handled in lhis fashion, because network size and training time become prohibitively large and enrollment
impractical with increasing vocabulary size.

To overcome the {ormer lirst set of limitations, networks that model time, temporal distortion (warping)
and/or shift-invariance internally have been proposed for small vocabulary recognition. Among them are
techniques thal integrate neural network based classification wilh lraditional schemes for time alignmenl
and sequence management, such as the Dynamic Neural Net (DNN) tB, 91, word level Time-Delay Neural
Networks (TDNNs) [1 0, 11], hybrid neural net classiliers and Hidden Markov Modets[12] and Neural
Prediction Models [13]. Most ol these models have been tested on small vocabularies (Japanese, French
and English digits) and have achieved excellent performance results, but all used dedicated models lor
each vocabulary word and are in their basic forms not appropriate tor large vocabulary recognition.

To extend these models to large vocabulary recognition subword unlts such as phonemes or syllables
must be employed. Since such subword units are limited in number large vocabularies can be
constructed as different sequences of these atomic subunits. ln large vocabulary word recognition then
the task is to identify the most likely sequence of phonetic units that make up a legal word (preferably
without requiring segmentation in the process). Several models have been proposed that express
sequential constraints in a conneclionist framework alone [14, 15, 16, 17, 1B]. Alternatively, combinations
between the perceived strengths of neural networks at the pattern recognition level with the strengths of
traditional methods at modeling sequences such as Hidcien Markov Models, Viterbi Decoding, or Dynamic
Programming have also been proposed. Such "hybrid approaches" have recenily gained in popularity as
they appear to offer immediate access to the best ol both worlds.
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ln the lollowing we describe two connectionist large vocabulary recognition systems. They are

examples of lwo different recognition philosophies. We will relerto them as "classification based models"

and "prediction based models".

3 Classitication Based Models

Neural networks have been shown to implement excellent non-linear classifiers both at the phonetic level

as wetl as ai the word level. Large vocabulary systems can therefore be implemented by neural networks

that recognize phonemes or parts of phonemes (states) and evaluate how well a sequence of their
phonemic output hypotheses match the legal sequence of a word.

3.1 Time-Delay Neural Networks

One of our attempts in doing this is based on the Time-Delay Neural Network (TDNN). This network has

been shown lo produce excellent phoneme discrimination performance [1]. This network was developed

to provide a non-linear non-parametric2 pattern classilier thal can spol features or phonemes independent

ol precise temporal alignment (shift-invariance property). The network is a multilayer network of units that

incorporate current activations from lower layers as well as time-delayed versions ol them (context) as

inpul. Fig.1 illustrates a TDNN trained to pertorm the discrimination task belween the voiced stop

consonants lb, d, gl (see [19] for a more detailed description of its operation).

lnitial experimentation with this class of networks was performed speaker-dependently on small

phoneme sets only (lbd,gl discrimination), but extensions to high performance multi-speaker

recognition [20] and recognition of all phonemes were soon achieved. Both problems signiricantly

benefilted lrom modular and incremental learning 120,21 ,2). By using an integrating supernetwork

(Meta-Pi network [20]) to decide on how to gate an appropriate mix of speaker speciflc network decisions,

locus ol attention or rapid adaptation to speaker specilic classification can be achieved. In rnul1,'-speaker

classification experiments this resulted in speaker-dependent recognition rates - a significant

improvement over results lrom speaker-independent training. Modularity could also be used effectively to

overcome problems related to scaling, training time and generalization. By exploiting the leatural

abslractions in the hidden units of previously trained nelworks modular training allowed lor grealer

elliciency and llexibility of design while achieving performance greater than or equal to non-modular

networks [2].

3.2 Large Vocabulary Recognition by TDNN

Based on a Japanese larEe vocabulary isolated word database (5240 words) [22, 19, 1] a number of

speakerdependent experiments were carried out to improve the TDNN's performance, particularly in view

ol large vocabulary recognition [23]. For use in word recognition, speech is to be classified into phoneme

oulput categories over running speech (in this case over entire words spoken in isolation). As the original

2no assumptions as to the underlying probability distributions need to be made
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Figure 1. The TDNN architecture (/b,d,g/-task)

TDNNs were trained on excised phoneme tokens only, several modifications were desirable. First, the

original excised phoneme training patterns were now artiricially misaligned in time by various offsets. lt

more realistically simulates the absence of precise phoneme labels and segmentation. The resulling

introduction of time alignment "noise" lurned out not to decrease performance, but lead to noticable

improvements instead, particularly for phoneme spotting. Training in this fashion improved generalization

and entorced shift-invariant phoneme classification even in transitory regions between phonemes. The

resulting phoneme spotting rates of the large scale TDNN's improved lrom 95.87" to 98.0% and more

importantly, the false alarm rates3 decreased Irom 62.2"/"lo 23.2o/o4. The performance results of our

earlier models and this improved model compared favorably with various other recognition strategies over

the same data. For word recognition also a silence category was necessary which was added by modular

design to the existing net [23]. Fig.2 shows the resulting large TDNN all-phoneme architecture. Fig.3

shows output activation patterns for the word "wala".

While good phoneme classification pedormance is indeed encouraging, this will have to be properly

integrated and have to translate into. good large vocabulary word recognition performance to advance lhe

field. Mature speech recognition technology has already at its disposal a number of elegant techniques

,or this and similar word{evel integration needs to be accomplished in a connectionist frame-work or in

3Presumably due to previously undefined transitory legions.

4All rocognition tests were run on independent test data from the sam€ speaker'
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Figure 3. TDNN spotting phonemes in word "wata"

the form of hybrid connectionist/ non-connectionist system design. Neither is necessarily a trivial step 1o

undertake and we shall desribe several successlul initial attempts lhat have been proposed.

Using data from a Japanese isolated word database (as described above) and a TDNN as a front end

phoneme level model, a hybrid large vocabulary recognition system was developedl2Sl. 24 phonemes (5

vowels, 1B consonants and silence) were spolted by shifting TDNNs across time providing the front end

Ior phoneme based word recognition. To recognize a word, the overall likelihood of a word-specific

sequence of phoneme activations needs to be estimated. To do so, we can approximate the output

activations of a TDNN as representing the maximum a posteriori probabilities of a phoneme class given
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speech at a given time frame [24]. lf each phoneme is viewed as a single state with an associated output

probability, then a word likellhood can be calculated as the ioint probability over all oulput probabilities

over time. Assuming that ail stales are independent, a word likelihood would be given by the product ol

framewise outputs. A simple way of implementing this is to evaluate at each time frame the log activation

ot the output unit that corresponds to a legal phonemic state in the word and summing these log outputs

over time. The correspondence between a given time frame and the current active phoneme node is

perlormed by a Dynamic Time Warping (DTW) procedure.

An implementation of lhis procedure is described by Miyatake, Sawai, Minami and Shikano [23]. Here,

a modular TDNN as described above was used, and only one state per phoneme was provided. An

LR-parser provided top-down prediction of what set of phoneme lransitions are legal to lorm legal words

in the dictionary. For duration control each phoneme state was expanded to the average number ol

frames of that phoneme before DTW was carrled out. Recognition experiments on various vocabuiary

sizes were undertaken with this system. All experiments were pertormed vocabulary independenlly5 and

on independent iest data (phonemes not used tor training). For a 500-word tesl vocabulary, lirst choice

accuracy of 98% was achieved. For a large vocabulary of 5000 words, recognition rates as high as 92.6

were obtained. Second and fifth choice rates Jor the later vocabulary size were 97.6"/" and 99.1"/.,

respectively, indicating that most confusions occurred among a small group of acoustically similar words

(e.g., "itai" -> "ittai").

3.3 Extensions

The performance of lhe system described does indeed suggesi that very high performance can be

achleved, independent of training vocabulary and training conte)d. Several problems, however, need to

be overcome to further improve large vocabulary speech recognition systems.

Sequenclng ol Phoneme lnternal Events: First, we have already noted that the TDNNs described

above were all integraled as single phoneme states. While TDNNs can capture a variety of phoneme

specific cues sequential ordering within a phoneme is only imposed within the reach of its lixed duration

time-delays. Additional ordering between variably duration subphonemic states must be imposed in the

context of word recognition. Väriable or adaptive time-delays [25] could be used internally or a sequence

of several states[12] per phoneme at its output. This should lead to better performance and duration

modeling, particularly in continuously uttered poorly afiiculated speech.

Stochastic Modeling of Sequences: The most successfut and popular approach lo slochaslic

modeling of sequences is given by Hidden Markov Models (HMMs), where a phoneme is given by a

stochastic sequence of states that can be linked together inlo words and from there on into sentences. At

each of these levels (lexical, synlactic, etc.) constraints can be applied and probabilities estimated, and

their ioint probabilities (assuming they are independent) computed. A popular idea therefore is to use the

strengths ol neural networks at precise pattern classification in combination with the modeling of state

sequences and time alignment lound in HMMs.

Some oi the earlier proposals at lhis were developed by Bourlard, Wellekens and Nelson 126,24,271.
ln theoretical and experimental work lhey had shown that the outputs of a multilayer perceptron

sThe phonemes used for training were extracted trom words of a different vocabulary than the one used for tosting.
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(leedtorward network) trained by backpropagation from a mean square error may be considered to be

estimates of the maximum a posteriori probabilities of a given input to belong to its conesponding output

class. They have since built on this notion to construct Hidden Markov Model chains where the output

activations of a local multilayer perceptrons (MLP) are used aS output probabilities for the states in a

traditional HMM. Viterbi aligment is performed to assign the framewise MLP lirings lo corresponding

slales and to compute an overall word output probability.

Several enhancemenls were subsequently proposed by several investigators. Morgan and

Bourlard [27] achieved significant improvements in recognition performance, by normalizing their network

outputs (the a posteriori probabilities) by their respective prior probabilities to eliminate a bias to uneven

distributions in the training data. Another technique aimed at optimizing generalization performance is the

usage of a cross-validation set. lf only limited amounts of training data are available given a net of a

given size, this can lead to overfitting to the training data and poor generalization to (poor performance

on) new unseen data [27]. USe of an independent pseudo testing set (the cross-validation set) then

yields a slopping criterion, that assures that a net is trained wilh optimal lest-set perlormance in mind. A

third enhancement proposed by several researchers is Qonnectionist Viterbi Training (CVT)[27, 121.

CVT is akin to the segmental k-means training procedure used for Hidden Markov model training [28] and

aims at integrated and segmentation lree word level training. The idea is to optimize a suitable phoneme

(or State) segmentation togetherwiln the backpropagation network optimization. CVT iteratively rinds the

best labeling ot the input (by way of Viterbi alignment), while the networks attempt to provide better

outputs to correspond to these label. These techniques produced good word level recognition

performance, that are beginning to compare favorably with other advanced HMMS on continuous

sentence [27] and on connected digit [12] tasks.

Research Directions: A host of additional modifications and improvements that are known to work

well for HMMs remain to be explored in the context of hybrid connectionist systems. Among them are

corrective training (at the word level), choice oi best input represenlation, transition probabilities, choice of

optimal HMM topology, optimal neural network architecture, etc. Last not leasl, wor« is in progress

lowards improved training algorithms that generate more meaninglul probability estimates at lhe outputs

of local phonetic classification networks 10 improve word level discrimination and overall syslem

robustness.

An alternate exciting research avenue is given by connectionist formalisms that represent sequential

constraints altogelher internally as conneclionist modeling extensions[14, 15, 16, 17,29, 1B]. Such

models may relax some ol the limiting assumptions made by current recognition strategies and could

potentially lead to Iurther improvements in speech recognition system design.

4 Prediction Based Models

The connectionist models that we have discussed so far apply neural nets as classifiers of either word

patterns or subpatterns. For classification, the input usually consists of a coefficient matrix and lhe output

approximates a bit pattern representing the classification results. ln addition to learning discrete

classilications, however, neural nelworks can implement a variety of other constraint satisfaction lasks.

Among them are non-linear function approximation, interpolation and prediction, which generate
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continuous real-valued output vectors. This can be exploited in speech lor various signal mapping and
coding applications, including noise suppression [30], speech code mapping [31] and non-linear signal
prediction [32]. The use of neural nelworks as non-linear signai predictors in speech recognition has

recently first been shown successfully in the "Neural Prediction Model" proposed by lso and
Watanabe [13] and the "Hidden Control Neural Network" proposed by Levin [33]. Both of these models
have so far only been implemenled for small vocabulary recognition tasks (i.e., digits), but have yielded

high recognition performance speaker-independently. Extensions to large vocabulary recognition are also
possible with this approach as we shall see in the following.

4.1 Recognition Using Sma!l Vocabularies
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The basic idea is illustrated in Fig.4. A two frame window of input coefficients is input into a multilayer
feedlonarard net trained to produce at its output a frame ot coefficients that is as close as possible to the

next (future) speech lrame. The distance between this predicted frame and the actual next speech lrame
can be measured as a prediction error or distortion and this distortion is used as error criterion for
backpropagation training. Given a set ol predictor networks one can imagine training each predictor lor a

Predicted Speech Frame

Predictor

(10 hidden Good Prediction ->'A"
unils)

Prediction Errors

lnput Speech Frames

FIgure 4. Modeling a phoneme by signal prediction

separate region of an ullerance. Each predictor net becomes specialized to best predict lhis portion ol an

utterance, such that the prediction error is likely to be lowest in these regions. A word is then represented

by lhe sequence of predictor nets lhat best predicls lhe actual observed speech. Dynamic Programming

is used as a mechanism to optimally apply each predictor sequentially over time to best approximate the

actual signal. Flg.S shows this alignment step based on the matrix of distances between actual speech

frames and predicted frames. During training an alignment path is determined by Dynamic Programming.

Each predictor is then tralned to minimize the error between its output and the speech frames that it was

assigned to predict according to the DP-alignment path. During recognition the word whose sequence of

predictors minimizes the error between predicted frames and aclual signal lrames is chosen. lso and

Watanabe [13] used 10 mel scale cepstral coefficients and amplitude change as inputs to their networks.

The number of predictors used depended on the utterance and ranged (for Japanese digits) between 9

and 14. Each Predictor
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Flgure 5. A Neural Prediction Model

and 14. Each predictor net has three layers, an input layerof two 11 coe{ficient frames,9 hidden units

and 11 predicted output coellicients. Excellent performance (0.2"/o efiot), was reported lor a Japanese

speaker-independent isolated digit recognition lask uttered over telephone lines. This result comparÖd

lavorably with other techniques (0.7%lor lhe DNN [34, B] and 1.1o/"lor DP-matching [35]) tested on the

same data.

Figure 6. The Hidden Control Neural Network

The model proposed by Levin is similar to the one described above and is illustrated in Fig.6. As before

it uses non-linear prediction by neural nels lo measure a model's lit to the input data. Unlike the Neural

Prediction Model, however, it uses only one single predictor for an entire word and a sequence of varying

input llags or "control units" that switch lhe predictor into alternate modes of operation as time

progresses. Similar to "counter nodes"(proposed lor spelling correction [36]), these units are used to

control lhe sequential state of the network. The predictor network used 24 speech inputs (1 2 cepstral and

12 deltacepstal parameters), 30 hidden units, 24 predicted outputs and 8 control input units. The control

units lurn on sequentially when appropriate and remain on as additional bits are activated ("thermometer"

representation). Control transitions (the point at which a new bit is turned on) are determined by Viterbi

Prodlctlon orrort

HCNN
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Alignment. During training, the Viterbi algorithm determines the state of control unit settings for each
speech input lrame and applies backpropagation learning to reduce prediction error according to this
segmentation. The nelwork was tested on connected digils from the Tl-digit dalabase (using male
speakers only). Using independent test data but from the same speakers used in training, a word
recognition rate ol 99.3% was achieved.

4.2 Large Vocabulary Recognition

Large vocabulary word recognition using predictor nelworks is also possible. For use in large vocabulary
recognition, words must here again be decomposed into subword units such as phones or syllables and
an optimal model lor these units must be trained. Recent work by Tebelskis and Waibel [37] has
demonstrated lhat this can be done without the need for segmentalion. ln this work, time alignment and
conneclion weights were optimised jointly and the weights of sets of network predictors corresponding to
the same phoneme symbols were linked together (as in the TDNN). Experiments with the "Linked
Predictive Neural Network" (LPNN) resulted in 94% recognition perlormance for speaker-dependent
isolated word recognition over a database ol 234 Japanese words and 90% over a 1000 word vocabulary.
The data used in lhese experiments was given by a confusable subset of the data used for evalualion ol
the TDNN based system described in the previous section. Performance results on this particular subset
were found to be comparable between the two systems.

The operalion and training of the LPNN are shown in Fig.7. As before, a set of predictors is assigned to
dilferent portions of a word. Here these portions are defined to be phonemes and each occurrence of the
same phoneme is modeled by the same set of three predictors. ln Fig.7, lor example, two words "BAB"
and "ABA" may consist of the same phonemes in difrerent order and position. Time alignment of the
sequence of predictors is done as before, but all prediction errors assigned to the same phoneme (or
portion thereof) train the same predictor net by way ot a linkage pattern that defines the legal phoneme
sequence of a word. A number of enhancements to this basic scheme have so far been found to be
effective. A set of parallel predictors was added to each phoneme model to allow the LPNN to better
represent alternale pronuncialions and context dependencies. An assignment of each allernate was nol
predetermined, but the system selects the most suitable alternate based on the prediction errors
produced by each alternate. During training the selected alternate is also reinforced by additional training
while the others are not. ln this fashion, the network automatically generates different models depending
on context and pronunciation. A measurable performance improvement was oblained from this
technique. Signi{icant improvemenls were also obtained when phoneme pairs that are only
distinguishable on the basis of duration (e.9., in Japanese: "k" vs. "kk") were represented by diflerent sets
of predictors. Fig.8 shows an example of processing in the LPNN for an input word "kashikoi". ln the top
panel, the original spectrogram is shown with 16 spectral coeflicients per time lrame and time moving
from left to right. Underneath, the output predictions ol the best predictors (as determined by DTW) at

each time irame are displayed. The third panel shows ouput predictions for only one lil-predicto(s). As

can be seen prediction is best in the region corresponding to the final lV, and degrades in other areas.
The final display shows the distance marix obtained lor each input frame and for each predictor linked into

the word. Alignment is perlormed based on this matrix and the resulling labeling is shown at the input

axis.
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Figure 7. Training a Linked Predictive Neural Net

4.3 Extensions

To furlher enhance prediction based large vocabulary recognition, several current limitations have to be

addressed. The strength of the model described here is that it inherently provides for simple mechanisms

lor word level integration and optimizalion. Optimization essentially proceeds top down, in an attempt to

suitably represent a word's speech pattern given the phonetic sequence of the word. A possible problem

with this approach is the apparent lack of discrimination at the speech pattern level as can be seen in
Fig.B from the relative quality of a single /i/-predictor applied to ihe entire utlerance. This leads to good

word level integration, but can result in poor acoustic-phonetic discriminability [38]. The representation is

also potentially more sensitive to varying phonetic conlexts [38], unless one provides alternate models ior
alternate contexts or pronunciations. This suggests enhancements similar to those applied lo Hidden

Markov Models, such as correciive training and context dependent phones. Aiternatively, connectionist
self-organizing principles could be attempted.

5 Conelusion

ln this paper we have reviewed conneclionist strategies applied to speech recognition. Reaching beyond
mere classification o, sound palterns, we have addressed the problem of large vocabulary recognition,

where conslraints arising lrom the classiiication of the underlying speech sounds must be intenvoven with

the additional constraints of sequentiality and lexical legality. We have on the other hand deliberately

limited this discussion to the word level and not addressed sentence level issues that certainly have to be

included in complete large vocabulary speech understanding syslems (see [39, 40] lor further discussion).
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We have developed two dilferent connectionist large vocabulary systems, based on different underlying

recognition philosophies. One is based on classitication, the other on prediction of speech. Both
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strategies achieved excellent recognition performance and performed comparably with respect to each

other. lnterestingly, either approach displayed different areas of strength and weakness, related to their

respective bottom-up or top-döwn recognition philosophies. While near-term enhancements using either

recognilion philosophy are being explored, one may wonder what kind of model may ultimately mimick

humans' ability to use whatever constraints to recognize speech, be they high level pragmatic or fine-

phonetic distinctions. Our search for an understanding of cognitive mechanisms and their realization by

machine will u ndoubtably continue.
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