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ABSTRACT

In prior work, we proposed using an extended Kalman filter to
directly update position estimates in a speaker localization system
based on time delays of arrival. We found that such a scheme pro-
vided superior tracking quality as compared with the conventional
closed-form approximation methods. In this work, we enhance
our audio localizer with video information. We propose an al-
gorithm to incorporate detected face positions in different camera
views into the Kalman filter without doing any explicit triangula-
tion. This approach yields a robust source localizer that functions
reliably both for segments wherein the speaker is silent, which
would be detrimental for an audio only tracker, and wherein many
faces appear, which would confuse a video only tracker. We tested
our algorithm on a data set consisting of seminars held by actual
speakers. Our experiments revealed that the audio-video localizer
functioned better than a localizer based solely on audio or solely
on video features.

1. INTRODUCTION

Most practical acoustic source localization schemes are based on
time delay of arrival estimation (TDOA) for the following reasons:
Such systems are conceptually simple. They are reasonably effec-
tive in moderately reverberant environments. Moreover, their low
computational complexity makes them well-suited to real-time im-
plementation with several sensors.

Time delay of arrival-based source localization is based on a
two-step procedure:

1. The TDOA between all pairs of microphones is estimated,
typically by finding the peak in a cross correlation or gen-
eralized cross correlation function [1].

2. For a given source location, the squared-error is calculated
between the estimated TDOAs and those determined from
the source location. The estimated source location then cor-
responds to that position which minimizes this squared er-
ror.

If the TDOA estimates are assumed to have a Gaussian-distributed
error term, it can be shown that the least squares metric used in
Step 2 provides the maximum likelihood (ML) estimate of the
speaker location [2]. In prior work [3], we proposed using a vari-
ation of a Kalman filter to directly update the speaker position es-
timate based on the observed TDOAs. In particular, the TDOAs
comprise the observation associated with an extended Kalman fil-
ter whose state corresponds to the speaker position. Hence, the
new position estimate comes directly from the update formulae
associated with the Kalman filter. It is worth noting that similar

approaches have been proposed by Gannot et al [4] for an acoustic
source localizer, as well as by Duraiswami et al for a combined
audio-video source localization algorithm based on a particle fil-
ter [5].

In this work, we enhance our audio localizer with video in-
formation. We propose an algorithm to incorporate detected face
positions in different camera views into the Kalman filter without
doing any triangulation. Our algorithm differs from that proposed
by Strobel et al [6] in that no explicit position estimates are made
by the individual sensors. Rather, as in the work of Welch and
Bishop [7], the observations of the individual sensors are used to
incrementally update the state of a Kalman filter. This combined
approach yields a robust source localizer that functions reliably
both for segments wherein the speaker is silent, which would be
detrimental for an audio only tracker, and wherein many faces ap-
pear, which would confuse a video only tracker. We tested our al-
gorithm on a data set consisting of seminars held by actual speak-
ers. Our experiments revealed that the audio-video localizer func-
tioned better than a localizer based solely on audio or solely on
video features.

The rest of this work is organized as follows. In Section 2,
we review the acoustic source localization based on time-delay of
arrival estimation. We also discuss how the three-dimensional po-
sition of a speaker can be back projected onto the two-dimensional
image plane of a camera. We show in both cases that a squared-
error criterion can be used as a basis for speaker localization. Sec-
tion 3 summarizes a variant of the Kalman filter, known as the iter-
ated extended Kalman filter. Section 4 presents a simple model for
speaker motion, then discusses how the development in the pre-
ceding sections can be combined to develop a localization algo-
rithm capable of tracking a moving speaker. Section 5 presents the
results of our initial experiments comparing our combined audio-
video localization scheme with localizers based only on audio or
only on video features.

2. SOURCE LOCALIZATION

Here we present the audio and video features to be used in our
source localization algorithm.

Audio Features

Consider the i-th pair of microphones, and let mi1 and mi2 re-
spectively be the positions of the first and second microphones in
the pair. Let x denote the position of the speaker in R3. Then the
time delay of arrival (TDOA) between the two microphones of the
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pair can be expressed as

Ti(x) = T (mi1,mi2,x) =
‖x − mi1‖ − ‖x − mi2‖

s
(1)

where s is the speed of sound.
For N microphone pairs, audio source localization based on

a maximum likelihood (ML) criterion [2] proceeds by minimizing
the error function

ε(x) =

N−1X
i=0

1

σ2
i

[τ̂ i − Ti(x)]2 (2)

where τ̂ i is the observed TDOA for the i-th microphone pair
and σ2

i is the error covariance associated with this observation.
The TDOAs can be estimated with a variety of well-known tech-
niques [1, 8]. Perhaps the most popular method involves the gen-
eralized cross correlation (GCC), which can be expressed as

R12(τ ) =
1

2π

Z
∞

−∞

X1(e
jωτ )X∗

2 (ejωτ )

|X1(ejωτ )X∗

2 (ejωτ )|
e

jωτ
dω (3)

Typically R12(τ ) is calculated with an inverse FFT. Thereafter,
an interpolation is performed to overcome the granularity in the
estimate corresponding to the sampling interval [1].

Let us denote the sensor observation error covariance matrix
as

Σ = diag
ˆ
σ2

0 σ2
1 · · · σ2

N−1

˜
(4)

In [3], it is shown that (2) can be linearized about the prior position
estimate x(t − 1) as

ε(x; t) = [τ̄ (t) −C(t)x]T Σ
−1 [τ̄ (t) − C(t)x] (5)

where the rows of C(t) are given by

ci(t) = [∇xTi(x)]T =
1

s
·

»
x − mi1

di1

−
x −mi2

di2

–T

(6)

for dij = ‖x − mij‖ and the components of τ̄ (t) are

τ̄ i(t) = τ̂ i(t) − Ti(x(t − 1)) + ci(t)x̂(t − 1) (7)

Video Features

In order to localize the speaker visually, we minimize a squared-
error criterion very much like that in (2). In this case, we seek to
minimize the difference between the output of a face detector de-
scribed in Section 4 and the speaker’s predicted position. This two-
dimensional difference is calculated in the camera’s image plane.
As shown in Figure 1, the predicted speaker position x is projected
onto the image plane I of the camera at position t with focal length
f . This results in the image point x̂. We see to minimize the differ-
ence between x̂ and the position y returned by the face detector.

The extrinsic parameters t and R define a camera’s translation
and rotation with respect to the global 3D coordinate frame. To
project a point onto the image plane, we also need information
about the camera’s intrinsic parameters: The camera matrix P is
made up of the focal length f , the sensor pixel size px and py, and
the principle point

ˆ
cx cy 1

˜T
; see [9]:

P =

0
@

f

px

0 cx

0 f

py

cy

0 0 1

1
A (8)

Figure 1: Back projection of the speaker’s position onto the image
plane of a camera.

Assuming a simple pinhole camera model, we can project the posi-
tion estimate x onto the image plane using the projection equation

x̄ =

0
@x̄1

x̄2

x̄3

1
A = PR

T (x − t) (9)

and obtain the 2D point

f(x) =

„
x̂1

x̂2

«
=

„ x̄1

x̄3
x̄2

x̄3

«
(10)

For efficiency, we can precalculate

A = PR
T (11)

as this term does not change.
As in (6) for the audio features, we need a linearization for this

nonlinear projection function. Hence, we take the partial derivative
of f(x) with respect to x

C = ∇xf(x) (12)

where

cij =
aij − a3jx̂i

x̄3

(13)

for 1 ≤ i ≤ 2, 1 ≤ j ≤ 3 and {aij} are the elements of A.
We now wish to apply the standard Kalman filter update for-

mula directly to recursively estimate a speaker’s position based on
our audio and video features. Moreover, we want to avoid any
closed-form approximation for the speaker position on the audio
side, as well as any triangulation on the video side. To see more
clearly how such an approach can be implemented, we briefly re-
view a variant of the Kalman filter in Section 3.
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3. ITERATED EXTENDED KALMAN FILTER

Let x(t) denote the state of a Kalman filter at time t, and let y(t)
denote the associated observation. Moreover, define a transition
matrix F(t + 1, t) which specifies how the state evolves in time,
and functional C(t,x(t)) which specifies how the state is related
to the current observation. The Kalman filter is then described by
the process and observation equations:

x(t + 1) = F(t + 1, t)x(t) + ν1(t) (14)

y(t) = C(t,x(t)) + ν2(t) (15)

where ν1(t) and ν2(t) are the process and observation noise re-
spectively, which by assumption are zero mean with covariances
matrices Q1(t) and Q2(t).

Let x̂(t|Yt−1) denote the predicted estimated state of a
Kalman filter using all the observations Yt−1 = {y(n)}t−1

n=0 up
to time t − 1. The innovation is defined as the difference between
the observation y(t) and the prediction C(t, x̂(t|Yt−1)) at time t:

α(t, x̂(t|Yt−1)) = y(t) −C(t, x̂(t|Yt−1)) (16)

Using the innovation and the Kalman gain Gf (t,x(t|Yt−1)), the
state estimate can be updated according to [10, §10]

x(t|Yt) = x̂(t|Yt−1) + Gf (t,x(t|Yt−1)) α(t,x(t|Yt−1))
(17)

Recursively updating the Kalman gain [10, §10] requires knowl-
edge of the predicted K(t, t − 1) and filtered K(t) state errors,
which are calculated through the Riccati equation:

K(t + 1, t) = F(t + 1, t)K(t)FT (t + 1, t) + Q1(t) (18)

K(t) = [I −F(t, t + 1)Gf (t)C(x̂(t|Yt−1))]K(t, t − 1)

where C(x̂(t|Yt−1)) is linearization of C(t, x̂(t|Yt−1)) about
x̂(t|Yt−1).

Jazwinski [11, §8.3] describes an iterated extended Kalman fil-
ter (IEKF), in which (16–17) are replaced with the local iteration,

α(t, ηi) = y(t) − C(t,ηi) (19)

ζ(t, ηi) = α(t, ηi) − C(ηi) [x̂(t|Yt−1) − ηi] (20)

ηi+1 = x̂(t|Yt−1) + Gf (t,ηi)ζ(t, ηi) (21)

The local iteration is initialized by setting

η1 = x̂(t|Yt−1) = F(t, x̂(t − 1|Yt−1))

Note that η2 = x̂(t|Y) as defined in (17). Hence, if the local it-
eration is run only once, the IEKF reduces to an extended Kalman
filter. Normally (19–20) are repeated, however, until there are no
substantial changes between ηi and ηi+1. Both Gf (t, ηi) and
C(ηi) are updated for each local iteration. After the last itera-
tion, we set x̂(t|Yt) = ηf . Jazwinski [11, §8.3] reports that the
IEKF provides faster convergence in the presence of significant
nonlinearities in the observation equation, especially when the ini-
tial state x(1|Y0) is far from the optimal value.

4. SPEAKER TRACKING

In this section, we discuss the specifics of how the linearized least
squares position estimation criterion (5) can be recursively min-
imized with the iterated extended Kalman filter presented in the
prior section. We begin by associating the observation y(t) with

the TDOA estimate τ (t) for the audio features, and with the de-
tected face position for the video features. Moreover, we recog-
nize that the linearized observation functional C(t) required for
the Kalman filter is given by (6) and (12) for the audio and video
features respectively. Furthermore, we can equate the TDOA error
covariance matrix Σ in (4) with the observation noise covariance
Q2(t) and define a similar matrix for the video features. Hence,
we have all relations needed on the observation side of the Kalman
filter. We need only supplement these with an appropriate model of
the speaker’s dynamics to develop an algorithm capable of track-
ing a moving speaker, as opposed to finding his position at a single
time instant.

Consider the simplest model of speaker dynamics, wherein the
speaker is “stationary” inasmuch as he moves only under the in-
fluence of the process noise ν1(t). The transition matrix is then
F(t + 1|t) = I. Assuming the process noise components in the
three directions are statistically independent, we can write

Q1(t) = σ
2
T

2
I (22)

where T is the time since the last state update. Although the audio
sampling is synchronous for all sensors, it cannot be assumed that
the speaker constantly speaks, nor that all microphones receive the
direct signal from the speaker’s mouth; i.e., the speaker sometimes
turns so that he is no longer facing the microphone array. As only
the direct signal is useful for localization [12], the TDOA esti-
mates returned by those sensors receiving only the indirect signal
reflected from the walls should not be used for position updates.
This is most easily done by setting a threshold on the GCC (3),
and using for source localization only those microphone pairs re-
turning a peak in the GCC above the threshold [12]. This implies
that no update at all is made if the speaker is not speaking.

The face detector used for visual speaker localization is based
on the concept of boosted classifier cascades presented in [13, 14].
In order to be able to detect faces from different views, two sep-
arate cascades—one for frontal and one for profile faces—were
trained, thus covering a range of ±90◦ horizontal head rotation. In
order to reduce the rate of false detections, we maintain an adap-
tive background model of the scene and ignore detections that are
not supported by the foreground-background segmentation.

Performing face detection on an entire video image is very
costly. Hence, to keep computational expense within reason, each
camera first receives the most recent position estimate from the
Kalman filter. This three-dimensional position estimate is then
projected onto the camera’s image plane, and the face detector
searches for a face within a relatively small neighborhood about
this point. If a face is discovered within this region, the innova-
tion vector, given by the difference between the projected position
estimate and the location of the detected face, is calculated and re-
turned to the Kalman filter. This two-dimensional innovation vec-
tor is then used to update the three-dimensional speaker position.

As all video data arrives asynchronously, there is at most a
two-dimensional innovation vector available from a single camera
to update the three-dimensional speaker position at any given time
instant. As Welch and Bishop note [7], this implies the state of the
Kalman filter is not observable based on the data obtained from
any single video sensor. Nonetheless, the state of the Kalman filter
can be updated based on a single observation. Moreover, the true
state of the Kalman filter is observable when estimates from all
sensors, both audio and video, are sequentially combined, subject
only to very mild restrictions on the positions of the sensors with
respect to the speaker and on the update rate [15].
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RMS Error (cm)
Tracking Mode X Y Z 2D 3D

audio only 46.7 43.5 22.8 65.1 69.4
video only 101.5 119.3 24.4 162.6 164.6

audio-video 41.4 36.9 12.5 56.0 58.6

Table 1: Results of the source localization experiments: The
columns X, Y, Z show the average error (cm) in speaker position
for each dimension. 2D and 3D represent the RMS error on the
floor plane (X,Y) and the entire space (X,Y,Z) respectively.

5. EXPERIMENTS

The test set used to evaluate the algorithms proposed here contains
approximately 2.5 hours of audio and video data recorded during
five seminars by students and faculty at the University of Karlsruhe
(UKA) in Karlsruhe, Germany. Prior to the start of the seminars,
four video cameras in the corners of the room had been calibrated
with the technique of Zhang [16].

The location of the centroid of the speaker’s head in the images
from the four calibrated video cameras was manually marked ev-
ery 0.7 second. Using these hand-marked labels and the calibration
information, the true position of the speaker’s head in three dimen-
sions was calculated using the technique described in [17]. These
“ground truth” speaker positions are accurate to within 10 cm.

As the seminars took place in an open lab area 5 m × 7 m
used both by seminar participants as well as students and staff en-
gaged in other activities, the recordings are optimally-suited for
evaluating source localization and other technologies in a realistic,
natural setting. In addition to speech from the seminar speaker, the
far field recordings contain noise from fans, computers, and doors,
in addition to cross-talk from other people present in the room. For
these initial experiments, the seminars were recorded with four T-
shaped microphone arrays with four elements each, located on the
four walls of the room.

Table 1 shows the results of a set of experiments that were
made to compare the accuracy of source localizers running in dif-
ferent modes. The audio-video experiment used the same param-
eters that were used to run the experiments on a single modality.
To initialize the localization algorithm, we used a fixed starting
position for all seminars so that the Kalman filter was forced con-
verge to the true position. We filtered the innovation sequence of
the Kalman filter, using twice the standard deviation of the inno-
vation covariance matrix as a threshold, in order to remove out-
liers. The IEKF was iterated at most fives times. As process noise
we used (154.62, 184.13, 34.24). We also restricted the position
estimates returned by the Kalman filter to be within the physical
room and the time delays to be within the bounds determined by
the dimensions of the room. Moreover, we set a threshold of 0.18
on the maximum peak of the GCC for each microphone pair and
used only those pairs that had correlation values that exceeded that
threshold for further position estimation. As source for the audio
source localization we used all combinations of microphone pairs
of the T-Arrays B and D in Figure 1. The measurement noise for
for microphone pairs was held between 0.11 ms to 0.54 ms.

The size of the face detector’s search window was determined
by the projection of a cube with an edge size of 50cm. Addition-
ally, the state error of the Kalman filter projected into the camera
space was added to get a dynamic search window. The measure-
ment noise for the cameras was approximately 20 pixels.
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