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Abstract

Building Large Vocabulary Continuous Speech Recognition
(LVCSR) systems for under-resourced languages is a chal-
lenging task. While plenty of data is available for English,
many other languages suffer from a lack of data. There are
different methods for tackling this challenge. One possibility
is to use data from different languages to boost the perfor-
mance of a system for a particular target language. With the
emerging of LVCSR systems using neural networks (NNs),
many research groups have demonstrated the benefits from
using additional data in order to improve the system perfor-
mance. In this work, we propose a method for providing the
language information directly to the network, thus enabling
it to become language adaptive. We demonstrate the effec-
tiveness of our approach in a series of experiments.

1. Introduction
With the emergance of Deep Neural Networks (DNNs) in the
field of automatic speech recognition, different methods have
been explored to improve the performance of Large Vocabu-
lary Continuous Speech Recognition (LVCSR) systems. Al-
though DNNs improve the overall system performance, they
require a rather large amount of training data to produce rea-
sonable results.

While there are plenty of resources available for English,
this does not necessarily hold true when building a system
for another language. One possible solution for this problem
is to use data from other languages if there is only a lim-
ited amount of data available for a particular target language.
Several methods have been explored to make use of multi-
lingual data during system training. By using additional data
sets, it is for instance possible to either reduce the training
time [1] or decrease the word error rate (WER) [2].

Our proposed method aims towards making better use of
the provided multilingual data by explicitly providing a lan-
guage code to the DNN. By doing so, the DNN becomes
aware of the different languages used and is able to implic-
itly learn language specific features. The resulting DNN is
language adaptive (LA-DNN) as it processes the language
information in addition to the other input features. We eval-
uate our proposed method by using different ways of adding

the language information to the training pipeline.
This paper is structured as follows: In section 2 we re-

view work related to our experiments. In the following sec-
tion 3 we describe our proposed method for the network
training. Section 4 explains our experimental setup and in
section 5 we describe and evaluate the results. Finally, we
conclude our paper with section 6 where we review our pro-
posed method and also point towards future work.

2. Related work
Current state-of-the-art speech recognition systems rely on
using NNs. The networks are being used in various com-
ponents like audio pre-processing, language modelling and
acoustic modelling. In this work, we concentrate on the use
of NNs as a part of the audio pre-processing pipeline and the
acoustic model.

2.1. Deep Belief Botteneck Features

Deep Belief Neural Networks (DBNFs)[3] process audio
features which were extracted from the raw audio us-
ing common approaches like mel-scaled cepstral coeffi-
cients (MFCC) or logarithmic mel-scaled spectral coeffi-
cients (lMel). DBNFs are feed forward neural networks
featuring multiple hidden layers. We first pre-train the net-
work using de-noising auto-encoders [4]. This step initializes
the network parameters and guides them into an appropriate
range. In the next step, the parameters are fine-tuned us-
ing Stochastic Gradient Descent (SGD) [5] with mini-batch
updates. For the extraction of the features, the layers after
the bottleneck are discarded and the output of the bottleneck
layer is used as features.

2.2. Multilingual DBNFs

Since neural networks are good at learning different tasks
[6], DBNFs can be trained using multiple languages. Fur-
thermore, [7] has shown that the pre-training step is language
independent. Therefore it is possible to increase the perfor-
mance of the network by using the combined data from mul-
tiple languages for training the network. After pre-training,
the network is fine-tuned. There are two possibilities to deal



with multiple languages at this stage. It is possible to use a
merged phoneme set [8] or share the hidden representations
among different languages but use language specific output
layers ([9], [10], [11], [12]), see figure 1.
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Figure 1: Neural network featuring shared hidden layers and
multiple output layers. In our setup, each output layer corre-
sponds to a language specific phone set.

2.3. Augmented Input Features for Neural Networks

Recent publications show that augmenting the input features
of the network with additional information like i-Vectors
[13] or Bottleneck Speaker Vectors (BSV) [14] increases the
overall performance of the system. By providing this addi-
tional information, the network adapts to different speakers
or acoustic conditions [15]. Since neural networks can pro-
cess multimodal input data, adding additional information to
the features is possible. By doing so, we can provide addi-
tional cues to the network. While this was done in the past to
provide information about speakers or channels, but, to our
knowledge, the use of language codes for building systems
in a multilingual environment has not been investigated.

3. Language Adaptive Deep Neural Networks
Augmenting input features with additional information in-
creases the performance of neural networks. Here, we
present our approach to add language codes during neural
network training in a multilingual environment. By provid-
ing this language information in addition to the acoustic fea-
tures, the network is able take advantage of the language in-
formation. As multilingual data can boost the performance
of a system when little or no data from the target language is
available, we show that this boost can be increased through
a language code. As for this code, we chose to encode the
language information using 1-of-N coding. This results in a

feature vector with one dimension per language.
As pointed out in the related work section, there are

multiple possibilities to add data from additional languages
throughout the network training. One possibility is to
directly merge the available data sets: Create a unified
phoneme set, join the different dictionaries and use the au-
dio data jointly to train the system. Another possibility is
to build systems for each language individually and then use
the individual systems to create language dependent training
data for the NNs. It is then possible to share the hidden rep-
resentations and use language specific output layers. This
training technique can be applied to both DBNFs and Hybrid
systems. In the latter, the Gaussian Mixture Models (GMMs)
are being replaced using a NN.

The language code can be added to the training process of
each network. Figure 2 shows the different positions where
the language code can be added. It is possible to do an early
fusion by appending the language code to the stacked feature
frames from the audio pre-processing. Doing so would help
the network to discriminate between different languages, but
as we will see, this might not be beneficial in all cases. Per-
forming a late fusion is also possible by augmenting the
stacked bottleneck features with the language code.

4. Experimental Setup
We conducted a series of experiments in order to assess the
performance of our approach. The question is how to aug-
ment the existing features with the language code. For train-
ing our systems, we use a speech corpus consisting of record-
ings from Euronews1, a TV news station [16]. It consists
of approximately 70h of acoustic training data per language,
sampled at 16 kHz. We use data from 6 languages (English,
French, German, Italian, Russian and Turkish), as shown in
Table 1. For testing, we used 1.1h of English TV reports.

The pronunciation dictionaries were automatically cre-
ated using MaryTTS [17]. We selected the languages based
on the availability of both recordings from Euronews and
pronunciations from MaryTTS. We built the systems using
the Janus Recognition Toolkit (JRTk) [18] which features the
IBIS decoder [19]. The neural networks were trained using a
setup based on Theano ([20], [21]).

Language Audio Data # Phonemes

English 72.8h 36
French 68.1h 32
German 73.2h 41
Italian 77.2h 31
Russian 72.2h 27
Turkish 70.4h 31

Total 433.9h 43

Table 1: Overview of used datasets

1www.euronews.com



AF stack

LI
early fusion

LI
late fusion

BNF stack Output layer

Figure 2: Overview of the network architecture used in our setup. Starting with stacking the acoustic input features (AF), we
augment them with a language information (LI) code before feeding them into a DBNF in order to extract BNFs. The BNFs are
being stacked as well and the LI code is added. The second DNN computes the phoneme posteriors.

4.1. System Training

For building an initial system, we use a flatstart approach to
bootstrap the acoustic models. The audio is pre-processed
using 13 dimensional lMEL input features with ∆ and ∆∆
coefficients which are computed over a window of 16ms that
is shifted with 10ms over the audio recording. Based on
this inital system, we built a context-dependent system us-
ing 6000 context-dependent states. Preliminary experiments
have shown that a system using 6000 states has reasonable
performance given the amount of available training data.

4.2. DBNF Training

Based on this initial context-dependent system, we extracted
samples for training the DBNF network. For training the net-
work, we extracted the samples using a combination of lMel,
fundamental frequency variation (FFV) [22] and pitch [23]
acoustic features. For the extraction of FFV and pitch, we
use a window size of 32ms. The use of additional tonal fea-
tures has lead to improvements in combination with NNs,
even for non-tonal languages such as English [24]. The in-
put features are being stacked using a context of 6 on each
side. This results in 13 stacked feature frames being fed into
the network at each time step. These stacked frames are then
optionally augmented by our 6 dimensional language code
which indicates the current language.

The network is layer-wise pre-trained using de-noising
auto-encoders. It consists of 5 hidden layers with 1000 neu-
rons per layer. The bottleneck is a narrow layer with only 42
neurons. For fine-tuning, we use stochastic gradient descent
with new bob scheduling and log-linear regression. Based
on the features extracted by this network, we trained another

GMM/HMM system.

4.3. Hybrid System Training

We use the BNF GMM/HMM system to extract a new set of
samples for training a DNN. For training this network, we
stack features with a context of 7 BNF-frames in each direc-
tion, resulting in a total context of 15 frames being fed into
the network. This network features 6 hidden layers with a
size of 1600 neurons per layer. We use this network as a re-
placement for the GMMs to estimate the phoneme posterior
probabilities. Similar to the training of the DBNF, the in-
put vector for this network is optionally augmented with the
language code.

4.4. Merged Phoneme Set

In the first set of experiments, we built a system with lan-
guage independent models. For training this system, we
merged the different training data sets and the pronunciation
dictionaries. As we used MaryTTS for generating the dictio-
naries, we did not need to do a phoneme conversion between
the different languages, as all the phonemes already originate
from the same phoneme set.

The baseline GMM/HMM system is bootstrapped using
all available acoustic data from the 6 languages. This results
in 433h of training data for the acoustic model of the system.
Based on this initial system, we follow the training proce-
dure described in order to build the BNF based system and
the Hybrid system. In order to reduce the training time, we
limited the amount of data for the neural network training to
30h per language. To obtain this subset of 30h, we selected a
subset of TV reports randomly.



4.5. Language Dependent Phoneme Sets

In a second set of experiments, we built systems with lan-
guage specific phoneme sets. We used monolingual systems
for the extraction of training data for the BNF. Based on this
data, we trained a multilingual DBNF by training the hidden
layers jointly over all languages and using separate output
layers for each language. Based on the multilingual BNF,
we again trained systems monolingual for all languages and
used them to extract the training data for the Hybrid systems.
As for the Hybrid systems, we employed the same training
strategy by sharing the hidden layers among languages. The
language code was appended to the stacked BNFs.

5. Results
The results section is divided into three different parts. First
we present the results from the systems with the merged
phoneme set. Next, we show the results from the systems
with language specific phoneme sets. This section concludes
with a comparison between the multilingual systems and a
system trained monolingually.

5.1. Merged Phoneme Sets

The initial GMM/HMM system with a merged phoneme
set features a WER of 26.3% as displayed in Table 2.
This is rather high, but expected for this type of system:
GMM/HMM systems tend to have a poor performance when
trained in this multilingual fashion. Using bottleneck fea-
tures decreases the WER to 21.7% without the language in-
formation and 21.2% when adding the language code. The
system with the LA-DNN is by 2.4% relative better com-
pared to the system without that additional information. This
trend continues for the Hybrid systems. The use of the lan-
guage information results in a total relative gain of 9.0%. Us-
ing a merged phoneme set, adding the language code at both
stages (early and late fusion) of network training is benefi-
cial.

System Baseline LA-DNN rel. gain

GMM/HMM 26.3% 26.3% -
BNF 21.7% 21.2% 2.4%
Hybrid 19.3% 17.7% 9.0%

Table 2: Overview of results for systems with a merged
phoneme set, showing WERs.

5.2. Language Dependent Phoneme Sets

The baseline system with a language dependent phoneme set
for English has a WER of 18.9% (see Table 3). This is to
a great extend better compared to the system with a merged
phoneme set. It is interesting to see that the system with
bottleneck features does not benefit from the language code:
Providing the language code to the network results in a WER

of 18.7%, while the WER is 17.5% when training it without
the language information. We therefore use the system with-
out the language code (and the better performance) to write
samples for training both Hybrid systems. Based on the per-
formance of the Hybrid systems, it can be seen that adding
the language code at the bottleneck layer helps improving the
system by 3.5% relative: The system with the language in-
formation has a WER of 14.4%, compared to 14.9% WER to
the system without. Here, only the late fusion approach leads
to improvements.

System Baseline LA-DNN rel. gain

GMM/HMM 18.9% 18.9% -
BNF 17.5% 18.7% -6.4%
Hybrid 14.9% 14.4% 3.5%

Table 3: Overview of results for systems using separate
phoneme sets per language, showing WERs.

5.3. Comparison to Monolingual Systems

In a final set of experiments, we compared the performance
of monolingual systems to the best multilingual systems. As
shown in Table 4, the multilingual systems outperform the
systems trained on only one language. Although the rela-
tive gain for the hybrid systems (1.4%) decreases compared
to the systems using only BNFs (6.3%), we still achieve an
improvement by augmenting the input features with the lan-
guage code.

System Monol. ML EN P. Set rel. gain

GMM/HMM 18.9% 18.9% -
BNF 18.6% 17.5% 6.3%
Hybrid 14.6% 14.4% 1.4%

Table 4: Overview of results using language dependent out-
put layers of the neural network, showing WERs.

6. Conclusion
We have presented a method for improving the performance
of NN based systems for LVCSR by augmenting the acoustic
input features with a language code in a multilingual setup.
Gains can be seen throughout different conditions. Depend-
ing on the condition, the addition of the language code at ei-
ther an early and/or a later stage shows the biggest improve-
ments. With the addition of the language information, the
DNN becomes language adaptive and is able to better learn
the characteristics of different languages.

With our proposed method, the LA-DNN is able to ex-
ploit the training data from different languages in a more ef-
ficient manner. One of the next steps is to find a replacement
for the explicitly coded language information and to auto-



matically extract the language information from the training
material in a way similar to i-Vectors or BSVs.
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A. Waibel, “Multilingual shifting deep bottleneck fea-
tures for low-resource ASR,” in Acoustics, Speech and
Signal Processing (ICASSP), 2014 IEEE International
Conference on. IEEE, 2014, pp. 5607–5611.

[3] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learn-
ing algorithm for deep belief nets,” Neural computa-
tion, vol. 18, no. 7, pp. 1527–1554, 2006.

[4] J. Gehring, Y. Miao, F. Metze, and A. Waibel, “Ex-
tracting Deep Bottleneck Features Using Stacked Auto-
Encoders,” in Proceedings of the ICASSP, Vancouver,
Canada, May 2013.

[5] L. Bottou, “Stochastic gradient learning in neural net-
works,” Proceedings of Neuro-Nımes, vol. 91, no. 8,
1991.

[6] R. Caruana, “Multitask learning,” Machine learning,
vol. 28, no. 1, pp. 41–75, 1997.

[7] P. Swietojanski, A. Ghoshal, and S. Renals, “Unsuper-
vised cross-lingual knowledge transfer in DNN-based
LVCSR,” in Proceedings of the Spoken Language Tech-
nology Workshop (SLT), 2012 IEEE, IEEE. IEEE,
2012, pp. 246–251.

[8] N. T. Vu, W. Breiter, F. Metze, and T. Schultz, “Initial-
ization Schemes for Multilayer Perceptron Training and
their Impact on ASR Performance using Multilingual
Data,” in Proceedings of the INTERSPEECH, Portland,
Oregon, September 2012.

[9] A. Ghoshal, P. Swietojanski, and S. Renals, “Multilin-
gual training of Deep-Neural networks,” in Proceedings
of the ICASSP, Vancouver, Canada, 2013.

[10] S. Scanzio, P. Laface, L. Fissore, R. Gemello, and
F. Mana, “On the use of a multilingual neural network
front-end,” in Proceedings of the Interspeech, 2008, pp.
2711–2714.

[11] G. Heigold, V. Vanhoucke, A. Senior, P. Nguyen,
M. Ranzato, M. Devin, and J. Dean, “Multilingual
Acoustic Models Using Distributed Deep Neural Net-
works,” in Proceedings of the ICASSP, Vancouver,
Canada, May 2013.

[12] K. Vesely, M. Karafiat, F. Grezl, M. Janda, and
E. Egorova, “The language-independent bottleneck fea-
tures,” in Proceedings of the Spoken Language Tech-
nology Workshop (SLT), 2012 IEEE. IEEE, 2012, pp.
336–341.

[13] G. Saon, H. Soltau, D. Nahamoo, and M. Picheny,
“Speaker adaptation of neural network acoustic mod-
els using i-vectors,” in Automatic Speech Recognition
and Understanding (ASRU), 2013 IEEE Workshop on.
IEEE, 2013, pp. 55–59.

[14] H. Huang and K. C. Sim, “An investigation of augment-
ing speaker representations to improve speaker normal-
isation for dnn-based speech recognition,” in Acoustics,
Speech and Signal Processing (ICASSP), 2015 IEEE
International Conference on. IEEE, 2015, pp. 4610–
4613.

[15] Y. Miao and F. Metze, “Distance-aware dnns for robust
speech recognition,” in Sixteenth Annual Conference of
the International Speech Communication Association,
2015.

[16] R. Gretter, “Euronews: a multilingual benchmark for
asr and lid,” in Fifteenth Annual Conference of the In-
ternational Speech Communication Association, 2014.
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