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ABSTRACT

All-pass transform (APT) adaptation transforms the cepstral
means of a hidden Markov model so as to mimic the effect of warp-
ing the short-time frequency axis of a segment of speech, much
like vocal tract length normalization (VTLN). APT adaptation can
be implemented as a linear transformation in the cepstral domain,
however, much like the better known maximum likelihood linear
regression (MLLR). Recent work demonstrated the superior per-
formance of APT adaptation to MLLR for a large vocabulary con-
versational speech recognition task. This work presents similar
comparisons on the Switchboard Corpus. We found that without
VTLN, the best MLLR and APT systems achieved word error rates
(WERs) of 43.0% and 40.2% respectively. Similarly, with VTLN
the respective error rates were 40.3%, and 39.2%, so that APT
adaptation is significantly better in both cases. We also under-
took a set of experiments to determine whether APT adaptation can
be combined with a linear semi-tied covariance (STC) transform.
With a single APT per speaker, the application of STC reduced the
WER from 42.9% to 39.4%.

1. INTRODUCTION

All-pass transform (APT) adaptation transforms the cepstral means
of a hidden Markov model (HMM) so as to mimic the effect of
warping the short-time frequency axis of a segment of speech [8],
much like vocal tract length normalization (VTLN) [2]. APT adap-
tation can be implemented as a linear transformation in the cepstral
domain, however, much like the better known maximum likelihood
linear regression (MLLR) [6].

Speaker-adapted training (SAT) is an algorithm for performing
maximum likelihood estimation of the parameters of a continu-
ous density HMM when speaker adaptation is applied during both
training and test [1]. SAT can be used with any speaker adapta-
tion scheme employing a linear transformation of cepstral means,
including both MLLR and APT adaptation. In a typical imple-
mentation of speaker adaptation, the Gaussian components of an
HMM are partitioned into a number of mutually exclusive sets or
regression classes; several straightforward modifications of the ba-
sic SAT algorithm have been proposed to update the assignment
of Gaussian components to classes using a maximum likelihood
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(ML) criterion. Single-pass adapted training (SPAT) [8], is a vari-
ation of SAT tailored specifically for use with APT-based adap-
tation. SPAT makes extensive use of an HMM with one Gaus-
sian component per state cluster to estimate speaker-dependent
APT parameters; these parameters are then transferred to the fi-
nal multiple-mixture HMM in a computationally-efficient manner.
Incremental training (IT) [9] is a refinement of SPAT that gradually
adds adaptation parameters for improved recognition performance.

Using large vocabulary conversational speech recognition (LVCSR)
systems trained and tested on speech material from the Switch-
board Corpus, we compare the reduction in WER provided by
APT adaptation and IT with that achieved with MLLR and stan-
dard SAT. These experiments complement those described in [7],
in which APT adaptation proved to provide superior performance
to MLLR on another LVCSR task. We also investigate the com-
bination of APT adaptation with the linear feature transformation
provided by semi-tied covariance (STC) estimation [4].

The balance of this work is organized as follows. In Setion 2
we briefly review the definition of the APT. In Section 3 we present
the results of several series of speech recognition experiments.
These include performance comparisons of APT adaptation with
MLLR, both without and with VTLN in Sections 3.1 and 3.2, re-
spectively. We also describe in Section 3.3 a series of experiments
undertaken to determine whether APT adaptation can be success-
fully combined with the linear transformation of cepstral features
that follows with the use of STC matrices. Section 4 presents our
plans for future work.

2. REVIEW OF ALL-PASS TRANSFORMS

Here we briefly review the properties of the all-pass transform
(APT), which is used to formulate a basis for speaker adaptation.
An APT is defined as

Q(z) = z exp F (z) (1)

where

F (z) =
M∑

k=1

αk Fk(z) for α1, . . . , αM ∈ R, (2)

Fk(z) =
π
2

(
zk − z−k

)
(3)



and M is the number of free parameters {αk} in the transform.
It can be readily verified that Q as defined (1) is an all-pass func-
tion [10, §5] in the sense that it preserves the unit circle. Moreover,
as z traverses the unit circle once, Q(z) also winds exactly once
about the origin, which is necessary to ensure that spectral content
is not doubled or tripled [8, §3.5].

In order to calculate the coefficients of a transformed cepstral
sequence, it is first necessary to calculate the coefficients q in the
Laurent series expansion of Q; this can be done as follows: For F
as in (2) set

G(z) = exp F (z) (4)

and let g denote the coefficients of the Laurent series expansion
of G valid in an annular region including the unit circle. The se-
quence f of coefficients in the series expansion of F are available
by inspection from (2) and (3). It can then be shown [8, §3.5] that

g[n] =
∞∑

m=0

1
m!

f (m)[n]

Moreover, from the Cauchy product it follows f (m) = f ∗f (m−1)

for m = 2, 3, . . .. Equation (4) implies that Q(z) = z G(z),
so the desired coefficients are given by q[n] = g[n − 1] for all
n = 0,±1,±2, . . ..

Let us define the transformation matrix A = {anm} whose
individual components are given by [8, §3.3]

anm =






q(m)[0], for n = 0, m ≥ 0

0, for n > 0, m = 0(
q(m)[n] + q(m)[−n]

)
, for n, m > 0

(5)

where the sequences q(m) are defined through the recurrence rela-
tion q(m) = q∗q(m−1). Assuming the basic APT is augmented by
an offset vector b, the adapted mean µ̂k of the kth Gaussian com-
ponent of an HMM can be obtained from the speaker-independent
(SI) mean µk according to

µ̂k = Aµk + b (6)

Note that A as defined in (5) has an infinite number of columns
and must be truncated. This implies that µk can be extended to
any desired length in the normal course of speaker-adapted train-
ing [7].

3. SPEECH RECOGNITION EXPERIMENTS

The speech experiments described below were conducted with the
Janus Recognition Toolkit (JRTk), which is developed and main-
tained jointly at the University of Karlsruhe, in Karlsruhe, Ger-
many and at the Carnegie Mellon University in Pittsburgh, Penn-
sylvania, USA.

For the experiments reported below, HMM training was con-
ducted on 170 hours of speech material extracted from the Switch-
board Corpus, which was donated by 580 speakers in 2,761 con-
versation sides. The test set used was that defined for the EARS
Project 2002 Dry Run, which consisted of 12,863 words of tele-
phone and cell phone speech in a total of 12 conversations. The
baseline model contained 6,182 codebooks, each with varying num-
bers of Gaussian components, for a total of 168,398 Gaussians.
Mean-subtracted length-13 cepstral features, along with delta and
delta-delta features, were used for training and test, for a final fea-
ture length of 39. Conventional FFT-domain vocal tract length

No. Regression Classes % Word Error Rate
Unadapted Baseline 55.6 (53.9)

1 45.2 (43.3)
2 45.4 (43.0)
3 45.3 (43.1)
6 46.8 (44.2)

Table 1. Results of unsupervised adaptation with full-matrix
MLLR without VTLN.

normalization (VTLN) based on fixed warp factors estimated with
a previous system was used for those cases requiring it.

In reporting the word error rate (WER) results of the experi-
ments described below, our custom will be to quote the single-best
recognition WER, as well as the best WER obtained by optimiz-
ing the language model weight, word insertion penalty and silence
weight based on the correct transcription. The latter will appear
in parentheses. Given that this optimized WER is typically more
indicative of true system performance, we will use it as the basis
of the conclusions drawn in the course of this work.

3.1. Experiments without VTLN

In the initial set of experiments, we wished to compare the effec-
tiveness of APT adaptation against that of MLLR in reducing word
error rate for the Switchboard task when VTLN was used for nei-
ther training nor test. For these experiments, we first performed
K-means followed by conventional label training to obtain the
baseline model. This baseline model without speaker adaptation
achieved a WER of 55.6% (53.9%). During unadapted decoding,
word lattices were written, which were then used for three itera-
tions of unsupervised adaptation with the multiple-mixture mod-
els, as described in [11]. To speed-up convergence in estimating
APT parameters, the best parameters from the previous model of
lower complexity were used as an initial point. A scale factor of
0.040 was applied to the acoustic log-likelihoods of all models
prior to their combination with the unweighted language model
log-likelihoods. This measure was intended to prevent the single-
best Viterbi path, which is quite likely to contain errors, from dom-
inating the statistics required for speaker adaptation.

The conventionally-trained model was tested with MLLR adap-
tation and achieved a word error rate of 52.5% (50.1%). Beginning
from the conventionally-trained model, speaker-adapted training
was performed with MLLR adaptation and varying numbers of
regression classes. The systems based on APT adaptation were
incrementally-trained as described in [9] with a frame count thresh-
old of 50.0. Tables 1 and 2 provide the WER results for MLLR and
APT adaptation respectively. In Table 2, APT-M indicates the use
of an APT as in (2) with M free parameters. For the first two APT
results reported in Table 2, both the original µk and transformed
µ̂k means in (6) had a length of 39. For the latter results µk was
extended to a length of 78 during SAT. From these results, it is
clear that the MLLR-adapted systems obtained with the SAT pro-
cedure outperform the adapted conventionally-trained model, and
that both MLLR and APT adaptation provide large reductions in
WER. The best MLLR system had 2 RCs and achieved a WER of
45.4% (43.0%), which was significantly worse than the best APT
system, which had 12 RCs and achieved a WER of 41.9% (40.2%).
Without VTLN, the superiority of APT adaptation to MLLR is in-
disputable.



Train/Test Condition % Word Error Rate
APT-1, 1 RC 49.1 (47.8)
APT-9, 1 RC 45.7 (44.8)

APT-9, 1 RC, mean len. = 78 43.7 (42.6)
APT-9, 4 RCs, mean len. = 78 43.0 (41.6)
APT-9, 8 RCs, mean len. = 78 42.5 (41.1)
APT-9, 12 RCs, mean len. = 78 41.9 (40.2)

Table 2. Results of unsupervised APT adaptation without VTLN.

No. Regression Classes % Word Error Rate
Unadapted Baseline 50.9 (48.8)

1 42.6 (40.3)
2 42.7 (40.5)
3 43.2 (40.5)
6 44.4 (41.2)

Table 3. Results of unsupervised adaptation with MLLR and
VTLN.

3.2. Experiments with VTLN

As is well-known, VTLN has proven useful in reducing word er-
ror rate for many LVCSR tasks, including Switchboard. Hence,
a second set of experiments was undertaken to determine relative
effectiveness of MLLR and APT adaptation when combined with
VTLN. For these experiments, fixed VTLN warp factors, which
had been previously estimated with the best current system un-
der a maximum likelihood criterion, were used for both training
and test. New cepstral mean vectors were then estimated based on
the best speaker-dependent warp factors. Employing the warp fac-
tors and new mean vectors, conventional, MLLR speaker-adapted,
and APT incremental training were conducted exactly as before.
The test conditions were also the same as before. The unadapted
conventionally-trained system with VTLN was used to write word
lattices, which were subsequently used for unsupervised speaker
adaptation. The conventionally-trained system achieved a WER of
50.9% (48.8%) unadapted and 48.6% (45.8%) with MLLR adap-
tation.

The systems used for the APT adaptation experiments were
once more trained trained with the IT procedure described in [9],
with a frame count threshold of 50.0 during training and test. The
results of the MLLR and APT adaptation experiments are summa-
rized in Tables 3 and 4, respectively. The best MLLR system
had a single RC and achieved a WER of 42.6% (40.3%), while
the best APT system had 16 RCs and achieved a WER of 41.5%
(39.9%). Hence, APT adaptation was still marginally better than
MLLR. Note that the performance of the MLLR systems improved
significantly with the use of VTLN. For APT adaption, the use of
VTLN together with the simple APT-1 transformation provided a
reduction in WER with respect to the no VTLN case; compare
49.1% (47.8%) for APT-1 without VTLN to 47.2% (45.6%) with
VTLN. But the WER reduction afforded by VTLN quickly van-
ished with the use of the more complicated APT-9 transformation
and the addition of more regresion classes.

From Table 4 it is clear that APT adaptation fails to provide
further reductions in WER with the addition of more than 16 RCs.
Based on this failure, we suspected that perhaps the frame count
threshold of 50.0 was too low. Hence, we repeated the entire IT

Train/Test Condition % Word Error Rate
Unadapted Baseline 50.9 (48.8)

APT-1, 1 RC 47.2 (45.6)
APT-9, 1 RC 44.8 (43.8)

APT-9, 1 RC, mean len. = 78 43.9 (42.9)
APT-9, 4 RCs, mean len. = 78 42.7 (41.2)
APT-9, 8 RCs, mean len. = 78 42.2 (40.8)
APT-9, 12 RCs, mean len. = 78 41.6 (40.6)
APT-9, 16 RCs, mean len. = 78 41.5 (39.9)
APT-9, 24 RCs, mean len. = 78 41.5 (40.0)
APT-9, 32 RCs, mean len. = 78 41.2 (40.0)

Table 4. Results of unsupervised APT adaptation with VTLN.

No. Reg. Classes Adaptation Threshold
50.0 150.0 400.0

8 42.2 (40.8) 41.8 (40.7) N/A
12 41.6 (40.6) 41.3 (40.3) 41.2 (40.3)
16 41.5 (39.9) 41.1 (40.2) 41.1 (40.3)
24 41.5 (40.0) 41.5 (39.9) 41.5 (39.9)
32 41.2 (40.0) 41.1 (39.5) 41.4 (39.7)
44 N/A 41.2 (39.4) 41.7 (40.1)
56 N/A 42.2 (40.8) 41.5 (39.8)

Table 5. Results of unsupervised 9-parameter APT adaptation
with VTLN.

procedure with a threshold of 400.0, and tested the new models
with a threshold of both 150.0 and 400.0. The results of these
tests are shown in Table 5, in which the first column is repeated
from Table 4. Clearly, the use of a threshold of 150.0 had a ben-
eficial effect, as the best system with this threshold had 44 RCs
and achieved a WER of 41.2% (39.4%), a significant improve-
ment over the best MLLR system. Moreover, we observed that the
addition of more RCs only ceased to provide further reductions in
WER when the amount of test data was no longer sufficient to per-
form unsupervised parameter estimation on all or most leaf nodes
of the regression tree, and backing off became universal. Hence we
surmise that further reductions in WER would be possible, were
the test conversations of longer duration, thereby providing more
adaptation material.

In a final experiment, we used the best 44-regression class sys-
tem from above as a starting point, then increased the number of
free parameters in each APT transform from 9 to 17. The resulting
system achieved a WER of 41.0% (39.2%).

3.3. Experiments with STC

In the recent past, it has become increasingly popular to apply one
or more linear transformation to the raw cepstral features prior
to their use in speech recognition. Among the linear transforma-
tions that have proven useful for this application are traditional
linear discriminant analysis (LDA) as discussed in [3, §10], a
variant of traditional LDA known as heteroscedastic linear dis-
criminant analysis (HLDA) proposed by Kumar and Andreou [5],
and semi-tied covariance (STC) transformations as proprosed by
Gales [4]. Because the formulation of APT adaptation exploits
the characteristics of cepstral sequences, APT adaptation must al-
ways be applied prior to any other transformation. But given the



Adaptation Condition STC Condition
No STC Case A Case B Case C

APT-1, 1 RC 47.2 (45.6) 46.2 (45.5) 45.9 (45.3) 44.3 (43.7)
APT-9, 1 RC 44.8 (43.8) 43.7 (43.1) 43.4 (42.8) 41.8 (41.2)

APT-9, 1 RC, mean len. = 78 43.9 (42.9) 42.1 (41.6) 41.6 (41.1) 39.9 (39.4)
APT-9, 4 RCs, mean len. = 78 42.7 (41.2) 41.9 (41.0) 41.0 (40.2) 39.0 (38.5)

Table 6. Results of unsupervised 9-parameter APT adaptation with VTLN and STC.

sizeable reductions in WER provided by the transformations men-
tioned above, we deemed it worthwhile to combine the benefits
of APT adaptation and linear feature transformation. Hence, we
undertook a final set of experiments to determine whether APT
adaptation could be combined with with STC, a representative lin-
ear transformation. We considered several distinct cases:

• Case A: A global STC transformation was estimated dur-
ing SAT, but the APT parameters for training and test were
retained from the non-STC experiments.

• Case B: Both the global STC transformation and speaker-
dependent APT parameters were estimated during SAT. The
global STC transformation was held fixed for test, while
new APT parameters for each test set speaker were obtained
with unsupervised lattice adaptation.

• Case C: APT parameters as well as speaker-dependent STC
transformations were estimated for each speaker during SAT;
unsupervised lattice adaptation was used to estimate both
APT and STC transformation parameters for each test set
speaker.

The results of these experiments are shown in Table 6.
From the results above, we observe that the use of STC feature

normalization yields a word error rate reduction in all cases. Com-
paring Case A with Case B, we also see that the joint estimation of
STC and APT parameters is better than holding the APT parame-
ters estimated during non-STC training fixed and simply estimat-
ing the STC transformation based on them. As is clear upon exam-
ination of Case C, the very best use of STC comes from the estima-
tion a unique transformation matrix for each speaker. A tentative
explanation for this fact can be stated as follows: APT adaptation
transforms the SI means of an HMM so as to better match the cep-
stral features of a given speaker. In so doing, however, the means
are transformed into a space that may not have the desired diago-
nal covariance structure assumed by the HMM. Hence, a second
transformation is necessary to transform both features and adapted
means back into this “diagonal covariance” space. Because the
cepstral features and APT parameters are unique for each speaker,
this diagonalizing transformation must also be individually esti-
mated for each speaker.

From the final row in Table 6, we observe that the combined
APT/STC training scheme is apparently not optimal for the use of
multiple APT transformations per speaker. As a corollary of the
argument above, it may in fact be necessary to estimate multiple
STC transformations per speaker when multiple APT transforma-
tions are used.

4. FUTURE WORK

Future work will concentrate on further refinements of the incre-
mental training procedure described in [9]. Specifically, we must

determine whether the regression class splitting procedure used
in this work is optimal. It would also be of interest to compare
the performance of APT adaptation to MLLR and other forms of
speaker adaptation on a task where dozens or hundreds of minutes
of unsupervised enrollment data is available for each speaker, as
in the recognition of lectures, speeches, or meetings, for example.
In this work, we made an initial step in combining APT adaptation
with STC [4], one of the several currently-popular linear feature
transformations. Further work is necessary to determine if APT
adaptation can also be used with LDA [3, §10] or HLDA [5].
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