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ABSTRACT

We present recent work on integration of visual informa-

tion (automatic lip-reading) with acoustic speech for bet-

ter overall speech recognition. A Multi-State Time Delay

Neural Network performs the recognition of spelled letter

sequences taking advantage of lip images from a standard

camera. The problems addressed include e�cient but e�ec-

tive representation of the visual information and optimum

manner of combining the two modalities when rendering a

decision. We show results for several alternatives to direct

gray level image as the visual evidence. These are: Principal

Components, Linear Discriminants, and DFT coe�cients.

Dimensionality of the input is decreased by a factor of 12

while maintaining recognition rates. Combination of the

visual and acoustic information is performed at three dif-

ferent levels of abstraction. Results suggest that integration

of higher order input features works best. On a continuous

spelling task, visual-alone recognition of 45-55%, when com-

bined with acoustic data, lowers audio-alone error rates by

30-40%.

1. INTRODUCTION

Natural human-computer interaction cannot be achieved as

long as keyboards remain the primary input modality. It is

the aim of multiple concerted research projects in our labs at

University of Karlsruhe and Carnegie Mellon University to

develop interfaces that will take advantage of all communi-

cation modalities normally and e�ortlessly used by people.

Integration of all such information would make not only in-

teraction with computers more satisfying for the user but

would also enable the machine to better comprehend the

user's intent and instructions. We are pursuing machine un-

derstanding of speech, lip motion, gesture, eye gaze, hand

writing, face recognition and tracking and sound localiza-

tion. Overviews of some of these projects can be found in

[14].

In this paper we concentrate on the problem of inte-

grating acoustic and visual information for better speech

recognition. It is well known that hearing-impaired lis-

teners and those listening in adverse acoustic environments

(noise, reverberation, multiple speakers) rely heavily on the

visual input to disambiguate among acoustically confusable

speech elements. The usefulness of lip movement informa-

tion stems in large part from its rough complementariness

to the acoustic signal: the former is most reliable for distin-

guishing the place of articulation, the latter conveys most

robustly manner and voicing information (e.g. [13]).

Automatic speech recognition (ASR) systems' perfor-

mance is, if anything, even more sensitive to degradation

of the acoustic input. Therefore, it is only natural to try

to supplement the acoustic data with lip movement infor-

mation. Related work on this concept has been reported

by other researchers in [4, 9, 10, 11, 12, 15]. These studies

clearly indicated that combined audio-visual speech recog-

nition was feasible. However, most of the experiments have

relied on such simpli�cations as head-mounted cameras, re-

ective markers placed on the speaker's lips, or manual ex-

traction of the relevant part of the face image. Our goal is

to translate the concept to a practical system dealing with

more complex tasks and employing robust and non-invasive

capture and pre-processing of the visual information. Here

we report primarily on two aspects of this e�ort: design-

ing an e�cient but rich representation of the visual input

and developing a method to optimally combine the acous-

tic and visual evidence when making the �nal identi�cation

decision.

The audio-visual ASR system under development in our

laboratory was �rst described in [2]. It is designed to rec-

ognize continuously spelled names and nonsense letter se-

quences of arbitrary length using the German alphabet.

The task is thus equivalent to contiuous recognition with

a small but highly confusable vocabulary.

2. SYSTEM DESCRIPTION AND

DEVELOPMENT

2.1. Fundamental Design

In the basic set-up, we record, in parallel, the acoustic

speech and the corresponding series of mouth images of the

speaker. The acoustic signal is sampled at 16kHz with 14-

bit resolution. A fairly standard front-end then computes 16

Melscale Fourier coe�cients on Hamming-windowed speech

segments at a 10 msec frame rate. This component remains

invariant for all experiments described below.

The visual evidence is obtained by \frame-grabbing"

the output of a conventional camcorder camera at 30

frames/sec, with 8-bit gray level resolution. In our �rst

work [2], pictures of the lip region were manually extracted

from the image. Currently, speakers are asked to position

themselves such that their lips appear within a rectangle

that is simultaneously shown on the screen of a workstation.

However, no special markers, restraints or position indica-

tors are used. The 144x80 pixel images in that rectangle

constitute the video input available for further processing.

In the most straightforward approach the original images

are low-pass �ltered and downsampled to a size of 24x16

pixels. Rudimentary histogram �tting normalizes the pixel

values to lie in the interval [-1,1]. The resulting sequence

of 384-dimensional \normalized pixel vectors" (one vector

for each lip image frame) is then used as the input to the

recognition algorithm.

In the basic system a modular Multi-State Time De-

lay Neural Network (MS-TDNN) [5] is used to perform

the recognition. Figure 1 schematically shows the ar-

chitecture. Through the �rst three layers (input-hidden-

phoneme/viseme) the acoustic and visual inputs are pro-

cessed separately. The third layer produces activations for

62 phoneme or 42 viseme

1

states for acoustic and visual

1

A viseme, the rough visual correlate of a phoneme, is the

smallest visually distinguishable unit of speech.
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Figure 1. Original recognition network architecture (Net-P).

data, respectively. Weighted sums of the phone and cor-

responding viseme activations are entered in the combined

layer and a one stage DTW algorithm �nds the optimal path

through the phone states that decodes the recognized letter

sequence. The weights in the parallel networks are trained

by backpropagation. There are 15 hidden units in both sub-

nets. The combination weights are computed dynamically

during recognition to reect the estimated reliability of each

modality. These \entropy weights" [2], �

A

for the acoustic

side and �

V

for the visual are given by:
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The entropy quantities S

A

and S

V

are computed for the

acoustic and visual phone/viseme activations by normaliz-

ing these to sum to one and treating them as probability

mass functions. High entropy is found when activations are

evenly spread over the units which indicates high ambiguity

of the decision from that particular modality. The bias b

pre-skews the weights to favor one of the modalities.

2.2. Visual Data Representation

Unlike for acoustic speech data, there are no generally

agreed-upon parameterization strategies for the visual lip

images. Since we are using a connectionist algorithm for

recognition we have followed the philosophy of avoiding ex-

plicit feature extraction and segmentation of the image. In-

stead, we rely on the network to develop appropriate inter-

nal representations of higher level features. We have been

investigating several alternate visual data representations

consistent with this strategy.

The dimensionality of the normalized pixel vector is quite

high, especially when compared with the acoustic input vec-

tor. There is clearly much that changes little from image to

image, for instance the appearance of the cheek area around

the lips. While it is possible that the network will learn

to ignore such redundant information, it was hypothesized

that reducing the dimensionality of the input would be ad-

vantageous to generalization performance, especially under

limited training data. Equalizing the visual and acoustic

input vector dimensions also seems advantageous for low-

level integration of the information (see Sec. 2.3). Storage

savings would also result.

2.2.1. Principal Components

A well-known method that can accomplish this is Princi-

pal Component Analysis [7] (also known as Karhunen-Loeve

expansion). In this approach the original vectors are pro-

jected onto the eigenvectors of their covariance matrix and

only the coe�cients corresponding to the largest N eigen-

values are retained (N < 384). This preserves most of the

variance in the original data. By treating the images simply

as data vectors, we could arbitrarily reduce the dimension-

ality of the data. Visual examination suggested that images

essentially indistinguishable from the originals could be re-

constructed from as few as 16 principal components (PCs).

Pilot experiments suggested, however, that recognition per-

formance reached a plateau for input of between 30 and 60

PCs. In all subsequent experiments with this method, 32

PCs were used as the visual input.

2.2.2. Linear Discriminant Analysis

PCA is most suitable to description of data with a re-

duced set of parameters. On the other hand, the goal of

recognition is rather the discrimination among several in-

put classes (e.g. phones). A related method of data rate

reduction that is better geared towards this goal is Linear

Discriminant Analysis (LDA) [3]. Here the original data is

also projected onto a set of vectors and only the most sig-

ni�cant of the resulting coe�cients are used further. How-

ever, the projection vectors, calculated as the eigenvectors

of so-called scatter matrices, maximize the separability of

di�erent input classes in the reduced-dimensional represen-

tation. In order to determine the projection vectors one has

to assign each training data vector to a class. In our case

we labelled the data vectors by one of 62 phones. Again,

preliminary experiments led us to further use of 32 LDA

coe�cients.

2.2.3. Fourier Transfrom

It is known that almost all typical images are uniquely

speci�ed by the magnitude of their Fourier Transform [8].

This parameterization is also potentially resistant against

translation of the input image and o�ers several methods of

reducing the data count by grouping the DFT coe�cients.

We obtained most extensive and promising results for the

\ring" grouping where each parameter m̂

i

is calculated from

the DFT magnitude M(k

1

; k

2

) by:

m̂

i

=

X

k

1

;k

2

2R

i

M(k

1

; k

2

) (2)

where R

i

contains k

1

; k

2

such that �

i�1

�

p

k

2

1

+ k

2

2

�

�

i

with the ring radii �

i

increasing logarithmically. This

parameterization is thus roughly equivalent to computing

the energies of the outputs of a bank of bandpass �lters.

We computed a total of 29 DFT-ring parameters. It should

be noted that the DFT was calculated from the original

144x80 picture frame and not from the downsampled one.

All parameters are normalized by a histogram computa-

tion similar to that of the gray levels to lie between -1 and

1, before being used as input to the network.

2.3. Combination Alternatives

The combination of acoustic and visual information at the

phoneme/viseme layer o�ers several advantages. There is

independent control of two modality networks, allowing for

separate training rates and number of training epochs. It is

also easy to test uni-modal performance simply by setting

�

A

and �

V

to zero or one. On the other hand, this method

forces us to develop a viseme alphabet for the visual sig-

nal, as well as a one-to-many correspondence between the

visemes and phones. Unlike phones, visemes have proven

much more di�cult to de�ne consistently except for a few

fairly constant sets. Also, little research has been done on

non-English visemes. Combination of phones and visemes



Visual Parameter Word Accuracy (%)

Input Count data set

mum1-2 mum9-10

Gray Levels 384 55 44

PCs 32 52 45

LDA 32 53 52

DFT Ring 29 50 38

Table 1. Visual-only recognition rates for di�erent data repre-

sentations.

further prevents the recognizer from taking advantage of

lower level correlations between acoustic and visual events

such as inter-modal timing relationships. There is evidence

that humans integrate the bi-modal inputs to take advan-

tage of such cues [1, 13].
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Figure 2. Alternate structures for acoustic and visual combi-

nation.

Two combination alternatives are illustrated in Figure 2.

The acoustic and visual data vectors can simply be con-

catenated to form one input vector to a single MS-TDNN

(both types of inputs are normalized to the same range)

resulting in e�ective combination at the input layer. Alter-

nately, we can elect to integrate the higher level features by

combination at the hidden layer. In both cases all weights

are trained by backpropagation. We will refer to the nets

combining the modalities at the phone, hidden, and input

level as Net-P, Net-H, and Net-I, respectively.

3. PERFORMANCE

We have tested the various recognizer versions on audio-

visual speech data from one (male) speaker. In the standard

paradigm 200 letter sequences (average length of about 6

letters) were recorded in two sessions on the same day. This

data set was then stored digitally for further processing.

170 of the sequences were used as training data to set the

weights of the network, 15 constituted the cross-validation

set and 15 the test set. The covariance and scatter matrices

required by PCA and LDA were computed using only the

training set.

3.1. Experimental Results

Under optimal lighting and recording conditions we have

observed visual-only word accuracy

2

as high as 72% which,

when combined with the acoustic side, leads to error rate

reductions of 60%. It is still di�cult consistently to repro-

duce the recording environment necessary for this level of

performance. We therefore report detailed results on more

representative data.

2

In our case \word" refers to a single pronounced letter.

Table 1 gives word accuracies for two di�erent data sets

when only the visual part of Net-P is used. The scores are

generally quite comparable. It bears stressing that the non-

gray level parameterizations achieve this recognition while

reducing the data rate by a factor of 12.

Figure 3 shows the results of combining acoustic and vi-

sual information with Net-P for the tested parameteriza-

tions. Data set mum1-2 was used. We show the scores

for clean acoustic data and for two cases where increasing

amounts of white noise were arti�cially added to degrade

the acoustic-only recognition rates. In general, best perfor-

mance was achieved with gray level and LDA input. Error

rate reduction varied from 30% for clean data to 37% for

noisy speech.

3

On data set mum9-10, for which not all

combination conditions have yet been tested, noisy error

reduction of an average 40% has been observed.
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Figure 3. Net-P combination results in quiet (Noise = 0) and

two noise conditions.

We compare the performance for the three alternative

network structures in Figure 4. Only the results for gray

level and LDA input are shown. Scores for PC were also

obtained but were signi�cantly and uniformly lower. For

Net-I the gray level and LDA scores are essentially the same

and are comparable to those of Net-P although perceptibly

worse for clean speech (in fact, the audio-visual score is

worse than the audio-alone for this condition). Net-H shows

the gray level input signi�cantly outperforming LDA and,

in fact, turning in marginally best scores of all tested inputs

and net architectures, except at the highest noise level.

3.2. Discussion

The results, taken together, indicate that of the tested vi-

sual input representations, the gray levels and LDA gave

very similar performance under most conditions. Con-

versely, PC and DFT-Ring usually gave lower scores. Thus,

with proper choice of transformation we can signi�cantly

(factor of 12) reduce the dimensionality of the input with-

out sacri�cing performance. Note that the reduction is done

without any heuristic feature extraction. A better test of

whether the smaller parameter count bene�ts generalization

might be speaker-independent recognition which we intend

to test.

3

The bias parameter b in Eq. 2 was set to the empirical opti-

mum for each parameterization and noise condition. In practice

it would be guided by an automatic noise level estimation algo-

rithm which we intend to include in the system. Setting b to

its optimum for clean speech still leads to uniformly improved

combined scores under noise.
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Figure 4. Combination results for Net-I and Net-H.

Comparison of di�erent net structures yields more equiv-

ocal conclusions. All three are clearly capable of improving

recognition with the addition of visual information. How-

ever, Net-P combination of the modalities always yields a

better score than either modality alone which is not true of

the other two structures. On the other hand, neither Net-I

nor Net-H have been optimized at this time (for instance,

the number of hidden units, 15 was inherited from Net-P).

It is surprising the Net-I performed almost equivalently for

both gray levels and LDA input. It was expected that mak-

ing the number of visual parameters closer to the number of

acoustic ones would improve the learning of input weights.

It is possible that the LDA transformation obscures those

cues most useful for low-level cross-modal correlation.

The results obtained with gray level input and Net-H are

especially interesting. This structure is e�ectively combin-

ing higher level acoustic and visual features which it itself

determines (i.e., they are not prescribed externally). It may

thus be theoretically capable of learning such cross-modal

relationships as the time interval between lip opening and

onset of voicing or nasality. This suggests a closer exami-

nation of activation patterns in the hidden layer. The poor

performance of Net-H under Noise Condition 2 stems prob-

ably from lack of noisy acoustic data in the training set.

The network thus has no way of learning, at the integration

level, what constitutes a noisy and thus ignorable feature.

Net-P, on the other hand, dynamically adjusts the weights

given to each modality depending on its reliability. A hy-

brid approach of pre-learned combination weights that can

be modi�ed during recognition might prove fruitful.

4. WORK IN PROGRESS

The goal of our project is the creation of a seamless multi-

modal communication interface. This necessitates liberat-

ing the user from as many limitations on movement as pos-

sible. The present system, however, is still fairly restric-

tive (though non-invasive). It is also not su�ciently robust

against relatively small changes in the visual input.

We have identi�ed three main sources of confusion:

changes in lighting and position and size of the lips within

the frame. By using adaptive histogram normalization of

the image we have successfully made the system indepen-

dent of reasonable variations in illumination including il-

lumination gradients. The problem of size normalization is

probably the most severe, with size changes of 10-20% caus-

ing severe performance degradations. We have found that

to some extent these e�ects can be mitigated by training

the networks on larger data corpuses, recorded under dif-

ferent conditions or arti�cially enlarged, shifted, etc. The

training e�ort, however, becomes impractical.

A more elegant collective solution to these challenges in-

volves automatic control of the camera to track the face of

the speaker in a room and an algorithm to accurately locate

the lips within the face image [6]. Prototypes of both the

face-tracker and lip-locator have already been developed in

our laboratory and we're in the process of integrating them

into a single system. Together they allow for reasonable

movement and enable size- and location-normalization of

the input lip image.

ACKNOWLEDGEMENTS

This work is sponsored by the state of Baden-W�urttemberg,

Germany (Landesschwerpunkt Neuroinformatik). Partial

support was also provided by the Advanced Research

Projects Agency (US).

REFERENCES

[1] L.D. Braida. Crossmodal Integration in the Identi�-

cation of Consonant Segments. The Quart. J. of Exp.

Psych., 43A(3), 1991, pp.647-677.

[2] C. Bregler, H. Hild, S. Manke, and A. Waibel. Im-

proving Connected Letter Recognition by Lipreading.

in Proc. ICASSP '93.

[3] K. Fukunaga. Introduction to Statistical Pattern Recog-

nition. San Diego: Academic Press, 1990.

[4] A.J. Goldschen. Continuous Automatic Speech Recog-

nition by Lipreading. Ph.D. Dissertation. George Wash-

ington University, 1993.

[5] H. Hild and A. Waibel. Connected Letter Recognition

with a Multi-State Time Delay Neural Network. Neural

Information Processing Systems (NIPS-5), 1993.

[6] H.M. Hunke. Lokalisieren von Gesichtern mit Hilfe von

neuronalen Netzen. M.S. Thesis, University of Karls-

ruhe, 1994.

[7] I.T. Joli�e. Principal Component Analysis. New York:

Springer-Verlag, 1986.

[8] J.S. Lim. Two-Dimensional Signal and Image Process-

ing. Englewood Cli�s, N.J.: Prentice-Hall, 1990.

[9] K. Mase and A. Pentland. Automatic Lipreading by

Optical-Flow Analysis. Systems and Computers in

Japan, 22(6), 1991, pp. 67{76.

[10] E.D. Petajan. Automatic lipreading to enhance speech

recognition. in Proc. IEEE Communications Society

Global Telecom. Conf., Atlanta GA, Nov. 1984.

[11] P. Silsbee and A. Bovik. Audio-visual speech recog-

nition for a vowel discrimination task. Proceedings of

SPIE, vol. 2094, 1993, pp.84{95.

[12] D.G. Stork, G. Wol�, and E. Levine. Neural network

lipreading system for improved speech recognition. in

Proc. IJCNN'92.

[13] Q. Summer�eld. Audio-visual Speech Perception,

Lipreading and Arti�cial Stimulation. in Hearing Sci-

ence and Hearing Disorders, M.E. Lutman and M.P.

Haggard eds., New York: Academic Press, 1983.

[14] A. Waibel, M.T. Vo, P. Duchnowski, and S. Manke.

Multimodal Interfaces. to appear in Arti�cial Intelli-

gence Review Journal, special issue, 1994.

[15] B.P. Yuhas, M.H. Goldstein, Jr., and T.J. Sejnowski.

Integration of acoustic and visual speech signals us-

ing neural networks. IEEE Communications Magazine,

Nov. 1989.


