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Abstract head model into a input pattern for a neural network. Fi-
nally, a neural network is used to estimate the user’s current
In this paper we present a method for estimating a person’shead orientation.
head pose with a stereo camera. Our approach focuses All components of our system work fully automatic and
on the application of human-robot interaction, where peo- do not require any manual initialization.
ple may be further away from the camera and move freely For our system, depth information is crucial in many
around in a room. We show that depth information acquiredways. Firstly, depth information improves the accuracy of
from a stereo camera not only helps improving the accuracythe pose estimation. Moreover depth information makes it
of the pose estimation, but also improves the robustness afasier to track the user’s face in the image sequence. And fi-
the system when the lighting conditions change. nally, depth information improves robustness of the system
The estimation is based on neural networks, which arewhen lighting conditions change.
trained to compute the head pose from grayscale and dis- In our tests we used a Videre Design stereo camera and
parity images of the stereo camera. It can handle pan andits SVS library [15] to compute the depth information for the
tilt rotations from —90° to +90°. Our system doesn't re- pixels. For the analysis of our pose estimates, we compared
guire any manual initialization and doesn’t suffer from drift the estimated angles to those of a magnetic sensor (Flock of
during an image sequence. Moreover the system is capablBirds).
of real-time processing. We evaluated our system on both known and unknown
users. Moreover we analyzed the performance in differ-
ent application scenarios and under different lighting con-
1 Introduction ditions. _ ,
The remainder of the paper is organized as follows: In
Advancing human-robot interaction has been an active reSection 1.1 related work is presented. Section 2 covers our
search field in recent years [10, 11, 12, 13, 14]. A majornéwly developed head pose estimation method. First, the

challenge is the tracking and interpretation of human behavhead detection and extraction technique are described, then
iors in video data, since it is essential for enabling natural}"’e show how the neural network patterns are calculated

human-robot interaction. rom the image data and finally we present the neural net-

In order to fully understand what a user does or intends tg/O'k topology we used. In section 3 we present the vari-
do, a robot should be capable of detecting and understancSEuS results obtained. We show how the system performs for
ing many of the communicative cues used by humans. ThisNown and unknown users, as well as under changing light-
involves in particular the recognition and interpretation of 'ng conditions. Finally, we evaluate the system in a human-
human faces. In interaction between people faces are corf©POt interaction scenario.
tinuously used to signal interest, emotion and direction of at-
tention. Monitoring such information therefore can be used1.1 Related Work
to make interaction with a robot more natural and intuitive. o )

Monitoring a person’s head orientation is an important Generally, we distinguish two different approaches for head
step towards building better human-robot interfaces. Sincd?0Se estimation:
head orientation is related to a person’s direction of atten-
tion, it can give us useful information about the objects or  * Feature-based approaches
persons with which a user is interacting. It can furthermore o \jew-based approaches
be used to help a robot decide whether he was addressed by
a person or not [16]. Feature-based techniques try to find facial feature points

In this work we propose a method for estimating a per-in an image from which it is possible to calculate the ac-
son’s head pose from an image pair of a stereo camera. Ouual head orientation. These features can be obvious facial
approach consists of four steps. In the first step the deptltharacteristics like eyes, nose, mouth etc. View-based tech-
information is calculated from the image pairs. During step niques on the other side, try to analyze the entire head image
two the user’s face is detected and extracted from the im4in order to decide in which direction a person’s head is ori-
age. Step three converts the resulting three dimensionatnted.



Generally, feature-based methods have the limitation that Stereo P’BP% (@ Neural
the same points must be visible over the entire image se- | ® agorithm /@ Tracking /> conversion Network

quence, thus limiting the range of head motions they can | caneraimages 3D face mocel o
track [1]. View-based methods do not suffer from this limi-

tation. E' . %

The exploitation of the depth information can render i\
feature-based and view-based head pose estimation method
more accurate compared to conventional 2D approaches. Er ’ %
We quickly present a couple of existing head pose estima- %
tion techniques, which are using depth information to IM- | 4, cosrwion
prove estimation results.

Matsumoto and Zelinsky [2] proposed a template-
matching technique for feature-based head pose estimation.
They store six small image templates of eye and mouth cor-
ners. In each image frame they scan for the position where
the templates fit best. Subsequently, the 3D position of these
facial features are computed. By determining the rotation
matrix M which maps these six points to a pre-defined head
model, the head pose is obtained. at aboutl5 frames per second on a standard PC (resolution

Harville et al. [5] used the optical flow in an image se- 320x240).
guence to determine the relative head movement from one
frame to the next. They use the brightness change constraint
equation (BCCE) to model the motion in the image. More-
over they added a depth change constraint equation toinco2.1.1 Head Detection and Extraction
porte the stereo information. Morency et al. [6] improved
this technique by storing a couple of key frames to reduceDbviously, robust head detection is crucial for head pose
drift. estimation. In our system, we implemented a variation of

~ Srinivasan and Boyer [3] proposed a head pose estimathe color-based face detection technique presented in [19].
tion technique using view-based eigenspaces. Morency et rirst 4 color-model for the current lighting conditions
al. [4] extended this idea to 3D view-based eigenspacesy,s 1o be constructed. This done by building a color his-

where they use additional depth information. They use 8ogram I of a skin color region and a color histogram
Kalman filter to calculate the pose change from one framer;™ ¢ the rest of the image . The proportion &F, to

to the next. However, they reduce drift by comparing the ;7 gives us an indication of the probability of a pixel to
images to a number of key frames. These key frames argg skin-colored.
created automatically from a single view of the person.

b _d

Figure 1: The components of the head pose tracker

In our previous work [17] we estimated the head ori- .10 avoid amanualinitialization in the beginning, we have
to find the skin color region foff; automatically. This is

entation with neural networks. As input patterns we useddone by Using another face detection alaorithm from Viola
normalized gray value images which were scaled down to y 9 9

20x30 pixels. To improve performance we added the irn_and Jones [7]. This algorithm can only detect frontal faces

age’s horizontal and vertical edges to the input patterns. Ind iS significantly slower than the above color-based tech-

this work we present an extension of this technique. We pro-n'que'

vide the neural networks with additional depth information ~ Once the color-model has been constructed and the pixels
and show that both accuracy and robustness of the syste@e classified by skin color probability, we form skin color

improve considerably. blobs by morphological filtering. From the resulting skin
color blobs, we select the one, which seems most likely to
be a head.

2 Head Pose Estimation This is accomplished by computing the real world di-

mensions of the color blob. Since, we know the distance

The head pose estimation process consists of three prepr(f)’-f the object from the stereo reconstruction, we can calcu-

: , e . ate them with the intercept theorems. Subsequently, we can
cessing steps and the final estimation with neural networks . . : e
Figure 1 shows a quick overview. tompare the dimensions of the color blob with a pre-defined

head model, whose dimensions are described by a number
of Gaussians.

2.1 Preprocessing The advantage of this method is, on the one hand, that

face detection is very fast. On the other hand, the color-
In the preprocessing phase first the depth information is calbased face detection algorithm provides us not only with an
culated from the images of the stereo camera. We use @mage box which contains the face, but with the exact face
Videre Design MEGA-D stereo camera with its associatedmask. Already the contour of the face mask can give the
SVS library [15]. The SVS library is optimized for real- neural networks an indication in which direction a head is
time processing and can do a 3D reconstruction of a sceneriented.



2.1.2 Data Conversion other with this approach. We directly compute the orienta-

._tion from a single image frame. That is why the estimation
After the head has been detected and extracted from the iMsrrors aren't a?:cumulgted over an image gequence. More-

age, we have to convert the data to neural network inpUyer, there is no need for the tracking system to know the

patée_rns. " | network inout | H fived sige USEr'S initial head orientation.

_ >Ince ihe neural network Input ‘ayer has a lIXed SIze, — an, 4qyantage of the above network topology is, that we

Eresrtlgf' Vivfeécwetﬂseei)frtﬁaféeéjeg?gngﬁvg?tﬁ% ai;'exli(:}o?lir?;do not divide the estimation in angle ranges or classes. Con-

scalin po eration P P sequently, the real head orientations can be approximated
g op . very precisely.

Since we do not want the neural networks to learn vari- o | network trained. th ¢ v fast
ations in the input patterns that do not reflect changes in_ -NC€ NEUraiNEIWOrKS are trained, they are extremely fas

the head pose, we perform a couple of normalization op-" computation. The activation levels of the input patterns

erations. First, we convert the color of the pixels to gray ©NlY have to be propagated through the three layers of the
values and normalize them to values frémo 1. Subse- network. As we will see in the following chapter, neural
quently we equalize the histogram of the resulting pattern.:?e'[""orksl_t"?lre ahccu(;ate as Wf.”' It-_|en(t:e, rt]h‘?y are well suited
The equalization is accomplished by a variation of the his-'0" & 'éal-ime nhead pose estimation technique.
togram matching technique of Heeger and Bergen [9].

Histogram equalization should level some of the illu-
mination changes, which might occur in realistic environ- 3 Experimenta| Results
ments. However, previous results have shown that despite
histogram equalization the performance of the pose estimaF
tion degrades to a great amount when the neural network
are used in illumination conditions that are different to the

conditions during the training of the networks (see [18])'rﬁ relatively restricted environment. People were sitting in

ﬁgg ?g cg)ueegttjlg,pt(‘);ér tgrﬁgxl@hﬁﬁ%dcgﬁzﬁigﬁ tér;it;?ggsgosrt:]a eabout two meter distance in front of the stereo camera. The

adaptation data.

or evaluating the developed head pose estimation tech-
ﬁique, we have done two data collections.
The “Portrait View” data collection has been recorded in

people’'s head movement wasn't restricted in any way. They

Disparity images should be much less affected by changVere free to move their heads in pan, tilt and roll direction.
ing illupmingtion ?han gray value images. By using>éiis:par§]-|-he _recorded rotation angles ranged frei90° to 90°
ity (depth) images to estimate head pose we can therefore Since one of our main goals was to evaluate the head
expect an improved robustness against changing illuminaP0Se estimation accuracy under changing lighting condi-
tion. Consequently we incorporatedthe depth informationtions. The data was recorded under two different illumi-
in the neural network input patterns. Depth information is Nations. One scenario therefore consisted of a room illumi-
also normalized to values fromto 1 (tip of nose). In fig-  nated by day light, in the other scenario the room was illumi-
ure 1 you can see an exampleinput pattern of the systenﬂated artificially with neon lamps. In order to obtain an even

The upper part displays the depth information, the lower theStronger effect of the illumination change, we tried to place
normalized gray values. an additional lamp next to the person. This was done to in-

tensify the shadows in the face. Shadows shouldn’t have an
effect on the stereo reconstruction, but certainly affect the
2.2 Neural Network Topology angle estimation with a conventional intensity image-based

For the neural network topology, we chose a three |ayertech'n|que. h le pi f h |
feed-forward network. Three layer feed-forward networksI Figure 2 shows some sample pictures from the data col-
have the advantage that they are quite simple, but are stifection.

able to approximate any decision boundary in the high di-. In total we recorded image sequences®persons look-
mensional input space (see [8]). ing around freely. The image sequences consisted of ap-

The number of units in the input layer is crucial for a Proximately 500 pictures and were recorded under both of
neural network. The more input units there are, the morethe lighting conditions described above. The real head ori-
training data has to be provided. In our system the inputentations were tracked with a magnetic sensor (Flock of
layer of the network consisted @68 units if no depth in-  Birds). Image resolution was 640x480 pixels.
formation is used. Otherwise it consistedl686 units. The For the evaluation we mainly focused on the pan angle.
hidden layer containeg to 80 units. Pan direction is, on the one hand, the direction where the

The best results were obtained by training separate net§10st movement occurs, on the other hand, the pan angle
for pan, tilt and roll angles. Each of these networks con-seems to be the most useful angle for identifying the object
tained a single output unit. The output of the networks isa person is focusing on. For completeness, however, we also
therefore directly interpreted as rotation angle normalizedprovide the results obtained for the tilt angle.
to values betweef and1. In order to have results, which are comparable to our

The layers of the network were fully connected and theold system [18] and to see the difference of performance
training was performed with the standard back-propagatiorwith and without depth information, we tested our method
algorithm. with histogram normalized gray value images (24x32 pix-

Unlike other head pose estimation techniques, we do notls), depth images (24x32 pixels) and a combination of gray
estimate the relative head rotation from one frame to anvalue and depth images (2x24x32 pixels).



Figure 2: Sample images from the "Portrait View” data collection. The first two images are recorded with daylight, the others
under artificial illumination

3.1 Multi-User And New User Performance we call the percentage of angles satisfying this critedibn
rection recognition rate

First we evaluated the system's performance on multiple  Taple 2 compares the recognition rates for the multi-user
users (multi-user test). Here, the neural network was traineGnd new user case.

and evaluated on all persons of the data set.

“Column 2 of table 1 shows the results, we obtained for [ recognition rate] error< 10° | error< 20° |
this test. multi-user 94.3% 99.7%
: new user 75.2% 95.1%
[ mean error [ multi-user [ new user |
gray values [ 4.2/2.9 [9.6/8.8 Table 2: Direction recognition rates for head pan obtained
depthinfo [ 5.173.8 11.0/7.6 for the multi-user and new user tests in the “Portrait View”
depth + gray| 3.2/2.6 7.5716.7 scenario

Table 1: Mean error obtained for the multi-user and new
user tests in the “Portrait View” scenario (pan/tilt angles) o o
3.2 Changed Lighting Conditions

As you can see, patterns consisting of gray values achiev&hanging lighting conditions are one of the main problems
rather good results. However, when we combine them withof image-based techniques and particularly neural networks.
additional depth information, we are able to improve the |n our previous work we observed a significant degredation
mean error for the pan angle by abadtc. Patterns con-  of pose estimation accuracy, when the neural networks were
taining only depth information are less accurate. used in new lighting conditions. Therefore, the networks

However, for practical applications, we do not want the had to be adapted to new illumination conditions by collect-
system to depend on the user. This would imply to retraining some additional training data in the new environment
the network for every new user. Since neural network train-[18]. Depth information should be useful to improve the
ing is computational expensive we want to avoid retraining. robustness against such illumination changes.

Column 3 of table 1 shows the results, we obtained when In order to evaluate the system’s performance under
the network was trained ohpersons and evaluated on the changing illumiation conditions, we now trained a neural
remaining one. network on all user sequences which have been recorded in

Again, we observe that patterns consisting of a combi-the room illuminated with day light. Then, we tested the
nation of gray value and depth information achieve the beshetworks on the data recorded in the room which was illu-
result. The relative improvement compared to gray valueminated by neon lamps and strong side illumination.
patterns is in this cas& % for the pan angle. Figure 3 shows the obtained results under these condi-

The absolute values, however, are considerably worsgions for the pan angle.
than the results for multi-user test. This is due to a number The mean deviation from the reference angle with nor-
of circumstances. Firstly, heads differ in appearance andnalized gray value patterns increasesl 3®°. The com-
aspect ratio. For example, some people’s heads are rathéination of gray value and depth information leads to a
longish, whereas others have heads which are quite broadnean deviation of0.6°, whereas under these circumstances
Another issue is the performance of the face tracking tech-depth information alone achieves witt6° mean deviation
nique. Since the heads in our system were automaticallyhe best result.
extracted, sometimes hair is considered to partially belong For the direction recognition rates we achieved values of
to the face and sometimes not. Especially for people withup to60% and87.6%.
long hair, the estimation was considerably worse. However, In our old system [17] we tried to improve the head
with a mean error of.2° the estimation still is rather good pose estimation with edge information obtained from the
for many applications. image. However, when lighting conditions changed, the per-

In order to illustrate this further, we analysed the numberformance of this system still decreased significantly more
of angle estimates for horizontal orientation (pan) with anthan in the system presented here. There we achieved a
error smaller thai0° and20° respectively. In this context, mean deviation of only3.8°.



Mean Deviation (pan angle) Direction Recognition Rate (pan)
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and90.4% for unknown users. These values show that this

u 100 method is applicable in practice.
A 31% Sw
g s [‘recognition rate] error< 10° | error< 20° |
T s k<] =
2, g multi-user 91.4% 98.6%
[
g4 o ( new user 63.1% 90.4%
20
2
0 0 Table 4: Direction recognition rates for head pan obtained
Normalized gra) Depth info Depth info + Normalized Depthinfo Depthinfo + . . .
vaas aray valuos grayvaliss - gray values for the multi-user and new user tests in the human-robot in-
l [ Data "portrait view" | | [ error < 10° [ error < 20° ‘ teraction scenario

Figure 3. Mean deviation from the reference angle and di-
rection recognition rates with changed lighting conditions 3.4 Kalman Eilter

In order to further improve the achieved results, we imple-
We conclude that depth information is well suited for mented a Kalman filter. Figure 5 shows an example curve of
head pose estimation under changing lighting conditions. Tdhe real, estimated and filtered angle in an image sequence
have a versatile method working well under all conditions, for a new user in the “Robot Scenario”.
we propose nevertheless to combine depth and gray value
information for head pose estimation. The conventional in-
tensity image-based approach is still% worse with this or
configuration. wf
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3.3 Human Robot Interaction

angle

In the second data collection, we tried to build a realistic
setup for a human-robot interaction application. Now the
users were further away from the camera. They were not
only free to turn their head in any direction, but also to move P e w w @ @ w
around in the room.

A total of six users have been recorded under these con
ditions. The data sequences consist of al®Gh images
per person with a resolution of 640x480 pixels.

The goal of the experiments was to compare the sys- . .
tem’s pgrformance to ?he results under the n?ore restric)t/ed It can be seen, that both the estimated and filtered angle

conditions in the "Portrait View” data collection and to ob- &€ pretty close to the real rotation angle. The Kalman fil-
tain a pose estimation system that would work in a realistictered curve is a little smoother and reduces the overall error

Figure 5: Real, estimated and Kalman-filtered pan angles in
an image sequence

human-robot interaction scenario. from 9.7° t0 9.1° for new users in the “Robot Scenario”.
Table 3 shows the results for mulit-user and new user
tests in this scenario. 3.5 Integration
[ mean error [ multi-user [ new user | To prove the practicability of the technique, we integrated it
gray values | 4.6/2.4 155763 into a fully automatic, real-time head pose estimation sys-
depth info 30733 110757 tem for human-robot interaction. A user may walk into the
depth + gray 23/21 97756 scene, where his face will be detected automatically to up-

date the color-model. Subsequently, his head is extracted

Table 3: Mean error obtained for the multi-user and new!T0M each reconstructed stereo image in real-time. The head

user tests in the human-robot interaction scenario (pan/tilta9€ Iks COR.V ir;ecil mtg %nllnpu';]pattern and atralnecri] neural
angles) hetwork, which is loaded into the system, outputs the cur-

rent head orientation.

At a resolution 0f320x240 pixels, we achieve a frame
With a mean deviation of only.3° for known users and rate of more than0 fps on a standard PC. The main part of
9.7° for new users the result is still very good. However, the the computation time is consumed for the stereo reconstruc-

depth information hasn't been able to improve the result agion.

much as for the “Portrait View" data collection. Thisis due  Furthermore, we integrated the head pose estimation

to the fact, that the stereo information becomes worse theechnique into a pointing gesture recognition system pre-

farther away an object is. sented in [19]. When pointing at an object, people also tend
For the direction recognition rates we achieved valuesto look in the same direction. Hence, the accuracy of the

of 91.5% and 98.6% for known users as well a83.1% gesture recognition system should improve, when the head



Figure 4. Sample images from the "Robot Scenario” data collection

orientations are known. The results of this work have been[7] P. Viola and M. Jones, “Robust real-time object detection”,
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