
Neural Network Architectures for
Reverberated Lecture Speech

Recognition

Master Thesis of

Marvin Ritter

at the Department of Informatics
Institute for Anthropomatics and Robotics

Reviewers: Prof. Dr. Alexander Waibel
Prof. Dr. Rainer Stiefelhagen

Advisors: Prof. Dr. Florian Metze
Markus Müller
Dr. Sebastian Stüker

Time Period: 22th December 2015 – 6th July 2016

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my own
work, unless otherwise acknowledged in the text.

Karlsruhe, 1st March 2017

Acknowledgement

I would like to express my gratitude to my supervisor Alex Waibel for the useful
comments, ideas and for listening to my problems. This also goes to my advisors
Markus Müller and Florian Metze, who helped out with system setups and explanation
where needed. Makrus was also the one who told me to try bottle-neck features. The
engineering of the Python Interface done in this thesis would not have been possible
without Florians simple decoder prototype and Sebastian Stükers support for the
idea. Thank you!

I would also like to thank the CLICS team and sponsors for making it possible to
write this thesis at the Carnegie Mellon University in Pittsburgh. It was a great
place to study and exchange knowledge with many great minds. There I also meet
Nils Holzenberger, who I want to thank for the wonderful discussions, even so not all
were related to this work.

Finally I would like to thank my loved ones, who have supported me throughout
entire process.

Abstract

Speech technology has left the research laboratory and is making its way into end user
products. The new applications include voice search, personal assistants, interpreters
and control of home entertainment systems. Many of those still require close-talk
microphones to achieve good recognition accuracy. A low error rate is crucial for
language understanding and the resulting actions on top of it, and hand-held or head
mounted microphones create an additional hurdle for the user. Therefore almost all
applications of speech recognition would benefit from distant-talking speech capturing,
where talkers are able to speak at some distance from the microphone. Due to the
distance environmental sounds mix in and disturb the speech signal. One of these
disturbances is reverberation.

This thesis shows the effect of reverberation on speech recognition and techniques that
can help to avoid low recognition rates. It gives an overview of state of the art acoustic
modeling and shows how training data can be transformed to train reverberation
robust models. This is cheaper than recording new multi-conditional training data.
We describe how room impulse responses can be used to add reverberation to audio
signals. The approach it verified for large-vocabulary continuous speech recognition
using recordings from lectures. It lowers the word error rate by 30 % for a mix of
reverberant environments.

The size of temporal context is investigated and found that increasing it for reverberant
speech improves the system performance. Finally the approach was evaluated for
three different feed-forward neural networks architectures. This provided only small
gains.

For the experiments in this work extensive implementation work was done. A newly
created Python module was used to train the acoustic models and run decoding tests.
The new pipeline is flexible and allows the use of arbitrary neural network structure.
The design of the module is described in this thesis.

Deutsche Zusammenfassung

Die Automatische Spracherkennung hat die Forschungslabore verlassen und ist auf
den Weg zum Endnutzer. Neue Anwendungen wie persönliche Assisstenten, Über-
setzer and die Kontrolle von Home Entertainment Systemen per Sprache werden
unseren Umgang mit Computern für immer verändern. Noch benötigen viele dieser
Anwendungen Nahsprechmikrofone um gute Erkennungsraten zu erreichen. Eine
geringe Fehlerrate ist entscheidend für das auf der Spracherkennung aufbauende
Sprachverständnis und die Reaktion des Systems. Dauerhaft ein Mikrofon in der
Hand zu halten oder aufwändig am Körper zu montieren ist jedoch aufwändigt und
schafft eine zusätzlich Hürde für den Benutzer. Daher könnten fast alle Anwendungen
von automatischer Spracherkennung durch entfernte Mikrofone profitieren. Dabei
mischen sich Umgebungsgeräusche in das Signal und stören das Sprachsignal. Eine
dieser Störungen ist Nachhall.

Die vorliegende Thesis zeigt den Effekt von Hall auf die Spracherkennung sowie
Techniken um die negativen Auswirkungen zu verhindern. Dabei wird mit einer
Übersicht über moderne akustische Modelle begonnen. Es wird gezeigt dass verhallte
Trainingsdaten die Erkennungsrate verbessern. Neue (verhallte) Daten zu sammeln
und zu transkribieren ist aufwändig und teuer. Daher wird beschrieben wie Rau-
mimpulsantworten genutzt werden können um die dem Raum eigenen akustischen
Eigenschaften einem Signal hinzuzufügen. Die Wirksamkeit der Methode wird mit
Experimenten belegt.

Anschließend wird die Größe des temporalen Kontext untersucht and es stellt sich
heraus das eine Vergrößerung die Qualität der Erkennung erhöht. Die Vorgehensweise
wird an drei verschieden Sturukturen für neurale Netze getestet. Insgesamt werden
Verbesserung um 30 % der Wortfehlerrate auf verhallter Sprache erzielt.

Für die Experimente in dieser Arbeit waren umpfangreiche Neuimplementierungen
notwendig. Das neu erstellte Python Modul erlaubt das Trainieren und Evaluieren von
Spracherkennern. Python besonders anfängerfreundlich und erlaubt, über zahlreiche
Tools, das Trainieren und Nutzen von beliebigen Strukturen für neurale Netze.
Grundlegende Aspkete des Moduls werden in der Arbeit beschrieben.

Contents

1. Introduction 1
1.1. Contribution . 3
1.2. Structure of this work . 3

2. Background 4
2.1. Automatic Speech Recognition . 4

2.1.1. Acoustic Model (AM) . 5
2.1.2. Word Error Rate (WER) . 7

2.2. Neural Network . 8
2.2.1. Deep Neural Network (DNN) . 8
2.2.2. Autoencoder . 10
2.2.3. Time-Delay Neural Network (TDNN) 10
2.2.4. Advanced methods for training Neural Networks 12

2.3. Acoustic Models with Neural Networks . 16
2.3.1. Bottle-Neck Features . 16
2.3.2. Hybrid DNN-HMM Systems . 16

2.4. Room Impulse Response . 17

3. Related Work 20
3.1. Dereverberating Autoencoder . 21
3.2. ASpIRE Challenge . 21

4. Implementation 22
4.1. Janus Recognition Toolkit (JRTk) . 22

4.1.1. Tcl Interface . 23
4.1.2. Python Interface . 23
4.1.3. Cython . 24

4.2. detl . 24
4.3. Collection of Room Impulse Responses . 25
4.4. Generating Room Impulse Response . 25

5. Evaluation 27
5.1. Baseline System . 27

5.1.1. Preprocessing . 27
5.1.2. Acoustic Model . 27
5.1.3. Frame Labels . 28
5.1.4. Language Model and Vocabulary . 28

5.2. Training Data . 28
5.2.1. TED Talks . 28
5.2.2. Noises . 29

5.3. Test Sets . 29

Contents vii

5.4. Experiments . 29
5.4.1. Multi condition training . 29
5.4.2. Single condition training . 30
5.4.3. Temporal Context . 31
5.4.4. Bottle-Neck features . 33
5.4.5. Time Delay Neural Network . 33

6. Conclusion 36
6.1. Summary . 36
6.2. Future Work . 37

Bibliography 38

Acronyms 43

Appendix 45
A. WER per speaker and RIR . 45
B. Performance depending on receiver position 45

List of Figures

1.1. Mel frequency spectra of clean and reverberated audio 2

2.1. Flowchart of a speech recognition system 5
2.2. Example of an HMM . 6
2.3. Example of a Gaussian distribution . 7
2.4. Two examples of Gaussian mixture distributions 7
2.5. Outline of an artificial neuron . 9
2.6. Example of a DNN with 2 hidden layers . 9
2.7. Structure of an autoencoder. 11
2.8. Denoising autoencoder with a single hidden layer 11
2.9. A fully connected DNN . 12
2.10. Computation in a TDNN with and without subsampling 13
2.11. Graphs of popular activation functions . 14
2.12. Schematic view of a RIR . 18
2.13. Example of a measured RIR . 18

5.1. Word error rate depending on the receiver position in the classroom 32
5.2. WER and frame classification error for different amounts of temporal context

on clean speech . 33
5.3. WER and frame classification error for different amounts of temporal context

on reverberant speech . 34

B.1. Word error rate depending on the receiver position in the classroom for the
baseline system . 47

B.2. Word error rate depending on the receiver position in the classroom for a
system trained with 1 RIR . 48

List of Tables

1.1. WER of far-field recordings in various rooms 2

4.1. Structure of the JRTk Python module . 24
4.2. Sources for professional recorded RIRs used in this work 25

5.1. Sources for the language model . 28
5.2. Comparison of convolving whole talks instead on utterance level 30
5.3. Evaluation of different system trained and tested on clean and reverberant

data . 31
5.4. WER of systems trained with different number of RIRs from the classroom

in the OMNI database and tested against other RIRs from the same room . 35
5.5. Performance of BNF-DNN systems on clean and reverberant speech 35
5.6. Performance of different neural networks architecture on reverberant speech 35

A.1. Speaker level comparison of systems on clean and reverberant speech 46

1. Introduction

Automatic speech recognition (ASR) is the process of converting an acoustic speech signal
into its corresponding sequence of words or other linguistic entities. Recently speech
recognition has left the research laboratory and is increasingly coming into practical use.
The wide range of products ranges from simple dictation over searching the world wide web
via voice (e. g. Siri on iPhone, Google Now on Android) to control of the home entertainment
system (e. g. Kinect on Xbox, Amazon Echo). On view are personal assistants that support
the user by keeping track of things, providing information and undertake little tasks.
And while automatic speech recognition (ASR) has advanced considerably during the last
decades - state of the art systems are now able to transcribe read newspaper with near
human performance - most of the systems today still require a microphone located near the
talker. This might not always be possible and forcing hand-held or body-worn equipment
is always a burden to usability. Thus these applications would benefit from distant-talking
speech capturing.

The challenge of distant-talking speech is that with increasing distance the target speech
signal becomes less dominant and sounds from the environment start mixing in. These
environmental sounds can be ambient noises (air conditioner, traffic etc.), competing
speakers (other conversations), music and reverberation. The later are reflections of the
source signal from walls and obstacles that arrive with a delay at the microphone. The
recorded signal only contains the sum of the original signal and all reflections. Even without
the other distortions of far-field recordings reverberation can cause dramatic increases in
the error rate (see table 1.1).

Building speech recognition systems that are robust to reverberation is therefore important
for future applications. It will improve the usability and widen the area of use of natural
human-machine interfaces. To achieve this goal we will use artificial neural networks.
Neural network (NN) for short are a family of models inspired by biological neural networks.
They learn from examples, transcribed audio in case of speech recognition, and given large
amount of examples achieve the best results today. Unfortunately most of the transcribed
recordings are close-talking speech. Without enough examples from various environments
neural networks (NNs) will not learn how to recognize reverberant speech. Therefore this
thesis focuses a) on creating artificial reverberant training data and b) tune NNs to learn
from it.

2

0

10

20

30

40
Clean

0

10

20

30

40

M
e
l-

Fr
e
q
u
e
n
cy

 C
h
a
n
n
e
l

Meeting Room

0 50 100 150 200 250 300
Frame

0

10

20

30

40
Lecture Room

Figure 1.1.: Mel frequency spectrum for the same sentence spoken into a close-talk micro-
phone and two distant microphones a few meters into big rooms. The spectrum
and especially the formats get smeared in time.

environment word error rate
Close-talk 8.3 %
Meeting Room 13.3 %
Lecture Room 27.7 %
Stairway 58.8 %
Auditorium 62.3 %

Table 1.1.: Room size and reflection properties greatly influence of the recognition rate.
The signal constructed for the measurement does not include ambient noises
that are normal for those environments. Even without these noises the high
error rate is to high for productive application.
In very reverberant environments, like big cathedrals, even humans will have
difficulties understanding speech, but the rooms above don’t cause serious
problems for use for humans.

1.1. Contribution 3

1.1. Contribution
Many existing techniques for dealing with reverberation were developed. Most of the signal
processing approaches try to estimate the reflections and remove them from the recorded
signal. While this works in case of multiple microphone and non-moving speakers, it requires
basic knowledge about the environment. Also there are cases were the original signal cannot
be recovered. Newer approaches therefore focus on training systems with reverberated data
to learn deep features that are robust to new environments. This has been done for hidden
Markov model (HMM) systems [1] and for dereverberating autencoders [2, 3]. It was also
used successfully to train a NN on reverberant features directly [4, 5], but mixed with other
techniques for various noise types. Building on that we investigate the use of room impulse
responses (RIRs) to generate reverberant training data (see figure 1.1 for examples). We
compare the use of measured room impulse responses with generated ones and explain the
method step by step. We present different neural network architectures, namely a simple
deep neural network (DNN), a combination of a DNN and Bottle-neck features (BNF) and
the advanced time delayed neural network (TDNN) architecture. Finally we show that a
greater temporal context is helpful to deal with reverberant speech.

1.2. Structure of this work
Chapter 2 will provide background knowledge about speech recognition, neural networks
and how both can be used together. These are prerequisites for understanding core concepts
of recent research on the topic. The chapter will close with a review of room impulse
responses. Since the approaches investigated in this thesis are inspired by dereverberating
autoencoders and results of the ASpIRE challenge, chapter 3 will introduce the related
work. In chapter 4 the comprehensive changes to the speech recognition framework are
described. An overview of the newly created Python module is also given. Chapter 5 will
start with an overview of our experimental setup and the training data used. Different
models are evaluated. Finally, we summarize our work in chapter 6, providing a short
discussion of the inferred knowledge and showing research opportunities for future works.

2. Background

This chapters explains the basic concepts of modern ASR. It will first give an overview of
systems without neural networks, then introduce artificial neural networks and how they
can be used for acoustic models. State-of-the-art speech recognition systems can have many
different components (e. g. multiple language models) and use many different machine
learning algorithms, we will therefore focus on those relevant for this work.

2.1. Automatic Speech Recognition
Automatic speech recognition (ASR), sometimes also referred to as speech to text (STT),
targets the problem of transforming an audio signal containing speech into a textual
representation (e.g. sequence of words) with the same meaning. It is a complex task
and no single algorithm, in form of a function mapping from speech to text, is known to
solve it. This is due to the high variability of speech caused by the interaction of speaker
characteristics (e. g. gender, mood), and rate, environment noise, side talks and many
more.

Instead of functions, written by humans, signal processing techniques are combined with
statistical models to find the most likely transcription. The basic components are shown in
figure 2.1. First the audio signal is recoded using a microphone and the analogous signal is
sampled, both in time and amplitude, to get a discrete digital signal. The preprocessing
will then perform several transformations to normalize the data and extract salient features
describing properties of the human speech. A detailed list of steps can be found in [6,
chapter 5.2]. The result will be a sequence of real valued vectors X (feature vectors).

Now the decoder will search the space of possible sentences (hypotheses) for the sentence
Ŵ with highest probability given the features X. We can write this as:

Ŵ = arg max
W

P (W |X) (2.1)

Using Bayes’ rule we can rewrite the equation to [7, p. 135]:

Ŵ = arg max
W

P (W |X) (2.2)

= arg max
W

P (X|W)P (W)
P (X) (2.3)

= arg max
W

P (X|W)P (W) (2.4)

2.1. Automatic Speech Recognition 5

audio signal preprocessing
X

decoder
Ŵ = arg max

W
P (W |X)

acoustic model
P (X|W)

language model
P (W)

sequence of words

Hello World

Figure 2.1.: Flowchart of a speech recognition system

This is also known as the fundamental formula of ASR. P (X|W) is the probability of
seeing sequence of features vectors X given a hypothesized word sequence W . We call this
the acoustic model (AM). It integrates knowledge of acoustics and phonetics. P (W) is
a-priori probability of a hypothesized sentence W . Typical learned from large text corpora
it provides knowledge of grammar and language style and is therefore called the language
model (LM). P (X) is the a-priori probability of seeing features X and not relevant for the
search of best hypothesis.

To achieve the goals of this thesis only the acoustic model (AM) (and the training data)
was altered and will be described in more detail in the next sections.

2.1.1. Acoustic Model (AM)

The task of the AM is to assign probabilities to sequences of phonemes given the sequence
of feature vectors from the preprocessing. Phonemes can vary in time range (e. g. 30 ms to
200 ms for Polish [8]) and frequency depending on the speaker, context and environment.
To deal with the variance many systems use hidden Markov model (HMM).

Hidden Markov Model (HMM)

A HMM is a natural extension of the Markov chain [7, p. 380] and adds a non-deterministic
process that generates output observation symbols in any given state. The state sequence
itself is hidden and cannot be observed directly. Formally a HMM is defined as 5-tuple
λ = (S, π,A,B, V):

• S = {q1, q2, . . . , qn} - A set of states

• π = {πi} - A initial state distribution, where πi is equal to the probability of being
in state i at time t = 0

• V = {o1, o2, . . . , om} - An alphabet of observable symbols

• A = {aij} - A transition probability matrix, where aij is the probability of going
from state i into state j.

• B = {bi(k)} - An output probability matrix, where bi(k) ii the probability of emitting
symbol ok while being in state i.

In speech recognition it is common to have one or three states for each phoneme. In the
later case, each phone is divided into three parts (begin, middle and end) for a better
recognition and time invariance. Given a dictionary with pronunciations we can build a
HMM for each word in our vocabulary (see figure 2.2 for an example).

When working with HMM three problems are encountered:

2.1. Automatic Speech Recognition 6

q1
/h/

q2
/eh/

q3
/l/

q4
/ow/

a1,2 a2,3 a3,4

a1,1 a2,2 a3,3
a4,4

b1(k) b2(k) b3(k) b4(k)

Figure 2.2.: Simple HMM for the word hello. In general each state can be connected with
any other state, but for the application in speech recognition all backward
transition probabilities are set to 0.

1. Evaluation: Given a model λ = (A,B, π) and the observation sequence O =
o1, o2, . . . , oT , how to efficiently compute P (X|λ), the probability of the observa-
tion sequence, given the model?

2. Decoding: Given a model λ = (A,B, π) and the observation sequenceO = o1, o2, . . . , oT ,
how to determine the state sequence Q = q1, q2, . . . , qT that most likely produced our
observation sequence?

3. Learning: How to update the model parameters {A,B, π} to maximize P (O|λ)

Using dynamic programming the three problems can be solved efficiently. The solution for
the evaluation problem is the Forward-Backward Procedure. It can be used to recognize
isolated words. The decoding problems targets (word) segmentation and continuous speech
recognition and done using the Viterbi Algorithm. Finally, learning the parameters (i. e. for
a subsequent recognition task) can be done using the Baum-Welch-Algorithm, an instance
of the expectation-maximization (EM) algorithm.

Gaussian Mixture Model (GMM)

The normal (or Gaussian) distribution is a widely used continuous probability distribution
and well suited for fitting noisy data. The formula for a d-dimensional Gaussian distribution
N is given in 2.6. µ refers to the mean vector and |Σ| is the determinant of the covariance
matrix. An example curve is shown in 2.3.

N (x|µ,Σ) = 1√
(2π)d|Σ|

· exp(−1
2(x− µ)TΣ−1(x− µ)) (2.5)

µ : mean vector
d : number of dimensions
Σ : covariance matrix

Gaussian mixture model (GMM) are weighted sums of Gaussian distributions defined by:

p(x) =
N∑
i=1

wiN (x|µi,Σi) (2.6)

N∑
i=1

wi = 1 and 0 ≤ wi ≤ 1 ∀i ∈ 1, . . . , N

2.1. Automatic Speech Recognition 7

−3 −2 −1 0 1 2 30

0.1

0.2

0.3

0.4

0.5

x

y

Figure 2.3.: Gaussian distribution with µ = 0 and standard deviation σ = 1

−10 −5 0 5 100

0.1

0.2

0.3

0.4

x

y

−10 −5 0 5 100

0.1

0.2

0.3

0.4

x

y

Figure 2.4.: Two different mixtures of 3 Gaussian distributions (weights left: [0.25, 0.5, 0.25],
weights right: [0.3, 0.2, 0.5])

Gaussian mixture models (GMMs) can be used to replace the probability matrix B in a
HMM to calculate probabilities for states given the continuous vector of features from
the preprocessing step. Each state has its own GMM with a fixed number of distributions.
And each distribution has its own weight, mean vector and covariance matrix. The ideal
number of distributions depend on the amount of training data and might be limited by
the computational resources available. In general more distributions allow the model to
better fit the structure of the data and become more accurate. For training a GMM-HMM
model the expectation-maximization (EM) algorithm can be used [9].

2.1.2. Word Error Rate (WER)

The goal of ASR is to transform speech to text, where the text matches the words spoken.
Often both sequences will not be identical and might not even have the same number of
words. For a given utterance, the correct sequence is our reference and the output of our
system will be our hypothesis. In speech recognition it is common to define the performance
of the system as an edit distance between the reference and the output. Thus counting the
minimum number of operations is required to transform one into the other. Depending
on the task the distance can be calculated on different levels (e. g. words, characters,
phonemes). Operations are usually substitutions, deletions and insertions and can have

2.2. Neural Network 8

different penalties, but most common is simply setting all to 1. This is the case for the
Levenshtein distance of two sequences a and b, defined in 2.7.

levenshteina,b(i, j) =

max(i, j) ifmin(i, j) = 0,

min

levenshteina,b(i− 1, j) + 1
levenshteina,b(i, j − 1) + 1
levenshteina,b(i− 1, j − 1) + 1− δai,bj

otherwise.

(2.7)

Here δij is the Kronecker delta given by δij =
{

0 if i 6= j,

1 if i = j.

Transferring the Levenshtein distance to word level leads to the widely used word error
rate (WER):

WER = #Substitutions + #Deletions + #Insertions
#Words in reference (2.8)

We will use this measure to compare our systems. In case that the hypothesis is longer
than the reference it can be greater than 1, otherwise it will be between 0 and 1 (or 0 and
100 % respectively).

2.2. Neural Network
Artificial neural networks, or neural networks (NNs) for short, are a group of models
inspired by the human brain. They were proven to be able to approximate every function
[10] and can deal with very different input and output (e. g. pictures, audio features,
text, categories). This makes them ideal for machines learning. During the last decade
they have outperformed many other models in various machine learning tasks, including
speech recognition, natural language processing and image classification [11, 12, 13]. Neural
networks scale up well to millions of learnable parameters and provide the learning capacity
required for new big data sets (i. e. the ImageNet data set has about 15 million images
[14]). The recent success of NN is also due to the availability of increasing performance of
computers. This is even further accelerated by the use of graphics processing units (GPUs)
that are well suited for the training algorithms.

This sections will give a short definition of a feed-forward deep neural network (DNN)
and then explain two variations, denoising autoencoders (DAEs) and time delayed neural
networks (TDNNs), and some advanced methods that were used for the experiments in
this work. The explanations will assume familiarity with the basics of machine learning.
More extensive descriptions and extensions of NNs can be found in [15] and [16].

2.2.1. Deep Neural Network (DNN)

A deep neural network (DNN) is a feed-forward, artificial neural network that has more
than one hidden layer of neurons. An example is in figure 2.6. Each hidden unit j typically
uses the logistic function (equation 2.10 to map from the total input from the layer below,
zj to a scalar value yj (also see figure 2.5). The weights wij and the bias bj in each layer
have to be learned. This can be done by backpropagating the derivatives of a cost function
that measures discrepancy between the target outputs tj and the actual outputs oj of the
top layer (output layer) [17]. As we require reference outputs tj , we need labeled training
data.

2.2. Neural Network 9

x2 w2 Σ φ

Activate
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 2.5.: Outline of an artificial neuron. The Σ node computes zj = bj + ∑n
i=1wij ∗ xi

and φ computes the activation yj = φ(zj). There exist more powerful models
of neurons like long short-term memory (LSTM) and the spiking neurons that
are closer to biological neurons.

. . .

. . .

x1 x2 x3

o1 o2

y
(1)
1 y

(1)
2 y

(1)
l1

y
(2)
1 y

(2)
2 y

(2)
l2

w
(1)
1,1 w

(1)
1,2

w
(1)
1,2

w
(1)
3,l1

w
(2)
1,1

Input Layer

Hidden Layer

Hidden Layer

Output Layer

Figure 2.6.: A small DNN with 2 hidden layers. The input layer has 3 neurons that are
fixed to the input values, two hidden layers and an output layer with 2 neurons.

2.2. Neural Network 10

2.2.2. Autoencoder

An autoencoder is a artifial neural network that is trained to learn a representation of its
input in order to attempt to output a copy of it. The output is usually not of interest, but
the hidden representation. If a layer with fewer neurons than the input size is inserted, as
in figure 2.7, the autoencoder will learn a compressed encoding of the data. Similar to a
principal component analysis (PCA) the encoding can be used for purposes of dimensionality
reduction. In fact, if the network uses a linear activation function and is trained with
mean-square error (MSE) it learns to span the same subspace as a PCA [16]. The k hidden
units would correspond to the top k components of the PCA. Autoencoders with nonlinear
activation function can learn a more powerful nonlinear encoding. Hinton et al. showed
that they can be superior to PCA components [18].

If the hidden representation dimensionality is greater than the input dimensionality, the
encoding is not a compression any more. Assuming that non-linearity and training will
prevent learning the identity function the hidden representation learns complex features.
Using multiple hidden layers leads to deep features that can be used as initialization for
bigger models (see 2.2.4).

Denoising Autoencoder (DAE)

Denoising autoencoder (DAE) is a specific kind of autoencoder that receives a corrupted
data point as input and is trained to predict the original, uncorrupted data point. Training
autoencoders in this way will make them more robust to noisy data. It also increases the
variance in the training and can prevent overfitting. The noise signal can be something
that matches the domain (i. e. salt-and-pepper noise for images) or generic Gaussian noise.
The input can also be masked by setting random random feature to zero.

Training DAE is very similar to undirected restricted Boltzmann machine (RBM) with
Gaussian visible units [16].

2.2.3. Time-Delay Neural Network (TDNN)

As shown in 2.1 speech recognition is a sequence to sequence problem. The input is
typical the features of multiple time steps. A normal DNN will be fully connected between
the layers and thus learn an affine transformation of the entire temporal context. But
intuitively there are transformations to be learned on narrow context. Deeper layers can
then learn the wider context from the activations of the hidden activations. To achieve
this, Waibel et al. introduced the time delayed neural network (TDNN) [19]. It layers are
not fully connected, but each neuron only receives input from a small temporal context.
Additionally the assumption is made that narrow features are time invariant and weights
between neurons in the same layer but different time steps are shared. Shared weights are
forced to the have the same value by averaging their weight updates. The transformation
can be formulated as a convolution in the time domain:

z[n] = f [n] ∗ w[n] =
∞∑

t=−∞
f [t]w[n− t] (2.9)

where f corresponds to the input, w to the weights and z to the weighted sums of the
neurons in the hidden layer. In speech recognition each input will be a feature vector,
so f [t] and w[t] would be vectors as well. The similarity to a convolution also gave the
network the name convolutional neural network (CNN).

2.2. Neural Network 11

Input Layer

Hidden Layer

Hidden Layer

Hidden Layer

Output Layer

W (1)

W (2)

W (3)

W (4)

Figure 2.7.: An autoencoder with 3 hidden layers. The representation in the second hidden
layer has only 2 neurons compared to the 6-dimensional input. None the less
the NN is trained to output the original input. If we force W (1) = W (4)ᵀ and
W (2) = W (3)ᵀ we say the weights are tied.
The representation in the second hidden layer could be used as compressed
representation as show in 2.3.1

Input
x

Corrupted Input
x̃ = c(x)

Hidden
Representation
h = σ(W (1)x̃)

Output
y = σ(W (2)h)

W (1)

W (2)

Figure 2.8.: Denoising autoencoder with a single hidden layer. The input x is corrupted
using c(x). The error is calculating between the original input x and the output
of the NN y. Again weights can be tied, W (2) = W (1)ᵀ

2.2. Neural Network 12

t − 6 t − 2 t t + 2 t + 6

ot

Input Layer

Hidden Layer

Hidden Layer

Output Layer

W (1)

W (2)

W (3)

Figure 2.9.: A fully connected DNN with input context [−6, 6] (see 2.3.1)

While the weight sharing leads to fewer parameters and thus a better generalization of the
model, it is also more complex and will slow down the training. [20] reported a factor 10
in training time compared to a DNN with the same number of parameters. To deal with
this the authors used subsampling.

Subsampling

Looking at 2.10 the filters overlap in each layer. The idea of subsampling is to apply
the filter on fewer time points. This is undersampling the input signal. The natural
subsampling would only be done to the input signal, but [20] showed that it is also possible
to use it in the hidden layers. They report a speedup of factor 5 if subsampling is used in
all layers.

The TDNN approach can be generalized to multiple dimensions. For speech recognition
the frequency domain in the spectrum is the second dimension and for visual tasks many
systems will use x and y coordinates and the color channel.

2.2.4. Advanced methods for training Neural Networks

As powerful as NN can be all their knowledge is inside the weights. Finding good weights
can be tricky and the followings sections will list a few optimizations.

Activation Functions

Very important for the learning process is the activation function φ(x) of a neuron. Typically
it will look similar to a heaviside step function and output values in the range [−1, 1] or
[0, 1]. If φ(x) is non-linear it can be shown that networks using it with at least one hidden
layer can approximate any function, making them very powerful [10]. Further layers with
linear activation function can be optimized away by changing weights and bias respectively
and are therefore of little use.

2.2. Neural Network 13

t − 6 t − 2 t t + 2 t + 6

ot

Input Layer

Time-Delay Layer

Time-Delay Layer

Output Layer

Figure 2.10.: Computation in a TDNN with subsampling (black) and without subsampling
(black+gray). Both networks have the same number of parameters in the two
time-delay layers.

The Sigmoid function is a very common activation function. The output lies between 0
and 1 allowing it to be interpreted as probability. However, using the Sigmoid-activation
in deep networks can worsen the vanishing gradient problem [16].

σ(x) = 1
1 + e−βx

(2.10)

(β influences the slope, but is usually set to 1.)

The Hyperbolic tangent produces outputs in the interval [−1, 1]. While it is basically
just a rescaled version of the Sigmoid function it’s derivative is also bigger in around x = 0.

tanh(x) = sinh(x)
cosh(x) = ex − e−x

ex + e−x
= 1− 2

e2x + 1 (2.11)

The rectified linear unit (ReLU) [21] is biology more plausible as the previous two.
Its computation is also very simple making the training a bit faster1. The linear part
has always a derivative of 1 and does not reinforce the vanishing gradient problem. For
negative inputs the output and the derivative are always 0. Unlucky weight updates cause
this for all samples in the training data. The neuron is then effectively dead.

relu(x) = max(0, x) (2.12)

Another important activation function is the Softmax function. It is a generalization of
the Sigmoid function and operates on a vector of real values instead of a single scale. The
input vector can be the weighted activations of the previous layer. The output will be a
vector that can be interpreted as probability distribution. All output values will sum up to

1An equivalent definition of the Rectifier Linear Unit is relu(x) = 0.5(x + |x|). This will not introduce a
branch in code execution and was tested to run slightly faster on GPUs.

2.2. Neural Network 14

−4 −2 2 4

−1

1

max(0, x)

σ(x)

tanh(x)

x

y

Figure 2.11.: Popular activation functions: Sigmoid function σ(x), Hyperbolic Tangent
tanh(x) and Rectifier Linear Unit relu(x)

1. Due the exponential terms values will be close to either 1 ore 0. In examples for inputs
[2, 5, 3, 1] the result will be [0.04, 0.83, 0.11, 0.02].

softmax(xi) = exi∑
j e

xj
(2.13)

More activation functions and derivatives can be found in [22].

Minibatch Gradient Descent

To train NN the Backpropagation algorithm, a generalization of the delta rule, is used [15,
chapter 6.3]. After a forward pass of the NN errors are computed by applying an error
function on the output values. Going backwards through the NN the errors for individual
edges are computed. By deriving the error function we can then use gradient descent to
update the weights and minimize the error. After that we start over with a new forward
pass. If this is done for each training example, one at a time, it is called stochastic
gradient descent (SGD). While this can work, single training examples are often noisy
resulting in sequences of inconsistent weight updates. On the opposite one could calculate
errors and derivatives for all training examples and perform the best update for the whole
data set by taking the average. This is called batch gradient descent and it will take the
steepest route to the next minimum for the distribution of the training data. Unfortunately
todays data sets are very large and a single iteration over all training examples can take
up to several hours of calculations making batch gradient descent very inefficient.

Minibatch Gradient descent combines the benefits of both approaches. Instead of
taking all or a single example a small number of training examples is used, usually 64-512
samples. The assumption is that each minibatch has a similar distribution as the whole
data set and is less effected by noise than single examples. The data set is then divided
into minibatches and weight updates are performed after each minibatch. The use of
minibatches gives additional performance improvements. If the size is set correctly all
required values will fit in the machines memory and calculations can be rewritten as big
matrix multiplication that are easier to parallelize.

All experiments in this work use minibatches of 256 examples.

2.2. Neural Network 15

Generative Pretraining

Training DNN using gradient-based learning methods and backpropagation can cause the
vanishing gradient problem. Backpropagation uses the chain rule to compute the gradient
of the activation functions and many common activation functions have gradients in the
range (−1, 1). For many hidden layers multiplying many small gradients make the gradients
in the front layers very small and slow down the learning.

Pretraining as introduced in [23] uses unsupervised methods for a meaningful initialization
of the weights. Each layer is trained separately to learn how to represent it’s input. The
training does not require labeled data and can be done using DAE:

1. Train first autoencoder DAE1 using the original training data X

2. Input X into DAE1 and use output as X ′

3. Train second autoencoder DAE2 using X ′

4. Use DAE2 to transform X ′ to X ′′

5. Continue to create DAE3,DAE4, · · ·
6. Use weight matrices and biases from autoencoders to stack a DNN

The stacked deep autoencoder knows already how to extract complex features from the
data. It is then fined tuned using backpropagation and supervised training data. While
the pretraining learns representations to regenerate the original input (generative) the fine
tuning selects deep features to discriminate classes. Analogous to DAEs in the algorithm
above RBMs can be used.

Recent studies indicate that layer-wise pretraining is not necessary if normalization methods
are used properly and there is enough data. But the technique shown can still speed up
learning process.

NewBob Schedule

The learning rate α is critical for training process. If it is too small learning will take very
long and is likely to stop in a bad local minimum of the cost function. In contrast high
learning rates can lead to “jumps” over a good local minimum or fail to converge.

To solve this many approaches have been invented to adjust the learning rate dynamically.
TODO: name and cite 2-3

A very simple, yet effective schedule is the NewBob schedule. It has two phases:

Phase 1: Start the training with a constant learning rate α0. Continue Training until the
validation error change from current to previous epoch falls below a threshold
τ1, then switch to Phase 2.

Phase 2: Continue training with exponential decreasing learning rate αi = βi ∗ α0, where
β ≤ 1 is the factor for exponential decrease (usually set to 0.5). Terminate
training as soon as the change of the validation error is below a second threshold
τ2.

Using a high learning rate for Phase 1 allows the network to learn fast and skip local
minimums. Phase 2 guaranties a conversion and fine tunes the learned weights.

2.3. Acoustic Models with Neural Networks 16

2.3. Acoustic Models with Neural Networks
The GMM-HMM combination presented in section 2.1.1 was the standard model for speech
recognition for over 20 years. Only recent advances in neural networks and the ever
increasing computational power and new huge data sets showed NNs to be the better
choice. There are various ways to use them in speech recognition and this section will
briefly explain two: Bottle-Neck Features and Hybrid DNN-HMM systems

New approaches using recurrent neural networks (RNNs) and connectionist temporal
classification (CTC) were not used in this work [24, 25].

2.3.1. Bottle-Neck Features

As seen in section 2.2.2 NN can be used to find compressed representations. This can help
phoneme classifiers with acoustic context.

Acoustic context

In speech recognition frames are classified into phonemes. The standard frame width is
32 ms while phonemes can be as long as 200 ms. Classifiers can therefore be enhanced by
providing feature vectors of neighboring frames. This is called temporal context and usually
given in time steps t−x, . . . , t−1, t, t+1, . . . , t+y, where the current frame is t, the previous
frame is t− 1 and so on. The context goes from [−x, y]. While providing acoustical is likely
to increase the frame classification accuracy the context increases the dimensionality of
the feature vector. Our preprocessing, described in 5.1.1, produces 54-dimensional feature
vectors. Using a acoustic context of [−6, 6] we end up with 702 features.

Using a high dimensional input makes Gaussian mixture model (GMM) unpractical. To
reduce dimensionality after adding acoustic context we can train an autoencoder to create
a more compact representation:

1. Pretrain an DNN with any number of x hidden layers using stacked DAEs.

2. Add layers on top of the neural network: One bottle-neck layer with a small number
of neurons and one or two layers mapping from the small bottle-neck to the output.
Past experiments have shown that 42 is a good bottle-neck size for speech recognition.

3. Train the whole network in a supervised fashion.

4. Discard layers after the bottle-neck layer.

The final neural network can then be used to transform the features from the preprocessing
into more powerful features. A GMM or a DNN, as we will show in the next section, can
then be used to do the actual phoneme classification [26].

2.3.2. Hybrid DNN-HMM Systems

Using the softmax function from 2.2.4 we can train a NN to output a probability distribution
for a multi-class classification task. In speech recognition hidden Markov models (HMMs)
are used to deal with great variety in speech. To use them we need to run Viterbi Alignment
and the Forward-Backward Algorithm. Both require to calculate P (ot|s), where ot is the
observation at time t (our feature vector) and s is the HMM state. Each HMM state
corresponds to one class in our DNN, but the DNN result is P (s|ot). Thanks to Bayes’
theorem we can calculate P (ot|s) from it:

P (ot|s) = P (s|ot) ∗ P (ot)
P (s) (2.14)

2.4. Room Impulse Response 17

P (s) is the likelihood of seeing state s and can be directly estimated from our training
data. P (ot) is the probability of seeing the specific features vector. It is unknown but will
be equal for all states. Thus we neglect it and use P (s|ot)

P (s) as a scaled likelihood for being in
state s at time t. With that we can use a DNN to replace GMMs in GMM-HMM acoustic
models. The input can be traditional preprocessing features or bottle-neck features. The
later help to increase the acoustic context and improve recognition accuracy [27]. Hybrid
DNN-HMM models have shown state of the art results and tend to outperform GMM-HMM
systems [11].

2.4. Room Impulse Response
The Acoustic impulse response (AIR) characterizes the acoustics of a given environment. In
case the enclosure is a room it is more appropriate to refer to it as room impulse response
(RIR) to imply some of the limits in the acoustic context. This section will introduce the
characteristics of RIRs.

The acoustics of the room are influenced by it’s size, the objects inside it and the reflectivity
properties of those and the walls. The number of possible rooms is infinite and only simple
cases can be simulated efficiently (e. g. empty cuboids). A RIR additionally depends on
the position of the source of the signal and the receiver [28]. As shown in figure 2.12 the
impulse response can be divided into three parts: the impulse of the direct path, the strong
early reflections and the diffuse late reflections

Front-end based approaches to deal with dereverberation (see 3) often exploit that we can
use this knowledge to divide an impulse response h(t) into two parts:

hearly(t) =
{
h(t) if t ≤ te
0 otherwise

hlate(t) =
{
h(t+ te) if t ≥ 0
0 otherwise

(2.15)

te is the boundary between the early reflections and late reverberation, which is typically
ranges from 30 to 60 ms after the arrival of the direct sound. Using 2.15 we can rewrite
the microphone signal y(t) the following:

y(t) =
t∑

l=−∞
x(t)h(t− l) + v(t) (2.16)

=
t∑

l=t−te
s(l)he(t− l) +

t−te∑
l=−∞

s(l)hl(t− l) + v(t) (2.17)

where v(t) denotes to the additive ambient noise component, the first sum is the early
speech component ze(t) and the second sum is late reverberant component zl(t). The joint
suppression of zl(t) and v(t) can be done using spectral enhancement. It increases the
speech fidelity and intelligibility.

Measurement

RIRs can be measured by emitting an impulse and recording the received signal. Even so
simple approaches as a gun shot work to create an impulse with a good signal-to-noise ratio
(SNR), exponential sine sweeps are suited better. They provide high energy for the low
frequencies, resulting in higher accuracy [29, 30]. An examples of such a impulse response
is plotted in figure 2.13.

2.4. Room Impulse Response 18

h(t)

t0 te

he(t) hl(t)

Figure 2.12.: Schematic view of a RIR. The impulse response h(t) is split into two parts
he(t) hl(t) by the boundary te.

0.0 0.1 0.2 0.3 0.4 0.5
Time [s]

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

A
m

p
lit

u
d
e

Figure 2.13.: Example of a measured room impulse response (RIR) with the direct sound-
path (green), early reflections (blue) and late reflections (red) and T60 = 0.7.
The impulse of direct-path sound is not always clearly visible.

2.4. Room Impulse Response 19

Reverberation Time

An impulse response can be quantified by the reverberation time T60. It is defined as
the time it takes for a signal to decay by 60 dB relative to the level of direct sound [31,
chapter 1.5]. For typical office and home environments, the reverberation time lies between
0.2 and 1 seconds. The reverberation time is governed by the geometry and the reflectivity
of the reflecting surfaces and in approximation independent of the receiver position.

3. Related Work

Reverberation is a long known problem for speech recognition and a lot of research has
gone into building robust systems. The authors of [32] classify the different approaches in
a common framework.

• Front-End based approaches aim at remove the features passed to the acoustic
model by inserting additional steps into the preprocessing. Depending on the position
there are three types:

– Time domain: Linear filtering exploits both the amplitudes and phases of the
signal, which is advantageous in terms of accuracy because reverberation is a
superposition of numerous time-shifted and attenuated versions of a clean signal.
Linear filtering allows exploiting the acoustical differences between multiple
microphone positions. It has been successfully been applied to actual meeting
data [33].

– Spectrum: The objective of spectral enhancement is to restore the clean power
spectrum coefficients. Because it deals with the late reverberation, which
is largely insensitive to source and receiver position, it is robust to speaker
movement.

– Log Spectrum: The Feature Enhancement methods try to model the effect of
reverberation on log Mel-frequency filterbank features. An example method is
given in [34].

• Back-End based approaches aim at adjusting the parameters of the acoustic model.
They exploit the statistical properties of reverberation in the final features. Examples
are HMM adaptation [35] and acoustic context-dependent likelihood evaluation [36].

Front-end based approaches do not requires changes in the back-end. They become part of
the preprocessing. Their computational complexity does not increase with the acoustic
model size as it is the case for back-end based approaches. They can also be combined
with other advanced recognition techniques. On the downside various assumption about
the acoustic environment are done that can introduce estimation errors. Overall back-end
based approaches seem to perform better [32].

More methods and detailed explanations can be found in [31]. We think that these explicit
methods increase the system complexity. Therefore we focused on newer approaches using
NN. The next section shows work already done on it.

3.1. Dereverberating Autoencoder 21

3.1. Dereverberating Autoencoder
Ishii et al. proposed a DAE to reconstruct the clean speech spectrum from reverberated
speech [2]. The autoencoder is first layer-wise pre-trained using artificially reverberated
speech and fine tuned by providing features of the clean audio signal as reference audio.
The authors found that an acoustic context of as big as [−11, 11] produced the highest
recognition accuracy. The features calculated by the autoencoder were fed directly into the
HMM.

Feng et al. followed a similar approach, but used a GMM-HMM acoustic model [3]. Their
autoencoder takes an input of 15 (t− 7 to t+ 7) frames of reverberated features and aims
to output the clean features of the center frame t. They used the CHiME-WSJ0 corpus,
which is only medium-vocabulary size (5k), but showed improvements up to 25 % absolute
word error rate (WER).

Finally, [37] presented a combination of a dereverberating autoencoder, using bidirectional
LSTMs, and spectral subtraction. The combination of both, data- and model-based
approaches, outperforms each on it own.

3.2. ASpIRE Challenge
In 2015 the Intelligence Advanced Research Projects Activity (IARPA) held the Automatic
Speech recognition in Reverberant Environments (ASpIRE) Challenge [38, 39], an evaluation
campaign focusing on speech recognition in reverberant speech recognition. Limited
to the Fisher corpus [40] for the training set participants had to construct automatic
speech recognition systems robust to far field recordings. The Fisher corpus consists of
approximately 2,000 hours of transcribed telephone speech. Algorithmic transformation
of it as additional training data were allowed. In contrast the provided development set
and the evaluation set consisted of recordings from several different rooms with different
distances between speaker and microphone to create a variety of acoustic environments.

The development set was taken from the Mixer 6 Corpus (LDC2013S03), while the
evaluation set was taken from Mixer 8 Pilot Corpus and had more variability in terms of 7
instead of 2 rooms and 2-3 speaker locations per room instead of 1.

ASpIRE Challenge had two tracks, one for single microphone and one for multiple micro-
phones (6 channels). In terms of WER the only submitted multiple microphone system
performed best. The system is described in [41]. The single microphone track had three
winners [42], who described their systems in [4, 5, 41]. All three teams used data aug-
mentation to increase the disparity in the training data. There are different methods for
it:

• Adding random background noises as described in [4].

• Applying room impulse responses. Hsiao et al. used generated room impulse responses
while the other teams relied on real impulse responses.

• [5] also tested speed and volume perturbation, but neither showed a gain.

Beside from multi conditioning the training data systems benefit from increased temporal
context, feature enhancement with DAE, and a TDNN. Systems with better speech activity
detection performed better [43].

4. Implementation

Training a state of the art speech recognition is a complex task. Many substeps are required
to train the models for language and acoustics and fine tune the parameters (e. g. master
beam, language model weight, warp factor). The experiments for this work were only
possible through the provided frameworks Janus Recognition Toolkit (JRTk) and detl.
The following pages will give an overview of the tools and the functionality that was added
as part of this thesis. Programming was done in C and Python.

4.1. Janus Recognition Toolkit (JRTk)
The Janus Recognition Toolkit (JRTk), or just Janus for short, is a general-purpose
framework for speech recognition [44, 45]. It can be used as a static library and through a
Tcl/Tk environment. The Tool Command Language (Tcl) allows a high level abstraction
on objects and algorithms while the highly optimized C code provides fast execution with
relative small memory footprint. The flexibility is a great advantage, especially in research,
over other toolboxes for automatic speech recognition (ASR) (i. e. kaldi1, HTK 2).
JRTk includes methods for audio preprocessing, various types of language models, acoustic
modeling with GMM-HMM, standard ASR algorithms and the IBIS decoder [46]. The
IBIS decoder is a one-pass decoder that makes use of the concept of linguistic context
polymorphism and is therefore able to incorporate linguistic knowledge at an early stage.
Using hybrid DNN-HMM systems is possible, but the implementation prior to this work
was limited to simple feed-forward networks.
During this work development of the toolkit was pushed forward. The additions target
three aspects:

• The existing Makefiles were replaced with a new CMake3 build system. CMake
offers great cross-platform support and allows users to program with the compiler
environment of their choice. CMake can search and find libraries itself while Makefiles
require libraries to be in by the users [47]. SCons4 and Autoconf 5 were also considered,
but found to be less suited for the project. Extensive documentation of the new build
system was added to the internal Wiki of the JRTk repository.

1http://kaldi-asr.org/
2http://htk.eng.cam.ac.uk/
3https://cmake.org/
4http://scons.org/
5http://www.gnu.org/software/autoconf/autoconf.html

http://kaldi-asr.org/
http://htk.eng.cam.ac.uk/
https://cmake.org/
http://scons.org/
http://www.gnu.org/software/autoconf/autoconf.html

4.1. Janus Recognition Toolkit (JRTk) 23

• A Python interface for the objects and methods in the JRTk was developed. The
interface is implemented as a Python module and can be used as any other module,
from the Python shell or written scripts.

• Python scripts that use the new Python module to train and test hybrid DNN-
HMM systems were created. The scripts incorporate detl (see 4.2) for training and
evaluating neural networks. This improves the execution speed and allows the use
of complex NN architectures in the acoustic model. Using detl also lead to 0.1 %
absolute improvement in the WER in some cases. It was not investigated, but slightly
different implementation of the network evaluation are plausible.

In the following the old Tcl and the new Python interface are explained.

4.1.1. Tcl Interface

The JRTk provides an interface to Tcl by wrapping the standard Tcl interpreter. The
wrapper deals with JRTk specific objects and methods while passing pure Tcl to the
standard Tcl interpreter, running in the background. The wrapper is deeply integrated
into the C library. It manages objects, parses arguments and cleans up memory. The deep
integration provides a great user experience, as if the classes and functionality were part
of Tcl, but also makes using JRTk without Tcl very hard. This is worsen as some pure C
methods rely on the registration of variables through the wrapper and some logic exits
inside interface methods. A great amount of functionality is implemented in Tcl directly.

4.1.2. Python Interface

Python has become very popular in scientific computing and offers many tools for it -
NumPy, SciPy, Pandas, matplotlib and Pylearn to name just a few. This includes also
many frameworks for machines learning and training neural networks. But no toolkit
targeting speech recognition is available. The Python syntax is easy to learn. On the other
side the Tcl syntax, used by the existing JRTk interface, is less self-explaining to beginners
and does not provide a smooth integration of neural networks libraries.

The Python module for JRTk was inspired by a proof of concept by Florian Metze. He
used ctypes6 to run a simple decoder. After a comparison of ctypes, Cython and SWIG it
was decided that Cython offers the best control over memory and performance (see next
section for details about it).

Table 4.1 shows the structure of the Python module. The JRTk C code is divided into
several folders (base, models, features, etc.). The Python module follows this structure to
split the nearly 2007 classes into several submodules. A main prerequisite for the Python
module was to leave the Tcl interface untouched. This will allow users to transition when
they are ready. Once the Python interface is complete and stable the Tcl interface will be
removed to decrease further engineering effort.

A detailed documentation on the Python module, targeting users and developers, was
created in the internal JRTk Wiki8. All experiments, presented in this work, were run
through the newly created Python interface. The investigation on TDNNs would not have
been possible with the old Tcl interface.

6ctypes is a foreign function library that provides C compatible data types. It is part of the Python
standard.

7The Tcl interface discloses 193 types. It has to be determined if all of them will be required in the future.
8The JRTk Wiki is part of the bitbucket repository. https://bitbucket.org/jrtk/janus/wiki/Home

https://bitbucket.org/jrtk/janus/wiki/Home

4.2. detl 24

Filename Pattern Purpose

setup.py.in Install information for Python package manager
__init__.py Module meta data, module initialization and loading of

submodules. The file is executed when the module is
imported.

c_*.pxd C definitions that do not belong in a submodule
common.pxi Cython include file with some basic imports, should be

included at the beginning of every Cython source file
(*.pyx). Sets up NumPy.

core.pyx Tcl interpreter class and logging configuration
itf.pyx, itf.pxd Helpers methods to register and unregister objects to the

Tcl interpreter
MODULE.pxd Define classes of the submodule MODULE
MODULE.pyx Common imports for all classes in MODULE
MODULE/c_*.pxd C definitions needed by the MODULE (one file for each

C header file)
MODULE/*.pxi Define Python classes and methods (one file for each

Python class)

Table 4.1.: Structure of the Python module. Keeping compatibility with the Tcl interface
introduced some overhead and can be removed in the future.

4.1.3. Cython

The Cython programming language is a superset of the Python programing language. It
has full support for Python and the same syntax, but also lets developers access C/C++
methods, structs and classes. Programs are compiled to pure C code using the Cython
compiler. A C-compatible compiler can then be used to compile the C code into a dynamic
library. The library will have the necessary interface to be imported as module in Python.

While Python is dynamically typed, C requires static types. The Cython compiler will try
to deduce the types of variables or use generic Python objects. The code may contain type
annotations to help the compiler. This allows writing high level Python code, but speeding
up performance critical sections by explicitly defining type and fall back to C functions.

Because of the bridging between C and Python Cython is often used to wrap C library
into Python modules. The latest version of the Cython compiler is 0.24 (released on
04/04/2016).

4.2. detl
detl is a Python library for deep learning and available as Python module and command-
line toolbox. It uses the theano library [48] to compile executions graphs for CPUs and
GPUs. Theano takes care of many low-level optimizations for fast GPU training, while
detl implements common models and algorithms. The later includes different neural layers
(e. g. fully connected, convolutional, autoencoders), over a dozen activation functions and
advanced methods like momentum, newbob scheduling and weight regularization.

During the work on this thesis detl was ported from Python 2 to Python 3. The Python 2
branch is no longer developed and Python 3 offers many new features and performance

4.3. Collection of Room Impulse Responses 25

database number of rooms number of RIRs
ACE [50] 7 14
AIR [51] 16 214
MARDY [52] 1 9
OMNI [53] 3 468
RWCP [54] 3 118
total 30 823

Table 4.2.: Sources for professional recorded RIRs used for training and testing. In MARDY
all recordings were done in the same room, but the acoustic characteristic (e. g.
reflectivity of the walls) was varied. If a database provided multi-channel
recordings only the first channel was used. Multiple microphones can definitely
help the reverberation problem but were not part of this work.

improvements. Unfortunately it is not backward compatible and requires many, though
often tiny, changes. Supporting both versions would be possible, but tedious.

• The pfile reader now supports asymmetric context. Thus when reading in fea-
ture files detl can now built feature vectors that contain features for the frames
t−x, . . . , t−1, t0, t1, . . . , ty where x and y no longer have to be the same. Experiments
have shown that asymmetric context can help speech recognition tasks [49].

• The convolutional layer now supports sub-sampling as explained in section 2.2.3.

• Scripts for constructing a TDNN were added.

• A backup hook was added that periodically saves the current model. This was
necessary as some of the GPUs used for experiments only allowed training up to
48 hours. If didn’t finish within the time the job was canceled and the data lost.
Trainings of neural networks with bigger amounts of training data or complex structure
were trained up to 144 hours.

4.3. Collection of Room Impulse Responses
To built a speech recognition system that can deal with many different environments the
acoustic characteristics of various rooms have to be learned. As argued in section 2.4
impulse response contain these information. To get a high variety in training and test data
impulse responses from various rooms are required. Collecting data is always expensive,
but fortunately there are already several databases of room impulse responses available.
Table 4.2 shows those used in this work.

Audio format and sampling rate did not always match the training data. To correct this
and organize the files Python scripts were written9. The scripts also create lists that split
the 823 RIRs into a training set (658 RIRs), a dev set (82 RIRs), a test set (83 RIRs) and
several other subsets for individual rooms.

4.4. Generating Room Impulse Response
In addition to collecting real room impulse responses the ‘Room Impulse Response Generator’
tool from E. Habets10 was used to create synthetic room impulse responses. The tool uses

9https://github.com/Marvin182/rir-database
10https://www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator

https://github.com/Marvin182/rir-database
https://www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator

4.4. Generating Room Impulse Response 26

the frequently used image method, proposed by Allen and Berkeley in [55]. Given the room
size, reflection coefficients of the walls and position of sender and receiver, the algorithm
generates an impulse response. For a swift integration into the preprocessing a thin Python
wrapper was added11.

The virtual rooms don’t have windows, doors and do not contain obstacles. Further the
generated impulse response does not have noise. Thus the synthetic RIRs are less suited
than real world RIRs.

11https://github.com/Marvin182/rir-generator

https://github.com/Marvin182/rir-generator

5. Evaluation

To evaluate the capabilities of DNNs for acoustic models for reverberated environments
several experiments were performed. This chapter will first describe the baseline speech
recognition system and the data used for the experiments. After that each experiment is
explained and followed by a short discussion. Experiments performed include a comparison
between measured and generated RIRs, training for a single room, the use of bigger
temporal context and finally the use of a TDNN for the acoustic model.

5.1. Baseline System
The baseline system is a hybrid DNN-HMM with context dependent triphones and a
n-gram language model. The next section describe the components and their training.
The acoustic model training is kick-started by using labels generated from a development
GMM-HMM system.

5.1.1. Preprocessing

The preprocessing takes a 16 kHz audio as input. The audio is divided into frames using a
frame shift of 10 ms and a window size of 32 ms. From each frame 40 log Mel frequency
features and 14 tonal features are calculated. As demonstrated in [56] the tonal features
give small gains even for non tonal languages as English. Mean subtraction, weighted by a
speech detection measure, is applied on the combined features. At last features are stacked
to a temporal context, 13 frames (+/- 6) if not mentioned otherwise.

5.1.2. Acoustic Model

The acoustic model is a hybrid DNN-HMM. 8000 context dependent tri-phonemes are
used. Hence the output layer of the DNN is always a softmax layer with 8000 units. The
input are the features from the preprocessing with the temporal context. If not mentioned
otherwise a DNN with 5 hidden layers is used. Each hidden layer has 1200 hidden units
and uses sigmoid activation functions. The network is trained as follows:

1. Initialize connections weights and biases to uniform random values between −0.2 and
0.2

2. Preform pretraining as described in 2.2.4, using tied weights, a learning rate of
0.01 and mask corruption with probability 0.2. Each layer is pretrained for 300k
minibatches.

5.2. Training Data 28

Text corpus Number of words in million
TED 3
News + News-commentary + -crawl 4,478
Euronews 0.780
Commoncrawl 0.185
GIGA 2323
Europarl + UN + multi-UN 829
Google Books (1 billion n-grams)

Table 5.1.: Sources of the language model. After data cleaning the total number of words
was 7.8 billion, not counting the Google Books.

3. Fine tune the network using stochastic gradient descent (SGD) with minibatches of
256 and the newbob learning rate schedule. The initial learning rate is 1, but will
decay with a factor of 0.5 after the validation error did decrease less than 0.005 the
first time. The training will stop after the validation error decreased less than 0.001.

The training is performed on a single GPU and runs in less than 2 days.

5.1.3. Frame Labels

While it is possible to train new speech recognition systems from scratch using DNNs
[57] it is faster to start from labels generated from an existing system. We use a strong
GMM-HMM system to write labels for the training data. All experiments use the same
labels.

5.1.4. Language Model and Vocabulary

The language model is identical to the English language model in [58]. It was build from
various sources (see table 5.1). For each (sub-)corpora a separate n-gram language model
with modified Kneser-Ney smoothing was build. The final model is a linear interpolation
of those models. Held-out data from the TED corpus was used to tune the interpolation
weights.

For the vocabulary unigram language models from all text sources were built using Witten-
Bell smoothing. Unigram probabilities were then chosen to maximize likelihood of held-out
TED data set. The top 150k words become the vocabluary. All experiments used the same
language model and vocabulary.

5.2. Training Data
Beside the room impulse responses described in 4.3 transcribed TED talks and noises are
used to train the models.

5.2.1. TED Talks

The main audio corpus is extracted from TED-LIUM corpus release 2 [59]. It contains
English TED talks. TED is a nonprofit organization that invites thinkers and doers to
give fascinating talks about their ideas. The talks range from 10 to 15 minutes. While
some speaker are well prepared it is still spontaneous speech. The recordings are high
quality but remain very challenging due to the large variability of topics and the presence
of non-native speakers.

5.3. Test Sets 29

After an automatic segmentation and removing a disallowed talk, which is part of the
test set, 168 h of labeled audio remained. The 723 talks are split into 107117 utterances
(average utterance length: 5.6 s). Utterances shorter than 300 ms were removed from the
training data. Due to errors in the labeling process 1166 utterances could not be labeled
and were not used to train the acoustic model. This 1 % loss of training data was not
further investigated.

5.2.2. Noises

Additional to the TED talks some noise samples were added to train the phonemes modeling
noises. Training the acoustic model to learn models for common noises is very important
and reduces the WER. The noises, in total 10 h, were:

• 240 minutes of microphone and signal disturbances

• 160 minutes of 5 s long samples from various radio songs.

• 70 minutes of pause and silence

• 60 minutes of rustle

• 40 minutes of various non-speech humans sounds (i. e. sniffing, smacking)

• 30 minutes of applause

5.3. Test Sets
As test set we use the evaluation set for the English ASR track of the International
Workshop on Spoken Language Translation (IWSLT) 2013. For the IWSLT 2015 it was
published as development set, including transcripts and automatic segmentation. The set
contains 28 TED talks, with a total of 4.2 hours of speech. The segmentation gave 1388
utterances with an average length of 10.9 s. Again the TED talks were recorded in high
quality. We refer to this test set as tst2013 and use it to measure the performance of our
systems on clean, close-talk speech.

To test performance in a reverberant environment we created a reverberated version of
tst2013, called tst2013_reverb. We used a selection of 28 RIRs from our RIR test set (see
4.3) to convolve each talk with one RIR. These 28 RIRs were picked to maximize the
number of simulated rooms in tst2013_reverb.

In a similar fashion we created another reverberated test set for a single room, tst2013_classroom.
The 28 RIRs that roughly form a grid were taken from the set of RIRs available for the
classroom in the OMNI database [53].

5.4. Experiments
This next sections contain the result of our experiments. We describe each experiment,
give the results and finish with a discussion.

5.4.1. Multi condition training

To train our system on different reverberant conditions we use the following steps to obtain
a feature vector from an utterance:

1. Sample random RIR h(t) from training RIRs

2. Resample h(t) to match sampling rate of utterance

5.4. Experiments 30

3. Remove silence at the beginning of h(t)
4. Convolve utterance audio with h(t), including samples before utterance window that

could cause reverberation.
5. Run preprocessing to retrieve log Mel frequency and tonal features.

The removal of silence in step 3 is important. Silence at the beginning of a RIR can occur
if the microphone is several meters away. The speed of sound is 342.2 m

s , so that it will
take the sound 10 ms to travel 3.42 m. The delay does apply to the direct sound path and
all reflection and the resulting signal will be the same as without silence, but shifted in
time. While in real time application this will introduce a small latency, it does not effect
the speech recognition itself. However, in order to use the frame labels generated for the
clean audio using the GMM-HMM label system, a time shift would worsen the quality of
the labels.
We choose to convolve each utterance with a random chosen RIR instead of using one for a
whole talk (speaker) because it creates higher variability in the training data. The results
in table 5.2 confirm this.
Reverberating each utterance individually gives better result. Therefore all further ex-
periments use the steps presented above. Next we trained systems using measured and
generated RIRs. Our baseline is a system trained on clean speech as described in 5.1. It
achieves 19.1 % WER on the tst2013 test set. This is similar to other state of the art
systems [49]. On the reverberated tst2013_reverb in performance degrades to 59.7 %,
which reveals great room for improvement and highlights again the need for reverberation
robust speech recognition.
Table 5.3 shows different systems trained with multi condition data. The best system,
Reverb Real, achieves a WER of 41.9 %. This is an relative improvement of 30 % over
baseline. Peddinti et al. reported a relative improvement of 35 % when switching from
clean to reverberant and noisy training data [5].
The systems trained with generated RIRs, Reverb Gen A and Reverb Gen B, show significant
improvements over the baseline, but cannot challenge the system trained with measured
RIRs. The test set tst2013_reverb was created using measured RIRs. These can contain
noise and the rooms can be very complex and big. The image method used to simulate the
RIRs can only create RIRs of small and simple rooms.
All systems were also tested against the tst2013 (clean speech) and it was found that the
system trained with reverberated audio do not match the baseline. We tried mixing clean
and reverberated training data, but with decreasing WER on clean speech the WER on
reverberated speech started increasing.

5.4.2. Single condition training
In this scenario it was investigated if a system can be trained explicitly for one room.
We choose the classroom from the OMNI database [53]. The authors measured 130

tst2013 tst_reverb
per speaker 26.9 % 42.5 %
per utterance 26.2 % 41.9 %

Table 5.2.: Convolving each utterance with a different impulse response instead of using
one for all utterances of a speaker gives a gain in system performance. Our
training set has 723 different speakers, intuitively the difference should be bigger
for small training sets.

5.4. Experiments 31

System name Training data tst2013 tst_reverb
Baseline clean 19.1 % 59.7 %
Reverb Gen A reverb 22.2 % 48.1 %
Reverb Gen B reverb 24.2 % 46.5 %
Reverb Real reverb 26.2 % 41.9 %

Table 5.3.: Evaluation of different system trained and tested on clean and reverberant
data. Reverb Gen A is trained with artificially generated impulse responses
for rooms not bigger than 5 m3 × 5 m3 × 3 m3. For Reverb Gen B rooms up
to 8 m3 × 9.5 m3 × 4 m3 were allowed and Reverb Real used real room impulse
responses.

impulse responses in a grid. The room measures roughly 7.5 m× 9 m× 3.5 m (236 m3) with
reflective surfaces of a linoleum floor, a large whiteboard, painted plaster walls and ceiling.
The conditions are bad for far-field speech recognition. The WER of 94.6 % by the baseline
system confirms this.

We used up to 100 RIRs for training and the remaining 30 RIRs to create tst2013_classroom
from tst2013 in the same fashion as tst2013_reverb. Additional we tested with a single
RIR for the whole test set to get word error rates for specific receiver positions.

We trained several systems using different number of impulse responses from the classroom.
The results are summarized by table 5.4. The error rates range form 59.1 % for all 100
RIRs to 78.3 % for 1 RIR in the middle of the room. While 1 RIR is clearly not enough,
5 RIRs seem to provide enough diversity to learn to room acoustics and get close to the
system trained with 100 RIRs. Measuring 5 RIRs for a room is feasible and could be used
for system explicitly build for a single room.

An addition we also tested the systems trained with RIRs from various (simulated) rooms.
While the system trained with generated RIRs is not able to deal with the distortions the
system trained on the measured impulse response does as good as 60.2 %. This is due that
some RIRs from the classroom are part of its training set. Using only RIRs from other
rooms for training, as done for system Reverb Real* yields a WER of 69.5 %. The neural
network did learn features for reverberant speech from other rooms.

Further we evaluated how the performance correlates with the distance between speaker
and receiver. Figure 5.1 shows the results for the system trained with 100 RIRs from the
classrom. For positions closer to the speaker the system could handle reverberated audio a
lot better. The worst results can be seen on the outsides of the first row. This is similar to
the findings in [43]. The authors suggest that ASR system performance is better correlated
with a measure that depends not only on the distance but also on the orientations of both
speaker and receiver. Similar graphics for the baseline system and the system trained with
a single RIR from the middle of the room can be found in the appendix.

5.4.3. Temporal Context

To create the tst2013_reverb the tst2013 test set was convolved with RIRs from various
rooms. These rooms include big lecture halls and thus have reverberation times up to 1
second. The temporal context of our baseline system is [−6, 6], which are 13 frames. We
use a window size of 32 ms and 10 ms shifts. Thus the input to the DNN covers 152 ms.
This is enough to cover the direct sound path and some early reflection of most phonemes
but the network will miss most of the late reflections. For clean speech it has been observed
that simply increasing the input context of the DNN can reduce the frame recognition

5.4. Experiments 32

2 3 4 5 6 7
x in m

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

y
 i
n
 m

64.6 59.1 50.8 45.8 50.8 58.6 64.6

63.7 58.4 54.0 52.0 53.0 57.8 62.6

61.2 57.8 54.7 55.5 55.7 58.5 60.5

61.4 59.2 57.5 57.1 56.6 58.3 59.5

61.4 59.8 57.7 57.8 57.3 58.4 59.5

45

48

51

54

57

60

63

66

W
E
R

 i
n
 %

Figure 5.1.: Word error rate depending on the receiver position in the classroom. The
acoustic model was trained with 100 RIRs from the room and tested on the
remaining 30 RIRs. The background color is a linear interpolation between
the measurement points. It is not said that the WER degrades linearly, but
the visualization highlights that the WER does depend on the distance and
the microphone angle. The speaker is positioned at x = 4.5 and y = 0.5.

5.4. Experiments 33

10 12 14 16 18 20 22
Temporal Context

18.9

19.0

19.1

19.2

19.3

19.4

19.5

W
E
R

 i
n
 %

0.46

0.48

0.50

0.52

0.54

0.56

0.58

Fr
a
m

e
 e

rr
o
r

Figure 5.2.: WER (blue) on tst2013 and frame classification error (green) for DNN acoustic
models with different temporal context. The context is given as number of
frames and is always symmetric (e. g. context 13 indicates that the network it
given the features from frame t − 6 to t + 6). The system was trained with
clean speech.

error but at the same time increases the WER. We verified that this is the case for our
system as well and that the optimal context window is indeed [−6, 6] (see figure 5.2.

By running the same experiments with reverberated training data and testing against
reverberated training data we found that the optimal context for a reverberant system
is [−8, 8] (see figure 5.3). We conclude that a bigger temporal context is necessary for
reverberation robust speech recognition, but the phenomenon of increasing WER despite
decreasing frame error remains.

5.4.4. Bottle-Neck features

As explained in section 2.3.1 Bottle-neck features (BNF) can improve the system perfor-
mance by providing more powerful features. If used in speech recognition a DNN with a
bottle-neck is trained in the first step and the bottle-neck output is then used as input for
the classifier. The classifier can be another DNN. Our bottle-neck network has 5 hidden
layers of size 1200 and a bottle-neck with 42 units.

The two steps allow 4 different combinations of training with clean and reverberant speech,
as displayed in table 5.5. When trained with clean data in both steps the system does
not learn to handle reverberation. If reverberant audio is used in one of the steps it does
better than the baseline, but does not reach the performance of a single DNN trained
on reverberated data. But in case of both steps use multi-condition training the system
achieves better result on both test sets, compared to our previous system Reverb Real
(see section 5.4.1). Even so the BNF network and the classifier network only have an
input context of [−6, 6] each the total input context is [−12, 12] (Reverb Real uses [−8, 8]).
Additional the two networks can be seen as one very deep network that is able to discover
very complex features.

5.4.5. Time Delay Neural Network

As another NN architecture we chose TDNN. As its computation is simlar to a convolution
is should be able to undo a convolution, if possible at all. Our TDNN consists of 3
time-delay layers, each with 200 filters and 3 fully connected layers with 500 units each on

5.4. Experiments 34

10 12 14 16 18 20 22
Temporal Context

41.5

42.0

42.5

43.0

43.5

44.0

44.5

W
E
R

 i
n
 %

0.74

0.75

0.76

0.77

0.78

0.79

0.80

Fr
a
m

e
 e

rr
o
r

Figure 5.3.: WER (blue) on tst2013_rvb and frame classification error (green) for DNN
acoustic models with different temporal context. The models were trained on
reverberated audio from measured RIRs.

top of it. Due the weight sharing in the lower layers the number of parameters is smaller
than in the DNN (8M for the TDNN and 16M for the DNN). However, training time is
about equal.

Table 5.6 compares the performance of the three network structures. Unfortunately results
for the TDNN were not satisfying. We did not see the improvements reported in [49].
Further the use of subsampling gave only a small boost in training speed, but also 0.3 %
increase in WER. Experiments with the context size and activations functions did not yield
better results.

5.4. Experiments 35

RIRs for training tst_classroom
0 (Baseline) 94.6 %
1 78.3 %
5 63.5 %
10 63.0 %
50 62.5 %
100 59.1 %
Reverb Gen 80.7 %
Reverb Real 60.2 %
Reverb Real* 69.5 %

Table 5.4.: WER of systems trained with different number of RIRs from the classroom
in the OMNI database and tested against other RIRs from the same room.
The Reverb Gen system is trained with simulated RIRs for rooms close to
the classroom dimensions. The Reverb Real systems was trained with all 658
training RIRs which also include RIRs from the classroom. For Reverb Real*
these were explicitly removed.

BNF training DNN training tst2013 tst2013_reverb
clean clean 19.3 % 60.4 %
clean reverb 21.8 % 47.1 %
reverb clean 22.2 % 50.0 %
reverb reverb 24.8 % 41.1 %

Table 5.5.: Results for BNF-DNN-HMM systems: First the BNF network was trained.
Afterwards the training data was transformed into the bottle-neck features and
used to train the classifier DNN.

Network Type Number for parameters tst2013_reverb
DNN 16M 41.8 %
BNF-DNN 32M 41.1 %
TDNN 8M 48.4 %

Table 5.6.: Performance of the 3 network architectures. All three models were trained on
reverberant speech for roughly 1.5 days.

6. Conclusion

In this final chapter the achievements of the thesis are first summarized and analyzed.
After that some ideas for future work are expressed.

6.1. Summary
The aim of this work was to investigate the use of neural networks for lecture speech
recognition in reverberant environments. This can be accomplished by training under
multiple (reverberant) conditions. As collecting new training would be expensive and a
tedious work we followed the approach of using room impulse responses (RIRs) to add the
acoustics of a room to close-talk speech recordings. A database of professionally measured
room impulse responses was collected from five different sources. In addition code for
generating room impulse for small rooms was adopted. The RIRs were then used to
reverberate lecture talks.

In the evaluation phase we trained hybrid DNN-HMM acoustic models with the reverberated
training data. By testing against a baseline on both clean and reverberated speech we
found that the use of measured RIRs gives great improvements on reverberant speech
(59.7 % down to 41.8 % WER) but performance on clean speech degrades (19.1 % up to
26.2 %).

Improvements on close-talk capturing were not the goal of the approach but the performance
lost should be kept in mind. The decreased WER for reverberant speech is similar to
those found by [5], reporting a drop from 47.6 % to 31.7 % WER on far-field recordings in
meetings rooms. The amount of measured RIRs is limited and more data could help to
close the gap between reverberant and clean speech recognition rates. Generating RIRs is
another alternative. For now generated RIRs did produce slightly higher errors (46.5 % on
reverberant speech). Possible reasons for this were given in 5.4.1.

Next we investigated the case of a single condition, were RIRs of a room are given and
reverberant speech from the same room has to be recognized. The room was a very
reverberant, big classroom and very challenging for far-field speech recognition. The
experiments showed that using more than 5 RIRs gave only small gains. Measuring 5
impulse responses seems feasible and improved WER for microphones within a close distance
(1-2 meters) by 28.0 % (from 70.9 % to 43.3 %). This could help to build speech speech
recognition systems for lecture rooms that do not require the speaker to be equipped with
a microphone.

6.2. Future Work 37

To further improve the performance we tested variations in the acoustic model. This showed
that an increased acoustic context [8, 8] is advantageous in reverberant environments. The
use of bottle-neck features lowered the error rate from 41.8 % to 41.1 %. This improvement
is significant, but smaller than in [60].

And finally the use of a time-delay neural network was examined. The network did show
better training and validation error on frame level, but failed to produce better word
sequences. This is a widely known phenomenon. Adjusting parameters of the speech
recognition system (e. g. language model weight, master beam) did not solve the problem.

All the experiments described above were done using a newly created Python interface of
the Janus Recognition Toolkit (JRTk). Python features superior performance and usability
over the obsolete Tcl interface. The switch to Python will allow new users to become
familiar with JRTk quickly and allow faster evaluation of new approaches. This is due to
the simplicity and the powerful Python ecosystem as described in 4.1.

This work presented a simple approach to train reverberation robust speech recognizer
that works well for multi- and single-conditions. The outcomes were submitted to the ITG
conference on speech communication and will be published via IEEExplore.

6.2. Future Work
The approaches presented in this thesis targeted the reverberation problem. In many far-
field scenarios the speech recognition is also confronted with additive noise. The framework
developed during this thesis can be extended to create noisy conditions. This was done
successfully for telephone speech in [4]. To investigate reverberation separately presented
experiments were performed on artificially reverberated data. Further work should use test
sets by evaluation campaigns on far-field speech recognition (e. g. ASpIRE and REVERB).

The time-delay neural network outperformed simple DNNs on frame level recognition, but
not from a WER perspective. Finding the causes for this could yield better performance
on both, clean and reverberant, speech.

Lastly the scope of this thesis did not allow investigation on neural networks other than
feed-forward networks. As new findings indicate recurrent neural networks achieve state
of the art results ASR [61]. Theie use in reverberant speech recognition has still to be
examined.

Bibliography

[1] D. Giuliani, M. Matassoni, and M. Omologo, “Training of HMM with filtered speech
material for hands-free recognition,” International Conference on Acoustics, Speech,
and Signal Processing - Proceedings, 1999.

[2] T. Ishii, H. Komiyama, T. Shinozaki, Y. Horiuchi, and S. Kuroiwa, “Reverberant speech
recognition based on denoising autoencoder.,” in INTERSPEECH, pp. 3512–3516,
2013.

[3] X. Feng, Y. Zhang, and J. Glass, “Speech feature denoising and dereverberation
via deep autoencoders for noisy reverberant speech recognition,” ICASSP, IEEE
International Conference on Acoustics, Speech and Signal Processing - Proceedings,
pp. 1759–1763, 2014.

[4] R. Hsiao, J. Ma, W. Hartmann, M. Karafiat, F. Grezl, L. Burget, I. Szoke, J. H.
Cernocky, S. Watanabe, Z. Chen, S. H. Mallidi, H. Hermansky, S. Tsakalidis, and
R. Schwartz, “Robust Speech Recognition In Unknown Reverberant And Noisy Condi-
tions,” in 2015 IEEE Workshop on Automatic Speech Recognition and Understanding
(ASRU), p. 533, dec 2015.

[5] V. Peddinti, G. Chen, V. Manohar, T. Ko, D. Povey, and S. Khudanpur, “JHU
ASpIRE System : Robust Lvcsr with TDNNs, iVector Adaptation and RNN-LMs,” in
2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU),
p. 539, dec 2015.

[6] S. Young, G. Evermann, M. Gales, and T. Hain, “The HTK Book (v3. 4),” Cambridge
University, 2006.

[7] X. Huang, A. Acero, and H. Hon, “Spoken language processing: A guide to theory,
algorithm, and system development,” 2001.

[8] B. Ziółko and M. Ziółko, “Time durations of phonemes in Polish language for speech
and speaker recognition,” Language and Technology Conference, 2009.

[9] A. P. Dempster, N. Laird, and D.B. Rubin, Maximum Likelihood from Incomplete
Data via the EM Algorithm, vol. 39. 1977.

[10] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics
of control, signals and systems, 1989.

[11] G. Hinton, L. Deng, D. Yu, and G. Dahl, “Deep neural networks for acoustic modeling in
speech recognition: The shared views of four research groups,” IEEE Signal Processing
Magazine, vol. 29, no. 6, 2012.

[12] R. Collobert, J. Weston, L. Bottou, and M. Karlen, “Natural language processing
(almost) from scratch,” Journal of Machine Learning Research, vol. 12, pp. 2493—-2537,
2011.

Bibliography 39

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Con-
volutional Neural Networks,” in Advances in Neural Information Processing Systems,
pp. 1097–1105, 2012.

[14] J. Deng, W. Dong, R. Socher, L. Li, and K. Li, “ImageNet: A large-scale hierarchical
image database,” 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248—-255, 2009.

[15] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. JOHN WlLEY &
SONS, INC., 2000.

[16] I. G. Y. Bengio and A. Courville, “Deep Learning.” 2016.

[17] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representa-
tions by error propagation,” in Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, vol. 1, pp. 318–362, 1986.

[18] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks.,” Science (New York, N.Y.), vol. 313, pp. 504–7, jul 2006.

[19] A. Waibel, T. Hanazawa, and G. Hinton, “Phoneme recognition using time-delay
neural networks,” IEEE transactions on, 1989.

[20] H. X. Chen Yun-Nung Hakkani-Tur Dilek, C. Yun-Nung, and Y.-n. Chen, “Detecting
Actionable Items In Meetings By Convolutional Deep Structured Semantic Models,” in
2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU),
p. 375, dec 2015.

[21] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best multi-stage
architecture for object recognition?,” Proceedings of the IEEE International Conference
on Computer Vision, pp. 2146–2153, 2009.

[22] M. Ritter, “Neural Networks - Formulae Collection,” 2015.

[23] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief
nets,” Neural computation, vol. 18, pp. 1527–54, jul 2006.

[24] A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber, “Connectionist Tempo-
ral Classification : Labelling Unsegmented Sequence Data with Recurrent Neural
Networks,” Proceedings of the 23rd international conference on Machine Learning,
pp. 369–376, 2006.

[25] Y. Miao, M. Gowayyed, F. Metze, M. Y. Gowayyed Mohammad Metze Florian, M. F.
Gowayyed Mohammad, Y. Miao, M. Gowayyed, and F. Metze, “EESEN: End-to-end
speech recognition using deep RNN models and WFST-based decoding,” 2015 IEEE
Workshop on Automatic Speech Recognition and Understanding (ASRU), pp. 167—-174,
dec 2015.

[26] F. Grézl, M. Karafiát, S. Kontár, and J. Černocký, “Probabilistic and bottle-neck fea-
tures for LVCSR of meetings,” ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing - Proceedings, vol. 4, 2007.

[27] J. Gehring, Y. Y. Miao, F. Metze, and A. Waibel, “Extracting deep bottleneck features
using stacked auto-encoders,” in 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 3377–3381, IEEE, 2013.

[28] H. Kuttruff, Room acoustics. Spon Press/Taylor & Francis, 2009.

[29] M. Holters, T. Corbach, and U. Zölzer, “Impulse Response Measurement Techniques
and their Applicability in the Real World,” in Proc. 12th Int. Conference on Digital
Audio Effects, vol. 9, 2009.

Bibliography 40

[30] A. Farina, “Simultaneous measurement of impulse response and distortion with a
swept-sine technique,” Proc. AES 108th conv, Paris, France, no. I, pp. 1–15, 2000.

[31] P. A. Naylor and N. D. Gaubitch, Speech dereverberation. Springer Science & Business
Media, 2010.

[32] T. Yoshioka, A. Sehr, M. Delcroix, K. Kinoshita, R. Maas, T. Nakatani, and W. Keller-
mann, “Making machines understand us in reverberant rooms: robustness against
reverberation for automatic speech recognition,” Signal Processing Magazine, IEEE,
vol. 29, no. 6, pp. 114–126, 2012.

[33] T. Hori, S. Araki, T. Yoshioka, and M. Fujimoto, “Low-latency real-time meeting
recognition and understanding using distant microphones and omni-directional camera,”
IEEE Transactions on Audio, Speech, and Language Processing, vol. 20, no. 2, pp. 499—
-513, 2012.

[34] A. Krueger and R. Haeb-Umbach, “A model-based approach to joint compensation of
noise and reverberation for speech recognition,” Robust speech recognition of uncertain
or missing data, pp. 257–290, 2011.

[35] T. Takiguchi, M. Nishimura, and Y. Ariki, “Acoustic model adaptation using first-order
linear prediction for reverberant speech,” IEICE transactions on information and
systems, vol. 93, no. 3, pp. 908–914, 2006.

[36] A. Sehr, R. Maas, and W. Kellermann, “Reverberation model-based decoding in the
logmelspec domain for robust distant-talking speech recognition,” IEEE transactions
on audio, speech, and language processing, vol. 18, no. 7, pp. 1676–1691, 2010.

[37] F. Weninger, S. Watanabe, Y. Tachioka, and B. Schuller, “Deep Recurrent De-Noising
Auto-Encoder and Blind De-Reverberation for Reverberated Speech Recognition,” 2014
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
no. 2, pp. 4656–4660, 2014.

[38] IARPA, “Automatic Speech recognition In Reverberant Environments (ASpIRE)
Challenge,” 2015.

[39] Mary Harper, “The Automatic Speech Recogition In Reverberant Environments
(Aspire) Challenge,” in 2015 IEEE Workshop on Automatic Speech Recognition and
Understanding (ASRU), p. 547, dec 2015.

[40] C. Cieri, D. Miller, and K. Walker, “The Fisher Corpus: a Resource for the Next
Generations of Speech-to-Text.,” LREC, vol. 4, pp. 69–71, 2004.

[41] J. Dennis and T. H. Dat, “Single And Multi-Channel Approaches For Distant Speech
Recognition Under Noisy Reverberant Conditions: I2R’S System Description For The
Aspire Challenge,” in 2015 IEEE Workshop on Automatic Speech Recognition and
Understanding (ASRU), p. 518, dec 2015.

[42] IARPA, “IARPA Announces Winners of its ASpIRE Challenge,” 2015.

[43] J. Melot, N. Malyska, J. Ray, and S. Wade, “Analysis Of Factors Affecting System
Performance In The Aspire Challenge,” in 2015 IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU), p. 512, dec 2015.

[44] M. Finke, P. Geutner, H. Hild, T. Kemp, K. Ries, and M. Westphal, “The Karlsruhe-
Verbmobil speech recognition engine,” in 1997 IEEE International Conference on
Acoustics, Speech, and Signal Processing, 1997. ICASSP-97, vol. 1, pp. 83–86, IEEE,
1997.

Bibliography 41

[45] M. Woszczyna, N. Aoki-Waibel, F. D. Buo, N. Coccaro, K. Horiguchi, T. Kemp,
A. Lavie, A. McNair, T. Polzin, and I. Rogina, “JANUS 93: towards spontaneous
speech translation,” 1994 IEEE International Conference on Acoustics, Speech, and
Signal Processing, 1994. ICASSP-94, vol. 1, pp. I–345, 1994.

[46] H. Soltau, F. Metze, C. Fugen, C. Fügen, and A. Waibel, “A one-pass decoder based on
polymorphic linguistic context assignment,” in IEEE Workshop on Automatic Speech
Recognition and Understanding, 2001. ASRU’01, pp. 214–217, IEEE, 2001.

[47] K. Martin and B. Hoffman, Mastering CMake - A cross-platform build system. [Clifton
Park, NY.]: Kitware Inc., 2015.

[48] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian,
D. Warde-Farley, and Y. Bengio, “Theano: A CPU and GPU math compiler in
Python,” in Proc. 9th Python in Science Conf, pp. 1–7, 2010.

[49] V. Peddinti, D. Povey, and S. Khudanpur, “A Time Delay Neural Network Architecture
for Efficient Modeling of Long Temporal Contexts,” Interspeech, pp. 3214–3218, 2015.

[50] J. Eaton, N. D. Gaubitch, A. H. Moore, and P. A. Naylor, “The ACE challenge - Corpus
description and performance evaluation,” in 2015 IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics (WASPAA), pp. 1–5, IEEE, 2015.

[51] M. Jeub, M. Schäfer, and P. Vary, “A binaural room impulse response database for
the evaluation of dereverberation algorithms,” in 16th International Conference on
Digital Signal Processing, pp. 1–5, IEEE, 2009.

[52] J. Y. C. Wen, N. D. Gaubitch, E. a. P. Habets, T. Myatt, and P. a. Naylor, “Evaluation
of Speech Dereverberation Algorithms using the MARDY Database,” Proc. Intl.
Workshop Acoust. Echo Noise Control (IWAENC), pp. 12–15, 2006.

[53] R. Stewart and M. B. Sandler, “Database of omnidirectional and B-format room
impulse responses.,” in ICASSP, pp. 165–168, 2010.

[54] S. Nakamura, K. Hiyane, F. Asano, T. Nishiura, and T. Yamada, “Acoustical Sound
Database in Real Environments for Sound Scene Understanding and Hands-Free
Speech Recognition.,” in LREC, pp. 2–5, 2000.

[55] J. B. Allen and D. A. Berkley, “Image method for efficiently simulating small-room
acoustics,” The Journal of the Acoustical Society of America, vol. 65, no. 4, pp. 943–950,
1979.

[56] F. Metze, Z. A. W. Sheikh, A. Waibel, J. Gehring, K. Kilgour, Q. B. Nguyen, and
V. H. Nguyen, “Models of tone for tonal and non-tonal languages,” in IEEE Workshop
on Automatic Speech Recognition and Understanding (ASRU), pp. 261–266, IEEE,
2013.

[57] L. Zhu, K. Kilgour, and S. Stüker, “Gaussian Free Cluster Tree Construction Using
Deep Neural Network,” Sixteenth Annual Conference of the International Speech
Communication Association, 2015.

[58] K. Kilgour, M. Heck, M. Müller, and M. Sperber, “The 2014 KIT IWSLT Speech-to-
Text Systems for English, German and Italian,” International Workshop on Spoken
Language Translation (IWSLT), 2014.

[59] A. Rousseau, P. Deléglise, and Y. Estève, “Enhancing the TED-LIUM Corpus with
Selected Data for Language Modeling and More TED Talks.,” in LREC, pp. 3935–3939,
2014.

Bibliography 42

[60] J. Gehring, W. Lee, K. Kilgour, I. Lane, Y. Miao, and A. Waibel, “Modular Combina-
tion of Deep Neural Networks for Acoustic Modeling,” Proc. Interspeech, no. August,
pp. 94–98, 2013.

[61] Y. Miao, M. Gowayyed, X. Na, T. Ko, F. Metze, and A. Waibel, “An Empirical
Exploration of CTC Acoustic Models,” Icassp 2016, pp. 2623–2627, 2016.

Acronyms

AIR acoustic impulse response. 17

AM acoustic model. 5

ASpIRE Automatic Speech recognition in Reverberant Environments. 21

ASR automatic speech recognition. 1, 4, 5, 7, 22, 29, 37

BNF Bottle-neck features. 3, 33

CNN convolutional neural network. 10

CTC connectionist temporal classification. 16

DAE denoising autoencoder. 8, 10, 15, 16, 21

DNN deep neural network. 3, 8–10, 12, 15–17, 27, 28, 31

EM expectation-maximization. 6, 7

GMM Gaussian mixture model. 6, 7, 16, 17, 22

GPU graphics processing unit. 8, 13, 25, 28

HMM hidden Markov model. 3, 5, 6, 16, 21, 22

IARPA Intelligence Advanced Research Projects Activity. 21

IWSLT International Workshop on Spoken Language Translation. 29

JRTk Janus Recognition Toolkit. 22, 23, 37

LM language model. 5

LSTM long short-term memory. 9, 21

LVCSR large-vocabulary continuous speech recognition. iv

MSE mean-square error. 10

NN neural network. 1, 3, 8, 11, 12, 14, 16, 20

PCA principal component analysis. 10

Acronyms 44

RBM restricted Boltzmann machine. 10, 15

ReLU rectified linear unit. 13

RIR room impulse response. 3, 17, 18, 25–27, 29–31, 34

RNN recurrent neural network. 16

SGD stochastic gradient descent. 14, 28

SNR signal-to-noise ratio. 17

STT speech to text. 4

Tcl Tool Command Language. 22

TDNN time delayed neural network. 3, 8, 10, 21, 23, 25, 27

WER word error rate. iv, 8, 21, 23, 29–31, 33

Appendix

A. WER per speaker and RIR

B. Performance depending on receiver position

B. Performance depending on receiver position 46

single condition multi condition
Speaker ID Source Database Room Name clean reverb clean reverb
talkid1541 ACE building_lobby_2 8.3 % 24.4 % 11.0 % 15.9 %
talkid1673 ACE office_1 29.2 % 63.0 % 40.9 % 50.9 %
talkid1649 AIR aula_carolina 21.8 % 99.1 % 27.6 % 62.8 %
talkid1617 AIR aula_carolina 22.8 % 89.9 % 29.1 % 50.3 %
talkid1658 AIR booth 18.4 % 23.9 % 25.4 % 26.8 %
talkid1654 AIR lecture 6.2 % 70.4 % 9.1 % 23.8 %
talkid1694 AIR lecture 44.1 % 88.6 % 56.0 % 67.9 %
talkid1651 AIR meeting 13.5 % 28.9 % 17.8 % 21.8 %
talkid1637 AIR meeting 9.1 % 19.3 % 15.0 % 17.8 %
talkid1520 AIR office 21.1 % 36.1 % 32.1 % 34.5 %
talkid1659 AIR stairway 10.1 % 15.8 % 15.0 % 15.9 %
talkid1640 AIR stairway 16.1 % 88.2 % 22.3 % 43.8 %
talkid1685 AIR bathroom 37.5 % 44.5 % 42.7 % 43.9 %
talkid1532 AIR lecture2 16.8 % 53.4 % 24.2 % 38.2 %
talkid1647 AIR meeting 17.0 % 17.3 % 22.4 % 22.3 %
talkid1518 AIR stairway3 17.2 % 83.1 % 22.3 % 49.2 %
talkid1646 MARDY 2_c 28.6 % 49.9 % 34.3 % 40.8 %
talkid1666 OMNI greathall 9.5 % 90.0 % 13.5 % 35.3 %
talkid1548 OMNI greathall 16.6 % 95.1 % 22.0 % 50.6 %
talkid1699 OMNI octagon 46.2 % 96.1 % 50.4 % 80.6 %
talkid1610 OMNI octagon 12.5 % 98.0 % 14.6 % 49.6 %
talkid1534 OMNI classroom 23.5 % 96.2 % 31.8 % 71.8 %
talkid1553 OMNI classroom 10.6 % 95.4 % 12.9 % 54.9 %
talkid1665 RWCP ane 28.3 % 63.0 % 34.4 % 49.4 %
talkid1600 RWCP e1a 23.6 % 63.6 % 38.4 % 52.1 %
talkid1592 RWCP e2a 6.4 % 69.7 % 13.4 % 37.2 %
talkid1539 RWCP jr1 14.1 % 97.2 % 20.1 % 86.9 %
talkid1634 RWCP ofc 7.6 % 97.4 % 13.4 % 86.5 %

Table A.1.: Comparison of the baseline DNN-HMM system trained on clean data (single
condition) and trained on reverberated data (multi condition). The clean
columns show word error rates for the IWSLT 2013 evaluation set on a per
speaker basis. For the reverb columns every talk was convolved with a room
impulse response from the given room and tested against the reverberated
audio. Impulse response were not used twice. If two talks were reverberated
with the same room the receiver position inside the room differs.

B. Performance depending on receiver position 47

2 3 4 5 6 7
x in m

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

y
 i
n
 m

94.9 94.0 91.4 77.4 90.2 93.7 95.0

95.0 94.2 93.1 92.4 92.7 94.2 94.9

94.7 94.2 93.5 93.5 93.8 94.4 94.5

94.7 94.4 94.0 94.0 94.1 94.2 94.4

94.8 94.6 94.2 94.0 94.4 94.3 94.6

72

75

78

81

84

87

90

93

W
E
R

 i
n
 %

Figure B.1.: Word error rate depending on the receiver position in the classroom for the
baseline system. The system cannot deal with reverberation except when
directly in front of the speaker. Even then it is falls short to the system trained
with one or more RIRs from the classroom.

B. Performance depending on receiver position 48

2 3 4 5 6 7
x in m

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

y
 i
n
 m

82.7 78.7 71.8 67.8 71.9 78.4 82.7

82.4 78.0 74.3 72.5 73.4 77.9 81.5

80.4 77.7 75.0 75.2 75.4 78.0 79.8

81.0 78.9 77.3 76.5 75.9 77.3 79.0

80.9 79.1 77.3 77.2 76.7 77.6 78.8

67.5

70.0

72.5

75.0

77.5

80.0

82.5

W
E
R

 i
n
 %

Figure B.2.: Word error rate depending on the receiver position in the classroom for a
system trained with a single RIR from the middle of the room.

	Contents
	1 Introduction
	1.1 Contribution
	1.2 Structure of this work

	2 Background
	2.1 Automatic Speech Recognition
	2.1.1 Acoustic Model (AM)
	2.1.2 Word Error Rate (WER)

	2.2 Neural Network
	2.2.1 Deep Neural Network (DNN)
	2.2.2 Autoencoder
	2.2.3 Time-Delay Neural Network (TDNN)
	2.2.4 Advanced methods for training Neural Networks

	2.3 Acoustic Models with Neural Networks
	2.3.1 Bottle-Neck Features
	2.3.2 Hybrid DNN-HMM Systems

	2.4 Room Impulse Response

	3 Related Work
	3.1 Dereverberating Autoencoder
	3.2 ASpIRE Challenge

	4 Implementation
	4.1 Janus Recognition Toolkit (JRTk)
	4.1.1 Tcl Interface
	4.1.2 Python Interface
	4.1.3 Cython

	4.2 detl
	4.3 Collection of Room Impulse Responses
	4.4 Generating Room Impulse Response

	5 Evaluation
	5.1 Baseline System
	5.1.1 Preprocessing
	5.1.2 Acoustic Model
	5.1.3 Frame Labels
	5.1.4 Language Model and Vocabulary

	5.2 Training Data
	5.2.1 TED Talks
	5.2.2 Noises

	5.3 Test Sets
	5.4 Experiments
	5.4.1 Multi condition training
	5.4.2 Single condition training
	5.4.3 Temporal Context
	5.4.4 Bottle-Neck features
	5.4.5 Time Delay Neural Network

	6 Conclusion
	6.1 Summary
	6.2 Future Work

	Bibliography
	Acronyms
	Appendix
	A WER per speaker and RIR
	B Performance depending on receiver position

