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Abstract— Future life pictures humans having intelligent hu-
manoid robotic systems taking part in their everyday life. Thus
researchers strive to supply robots with an adequate artificial
intelligence in order to achieve a natural and intuitive inter-
action between human being and robotic system. Within the
German Humanoid Project we focus on learning and cooperating
multimodal robotic systems. In this paper we present a first
cognitive architecture for our humanoid robot: The architecture
is a mixture of a hierarchical three-layered form on the one hand
and a composition of behaviour-specific modules on the other
hand. Perception, learning, planning of actions, motor control,
and human-like communication play an important role in the
robotic system and are embedded step by step in our architecture.

I. INTRODUCTION

There is no denying that robots gradually enter all fields
of human everyday life. This leads to challenging research
questions like acceptance of a robot by its human user,
safety of the humans interacting with the robot, and cognition
and artificial intelligence required of the robotic system. Our
research is dedicated to the development of concepts, meth-
ods and concrete mechatronic components for a humanoid
robot sharing its workspace with humans [1]. Key issues of
the Collaborative Research Center 588 “Humanoid Robots –
Learning and Cooperating Multimodal Robots” (SFB 588) are
multimodal communication channels allowing the human user
to intuitively interact with the robotic system, cooperation
between human and robot in different contexts, and the robot’s
ability to learn previously unknown tasks, new motions, new
concepts and new objects. Our present testbed is a humanoid
robot in a kitchen environment (Fig. 1), which comprises a
mobile two-arm system with five-fingered hands, a flexible
torso, a sensor head with visual and acoustic sensors, and an
artificial skin. In addition, the motion system and thus the
behaviour of the robot is tailored towards human-like motions.

Translating our key issues into a working humanoid robotic
system requires an adequate cognitive architecture comprising
elementary building blocks for technical cognition and intelli-
gence of the robot. In cognitive psychology cognition includes
functions of perception and recognition, of encoding, storing
and memorizing, as well as of thinking and problem solving, of

Fig. 1. Humanoid robot in the robot kitchen at the SFB 588 lab in Karlsruhe

motor control, and, finally, of usage of language [2]. Question-
ing several international researchers in robotics and examining
actual publications on intelligent robotic systems showed that
actually the researchers apply a similar definition of cognition
as used by psychologists to intelligent robotic systems. In
contrast to cognitive psychology the different functions of
cognition had a different priority. Perception of the robotic sys-
tem was named first, then learning, motor control, reasoning,
problem solving, goal orientation, knowledge representation
and communication followed. Self-consciousness, motivation
and emotions of a robotic system being functions of cognition
were in dispute. Although a similar definition is applied, only
some functions are actually realized by the researchers in their
robotic systems.

The first cognitive architectures for intelligent robots came
from artificial intelligence (see e.g. [3], [4]). Such architectures
tried to create a complete symbolic world model of the
robot environment using sensor data and to make a plan
on a symbolic level (sense-plan-act (SPA) strategies). This
strategy has many drawbacks, such as slow reaction times
and weak couplings between model representation and the
real world scenario. Moravec [3] wrote about the Stanford
CART: The system was reliable for short runs, but slow.
The Cart moved one meter every ten to fifteen minutes, in
lurches. Such robots were more or less restricted to live in



toy worlds. As a reaction, Brooks proposed a more skill-
oriented architecture known as subsumption architecture [5].
This architecture has many parallel interacting components for
different functional ”behaviours”. Similar ideas can be found
in [6]–[8]. Open problems are the explicit representation of
goals and the coordination of the components. A fusion of
both approaches has been proposed with slightly different
names (i.e. three-layered architecture) from different authors
[9]–[11]. Here, only the lowest level contains behaviours. A
mid-level coordinates the components of the lowest level and
a planning component is placed on the top level. Further
developments based on this concept can be found in [12]. Such
architectures are related with human operator models from
cognitive science subdividing human information processing
in (task-related) skill-based, rule-based and planning-based
elements [13]. In the last years, different papers proposed
the integration of emotions as motivational system [14]–[16].
However, a detailed specification of three-layered architectures
for humanoid robots is an open question.

Our notion of cognition of an intelligent robotic system
comprises functions of perception, of memorizing and learn-
ing, of solving problems (complex task planning), of motor
control and of communication (speech, gestures, mimics,...).
We have therefore designed a cognitive architecture to meet
our needs, which is presented in this paper. The architecture
serves as the reference architecture of the German Humanoid
Project and is submitted to ongoing efforts and changes.

This paper is organised as follows: Section II gives an
overview over our cognitive architecture, whereas perceptual
components, dialogue components, and task related compo-
nents are described in detail in Sections III, IV, and V. Section
VI pictures the usage of temporal active models, while learning
components are focused by Section VII. The actual state
of implementation is described in Section VIII; Section IX
concludes this paper.

II. OVERALL DESIGN OF THE COGNITIVE ARCHITECTURE

A cognitive architecture for an intelligent robotic system is
required to support fast perception, control and task execution
on a low level as well as recognition and interpretation of
complex contexts, planning of intrinsic tasks, and learning of
behaviours, which are typically all processed on higher levels.
Higher levels correlate with higher complexity and higher
understanding. In order to satisfy all these needs we have
chosen a three-layered architecture adapted to the requirements
of a humanoid robot. It comprises parallel behaviour-based
components interacting with each other, which can be trig-
gered by entities on a higher level. The main advantages are
fast reaction times to external events, an explicit integration
of robot goals in the planning layer and a modular design
approach.

The building blocks of the architecture are depicted in
Fig. 2. The interface to the robotic environment is formed by
the actual robot hardware, that is its sensors and actuators. The
single perceptual and task oriented components are distributed
on three layers. Fast reactive components (low-level) and
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Fig. 2. Cognitive architecture of the Karlsruhe Humanoid Robot

building blocks for recognition or task coordination (mid-
level) act in real-time. The highest level comprises such
challenging components as fusion of different perceptual re-
sults and recognition of situations and contexts. A dialogue
component, a task planer, and a learning component are also
situated on the top-level. A global knowledge database houses
several sub-databases required by all components on all layers.

Active models used for real-time perceptions and tasks are
retrieved from the global knowledge database and stored in
a cache memory. In addition, they have a certain a degree
of autonomy for adaptation. The execution supervisor is re-
sponsible for the priority management of tasks and perceptual
components.

Robot tasks are planned on a higher symbolical level using
task knowledge. A resulting sequence of actions is passed
on to the task coordination on the mid-level, which then
coordinates all running tasks. The final correctly parameterised
and deadlock free flow of actions is executed in the low-level
task execution.

Interactions between cognitive components across all layers
are needed depending on context and behaviour. This concerns
the focus of attention of the robotic system, priority manage-
ment of necessary perceptual components and tasks, access of
low-level components to data stored in the knowledge base,
dialogue management, or complex reflexes requiring more
intrinsic sensor data interpretation than performed by low-level
perceptual components.

All components of the architecture are described in detail
in the following sections.



III. PERCEPTUAL COMPONENTS

Low-level perception comprises fast interpretation methods
of sensor data without any need to access the system knowl-
edge database. These sensor data are relevant for either low-
level control of the robotic system and reflexes or as inputs for
mid-level perception. The result of the low-level perception is
therefore not only passed on to the mid-level perception but
also to the task execution via the active models. Especially data
coming from joint position sensors, the force torque sensors
located in the robot’s wrists, data from tactile sensor arrays
used as artificial sensitive skin [17], and acoustic data for
sound [18] and speech activity detection [19] are processed
within this module.

The middle layer in the perception hierarchy comprises the
various recognition components of the system. Based on the
pre-processing results of the low-level perceptual components
single modality recognition as well as multimodal recogni-
tion (e.g. audio-visual speaker tracking) is possible. These
recognition components have access to the database, where
persistent information is stored, and also to the active models.
The active models (see Fig. 2) serve as a short time memory
and provide current environmental information, as well as
information about objects in the focus of attention. The list of
recognition components should be easily extensible to add new
features. Major components are speech recognition [20], [21],
acoustic, visual [22] and audiovisual speaker tracking [18],
object and person recognition, and gesture [23] recognition.

The highest level within perception organizes all under-
standing components such as single modality understanding,
multimodal (late) fusion, and situation recognition. On the
highest level of perception the system also interprets actions
by the user and recognizes them as communicative or non-
communicative behaviour. Modality dependent understanding
components are speech understanding, gesture interpretation,
movement interpretation [24] and intention prediction. The
situation recognition component requires the results of the
other components to create a situational representation and
interpretation.

Multimodal fusion can take place on various levels from
early integration to late integration (for an overview see e.g.
[25]). While audio-visual person tracking is classified as a
mid-level perceptual component, high-level fusion uses seman-
tic representations as input. Represented as an understanding
component, fusion on this level can combine temporally cor-
related input, such as pointing gestures and speech (e.g. [19]).
Even later fusion for communicative input with only loose
correlation in time is possible in discourse which is handled
by the dialogue manager.

IV. DIALOGUE MANAGER

Communicative interaction with the user and interpretation
of communicative events is coordinated by the dialogue man-
ager. It serves as an intermediate component between percep-
tion and task planning, being able to interpret the pragmatics
of user input in the current context, answer questions, request
missing information and to forward action requests to the task
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planner. On the other hand it can be initiated by the system
to request information by the user, e.g. to resolve from error
states. Spoken or multimodal output needs to be scheduled
for execution by the task scheduler, since it requires access
to system resources. Communicative output can also influence
the attention control system where the system expects new
spoken or multimodal input (user needs to be in the field of
view) by the user.

Furthermore, the dialogue manager has functionality by
itself that can be seen as cognitive functions, such as user
intention recognition and user modelling. Dialogue strategies
should take into account the user’s current state such as emo-
tion, system and task conditions and situational constraints,
such as higher safety levels [26], [27]. Learning of strategies,
new tasks, new formulations and new words, as well as
introduction of new objects or persons are attributes that a
dialogue system needs to support within the overall cognitive
architecture.

V. TASK ORIENTED COMPONENTS

As a symbolic planner the task planner operates above the
real-time level using task knowledge. The planning process is
started when a desired task has been successfully interpreted
out of the data passed from the high-level perception or from
the dialog manager. A symbolic plan consists of a sequence
of actions which the task flow generator (Fig. 3) selects out
of the task knowledge in the knowledge base. Here, a set of
different actions with pre- and postconditions is stored in form
of XML-files or Petri nets. The actions have been acquired by
various learning and programming processes e.g. programming
by demonstration or optimisation of actions. The task flow
generator assembles the plan for the intended task and adapts
the free parameters to the given task. The result of the task
planner is a specified plan which can also be divided into
several subplans for subsystems e.g. left arm and right arm
running in parallel. Additionally, the complete plan includes
information, which actions are allowed to be interrupted by



other components of the robotic system i.e. if an emergency
is detected or if a change of focus of attention is required.
The task planner itself can always interrupt actions during run-
time and replan them. The task planning is able to delegate
decisions to the mid-level by integrating resource management
aspects into the plan for task coordination.

The execution supervisor is located on the output of the task
planner (Fig. 3). It is responsible for the final scheduling of
tasks and the resource management of the robot.

Resource management is a hard problem for humanoid
robots because many subsystems are involved in different
tasks. Resources include hardware subsystems (platform, head,
arm(s), hand(s), microphone, speakers) with associated soft-
ware modules, perceptual software and computer capacities.
As an example, the robot head with the cameras is needed for
visual servoing, navigation, interaction with the user and local-
ization of external events. Similar problems occur for software
components as text-to-speech, object and user recognition.

The proposed concept for resource management and task
coordination bases on ideas in [28]. This paper describes a
Petri net based strategy and shows an example for three dif-
ferent tasks allocating one, two or three different subsystems as
resources. The resources to be allocated are already specified
for each task by the task planner. Additionally, resources
bound by the attention of the robot are managed by the
execution supervisor. The challenge is to manage resource
allocation needed for a new focus of attention without any
deadlocks.

Petri net based formulation of robotic tasks is quite popular
for industrial robots especially for manufacturing tasks (see
e.g. [29]). For intelligent robots and machines in general,
implementations especially for the coordination layer have
been proposed by [30]. But there exist only few papers using
Petri nets in humanoid robotics for coordination, hardware
resource handling and planning (see e.g. [28], [31], [32]).

The execution supervisor starts the task from the task stack
with the highest priority if all necessary hardware and software
resources for the task are available to avoid deadlocks. At
the same time, all necessary resources are allocated until this
task is completed or cancelled. The successful or unsuccessful
completion of the task is an integrated message for a defined
token configuration of the Petri net in task coordination. In
addition, the task planning is able to force the completion of
running Petri nets in task coordination (by handshaking) or
cancel this net (without handshaking) to free resources for
tasks with a higher priority.

With this concept, the execution supervisor dynamically
adapts the configuration of the robot to the actual task. A
parallel performance of different tasks can be organized by an
integrated planning in one Petri net or a parallel performance
of two or more Petri nets allocating different resources. From
a theoretical point of view, the latter case could be interpreted
as a composed Petri net with independent subnets.

The task coordination is the mid-level component of the
three-layered architecture. On this level, a Petri net is executed
to coordinate all sub-tasks by firing transitions. The net acti-

vates all functions associated with at least one marked place
of the Petri net. Examples for such functions are controllers,
trajectory planners and reflexes belonging to the lower exe-
cution level. In this sense, the task coordination adapts the
configuration to the given situation.

An important part of the Petri net is a set of places and
transitions for an integrated detection of various exceptions.
These transitions process external events, token configurations,
timeouts for time durations of tokens at a place and aggregated
features from the execution level in a rule-based form. An
example for the rule-based detection of instabilities of lower-
level control loops is shown in [33]. All rules are associated
with places and transitions of the net and stored in the task
knowledge. The exception handling is intended as a multi-level
functionality starting with an autonomous reaction of the robot
to avoid damages followed by a replanning of actions by the
robot, asking for user support by the dialogue manager up to
a tele-operated exception handling [34].

During a task, the coordination level mostly works quite
independently of task planning. The communication is re-
stricted to the starting and stopping of tasks and the handling
of unexpected exceptions which can not be solved on the
coordination level.

The task execution level is characterized by control theory
to execute specified sensory-motor control commands. Motion
trajectories in the task space are mapped onto robot motor
commands. Closed loop control strategies are running in order
to meet the desired values. All necessary information about
the immediate environment, the current task and the state of
the robot are provided by the active models. In this level,
mechanical, electrical and sensorial failures are detected and
if necessary reported to the task coordination level.

VI. GLOBAL AND ACTIVE MODELS

A cognitive robotic system requires a great variety of mod-
els in order to correctly recognise and interpret communication
aspects like speech, gestures and mimic, human behaviour, the
static environment including objects, and the overall context
within which it itself is an actor. These models are all stored in
a knowledge base, which is a conglomeration of different sub-
databases of the individual model types (i.e. object ontologies
and geometries, Hidden Markov Models (HMMs), kinematic
models, ...).

Mid- and low-level perception and control need a fast
processing of relevant data. This implicates an additional fast
access to actual models, sensor data and results. Therefore,
our cognitive architecture uses active models as depicted in
Fig. 2.

These active models play a central role in this architec-
ture. They are first initialised using global models and are
mainly updated by the perceptual system. The novelty of the
active models is the ability for their autonomous actualisation
and reorganisation. An active model consists of the internal
knowledge representation, interfaces, inputs and outputs for
information extraction and optionally active parts for update



strategies, communication with other active models or global
models, learning procedures and logical reasoning.

Data out of the perceptual process are continuously stored
and renewed in a cache memory, which can be accessed by
all components. The same applies to other information like the
current robot state or the actual task. In this way the current
task knowledge can be passed on to all components. It is
available at the cache memory, as soon as the current task
is interpreted and the appropriate actions are selected.

Although all sensor data and perception results are per-
petually stored in the active models, there are also closed
control loops for reflexes and fast control strategies i.e. zero
force control and stop commands. In these cases a direct
communication is required, as a fast and adequate reaction
of the robotic system cannot be achieved, if the concerning
control components permanently have to compete with other
modules about the access to the active models.

VII. LEARNING COMPONENTS

A prerequisite for an intelligent cognitive system is its
ability to learn. Here, different types of learning modes can be
distinguished: supervised and unsupervised learning. In both
cases the robotic system has to be set into an appropriate learn-
ing mode in order to acquire new behaviours and store newly
learned facts, tasks and flows of actions in the knowledge base.
The learning modes are triggered by the task planner as soon
as the task interpreter has correctly recognised the command
coming from the dialogue manager or the context coming from
the high-level perception. The update and addition of data in
the knowledge base is not performed in real-time.

At present, the robotic system learns tasks and flows of
actions in an off-line manner by programming by demon-
stration [35] or by tele-operation [34]. Later, on-line learning
procedures like learning by imitation and by tutelage are to
be added. Objects, faces, words, phrases, dialogue components
are taught to the robotic system in a supervised learning mode.

Additionally, all current states of the robotic system, running
times, success statistics and resource allocations of performed
tasks are stored in the active models. By comparing the results
in the cache memory with the action flow already stored
in the task knowledge, the flow can be optimised by the
robotic system. In this case the robotic system uses its own
performance characteristics in an unsupervised learning mode
triggered by the task planner and the execution supervisor.

VIII. IMPLEMENTATION INTO THE SYSTEM

As outlined before, a number of components of the cognitive
architecture have already been implemented and integrated
into a working humanoid robot. This section gives a brief
overview of our current system.

Our current robot prototype is based on ARMAR [36],
a humanoid robot with 23 degrees of freedom. From the
kinematics control point of view, the robot consists of five
subsystems: Head, left arm, right arm, torso and a mobile
platform. The upper body of the robot has been designed to be
modular and light-weighted while retaining similar size and

proportion as an average person. The control system of the
robot is divided into separate modules. Each arm as well as
torso, head and mobile platform have its own software- and
hardware controller module. The head has 2 DOFs arranged as
pan and tilt and is equipped with a stereo camera system and a
stereo microphone system. Each of the arms has 7 DOFs and is
equipped with 6 DOFs force torque sensors on the wrist. The
arms are equipped with anthropomorphic five-fingered hands
driven by fluidic actuators [37]. The mobile platform of the
robot consists of a differential wheel pair and two passive
supporting wheels. It is equipped with front and rear laser
scanners and it hosts the power supply and the main part of
the computer network.

One of the target scenarios we focus on is a household
situation in which a human can ask the robot questions related
to the kitchen (such as “What is in the fridge?”), ask the robot
to set a table, to switch certain lights on or off, or to bring
specific objects. We started by implementing a scenario in
which the user asks the robot to bring him a cup. This situation
includes different subtasks implemented as different states in
a finite state machine:

• localising user
• multimodal interaction with speech and gestures: The

user tells the robot which cup it should get from where.
• moving near the cup
• searching cup
• grasping cup
• re-localising user and going back
• delivering cup to the user

Here, we examine different scientific and technical problems,
such as multimodal fusion of speech and gestures as in
”get this cup” with a corresponding pointing gesture [20].
Furthermore, errors can happen in every state. For example,
the robot did not manage to find the cup: An error message is
generated and sent to the dialogue manager which informs the
user by speech and waits for an answer to solve the problem.
On the other hand, the user might even notice the error before
the robot does and alerts it. In both situations, we have to
face the problem that the user’s utterances are sometimes
elliptical or incomplete and that the user might even shout
at the robot in critical situations. In order to integrate such
elliptical utterances in the current discourse of the dialogue
manager, we set up a context consisting of the current state
and also the error message created by the system itself if any.
In addition, methods for integrated user localisation by means
of acoustic in combination with visual features are explored.

Low-level communication such as camera access and
person tracking results is implemented into MCA [38].
High-level communication such as speech recognition results
and semantic structures are sent over a loosely coupled agent
architecture [20]. Tighter integration with access to the active
models is still a future task, as well as the development of
missing perceptual components such as situation recognition
and a shared situation model.



IX. CONCLUSION

An approach for a cognitive architecture for an intelligent
humanoid robotic system has been presented in this paper.
Two different paradigms for such an architecture have been
combined: on the one hand the architecture follows a strict
hierarchical three-layer concept with a low, a middle and a
top level. On the other hand behaviour specific components
communicating and interacting with each other can be found
on all layers. There are cognitive components tailored to-
wards cognitive functions as to be found in human beings.
High- and low-level perception play an important role as
well as attention control, communication elements, dialogue
management, memorizing, learning, complex task planning,
and motor control. The architecture design leaves enough room
for a future integration of additional components like emotion
control, social interaction or new learning modes.
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