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Abstract
Sentence segmentation and punctuation insertion in the

output of automatic recognition systems is essential for its
readability as well as for the performance of subsequent ap-
plications, such as machine translation systems. While a
longer context can boost the accuracy of inserted punctua-
tion marks, it drastically increases the delay in the spoken
language translation system.

In this work, we investigate the impact of shorter context
in punctuation insertion task on simultaneous speech trans-
lation system. We suggest a new scheme within stream de-
coding where the time delay consumed on punctuation pre-
diction is avoided. Our evaluations on the English TED talks
show that our suggested scheme can be used as an efficient
method to punctuate recognized streams in real-time scenar-
ios. While outperforming a conventional language model
and prosody based punctuation prediction system, our model
maintains a comparable performance compared to systems
that require longer contexts.

1. Introduction
Inserting reliable punctuation marks and sentence segmen-
tation into automatically recognized transcripts plays an
important role in spoken language translation (SLT) sys-
tems. Many of the conventional automatic speech recogni-
tion (ASR) systems generate either no or unreliable punctu-
ation marks. Without a proper punctuation insertion compo-
nent, therefore, the automatically recognized output is hard
to read for humans. Also, it affects the performance when
the ASR output is used in subsequent applications of natu-
ral language processing (NLP), such as machine translation
(MT) systems. Missing proper punctuation marks especially
degrades the performance of MT systems, since most of them
are trained using well-structured texts, such as news corpus,
where sentence boundaries are clear and well-formed.

One of the commonly used methods for inserting punctu-
ation marks into the ASR output is the language model (LM)
and prosody based scheme as discussed in [1]. It has an
advantage that it incorporates acoustic features keeping the
process relatively fast. Recently, punctuation insertion mod-
els using a monolingual translation system [2, 3] have shown
the effectiveness in improving the performance of MT sys-
tems when they are applied to the ASR output. A mono-

lingual translation system is an MT system which translates
non-punctuated input text into punctuated text. The conven-
tional monolingual translation system suggested in previous
work uses overlapping window for input. Since it can pro-
vide a very long context, a great performance improvement
on the MT for ASR outputs can be achieved using this tech-
nique. Overlapping windows, however, make the system dif-
ficult to be used in real-time scenarios without long latencies.

One indisputably crucial aspect in inserting punctuation
marks for real-time speech translation is the time delay.
Longer context is preferred for better prediction performance
but it causes more delay.

In this paper, we suggest an efficient punctuation inser-
tion scheme for real-time SLT systems, using the monolin-
gual translation system. Our punctuation insertion and sen-
tence segmentation system is designed to take the output of
a stream decoding ASR system. The input to the monolin-
gual translation system is modified so that latency can be de-
creased while maintaining similar translation performance.
We performed experiments both on audio streams as well as
manual transcripts, in order to give in-depth analysis on the
impact of different length of context in the punctuation inser-
tion scheme.

This paper is organized as follows. In Section 2, a brief
overview of past research on punctuation insertion for varied
scenarios is given. The task of inserting punctuation marks
for real-time translation systems and its related challenges
are discussed in Section 3. Section 4 describes how we model
the punctuation insertion system for real-time speech transla-
tion scenario. The systems we used throughout this work are
described in detail in 5. Section 6 shows our experimental
setups and results, followed by Section 7 where we conclude
our discussion.

2. Related Work
In previous work [4], sentence segmentation for ASR output
was modeled based on LM probabilities and prosody. The
authors emphasized that choosing a proper segment length
for the different MT systems boosts the translation perfor-
mance. In this work, commas and final periods are not con-
sidered separately, but together in order to form segment
boundaries. A threshold was used to control the average
number of segments per sentence.



Recently MT-driven approaches have emerged as an ef-
fective method to insert punctuation marks in ASR output.
An approach using a modified phrase table was introduced
in [5] as a method to restore commas. Sentence boundaries
are generated based on a decision tree on the source side.
Applied to three different language pairs, their method sig-
nificantly improved translation performance.

Among different MT-driven techniques to model punctu-
ation marks for spoken language, the monolingual translation
system [3, 2] has shown an outstanding performance in im-
proving machine translation quality in evaluation campaigns
[6, 7]. Using this system, a non-punctuated source language
is translated monolingually into punctuated source language.
In [3], authors made in-depth analysis on three different ap-
proaches to restore punctuation marks using an MT system.
Among the three systems, they achieved their best perfor-
mance when using the translation system to translate non-
punctuated text into punctuated one. In their work, however,
it was assumed that reliable sentence boundaries are already
given. Therefore, punctuation marks within each of the given
sentence boundaries are restored.

Based on the work in [3], authors in [2] extended the sys-
tem so that sentence boundaries can also be predicted. In
order to model the possibility to insert a final period every-
where given a segment, they randomly cut the training data
for the monolingual translation system. Also, the test data
was prepared with a shifting window of 10 words.

While the work mentioned above focused on enhancing
punctuation accuracy or the machine translation performance
when using the punctuated ASR output, the authors in [8]
made an extensive study on different segmentation strategies
and latency. They inserted segments based on various tech-
niques into ASR output for real-time translation experiments.
It was shown that a good performance can be achieved when
they use the conjunction-based segmentation strategy along
with a comma-based segmentation.

The input segment length and machine translation qual-
ity are studied in [9]. In this work, a statistical machine
translation (SMT) decoder which processes a continuous in-
put stream was suggested. Using the decoder they achieved
improved translation quality at relatively low latencies.

3. Real-time Spoken Language Translation
In order to be useful a real-time spoken language translation
system has to, among many other challenges, deal with the
problem of latency. The latency of a real-time spoken lan-
guage translation system is the time between when a word
is spoken and when its transcription and translation are dis-
played to the user [1]. If the latency is more than a few sec-
onds then the whole translation system becomes unusable
and frustrating for the user. Each component adds to the
latency, due to computation time, communication time and
required future context.

Communication time can be kept to a minimum by hav-
ing a fast connection and low overhead between the indi-

vidual components. Computation time may be reduced by
running the components on fast servers with multiple cores
and by parallelizing those parts of the individual components
that can be. It may also require sacrificing accuracy by using
smaller faster models.

In order to reduce the apparent latency the speech recog-
nition component can be configured to output its current best
hypothesis about once a second. The displayed output is
then often updated by a newer, possibly better, hypothesis.
This type of setup has a much higher user acceptance than
the alternative setup where the speech recognition compo-
nent waits until it has a stable hypothesis before outputting it
which can sometimes result in 8 or more words appearing at
once.

The MT component is even more dependent on context
than the speech recognition component and often has to wait
for the whole sentence to be recognized before it can be prop-
erly translated. A fast enough MT system can re-translate the
sentence each time the ASR system recognizes a new word
and change the output displayed to the user. For this to work,
however, the MT system requires the ASR output to be seg-
mented into proper sentences.

These design decisions for both the ASR component,
the MT component and the real-time spoken language trans-
lation system as a whole pose some significant challenges
for the punctuation prediction component that converts the
stream text output stream of the ASR component into proper
sentences required for the MT system. A major side affect
of the ASR component constantly updating its current hy-
pothesis is that the punctuation prediction component has to
deal with possibly changing inputs. It also has to have a fast
computation time because the ASR system is sending up-
dates very frequently. As the MT component requires sen-
tence boundary information as soon as possible in order to
function properly the punctuation prediction component has
function well with only very little future context.

Although the monolingual translation system [2] shows
a good performance in the subsequent application, adopting
this system for the real-time speech translation system causes
an unacceptable amount of latency due to its long shifting
window of 10 words. This component alone would intro-
duce more latency into the whole system than the desired
total average latency.

4. Model
In order to decrease the delay in the real-time speech transla-
tion system, we use a streaming input scheme instead of the
overlapping window. In this section, we describe how the
streaming input scheme works.

Our in-house stream decoding ASR system stores its
recognition in two separate stacks. In one stack it saves its
final 1-best list for words w = {wl, . . . , wm}. Their follow-
ing words are stored in another stack v = {vm+1, . . . , vn},
which is not the final recognition yet. Since this stack v is
flexible depending on the upcoming context, it is updated



based on the context and whenever it is updated, the changes
are shown to users.

In our punctuation insertion setup, we introduce another
stack for recognized words before w, in order to consider
more context. The history stack h is defined as:

h = {hl−c, . . . , hl−1} (1)

The context c is chosen as four throughout this work. When
there are fewer previous words available in the initial part of
the recognition, only upto available context is used.

The newly punctuated string is then obtained by

w′ = m(h+ w) (2)

where m denotes the monolingual translation system. Its
scheme will be described in detail in Section 5.3. Parts of
the generated output is taken as the final string.

s = {w′l−c, . . . , w′m−4} (3)

At the same time the history stack is updated.

h = {w′m−3, . . . , w′m} (4)

Thereby we input punctuated text into the monolingual
translation system and repunctuate it. Although this leads to
a slight mismatch between training and testing data, using
this way we can guarantee punctuation can be inserted when
the longest context is available.

Table 1 shows how an excerpt from an automatically rec-
ognized transcript is punctuated in our monolingual transla-
tion system scheme. History stack is marked in blue box.

Input OK but then after a while
Output OK. But then, after a while,

Input then, after a while, I realized this is
Output then, after a while, I realized this is

Input I realized this is my life this is six months of
Output I realized this is my life. This is six months of

Input is six months of my life and
Output is six months of my life. And

Input of my life. And this . . .
Output of my life. And this . . .

Table 1: History stack and punctuation output

For the non-final ASR recognition stack v, we generate
the possible output string m(h+ v) and show it to users.

An advantage of this model is that while longer history is
utilized, the decision on punctuation insertion on the current
window can be made instantly, minimizing the time delay
consumed on sentence segmentation. Also, by supporting

and I said, “OK, it ’s the huge file. OK,
I said, “OK, it ’s the huge file. OK, but
said, “OK, it ’s the huge file. OK, but then
OK. it ’s the huge file. OK, but then, after
it ’s the huge file. OK, but then, after a
’s the huge file. OK, but then, after a while,
the huge file. OK, but then, after a while, I
huge file. OK, but then, after a while, I realised
file. OK, but then, after a while, I realised this
OK , but then, after a while, I realized. this is
but then, after a while, I realized. this is my
then , after a while, I realized. this is my life.
after a while, I realized. this is my life. this
a while, I realized. this is my life. this is
while I realized. this is my life. this is six
I realized. this is my life. this is six months
realized . this is my life. this is six months of
this is my life. this is six months of my
is my life. this is six months of my life
my life. this is six months of my life, and

life . this is six months of my life, and this
this is six months of my life. and this fire
is six months of my life. and this fire. so
six months of my life. and this fire. so, I
months of my life. and this fire. so I was
of my life. and this fire. so I was a
my life. and this fire. so I was a little

life , and this fire. so I was a little bit
and this fire. so I was a little bit skeptical
this fire. so I was a little bit skeptical of

Table 2: Output of monolingual translation system with over-
lapping window of 10

the stream decoding, users can see the updating recognition
as well as its most probable punctuation marks within.

As a comparison, Table 2 shows the actual output of
monolingual translation system with overlapping input, for
the same segments shown in Table 1. Since the system is
using an overlapping window of 10 words, each encounter-
ing word (marked in red box) has to be translated 10 times
as well. In this overlapping window system [2], each token
is translated ten times and a punctuation mark is inserted de-
pending on how often it occurs after this token. For example,
augmenting a punctuation mark after the first encountering
word OK needs previous ten translations.

From the comparison between Table 1 and Table 2, we
can observe that the streaming segmentation system can de-
crease the latency introduced by using the monolingual trans-
lation system with overlapping window. While the suggested
streaming segmentation will punctuate the given segments in
only 5 times of translation, using the overlapping window
requires 30 times of translation.



5. System Description

In this section, we discuss the systems we use throughout
this work. The English audio data is decoded using our ASR
system. A brief description on our LM and prosody based
segmenter, which is used as one of the baseline systems, is
also given. Once the punctuation marks are inserted using
different segmentation strategies, we translate this test data
into German in order to measure the performance of the real-
time punctuation insertion system.

5.1. English ASR System

The speech recognition is performed using in-house de-
coder in an online setup. Using a framesize of 32ms and a
frameshift of 10ms the audio stream is converted in a stream
of 40 dimensional lMel feature vectors.

The hybrid DNN/HMM acoustic model uses a context
dependent quinphone setup with three states per phoneme, a
left-to-right HMM topology without skip states. The neural
network has in input window of ±6 frames leading to an in-
put layer size of 520 neurons, this is followed by 4 layers of
2k neurons and a finial classification output layer containing
just over 8k neurons.

The neural network is pretrained layerwise using denois-
ing autoencoders with a 20 million mini batches. After pre-
training the final layer is added, with the output layer using
the softmax activation function. The full DNN is then fine-
tuned using the newbob learning rate schedule. All training
is performed using Theano [10] on the TED [11] and Quaero
data [12].

For the language model training texts from various
sources such as webdumps, scraped newspapers and tran-
scripts are used. The 120k vocabulary is selected by build-
ing a Witten-Bell smoothed unigram language model using
the union of all the text sources vocabulary as the language
models’ vocabulary (global vocabulary). With the help of the
maximum likelihood count estimation method described in
[13] we found the best mixture weights for representing the
tuning set’s vocabulary as a weighted mixture of the sources
word counts thereby giving us a ranking of all the words in
the global by their relevance to the tuning set.

Using this vocabulary language models are built from
each of the sources and interpolated using the SRILM toolkit
[14] so as to maximally reduce the perplexity of the tuning
set.

5.2. LM and Prosody based Segmentation

The language model and prosody based segmenter employs a
4-gram language model trained on punctuated text. In order
to predict punctuation marks a context of four words, two
prior and two after the possible punctuation mark, is taken
into consideration.

The language model is used to calculate three scores. The

first one is the score without an inserted punctuation mark as

P (wi−1, wi, wi+1, wi+2) (5)

while the second one is the score with a comma.

P (wi−1, wi,@COMMA, wi+1, wi+2) (6)

The last one is calculated by followings.

P (wi−1, wi,@STOP, wi+1, wi+2) (7)

A dynamic scaling factor is applied to the punctuation
mark scores in order to prevent both very short sentences
and very long sentences. In parallel to the language model
a prosody component searches for pauses over tθ seconds
and then force terminates any sentences.

5.3. Monolingual Translation System

Monolingual translation system for punctuating English data
is trained on the English side of the European Parliament
data, News Commentary, TED1, and the common crawl cor-
pus.

As a preprocessing step, the noisy part of the common
crawl data is filtered out using an SVM model as described in
[15]. After preprocessing is applied, the normalized training
data is resegmented randomly so that punctuation marks can
be observed in all possible locations in each line.

For the source side of the training, we removed final pe-
riod, comma, question mark, and exclamation mark. Double
quotation marks are also removed as they are relatively fre-
quent in TED talks. In addition to processing the punctuation
marks, we also lowercased every single word on the source
side. Since automatically recognized words often miss cor-
rect case information, we aim to restore the case informa-
tion altogether with punctuation marks using this one system.
Altogether the training data consists of 10.1 million English
words.

The Moses package [16] is used to build the phrase table.
We build a 4-gram language model on the entire punctuated
target side using the SRILM Toolkit [17]. Word alignment
is learned automatically using the GIZA++ Toolkit [18]. A
bilingual language model [19] is used along with a 9-gram
part-of-speech (POS)-based language model. The POS is
learned from TreeTagger [20]. In addition to this POS-based
language model, we train a 1, 000 class cluster [21] and use
the cluster codes for the additional 9-gram language model.
The model weights were optimized on the official test set of
IWSLT evaluation campaign in 2012.

5.4. English-German MT System

For evaluating our online punctuation insertion schemes, we
translate the testsets with different segmentation and punctu-
ation marks into German. For the translation, we use online

1http://www.ted.com



English to German phrase-based translation system. The sys-
tem is trained on the parallel corpus of Europarl, News com-
mentary, TED, and the noise-filtered common crawl data.
For the monolingual data we take the News Shuffle corpus.
Detailed statistics on corpus can be found in [7].

We build a 4-gram language model on the German side
of TED data which is used as an in-domain language model.
In addition to this language model, we used a bilingual lan-
guage model on all available parallel data as described in
[19]. Also, we used a 4-gram language model that is built
based on cross entropy with the development data. For the
in-domain TED data, we applied the cluster algorithm [21].
Once the TED data is clustered into 1, 000 classes, we build
a 9-gram language model and used it as an additional model.

In order to address the word order difference between En-
glish and German, we use the POS-based reordering [22]
along with the tree-based [23] and lexicalized reordering
rules. For optimization of the log-linear combination of mod-
els, we use minimum error rate training [24].

For evaluating differently segmented testsets, we use the
Levenshtein minimum edit distance algorithm [25] in order
to align hypothesis against the reference translation.

5.4.1. Phrase Table Preparation

For online translation systems, it is impossible to generate
a perfectly fitting phrase table for each input data. There-
fore, we build a phrase table based on the vocabulary in the
training data. In order to decrease the size of the model for
online scenario, we first filtered out words which occurred in
the corpus less than four times. Also, phrases that are longer
than 4-grams are filtered out as well.

6. Experiments and Results
In order to measure the impact of different segmentation
methods and models on MT, we experiment on the offi-
cial test set of IWSLT evaluation campaign 2013. The En-
glish manual transcript of this test data has 993 sentences, or
17.8K tokens. The audio is 2h 16m long.

The proposed streaming punctuating prediction
(StreamingInput) system is compared to both a low latency
baseline language model and prosody based punctuation
prediction (LM, Prosody) system as well the high latency
but highly accurate monolingual translation (Baseline)
system using a 10 word moving window. Table 3 presents
these systems’ translation performance of the test data. The
numbers are reported in case-sensitive BLEU [26].

In the first row, we first show the translation performance
when using the simple LM and prosody based segmentation,
available only for the ASR output. In the baseline system,
both ASR output and manual transcript are punctuated using
the conventional monolingual translation system, using over-
lapping windows, as shown in [2]. Therefore, the shift win-
dow is applied so that each word is translated for ten times.
As it is not for online scenario, the phrase table is also gen-

Punctuation ASR Output Manual Transcript
LM, Prosody 9.74 -
Baseline 11.18 19.57
StreamingInput 11.55 19.41

Table 3: Translation performance of the proposed system
compared to a fast LM, prosody based model as well as a
high latency, but highly performant monolingual system us-
ing an overlapping window

erated upon the knowledge of the each test data.

We can see that when we use the suggested punctuation
insertion scheme, we achieve 11.55 BLEU points in the ASR
test data, beating the conventional LM and prosody based
model by 1.8 BLEU points. Even though this system is using
relatively shorter context and the less-fitting phrase table than
the traditional monolingual translation system, the transla-
tion performance is comparable with the baseline mono-
lingual translation system’s. Although the translation was
slightly worse when using this system for punctuating the
manual transcript, we achieve an improvement of 0.4 BLEU
in the ASR translation task which is its intended use case.

Due to the small model footprint and the use of an ef-
ficient MT decoder the stream-based punctuation prediction
setup incurs only minimal computational cost, comparable
to the punctuation model based on LM and prosody with-
out having much future context requirements. This fast sys-
tem also allows for updated punctuation when new data is
received. As this component does not add further commu-
nication overhead, the total latency of the real-time speech
translation system is not negatively impacted.

7. Conclusions

In this paper, we present a new punctuation insertion scheme
for real-time spoken language translation system. Taking
streamed input from an ASR decoder, the suggested scheme
can improve the output of the speech translation without
negatively impacting the speech translation system’s latency.
The experiments show that our low-latency real-time punctu-
ation insertion system can achieve a comparable performance
to an offline system requiring a large context window.

As future work, we intend to evaluate the system perfor-
mance on further language pairs. We would also like to in-
vestigate the possible integration of neural network and con-
ditional random field-based punctuation prediction models.
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