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A b s t r a c t .  Building multilingual spoken language translation systems 
requires knowledge about both acoustic models and language models 
of each language to be translated. Our multilinguM translation system 
JANUS-2 is able to translate English and German spoken input into 
either English, German, Spanish, Japanese or Korean output. Getting 
optimal acoustic and language models as well as developing adequate 
dictionaries for all these languages requires a lot of hand-tuning and is 
time-consuming and labor intensive. In this paper we will present learn- 
ing techniques that improve acoustic models by automatically adapting 
codebook sizes, a learning algorithm that increases and adapts phonetic 
dictionaries for the recognition process and also a statistically based lan- 
guage model with some linguistic knowledge that increases recognition 
performance. To ensure a robust translation system, semantic rather 
than syntactic analysis is done. Concept based speech translation and 
a connectionist parser that learns to parse into feature structures are 
introduced. Furthermore, different repair mechanisms to recover from 
recognition errors will be described. 

1 I n t r o d u c t i o n  

Our mult i l ingual  spoken language t ranslat ion system JANUS-2 [2, 3] evolved 
f rom the previous JANUS [1] system which was able to process syntact ical ly  
well-formed read speech within a certain domain and a limited vocabulary  of  500 
words. JANUS-2  processes spontaneous human- to -human  dialogs in a scheduling 
domain  where the vocabulary  - depending on the language - may  vary between 

* Our German recognition engine, developed at the University of Karlsruhe, is part of 
the VERBMOBIL project and VERBMOBIL systems developed under BMBF fund- 
ing. The Spanish speech translation module has been developed at Carnegie Mel- 
lon University under project ENTHUSIAST funded by the US Government. Other 
components are under development in collaboration with partners of the C-STAR 
Consortium. 



118 

2000 and 3000 words. The JANUS-2 system provides a framework under which 
complementary speech translation system components from different projects, 
like VERBMOBIL [4], ENTHUSIAST and the C-STAR Consortium [5], can be 
integrated and compared. Currently, English and German spoken input can be 
translated into either English, German, Spanish, Japanese or Korean output.  
Work is in progress to add Spanish and Korean as input languages. 

We will propose a data-driven learning approach for automatic codebook 
adaptation based on amount and distribution of data to improve the acous- 
tic models within the speech recognizer. Second, a method for automatically 
increasing and adapting a phonetic dictionary will be introduced. Moreover, 
a statistically based approach is combined with linguistic knowledge to create 
morpheme-based language models. Also a new approach towards robust trans- 
lation of spoken language will be presented. We briefly describe a parsing and 
translation approach based on an interlingua text (ILT), where an interlingua is 
intended to be a language-independent representation of meaning. Besides, the 
functionality of a connectionist parser that learns to parse into feature structures 
is shown. Finally, we report on efforts to detect erroneous system output and 
provide interactive methods to recover from such errors. 

2 J A N U S  O v e r v i e w  

2.1 D a t a  C o l l e c t i on  

Data collection to establish a large database of spontaneous human-to-human 
negotiation dialogs in English and German has started about 18 months ago. 
In the meantime, several sites in Europe, the US and Asia have adopted the 
scheduling task under several research projects and funding sources. Since the 
same calendars and data collection protocols are used the data elicited shares 
the same domain and procedural constraints. 

Table 1 summarizes the current status of data collection. Since scheduling 
utterances typically consist of more than one sentence, there is already more 
data available for English scheduling than ATIS 3. More data collection will 
establish databases in size at least comparable to ATIS for all languages. 

2.2 S y s t e m  O v e r v i e w  

The main system modules are speech recognition, parsing, discourse processing, 
and generation of target language output.  Each module is language-independent 
in the sense that  it consists of a general processor that applies independently 
specified knowledge about different languages. 

The recognition module decodes the speech in the source language into a 
list of sentence candidates, represented either as a word lattice or N-Best list. 
At the core of the machine translation components is a language independent 

3 The approximately 18000 utterances in English scheduling correspond to some 30000 
sentences. 
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Table 1. Comparison of databases 

English Scheduling 
dialogs words 

recorded 1984 505 K 
transcribed 1826 460 K 

German Scheduling 
dialogs words 

recorded 734 158 K 
transcribed 534 115 K 

Spanish Scheduling 
dialogs words 

recorded 340 79 K 
transcribed 256 70 K 

A T I S 3  
transcribed I n/a 1250 K 

representation of meaning (ILT), which is extracted from the recognizer output 
by the parsing module. As last step, this language independent representation is 
sent to the generator to be translated into any of the target languages. Figure 1 
shows the system architecture. 

After parsing, a discourse processor can be used to put the current utterance 
in the context of previous utterances. Based on the current discourse state, 
speech and natural language processing system components can be integrated to 
resolve parsing ambiguities and dynamically adapt the vocabulary and language 
model of the recognizer. 

We explore several approaches for the main processes. We are experimenting 
with TDNN's, MS-TDNN's [6], MLP's, LVQ [7] and HMM's [8, 15] for acous- 
tic modeling. We are using n-grams, word clustering, automatic phrase detec- 
tion [9] and morpheme-based approaches for language modeling [17]. Statisti- 
cally trained skip parsing [10, 11], neural net parsing [12] and concept spotting 
parsing [13] are being applied for extracting the meaning. Also statistical mod- 
els as well as plan infereneing for identification of the discourse state [14] are 
being used. This multi-strategy approach leads to improved performance with 
appropriate weighting of the output from each strategy. 

2.3 R e c o g n i t i o n  P e r f o r m a n c e  Analys i s  

The baseline JANUS-2 recognizer can be described as follows: 

- P r e p r o c e s s i n g :  LDA on melscale fourier spectrum and additional acoustic 
features (power, silence) 

- A c o u s t i c  m o d e l i n g :  LVQ-2 or phonetically tied SCHMM, explicit noise mod- 
els 
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s ccinsou   

N-best / Word Lattice 

Sentence German, English, Spani.~'h, Japanese. Korean 

Speech Output in Target Language 

Fig. 1. System architecture 

- D e c o d e r :  Viterbi search as first pass, followed by a word-dependent N-Best 
search, standard word bigram language model, word lattice output 

Current recognition results on the English, German and Spanish Spontaneous 
Scheduling Task (ESST, GSST, SSST) can be seen in Table 2. 

The low absolute recognition accuracies are due to the challenging nature of 
human-to-human spontaneous speech. Recent evaluations on the Switchboard 
task confirm that human-to-human dialogs are much more difficult to recognize 
than human-machine spontaneous speech (like ATIS). Current state-of-the-art 
systems achieve word accuracies between 30% and 50% on the Switchboard 
database. 

Perplexities range between 35 and 90 for ESST, SSST and GSST, and some- 
what over 100 for Switchboard. Additionally, human-to-human dialogs are sig- 
nificantly more disfiuent [11]. Large variations in speaking rates and strong coar- 
ticulation between words contribute considerably to the difficulty of recognizing 
human-to-human spontaneous speech. 
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Table 2. JANUS-2 recognition performance 

Word ~SST GSSTISSST I 
Accuracy 66~0 69.9% 61% 

3 Different Learning Approaches 

The following three sections will describe efforts and results of improving the 
recognition component along its major knowledge sources: acoustic models [15], 
dictionary [16] and language models [17]. 

3.1 D a t a - D r i v e n  C o d e b o o k  Adaptation 

The performance of a parametric classifier is always dependent on the adequacy 
of the underlying model assumptions. In speech recognition with HMM-based 
systems, usually the model assumption for the distribution of the data in feature 
space is the sum of N multivariate gaussian distributions. Whereas this model 
assumption can be shown to cover all possible distributions, this holds only if the 
number of gaussians is chosen correctly. Mainly governed by practical concerns, 
in most speech recognition systems this number is often chosen to be the same 
power of 2 for each of the different phonemes that have to be modelled, meaning 
that  a fixed number of codebook vectors is assigned to each of the phonemes. 
However, as the available training data differs between phonemes, and the size 
of the feature space covered by the different phonemes varies greatly, constant 
codebook size leads to suboptimal allocation of resources. 

We therefore suggest methods aimed at automatic optimization of the num- 
ber of parameters for the semi-continuous phonetically tied ItMM used in JANUS- 
2. We have developed [15] two different algorithms to adapt the codebook size of 
each phoneme according to the amount and the distribution of the training data 
similar to [18]. Basically, both algorithms start with one gaussian and during 
training the amount of parameters is incremented until some quality criterion 
determines when to stop the process of increasing the codebook size. We com- 
pared a variance criterion based on the average distance between data points and 
their nearest codebook vector with a prediction criterion which tries to capture 
how well the modeling of the recognizer can predict unseen data. 

Table 3 compares recognition accuracies and codebook sizes of the baseline 
models with models automatically adapted using the variance and prediction 
criterion. As can be seen, the more efficient parameter allocation when adapting 
eodebook sizes leads to significant error reduction if the same number of param- 
eters is used. Furthermore, the number of parameters can even be reduced by 
60% with still better performance than the baseline system. 
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Table 3. Results for codebook adaptation (GSST) 

Model 
baseline 
variance 

prediction 

Codebook Size Word Accuracy 
4600 66.9% 
4201 69.9% 
1677 67.8% 

3.2 Dictionary Learning 

Due to the enormous variability in spontaneous human-to-human dialogs, cre- 
ating adequate dictionaries with alternative pronunciations is crucial [19]. How- 
ever, hand tuning and modifying dictionaries is time consuming and labor inten- 
sive. Pronunciations of a word should be chosen according to their frequency and 
also modifications of the dictionary should not lead to higher phonetic confus- 
ability after retraining. Therefore we have proposed [16] a data-driven approach 
to improve existing dictionaries and automatically add new words and pronun- 
ciation variants whenever needed. 

The learning algorithm requires transcriptions for the whole training set and 
a phoneme confusability matrix of the speech recognizer used. First, phonetic 
transcriptions for all appearances of each word are generated by the help of a 
phoneme recognizer. Then, variants which are infrequent or which would lead to 
erroneous training of confusable phonemes are eliminated. Finally, the acoustic 
models are retrained allowing for the newly acquired pronunciations variants. 

As can be seen in Table 4, our algorithm for adapting and adding phonetic 
transcriptions to a dictionary improves the recognition accuracy of the decoder 
significantly and, for a context independent recognition system, leads to perfor- 
mance that is comparable to the context dependent results (cf. Table 3). The 
baseline decoder for these experiments uses 69 context independent phoneme 
models. Evaluation using context dependent models is in progress. 

Table 4. Results for dictionary learning (GSST) 

Dictionaryl Word Accuracy 
baseline 6i.7% 
adapted 65.6% 

3.3 Morpheme-Based Language Models 

Comparing various languages like English, Spanish and German, it can be easily 
seen that German and Spanish differ from English by an outstanding number of 
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inflections and compound words. Due to this fact dictionaries for morphologically 
rich languages grow much faster with increasing database size, compared to 
English (cf. Figure 2). One way to limit this growth with an increasing amount 
of training data is to use smaller base units than words within the recognition 
process. 

Concerning German, three different ways of word decomposition have been 
evaluated: 

1. strictly morpheme-based decomposition, e.g.: 
�9 weggehen ~ weg-geh-en 1 

(to go away) 
�9 Spracherkennung --~ Sprach-er-kenn-ung 

(speech recognition) 
2. decomposition in root forms: 

�9 weggehen --* weggeh@ 
(to go away) 

�9 Dialoge --~ Dialog@ 
(dialogs) 

3. combination of strictly morpheme-based decomposition and root forms: 
�9 weggehen --+ weg-geh@ 

(to go away) 

Table 5 shows dictionary size and recognition accuracy using the respective 
decomposition methods, based on 250 GSST dialogs. As can be seen, all decom- 
position methods reduce vocabulary size. The impact on recognition accuracy 
is small, but the morpheme-based approach outperforms the open-vocabulary 
baseline system. The only small improvement may be due to the fact that  the 
acoustic confusability increases when using smaller recognition units and thus 
deteriorates the gain in the language model. In a real application, however, this 
reduction in vocabulary growth leads to a reduction of new words, thus reducing 
the word error rate, and smaller dictionaries also accelerate recognition speed 
significantly. Further research will focus on finding more efficient and acousti- 
cally less confusable decompositions automatically, and also test the impact on 
translation. 

4 S p e e c h  T r a n s l a t i o n  

We are developing various translation schemes like a generalized robust LR 
parser [10], statistical grammar inference, a concept based translation approach [13] 
and a connectionist parsing approach [12]. In this paper the two latter will be 
described. 

1 Hyphens are used for clarification purposes as decomposition markers only and do 
not appear in the actual German spelling. 
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Fig. 2. Vocabulary growth 

Table 5. Comparison of decomposition methods (GSST) 

Baseline 
(closed-vocabulary) 

Dictionary Accuracy 

3085 66.9% 

Baseline 3062 
(open-vocabulary) 

Morphemes 2204 
Root Forms 3062 
Combined 2998 

64.7% 

65.8% 
63.5% 
65.1% 

4.1 C o n c e p t  B a s e d  S p e e c h  T r a n s l a t i o n  

The basic premise of the concept based approach is that  the structure of the 
information conveyed is largely independent of the language used to encode it. 
Our system tries to model the information structures inherent in a task, e.g. the 
scheduling task, and the way these structures are represented through words in 
various languages. This system is an extension of the Phoenix Spoken Language 
System [20]. It uses the Phoenix parser to parse input into slots of semantic 
frames, and then uses these frames to generate output in the target language. 

T h e  P a r s e r .  Unlike individual words, semantic units used in a task domain 
are not language specific. Based on transcriptions of scheduling dialogs, we have 
developed a set of fundamental semantic units in our parse which represent the 
different concepts a speaker would use. For instance, a typical temporal token 
could have date as subtoken, which could in turn consist of month and day 
subtokens. The temporal token could be part of a statement of unavailability. 
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In contrast to previous speech translation systems, we presently don't per- 
form syntactic analysis. Speaker utterances, as decoded by the recognizer, are 
parsed into semantic chunks which are concatenated without grammatical rules. 
This approach is particularly well suited to parsing spontaneous speech, which 
is often ungrammatical and subject to recognition errors. This approach is more 
robust than requiring well-formed input and the reliance on syntactic cues pro- 
vided by short function words such as articles and prepositions. 

The  Genera tor .  The generation component of the system is a simple left-to- 
right processing of the parsed text. The translation grammar consists of a set of 
target language phrasings for each token, including lookup tables for variables 
like numbers and days of the week. When a lowest-level token is reached in trac- 
ing through the parse, a target language representation is created by replacing 
tokens with templates for the parent token, according to the translation gram- 
mar. The result is a meaningful, although terse translation, which emphasizes 
communicating the main point of an utterance. An example is illustrated in 
Fig. 3. 

Original  u t t e r ance :  

T H A T  S A T U R D A Y  I 'M  N O T  SURE A B O U T  B U T  Y O U  SAID 
Y O U  MAY BE B A C K  IF YOU T H I N K  Y O U ' L L  BE B A C K  
T H I S  S U N D A Y  T H E  T W E N T Y  E I G H T H  I C O U L D  SEE 
Y O U  A F T E R  E L E V E N  AM ON T H A T  1F Y O U ' R E  B A C K  

Trans la t ed :  

Saturday that's not so good for me Sunday the twenty eighth works for me after eleven 
a.m. (ENGLISH) 

E1 sgbado no me va demasiado bien pero el domingo veintiocho me va bien despuds de 
las once de la mafiana. (SPANISH) 

Samstag k6nnte ich nur zur Not aber Sonntag der achtundzwanzigste geht bei rnir ganz 
gut nach elf Uhr morgens. ( G E R M A N )  

Fig. 3. Translation example 

Resul ts .  We have implemented this system for bi-directional translation be- 
tween English, German and Spanish in our scheduling task. Table 6 shows the 
performance of parser and subsequent generator on transcribed data. Evalua- 
tion of the system based on speech decoded by the JANUS-2 recognizer is still 
underway. 

One disadvantage of this approach is the telegraphic and repetitive nature 
of the translations. This could be overcome by providing multiple translation 
options for individual tokens in the target language module, different levels of 
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politeness, etc. However, at present we feel that it is sufficient for intelligible 
communication. 

Table 6. End-to-End evaluation on transcribed data 

Parsed from Translated into 
token utterance utterance 

English 95.6% 90.0% 90.2% 
German 92.4% 89.6% 87.3% 
Spanish I 88.8% 58.3% 82.2% 

4.2 C o n n e c t i o n i s t  P a r s e r  

Alternatively to a slot based parser, also a connectionist parser can be used. 
The major drawback bf connectionist parsers, compared with symbolic parsers, 
has been the lack of detailed linguistic information in the output.  We present 
a connectionist natural language parser that  learns to produce feature struc- 
tures [21, 22, 23], the most frequently used representation scheme in computa- 
tional linguistics. The most outstanding advantage of this parser is its capability 
of learning complex feature structures, by automatically splitting the overall 
problem into several small classification tasks which are learnable (Divide and 
conquer). Each of these smaller tasks is then learned by a separate backprop- 
agation network, using constructive learning. Constructive learning ensures an 
optimal network architecture, being as small as possible and achieving the high- 
est possible performance. 

P a r s e r  p r inc ip le .  The parser consists of three main parts: 

1. The Chunker, composed of three networks, splits an input sentence into 
chunks. The first network finds regular expressions, such as numbers. Num- 
bers are classified as being ordinal or cardinal numbers. They are presented 
as words to the following networks. The next network arranges words to 
phrases. The third network puts together phrases to clauses. In total, we get 
four levels of chunks: words, phrases, clauses and sentences. 

2. The Linguistic Feature Labeler attaches features and feature values (if ap- 
plicable) to these chunks. There is a classifier for each feature, which finds 
zero or one atomic value. Since there are many features, each chunk may get 
none, one or several pairs of feature and atomic values. As a feature normally 
only occurs at a certain chunk level, the classifier is specialized to decide on 
a particular feature at a particular chunk level. This speciMization prevents 
the learning task from being too complex. 
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3. The Chunk Path Finder determines how a chunk relates to its parent chunk. 
It has one classifier per chunk level and chunk path element. 

The following English sentence will illustrate the work of the parser: 

Can you meet in the morning 

The Chunker segments the sentence before passing it to the Linguistic Feature 
Labeler, which adds semantic labels (shown in boldface below): 

(((speech-act *suggest) 
(sentence- type *query-if)) 
((frame *free)) 
(( can)) 
(((frame *you)) 
( you)) 

(( meet)) 
((frame *special-time)) 
( in) 
(((specifier definite)) the) 
(((time-of-day morning))  morning))) 

The Chunk Path Finder then adds paths, where appropriate (shown in bold- 
face): 

([1(( speech-act *suggest) 
( sentence-type *query-if)) 
([]( frame *free)) 

([1([] can)) 
([who](( frame *you)) 

([1 yo.)) 
([1([1 meet)) 
([when](( frame *special-time)) 

([1 in) 
([](( specifier definite)) the) 
([](( time-of-day morning)) morning))) 
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Converting th i s in to  ~ature  structure, we get the following semantic ~a tu re  
structure (ILT): 

(((speech-act *suggest) 
(sentence-type *query-if) 
(frame *free) 
(who ((frame *you))) 
(when ((frame *special-time) 

(specifier definite) 
(time-of-day morning))))) 

Based on this ILT representation, utterances in the target language can be 
generated. 

5 Handling Unreliability 

Since a speech translation system involves interaction between two human users, 
the system should provide methods for adaptive recovery from misrecognitions, 
miscommunication and mistranslations. First results in this direction are de- 
scribed here. 

We have developed a speech interface for repairing recognition errors by 
simply respeaking or spelling a misrecognized section of an utterance. While 
much speech "repair" work has focused on repairs within a single spoken ut- 
terance [24], we are concerned with the interactive repair of errorful recognizer 
hypotheses [25]. 

5.1 I d e n t i f y i n g  E r r o r s  

To be able to repair an error, its location has to be determined first. We pursue 
two strategies to identify misrecognitions as subpieces of the initial recognizer 
hypothesis. 

The automatic subpiece location technique requires the user to respeak only 
the errorful subsection of the (primary) utterance. This (secondary) utterance 
is decoded using a vocabulary and language model limited to substrings of the 
initial erroneous hypothesis. Thus, the decoding identifies the respoken section 
in the hypothesis. Preliminary testing showed that the method works poorly if 
the subpiece to be located is only one or two words long. However, this drawback 
is not severe since humans tend to respeak a few words around the error. 

A second technique uses confidence measures to determine for each word in 
the recognizer's hypothesis whether it was misrecognized. First, we applied a 
technique similar to Ward [26], which turns the score for each word obtained 
during decoding into a confidence measure by normalizing the score and using 
a Bayesian updating technique based on histograms of the normalized score for 
correct and misrecognized words. Since we found this not to work well on our En- 
glish scheduling task, we are currently developing different methods to compute 
confidence measures based on decoder, language model and parse scores. 
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5.2 R o b u s t  S p e e c h  R e p a i r  

After locating and highlighting erroneous sections in the recognizer hypothesis, 
misrecognitions are corrected. 

The spoken hypothesis correction method uses N-Best lists for both the initial 
utterance and the respoken section. The N-Best list for the highlighted section 
of the initial utterance is restored using scores from decoding the secondary 
utterance. Depending on the quality of the N-Best lists, most misrecognitions 
can be corrected. 

The spelling hypothesis correction method requires the user to spell the high- 
lighted erroneous section. A spelling recognizer decodes the spelled sequence of 
letters. By means of a language model we restrict the sequence of letters to 
alternatives found among the N-Best from the located section. 

To date, we have evaluated our methods over sentences from the P~esource 
Management task. Table 7 shows the improvements in sentence accuracy, based 
on recordings from one speaker of the February and October 1989 test data. We 
selected a subset of erroneous utterances; therefore the accuracy of the baseline 
system is significantly lower than the 94% performance our system achieves on 
the whole test set. The results indicate that  repeating or spelling a misrecog- 
nized subsection of an utterance can be an effective way to repair recognition 
utterances. 

Table 7. Improvement of sentence accuracy by repair 

No Repair (baseline) 63.1% I 
Respeak 83.8% I 

Spell 88.5% 
Respeak + Spell 89.9% 

6 C o n c l u s i o n s  

We described JANUS-2, our multilingual spoken language translation system. 
We introduced different learning approaches that reduce hand-tuning efforts, 
yield better word accuracy and even accelerate recognition speed. All of these 
techniques can be applied in several languages and help making significant 
advances towards building a multilingual translation system for spontaneous 
human-to-human dialogs. Beyond recognition of spontaneous speech JANUS-2 
provides a framework for investigating important  areas like robust parsing, ma- 
chine translation of spoken language and developing methods to recover from 
recognition and parsing errors. 
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