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ABSTRACT

This paper describes the performance of the I4U speaker 
recognition system in the NIST 2008 Speaker Recognition 
Evaluation. The system consists of seven subsystems, each 
with different cepstral features and classifiers. We describe 
the I4U Primary system and report on its core test results as 
they were submitted, which were among the best-
performing submissions. The I4U effort was led by the 
Institute for Infocomm Research, Singapore (IIR), with 
contributions from the University of Science and 
Technology of China (USTC), the University of New South 
Wales, Australia (UNSW), Nanyang Technological 
University, Singapore (NTU) and Carnegie Mellon 
University, USA (CMU).

Index Terms— Speaker recognition, classifier, channel 
variability, system fusion

1. INTRODUCTION 

The NIST 2008 Speaker Recognition Evaluation (SRE, 
http://www.nist.gov/speech/tests/sre/2008) is distinguished 
from previous evaluations by including, in the training and 
test conditions of the core test, not only conversational 
telephone speech data (telephone data) but also (i) 
conversational telephone speech data recorded over a 
microphone channel (microphone data), and (ii) 
conversational speech recorded over a microphone channel 
involving an interview scenario (interview data). This 
prompted participants to apply effective channel 
compensation techniques and to adopt adequate system 
development strategies.  

Recent advancements in speaker recognition are partly 
attributed to the effective use of acoustic features in speaker 
characterization. Some focus on the short-term spectral 
features, while others exploit temporal characteristics. 
Popular speaker modeling techniques include Gaussian 

mixture modeling with universal background model (GMM-
UBM) [1], generalized linear discriminant sequence 
(GLDS) kernel by expanding acoustic features using a 
monomial basis [2], support vector machine modeling on 
GMM supervectors (GMM-SVM) [3], and MLLR 
transforms as features for support vector machine modeling 
(MLLR-SVM) [4].  

The I4U system is solely based on acoustic features. In 
addition to the conventional MFCC, LPCC and PLP 
features, we have also included short-time frequency with 
long-time window (SFLW) [8], frequency modulation (FM) 
features [9], and channel-compensated MFCC in some of 
the classifiers [10]. Besides the GMM-UBM, GLDS-SVM 
and GMM-SVM classification techniques, new endeavors 
have been attempted by applying feature transformation on 
GMM-SVM (FT-SVM) [5], probabilistic sequence kernel 
based SVM (PSK-SVM) [6], and Bhattacharyya kernel 
based GMM-SVM [7]. 

In view of the fact that channel and session variability is 
one of the major challenges in the NIST 2008 SRE, we 
apply compensation techniques in all classifiers, including 
nuisance attribute projection (NAP) [11], joint factor 
analysis (JFA) or eigenchannel compensation (EIG) [12]. 
We paid extra attention to the compensation strategy, which 
is critical to overall system performance.   

2. SYSTEM DESCRIPTION 

The I4U system consists of three main modules, namely (i) 
feature extraction, (ii) a parallel bank of seven classifiers 
and (iii) system fusion. Two of the classifiers are based on 
the generative GMM-UBM approach, while the other five 
are based on discriminative SVM techniques. We 
implemented different acoustic features in combination with 
various classifiers, to achieve subsystem diversity.  For 
brevity, we only discuss in this paper the seven main 
classifiers (subsystems) that are pivotal to the overall 
performance, as summarized in Table I. 
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Table I. Acoustic features and classifier techniques (both 
generative+ and discriminative*)

Classifier Acoustic Features 
GMM-UBM-EIG+ SFLW
GMM-UBM-JFA+ PLP 
GLDS-SVM* Channel-compensated MFCC 
GMM-SVM* MFCC, FM 
FT-SVM* MFCC
PSK-SVM* MFCC
Bhattacharyya kernel* LPCC

2.1. Feature Extraction 

In feature extraction, we first applied energy-based voice 
activity detection (VAD) to remove silence frames and to 
retain only the high quality speech frames. An input 
utterance was then converted to a sequence of feature 
vectors. Finally, the feature vectors were processed by 
mean-variance-normalization (MVN), RASTA, and feature 
warping. We used five different types of cepstral features 
and one FM feature, as shown in Table I. Both MFCC and 
LPCC features have 36 dimensions. The SFLW [8] is 
specially designed to account for both the short-time 
spectral characteristics and long-time resolution. The 
frequency modulation (FM) features [9] capture dominant 
frequency deviation in sub-bands. Feature-level channel 
compensation was performed on MFCCs as in [10], where 
channel adaptation factors were computed using 
probabilistic subspace adaptation [13]. 

2.2. Classifiers 

Next we describe the classifier specifications and strategies. 
The development datasets are also summarized in Table II. 

2.2.1. GMM-UBM-EIG 
GMM-UBM-EIG is a GMM-UBM [1] with eigenchannel 
adaptation [12]. We used the NIST 2004 SRE (SRE04) 
1conv4w (1 conversation) data to train the gender-
dependent UBMs, each having 512 Gaussian mixture 
components.  The telephone data from SRE04 and SRE06, 
together with the microphone data of SRE05, SRE06 and 
the interview data recorded in the LDC Mixer 5 project 
(distributed by NIST to participants), were used for 
eigenchannel adaptation. The number of eigenchannels was 
set to 30 empirically. The telephone data of SRE05 and 
SRE06 were used for score normalization of TNorm [14] 
and ZNorm [15] in both GMM-UBM-EIG and GMM-
UBM-JFA classifiers. 

2.2.2 GMM-UBM-JFA 
Another GMM-UBM classifier is equipped with joint factor 
analysis (JFA) as the main channel compensation technique 
[12]. We used the SRE04 1conv4w data to train the gender-
dependent UBMs, each having 1024 Gaussian mixture 
components. Switchboard II and SRE04 data were used to 

train the speaker space with 300 speaker factors. For 
channel space training, we used telephone data from 
SRE04,  SRE05 and SRE06 to train the telephone channel 
space (100 channel factors), microphone data from SRE05 
and SRE06 to train the microphone channel space (50 
channel factors) and the Mixer 5 interview data to train the 
interview channel space (50 channel factors). The channel 
factors for different channel conditions were trained 
independently. We then combined these three subspaces to 
obtain a channel space of 200 channel factors. This
subspace training scheme was motivated by considering that 
we have much fewer training data for the interview channel. 
Experimental results showed that the scheme was a wise 
and effective attempt to create a balanced representation of 
the three different channels. 

2.2.3 GLDS-SVM 
The GLDS-SVM classifier follows the architecture in [2]. 
The 36-dimension feature vectors extracted from an 
utterance were expanded to a higher dimensional space by 
employing all monomials up to order 3, thus resulting in a 
feature space of 9,139 dimensions. The expanded features 
were then averaged to form a single vector for each of the 
utterances. It is also assumed that the kernel inner product 
matrix is diagonal for computational simplicity. We used 
the same development dataset for all five SVM classifiers 
(see Table II). SRE04 data were used as the background 
data set; the telephone and microphone data from SRE04, 
SRE05 and SRE06, and the interview data of Mixer 5 were 
applied for NAP training; and the 1conv4w telephone data 
of SRE05 were used for TNorm. For the NAP training, the 
same scheme of individual channel space training and sub-
space combination as that for JFA was adopted. 

2.2.4 GMM-SVM 
This classifier uses GMM supervectors to construct SVM 
kernels [3]. Given a speaker’s utterance, a GMM is 
estimated by using MAP-adapted means of the UBM of 512
Gaussian mixture components. The mean vectors of mixture 
components in the GMM are then concatenated to form a 
supervector, which is used in the SVM kernels. NAP was 
used to compensate for the channel effects. 

2.2.5 FT-SVM 
This novel classifier uses parameters of a feature 
transformation (FT) function to form the supervectors [5]. 
The FT function is defined in such a way that the 
transformation matrices and bias vectors are controlled by 
different regression classes. The number of bias vectors can 
be set to be more than that of transformation matrices 
because the estimation of a bias vector is believed to be 
more robust. An iterative training procedure is carried out 
for the MAP estimation of the FT parameters from the UBM 
model. The UBM is a gender-dependent GMM with 512 
Gaussian mixture components. The FT function has one 
transformation matrix and 512 bias vectors. 
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2.2.6 PSK-SVM 
The probabilistic sequence kernel (PSK) SVM system [6] 
consists of two major elements, namely, (i) a generative 
front-end that performs nonlinear mapping of cepstral 
features into a characteristic vector, and (ii) SVM models 
defining the hyperplanes that separate a target speaker from 
the background speakers. The front-end bases were obtained 
by aggregating the GMMs of 72 speakers selected from a 
background dataset which gave the largest scattering 
measure. Each GMM speaker model has 256 Gaussian 
components, resulting in  Gaussian bases. 
The background speakers’ GMMs were pooled together 
with equal weights to form an ensemble of front-end bases. 
To form the characteristic vector, we only evaluated the top 
10 Gaussians that had higher likelihood probabilities in each 
of the background GMMs, turning off the rest, for 
computational efficiency. 

72 256 18,432

2.2.7 Bhattacharyya kernel 
We developed a GMM-SVM system with the Bhattacharyya 
kernel. In the conventional Kullback-Leibler (KL) kernel, 
only mean vectors are adapted from the UBM. The 
Bhattacharyya-based SVM kernel accounts for both mean 
and covariance statistics based on the Bhattacharyya 
distance, which measures the discrepancy between two 
probability distributions. In this way, the Bhattacharyya 
kernel is believed to characterize the speakers in a better 
way. We trained a UBM of 512 GMM components, SVM 
background and NAP projection matrix on SRE04 data. 

Table II. Classifier development datasets 
Development Dataset 

Classifier UBM
/Background 

Channel
Space TZNorm 

GMM-UBM-EIG
GMM-UBM-JFA

SRE05 (T) 
SRE06 (Z) 

GLDS-SVM
GMM-SVM
FT-SVM 
PSK-SVM
Bhattacharyya 
kernel

SRE04

SRE04,
SRE05,
SRE06,
Mixer 5 

SRE05 (T) 

2.3 Fusion 

The I4U Primary submission adopted the linear fusion: 

0
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i
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where is  is the score from the ith classifiers and N=7 is the 
total number of classifiers. We optimize the weights for 
minimum DCF on the development set. 
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iw  is adjusted iteratively using numerical optimization, 
subject to sum of 1.0 and  is given by the threshold 
which yields minimum DCF.  

0w

The core test of SRE08 was designed to have a short2
training condition, which involves either telephone or 
interview speech, and a short3 test segment condition which 
involves telephone, microphone or interview speech. As 
interview-microphone is not included, there were 5 training-
test conditions in combination. We created a development 
dataset for system fusion and threshold-setting using SRE06 
1conv4w (telephone data), SRE06 1convmic (microphone 
data) and Mixer 5 (interview data) data sets. There are only 
6 speakers (3 males and 3 females) in the Mixer 5 dataset, 
with each speaker having 6 sessions, and each session 
having 9 recordings of around 30 minutes. We split each 
Mixer 5 recording into 6 trials in the development dataset.  

We created a development dataset to cover the imposter 
and genuine trials of telephone-telephone, telephone-
microphone and interview-interview conditions, and 
imposter trials only for telephone-interview and interview-
telephone conditions. The whole development dataset was 
divided into two disjoint halves, one as a Tuning Set for 
calibrating fusion weights and another as an Evaluation Set
for evaluating the performance. We estimated the fusion 
weights and thresholds for each short2-short3 pair 
separately. For those pairs for which we only had imposter 
trials, we adopted the fusion parameters estimated from the 
telephone-telephone development dataset. 

3. EVALUATION RESULTS 

Table III reports the performance comparison of the seven 
individual classifiers as well as fusion system on the 
telephone-telephone development dataset.  We report the 
performance in terms of EER and minimum DCF score 
(minDCF). It is worth noting that GMM-UBM-JFA 
demonstrates an outstanding performance, which is 
attributed to the effective channel space training [12]. 

Table III. Performance of individual classifiers and the fused 
system on the telephone-telephone development dataset. 

0i i          (2) 

Tuning Set Evaluation Set 

EER (%) minDCF EER (%) minDCF
 GMM-UBM-EIG 5.47 0.0270 5.22 0.0243
 GMM-UBM-JFA 3.19 0.0168 3.11 0.0160
 GLDS-SVM 4.30 0.0238 4.44 0.0208
 GMM-SVM 4.47 0.0238 4.43 0.0205
 FT-SVM 4.20 0.0222 3.66 0.0189
 PSK-SVM 5.29 0.0266 4.77 0.0230
 Bhattacharyya kernel 4.46 0.0246 5.16 0.0242
 Best Individual 3.19 0.0168 3.11 0.0160
 Fusion 2.49 0.0122 2.05 0.0122
 Improvement 21.94% 27.38% 34.08% 23.75%
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Figure 1. DET curves of individual classifiers and the fused system 
on the SRE08 core test (short2-short3).

Table IV. Performance of individual classifiers and the fused 
system on the Evaluation Set and SRE08 short2-short3 core test. 

Figure 1 illustrates the detection error tradeoff (DET) curves 
of all seven classifiers and the fusion system (I4U Primary) 
in SRE08 with all short2-short3 trials being pooled together 
in the 5 training-test conditions. Table IV summarizes the 
performance in terms of minDCF in the SRE08 core test 
(short2-short3). For reference, we also report the 
performance on the Evaluation Set in the development 
dataset. It is observed that a 22.3% minDCF reduction over 
the best individual classifier was achieved by the fusion 
system. 

4. CONCLUSION 

The I4U Primary system effectively fuses multiple 
classifiers using acoustic features to achieve promising 
results. The superior performance is generally attributed to 
the JFA and NAP strategies for channel compensation with 
GMM-UBM-JFA being the best single classifier.  We 

trained the channel factors in JFA and channel spaces in 
NAP independently for the telephone, microphone and 
interview channels, and combined them together. The I4U 
system has greatly benefited from this strategy, albeit with 
limited and unbalanced training samples across channels 
and speaker. 
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Evaluation Set SRE08 (short2-short3)
minDCF minDCF Actual DCF

 GMM-UBM-EIG 0.0330 0.0347 -
 GMM-UBM-JFA 0.0223 0.0260 -
 GLDS-SVM 0.0475 0.0447 -
 GMM-SVM 0.0290 0.0382 -
 FT-SVM 0.0310 0.0416 -
 PSK-SVM 0.0527 0.0475 -
 Bhattacharyya kernel 0.0405 0.0442 -
 Best Individual 0.0223 0.0260 -
 Fusion 0.0073 0.0202 0.0239
 Improvement 67.26% 22.30% -
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