
Recurrent Neural Networks in Speech
Disfluency Detection and
Punctuation Prediction

Master’s Thesis

Matthias Reisser
1538923

At the Department of Informatics
Interactive Systems Lab (ISL)

Institute of Anthropomatics and Robotics

Reviewer: Prof. Dr. Alexander Waibel
Second reviewer: Prof. Dr. J. Marius Zöllner
Advisor: Kevin Kilgour, Ph.D
Second advisor: Eunah Cho

15th of November 2015

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Abstract

With the increased performance of automatic speech recognition systems in

recent years, applications that process spoken speech transcripts become in-

creasingly relevant. These applications, such as automated machine transla-

tion systems, dialogue systems or information extraction systems, usually are

trained on large amount of text corpora. Since acquiring, manually transcribing

and annotating spoken language transcripts is prohibitively expensive, natural

language processing systems are trained on existing text corpora of well-written

texts. However, since spoken language transcripts, as they are generated by

automatic speech recognition systems, are full of speech disfluencies and lack

punctuation marks as well as sentence boundaries, there is a mismatch be-

tween the training corpora and the actual use case. In order to achieve high

performance on spoken language transcripts, it is necessary to detect and re-

move these disfluencies, as well as insert punctuation marks prior to processing

them.

The focus of this thesis therefore lies in addressing the tasks of disfluency de-

tection and punctuation prediction on two data sets of spontaneous speech:

The multi-party meeting data set (Cho, Niehues, & Waibel, 2014) and the

switchboard data set of telephone conversations (Godfrey et al., 1992). The

method of choice for tackling these classification problems are deep neural net-

works, which are flexible tools especially well suited for modelling textual data.

In particular, this thesis studies the advantages of using recurrent neural net-

works, which are capable of modelling sequential data, over the use of standard

feedforward neural networks.

Although disfluency detection and punctuation prediction are two di↵erent

tasks, previous research has shown that modelling them jointly improves the

performance of both. Therefore, in this thesis, the advantages of jointly learn-

ing neural network models in (recurrent) neural networks are investigated. It is

shown that by combining both tasks, the models improve their generalization

capabilities.

The meeting data set exhibits distinct properties that distinguishes it from the

switchboard data set. Whereas the meeting data set contains transcripts of

multi-party meetings, the switchboard data set is made up of telephone con-

versations between two speakers. Additionally, they have di↵erent annotation

schemes and the meeting data set can be considered tiny in comparison to

the amount of available data in the switchboard data set. Considering these

di↵erences, this thesis investigates possibilities of transferring knowledge from

the larger switchboard data set to the disfluency detection and punctuation

prediction tasks on the meeting data set. Strong performance improvements

show the strength of these knowledge transfer approaches.

ii

Contents

Abstract ii

List of Figures v

List of Tables vi

1. Introduction 1

2. Disfluency Detection and Punctuation Prediction 3

2.1. Disfluencies in Spontaneous Speech . 4

2.2. Sentence Segmentation and Punctuation Prediction 6

2.3. Problem Formulation . 8

3. Related Work 11

3.1. Disfluency Detection . 11

3.2. Sentence Segmentation and Punctuation Prediction 12

4. Data and System 15

4.1. Meeting Data Set . 15

4.1.1. Disfluency Annotation Scheme . 16

4.1.2. Statistics . 16

4.2. Switchboard Data Set . 17

4.2.1. Disfluency Annotation Scheme . 18

4.2.2. Slash-unit Annotation . 19

4.2.3. Statistics . 20

4.3. Performance Evaluation . 21

4.4. System Architecture . 24

4.4.1. Preprocessing and Feature Generation 25

4.4.2. Model Training . 26

4.4.3. Model Evaluation . 26

5. Neural Networks for Sequence Modelling 28

5.1. Multilayer Perceptron . 28

5.1.1. Forward Pass . 29

5.1.2. Output Layer and Cost Function . 30

5.1.3. Training Neural Networks . 33

iii

iv Contents

5.2. Recurrent Neural Networks . 37

5.2.1. Training Recurrent Neural Networks 38

5.2.2. LSTM . 40

5.3. Overfitting . 42

6. Capturing Time Dependencies through Recurrent Architectures 45

6.1. MLP Architecture as Baseline . 45

6.1.1. Features . 45

6.1.2. Hyperparameters . 46

6.1.3. Meeting Data Set . 48

6.1.4. Switchboard Data Set . 48

6.2. Simple Recurrent Architecture . 50

6.2.1. Hyperparameters . 51

6.2.2. Meeting Data Det . 55

6.2.3. Switchboard Data Set . 56

6.3. LSTM . 57

6.4. F-measure as Cost Function . 59

6.5. Summary . 59

7. Regularization through Multi-Task Learning 61

7.1. MLP Architecture . 62

7.1.1. Meeting Data Set . 62

7.1.2. Switchboard Data Set . 62

7.2. Simple Recurrent Architecture . 63

7.2.1. Meeting Data Set . 63

7.2.2. Switchboard Data Set . 64

7.3. Summary . 65

8. Transfer Learning across Data Sets 66

8.1. Fine-tuning of a Switchboard Model . 66

8.1.1. Fine-tuning all Layers . 67

8.1.2. Fine-tuning the Output Layer . 68

8.2. Joint Training of the Meeting and the Switchboard Data Set 70

8.3. Summary . 71

9. Conclusion and Future Work 73

10.Declaration 76

References 77

Appendices 83

A. Results for Shift Experiments, full Context Window 84

B. Results for Shift Experiments, no Context Window 89

iv

List of Figures

2.1. Exemplary edit structure. 5

5.1. Schematic of a recurrent neural network. 38

5.2. Schematic of an LSTM cell, adapted from (Gre↵ et al., 2015). 41

6.1. Training and validation costs for disfluency detection on the switchboard

dataset. 54

7.1. Schematic of a multi-task recurrent neural network. 62

8.1. Schematic of jointly training a recurrent neural network. 70

v

List of Tables

4.1. Example for an original, disfluent sentence and its cleaned reference version. 16

4.2. Example for a conversation containing an interruption. 16

4.3. Meeting data set statistics. 17

4.4. Switchboard data set statistics. 21

6.1. Hyperparameters for the MLP experiment. 46

6.2. Performance criteria for di↵erent setting. 46

6.3. Results for disfluency detection on the meeting data set. 48

6.4. Results for punctuation prediction on the meeting data set. 49

6.5. Results for disfluency detection on the switchboard data set. 49

6.6. Results for punctuation prediction on the switchboard data set. 49

6.7. Hyperparameters for recurrent architectures. 52

6.8. Disfluency detection on the switchboard data set with varying shift value

and full context window. 53

6.9. Disfluency detection on the switchboard data set with varying shift value

and reduced context window. 54

6.10. Disfluency detection on the meeting test set with the recurrent architecture. 55

6.11. Punctuation prediction on the meeting test set with the recurrent architecture. 56

6.12. Disfluency detection on the switchboard data set with the recurrent archi-

tecture. 56

6.13. Punctuation prediction on the switchboard data set with the recurrent ar-

chitecture. 57

6.14. Disfluency detection on the meeting data set with the LSTM architecture. . 58

6.15. Punctuation prediction on the meeting data set with the LSTM architecture. 58

6.16. Disfluency detection on the switchboard data set with the LSTM architecture. 58

6.17. Punctuation prediction on the switchboard data set with the LSTM archi-

tecture. 58

6.18. Disfluency detection on the switchboard data set with the F-measure cost

function. 59

7.1. Joint training of punctuation prediction and disfluency detection on the

meeting data set with the MLP architecture. 63

7.2. Joint training of punctuation prediction and disfluency detection on the

switchboard data set with the MLP architecture. 63

vi

List of Tables vii

7.3. Joint training of punctuation prediction and disfluency detection on the

meeting data set with the recurrent architecture. 64

7.4. Joint training of punctuation prediction and disfluency detection on the

switchboard data set with the recurrent architecture. 65

8.1. Disfluency detection on the meeting data set when fine-tuning a model pre-

trained on the switchboard data set. 68

8.2. Punctuation prediction on the meeting data set when fine-tuning a model

pre-trained on the switchboard data set. 68

8.3. Joint training of punctuation prediction and disfluency detection on the

meeting data set when fine-tuning a model pre-trained on the switchboard

data set. 69

8.4. Disfluency detection on the meeting data set when fine-tuning the output

layer of a model pre-trained on the switchboard data set. 69

8.5. Punctuation prediction on the meeting data set when fine-tuning the output

layer of a model pre-trained on the switchboard data set. 69

8.6. Joint training of punctuation prediction and disfluency detection on the

meeting data set when fine-tuning the output layer of a model pre-trained

on the switchboard data set. 70

8.7. Disfluency detection on the meeting data set when trained concurrently

with disfluency detection on the switchboard data set. 71

8.8. Punctuation prediction on the meeting data set when trained concurrently

with disfluency detection on the switchboard data set. 71

A.1. Disfluency detection on the meeting data set with varying shift value, vali-

dation set performance. 84

A.2. Punctuation prediction on the meeting data set with varying shift value,

validation set performance. 85

A.3. Punctuation prediction and disfluency detection on the meeting data set

with varying shift value, validation set performance. 86

A.4. Disfluency detection on the switchboard data set with varying shift value,

validation set performance. 87

A.5. Punctuation prediction on the switchboard data set with varying shift value,

validation set performance. 87

A.6. Punctuation prediction and disfluency detection on the switchboard data

set with varying shift value, validation set performance. 88

B.1. Disfluency detection on the meeting data set with varying shift value, val-

idation set performance. Input features contain word embedding and POS

tags for one word. 89

B.2. Punctuation prediction on the meeting data set with varying shift value,

validation set performance. Input features contain word embedding and

POS tags for one word. 90

vii

viii List of Tables

B.3. Punctuation prediction and disfluency detection on the meeting data set

with varying shift value, validation set performance. Input features contain

word embedding and POS tags for one word. 91

B.4. Disfluency detection on the switchboard data set with varying shift value,

validation set performance. Input features contain word embedding and

POS tags for one word. 92

B.5. Punctuation prediction on the switchboard data set with varying shift value,

validation set performance. Input features contain word embedding and

POS tags for one word. 92

B.6. Punctuation prediction and disfluency detection on the switchboard data set

with varying shift value, validation set performance. Input features contain

word embedding and POS tags for one word. 93

viii

1. Introduction

“This thesis is uhm I mean discusses neural networks uh recurrent neural

networks in modelling speech disfluencies ...”

Spontaneously formulated speech di↵ers greatly from well-written texts. This is because

humans, in conversational speech, do not always produce grammatically correct phrases,

abort previous sentences, start anew and are often interrupted by other speakers. Un-

derstanding these incorrect sentences apparently proves no challenge for human listeners.

They have acquired a skill set that allows them to deal with disfluent utterances in con-

versational speech (Ferreira & Bailey, 2004) and can rely on their knowledge about the

context of the conversation as well as infer meaning from intonation (Snedeker & Trueswell,

2003). However, designing automated systems that understand spoken language and are

able to perform natural language processing (NLP) tasks such as automated translation,

information extraction or dialogue systems, is a very challenging task. Machine learn-

ing approaches that aim at solving these NLP tasks are trained on large amounts of

task-specific annotated texts. These text corpora are usually well written texts and are

thus significantly di↵erent from spoken language. Firstly, inherent to spoken language,

it contains disfluencies such as “uhm”, “uh” or repetitions and interruptions. Secondly,

automated speech recognition systems (ASR) produce a continuous stream of words, con-

taining neither sentence boundaries nor punctuation marks. When training automated

systems on textual data, these machines gain an understanding of human language that

reflects the composition of the data they have been trained on. When using these systems

on the output of an ASR system, performance is generally worse.

This mismatch between training data and spoken language data can be solved either by

training the desired NLP system on spoken language transcripts instead of well written

text corpora, or by transforming the spoken language transcripts into well written text

prior to applying the NLP system. Since acquiring, transcribing and manually labelling

spoken language corpora for each specific NLP task is expensive, transforming spoken

language into well written text has been the focus of research, and also lies in the focus of

this thesis.

In recent years, deep neural networks have gained increasing momentum in machine learn-

ing research and state-of-the-art results have been reported in diverse tasks ranging from

image recognition to automated speech recognition and natural language processing. This

thesis builds upon these successful ideas and presents several approaches to transforming

spoken language transcripts into well written text. Since spoken language consists of a

sequence of words, recurrent neural networks (RNNs) have been especially successful in

many natural language modelling tasks. RNNs are especially designed to model sequential

data and represent a powerful tool for sequence labelling tasks. The results presented in

Chapter 6 of this thesis show that by transitioning from classic feed forward architectures

to recurrent architectures, the performance on two data sets, the meeting data set (Cho,

Niehues, & Waibel, 2014) and the switchboard data set (Godfrey et al., 1992), can be

1

2 1. Introduction

improved.

Whilst the well-known switchboard corpus consists of transcripts of telephone conversa-

tion, the meeting data set contains transcripts of multi-party meetings. The latter poses

additional challenges for detecting disfluencies and inserting punctuations because in con-

versations between several people, disfluencies, especially interruptions, occur more often.

Furthermore, the meeting data set is considerably smaller than the switchboard data set.

The amount of labelled data which is available plays a critical role in a model’s ability to

generalize to unseen data. In fact, apart from increased computational power, the success

of deep neural networks in recent years is largely attributable to the increased availabil-

ity of large amounts of data. Therefore, in this thesis, two techniques for improving the

generalization capabilities of models for the meeting data set are investigated: Multi-task

learning and transfer learning.

Multi-task learning embraces the idea that by jointly learning two related tasks concur-

rently in the same model, one can improve on the task of interest. By reading two labels

for each input instead of only one, the parameters that are shared between the tasks are

more robust and generalization is improved. In previous research e↵orts on disfluency de-

tection and punctuation prediction, both tasks are combined instead of considering them

separately and in sequence. The e↵ect of leveraging the relation between both tasks by

learning them jointly in the context of neural networks will be presented in Chapter 7.

Although there are di↵erences between the switchboard data set and the meeting data

set, both tasks intuitively share common features. Transfer learning aims to exploit these

common factors that are shared between di↵erent but adjacent data sets. In Chapter

8, the focus lies on improving the performance of the relatively small meeting data set

by using knowledge obtained from the switchboard corpus to train a more robust model,

which generalizes better than would be possible using the meeting data set alone.

The contribution of this work therefore lies in evaluating the benefits of introducing recur-

rent neural networks, evaluating the e↵ect of jointly learning punctuations with disfluencies

and the evaluation of di↵erent approaches to transfer learning. The remainder of this thesis

is structured as follows: Chapter 2 gives an introduction into the tasks that are considered

in this thesis and formulates them as a machine learning problem. Chapter 3 discusses

related works on disfluency detection and punctuation prediction. The data sets used in

this thesis, as well as the technical system used in training models on this data is pre-

sented in Chapter 4. This is followed by an introduction of classic multilayer perceptron

neural networks and their extension into recurrent architectures in Chapter 5. Chapter

6 evaluates the e↵ect of adding recurrent connections into neural networks on both data

sets, while Chapter 7 focusses on multi-task learning. Finally, Chapter 8 discusses and

evaluates the benefits of transfer learning, which is followed by a critical discussion of the

work and possible directions for future research in Chapter 9.

2

2. Disfluency Detection and Punctuation

Prediction
Humans excel at understanding the meaning contained in another person’s spoken ut-

terances, even though, in most cases, these utterances do not formulate grammatically

correct sentences and are rich with repetitions and interruptions. However, for machines,

the ability to process spoken language is very hard to achieve. For various applications

in natural language processing, it is necessary for automated systems to understand spo-

ken language and react to the user’s verbal instructions. Today’s state of the art speech

recognition systems already achieve a very high accuracy in transcribing the speech signal

into words (Soltau et al., 2014). With the increased performance of these ASR systems,

subsequent processing of the spoken language transcript becomes more interesting and

gains more attention. Applications which operate on spoken language transcripts include

machine translation systems, information extraction systems, dialogue systems, summa-

rization and named entity recognition. Ideally, an automated NLP system is able to detect

the words that are most relevant to it, depending on its purpose.

In order for machines to perform well on natural language processing tasks, they need to

possess an understanding of natural language. In recent years, machine learning techniques

emerged as a very successful approach in enabling machines to solve problems in NLP,

as opposed to hand-crafted rules. In order to teach a machine to understand language,

machine learning algorithms process large amounts of textual data and build a model

of what they read. In the context of machine translation, examples of such data might

be pairs of sentences: One sentence is written in the source language, while the second

sentence represents the translated version of it.

The amount of available data becomes even more relevant within the field of deep learning,

a sub-field of machine learning that uses deep neural networks. The achievable performance

of these neural network models largely depends on the amount of data they can be trained

on. The more data a model has been trained on, the better it can generalize to unseen data

points. Since recording, transcribing and annotating large amounts of spoken language is

infeasible or, at the least, prohibitively expensive, NLP systems are usually trained on

large corpora of well-written, well-structured data that is readily available. During train-

ing, these systems build a model of the corpus and thus understand a well-written and

generally well-behaved version of natural language. However, since humans in conversa-

tional contexts normally do not formulate sentences similar to what one might find on

Wikipedia or in newspaper articles, the performance of these systems su↵ers when applied

to spoken language. Cho et al. (2013), for example, show the negative impact of spo-

ken language as input to machine translation, while Jones et al. (2003) show its negative

impact on the readability of the transcripts.

Due to the fact that building NLP systems on spoken language transcripts is very hard with

a limited amount of data, it is necessary to solve the problem of misaligned training and

test data by transforming spoken language into a format resembling written texts. From

a system’s perspective, words, as they are spoken, are initially recognized and transcribed

3

4 2. Disfluency Detection and Punctuation Prediction

by an ASR system. Before passing this stream of words to a NLP system, in order to align

the spoken language transcript with the training data, the elements of natural language

that lead to reduced performance of the system need to be addressed.

The two main di↵erences between the stream of words that is provided by the ASR system

and the well-written training corpora are the lack of sentence boundaries and reliable

punctuation marks in the transcribed stream of words (Cho et al., 2015), as well as the

aforementioned disfluencies inherent to spontaneous speech. Further di↵erences, especially

with better readability of transcripts in mind, are correct capitalization of words and higher

level formatting such as paragraphs and sections (Ostendorf et al., 2008). They are,

however, not as relevant as punctuation prediction and disfluency detection and therefore

out of the scope of this thesis.

A successful alignment of spoken language to the domain of written texts therefore enriches

the ASR system’s output with punctuation information and identifies speech disfluencies.

2.1. Disfluencies in Spontaneous Speech

Spontaneous speech contains several distinguishable disfluencies, depending on the situa-

tion in which the speaker is recorded. A well-prepared speech, such as, for example, the

speeches in the lecture corpus discussed in (Cho, Niehues, & Waibel, 2014), contains less

disfluencies, whereas a conversation between two or more participants is rich with disflu-

encies (see Section 4.1.2). Benesty (2008) di↵erentiates spoken language sources along the

axes “number of speakers” (one, two and many) and “speaking style” between formal and

casual, placing meetings and telephone conversations on the more challenging end of the

spectrum.

The terminology in disfluency detection has been coined by the work of E. E. Shriberg

(1994). The definitions given in her dissertation have been refined in subsequently created

data sets and customized to the targeted modelling of disfluencies. In order to give an

overview over common disfluencies, this section introduces notions and terminology found

in the annotation schemes of both data sets used in this thesis, based upon E. E. Shriberg

(1994).

Disfluencies in the English language consist of fillers and edits. Fillers are simple dis-

fluencies that mark an interruption in fluent speech. They carry no information about

the ideas formulated in the sentence and usually appear independently of the semantic

context in which they are embedded. There are two main groups of fillers: Filled pauses

and discourse markers. Meteer et al. (1995) refer to fillers as non-sentence elements and

state further di↵erentiations for this type of disfluencies commonly found in spontaneous

speech. Examples include coordinating conjunctions such as “but anyway, it’s not” and

explicit editing terms “you, I mean, he”.

Filled pauses are very common form of fillers in spontaneous speech. They encompass

words and utterances such as “uh”, “uhm” or “oh”, which are used to bridge pauses during

expressing a train of thought. In general, the speaker is thinking about how to continue or

4

2.1. Disfluencies in Spontaneous Speech 5

flights from Boston on| {z }
Reparandum

Interruption point

#
uh|{z}

Interregnum

from Denver on| {z }
Repair

Monday

Figure 2.1.: Exemplary edit structure.

finish a sentence and fills the resulting pause with a sound. The sentence “Is it like, uh, oh,

what’s that called, it’s, uh, correspondence school,” contains filled pauses at several points,

indicating the speaker was trying to find her words. All occurrences of filled pauses have

in common that they carry no semantic information and thus can be considered irrelevant

for most NLP applications.

Discourse markers are close to the previously discussed filled pauses. However, depending

on the context, words such as “well”, “you know” and “like” do carry semantic content and

are therefore more di�cult to distinguish. Consider the sentence“You are like a composer”,

which carries di↵erent meaning than “You are, like, a composer”. Only in the second case

should “like” be considered a discourse marker.

The second category of disfluencies in spoken language are edits. Edits are words the

speaker changed her mind about and decided to replace them with a corrected version.

A speaker edit consists of several regions: Reparandum, interruption point, repair and an

optional interregnum (E. E. Shriberg, 1994). Reparanda, also referred to as edit regions

or simply edits in some sources, encapsulate the words the speaker intends to replace with

the words contained in the repair. In some cases (see Figure 2.1 for an example), the

interruption point between the reparandum and the repair is followed by an interregnum.

This interregnum usually consists of a discourse marker or filled pause.

Depending on the relationship between reparandum and repair, di↵erent kinds of edits can

be di↵erentiated. In cases where the repair is similar or identical to the reparandum, such

as in “I think, I think this is good”, the edit is called a repetition. In the meeting data set,

which is introduced in Section 4.1, as well as in the Spontaneous Speech Reconstruction

corpus (Fitzgerald & Jelinek, 2008), the elements inside the reparanda, corresponding to

repetitions, are labeled as rough copies.

Sometimes, a speaker alters spoken words to a larger extend such as in “I know, I strongly

believe that” or cancels a sentence completely, thus starting a new train of thought. The

sentence “It’s also, I used to live in” shows where the speaker restarts her sentence. Conse-

quently the first uttered words carry no meaning in light of the subsequent words. In this

case, instead of rough copies, these words are labelled non copies and are called restarts

or false starts in some sources (Fitzgerald, Hall, & Jelinek, 2009; Cho et al., 2013).

The meeting data set introduced interruptions as another type of edit. Cho, Niehues, &

Waibel (2014) felt that the increased amount of interruptions in a multi-speaker environ-

ment needs to be explicitly modelled. Interruptions are a special kind of edit, in which

the reparandum stands alone and is not followed by a repair structure. Instead, another

speaker continues the conversation.

5

6 2. Disfluency Detection and Punctuation Prediction

The correct identification of edits in spoken language transcript lies in the focus of current

research in disfluency detection (Johnson & Charniak, 2004; Hough & Schlangen, 2015;

Qian & Liu, 2013), because detecting edits poses a greater challenge than detecting filler

words. Filler words often consist of fixed phrases (Qian & Liu, 2013) and are not as heavily

dependent on the surrounding context in which they are embedded in. Furthermore, filler

words usually do not carry any meaning. Therefore, simply deleting filler words is su�cient

for reconstructing speech fragments containing these elements. Deciding whether or not

to label words as reparanda, however, depends on the correct identification of the repair

structure. In case of restarts, whether or not words need to be labelled as such, depends

on the meaning conveyed in the words following the restart. In the phrase “I don’t like,

his ideas do not interest me”, correctly identifying “I don’t like” as a restart is possible

only by identifying that the words “his ideas do not interest me” mark the start of a new

sentence, leaving the previous sentence incompleted.

More complex relations between repair and reparandum need to be identified in order to

reconstruct a meaningful sentence in case information from the reparandum is carried over

to the repair (Fitzgerald, Jelinek, & Frank, 2009). In order to transform the sentence“they

like video games some kids do” into “some kids like video games”, the relationship between

“they” and “some kids” as well as the implicit connection between “do” and “video games”

needs to be modelled. Correctly identifying the relation between elements inside an edit

structure is, however, not part of this thesis. Here, the focus lies on correctly identifying

the reparanda.

2.2. Sentence Segmentation and Punctuation Prediction

Sentence segmentation in the context of processing written text is usually called sentence

boundary detection, whereas in spoken language processing, it is referred to as identi-

fying sentence-like units (Liu et al., 2006). Sentence boundary detection concerns itself

with identifying segments where a sentence boundary punctuation mark, i.e. a full-stop,

question mark or exclamation mark should be (Batista & Mamede, 2011). In this setting,

punctuation marks are present in the input data stream and the task is reduced to deciding

whether a punctuation mark actually signifies a sentence boundary. This means, for ex-

ample, deciding whether a full-stop is part of an abbreviation or whether a comma is used

in an enumeration or signifies a clause. Sentence segmentation in the setting of spoken

language processing, however, can not rely on the availability of punctuation marks in the

input stream. The task of segmenting the input stream into sentence-like units is therefore

closely related to the prediction of punctuation. A sentence-like unit may be equivalent to

a full grammatical sentence but can also be a smaller unit. It is not unusual in conversa-

tional speech for a speaker to utter a semantically complete sentence in a grammatically

incomplete form. These utterances may also be interrupted by another speaker or consist

of only one-word sentences such as “right” or “oh really” (Meteer et al., 1995). Usually, at

the boundary of a sentence-like unit, there is a missing punctuation mark, which needs to

be correctly inserted.

6

2.2. Sentence Segmentation and Punctuation Prediction 7

Punctuation plays a critical role in understanding written texts. Without correct punc-

tuation, a text is not only more di�cult to read, missing punctuation also gives rise to

potential ambiguities with respect to the meaning contained in it. Consider the popular

example “Let’s eat grandpa”, which, depending on whether or not a comma is placed be-

fore the last word, suggest either to eat the speaker’s grandfather, or invites the speaker’s

grandfather to the table. It is equally important to not place punctuation marks at the

wrong location. In the phrase “When I sing well ladies feel sick”1, placing the comma

before the word “ladies”, the phrase “When I sing well, ladies feel sick” might not convey

what the speaker intended. Instead the speaker might have wanted to attribute the word

“well” to “ladies”: “When I sing, well ladies feel sick”. These ambiguities do not only occur

within sentences. Consider the phrase “Tim talks with Peter. You can be sure.” with the

alternative “Tim talks. With Peter, you can be sure.”. This shows how changing the posi-

tion of the sentence boundary yields two di↵erent interpretations of the speaker’s intended

meaning.

Apart from clarifying otherwise ambiguous word arrangements, punctuation marks can

also be responsible for defining the meaning of a sentence. In case a question mark is

inserted at the end of the phrase “I am right”, it becomes a question and carries a dif-

ferent meaning in comparison to the case where an exclamation mark turns it into a

statement. Especially for statistical machine translation, di↵erentiating between these

two cases becomes very relevant since questions and exclamatory statements might be

formulated di↵erently in the target language.

For spoken language, a wide variety of punctuation marks can be considered relevant for

insertion into a transcript. Batista & Mamede (2011) mention full-stop, comma, question

mark, exclamation mark, quotation mark, colon, semicolon and quotation marks. However,

since the placement of most of these punctuation marks is determined by the human

annotator’s interpretation or occur comparably rarely and are therefore hard to predict,

research has focussed on working with full-stop, comma and, in some cases, question marks.

In many languages, humans intuitively segment a sentence and distinguish between the

possible alternatives by incorporating knowledge of the context and by listening to how

a sentence was spoken. It therefore follows that, in order for an automated system to

distinguish between grammatically correct hypotheses, the use of prosodic (acoustic) fea-

tures can be helpful (E. Shriberg et al., 1998). When asking a question, a speaker usually

rises the tone of her voice. In contrast, expressing something with a forceful tone sug-

gests an exclamatory sentence. Similarly, sentence boundary detection benefits from using

prosodic features. Especially the duration of pauses between words seems to be indicative

of sentence boundaries (Rao et al., 2007b). In this thesis, however, the focus lies on only

using lexical features in the prediction of disfluencies as well as sentence segmentation and

punctuation prediction. The inclusion of prosodic features will be part of future research.

Since both, punctuation prediction and disfluency detection are important steps in recon-

structing spontaneous speech, traditional preprocessing steps in an NLP pipeline have to

1http://www.future-perfect.co.uk/grammar-tip/fun-with-punctuation/, 31.October 2015

7

8 2. Disfluency Detection and Punctuation Prediction

decide which task to perform first. In either case, by performing the tasks in sequence,

errors from one task can be propagated into the subsequent task, making its performance

highly dependent on the first task. W. Wang et al. (2010) performed extensive empirical

studies on the two tasks’ relationship. They find that jointly modelling both yields better

performance than executing each of the respective tasks in sequence.

Jointly learning two related task is, in the machine learning literature, referred to as multi-

task learning. The underlying hypothesis to this approach is that there are explanatory

factors in the data that are useful for both tasks. Therefore there exists some intermediate

representation of the data for both tasks that can be sensibly shared between them. Each

shared parameter in such a jointly learned model is used for solving both tasks at the same

time. By training these parameters jointly, each shared parameter thus sees proportionally

more training examples than in the single-task case, granting more statistical strength and

leading to better generalization of the model (Bengio et al., 2016). Jointly modelling NLP

tasks has proven to be successful for punctuation prediction and disfluency detection for

example by W. Wang et al. (2010) and Cho et al. (2015). Therefore, in this thesis, the

benefits from jointly modelling both tasks is investigated in the context of neural networks

(see Chapter 7).

2.3. Problem Formulation

Although both tasks considered in this thesis are examples for sequence labelling tasks,

when talking about the correct identification of disfluencies and the correct placement of

punctuations, in the literature the terms detection and prediction are commonly used.

The di↵erence in naming results from the fact that disfluencies are already present in

the text and need to be detected, while punctuations are not present and need to be

predicted (X. Wang, 2015). In order to formally introduce the task of sequence tagging,

the situation in which the individual observations are assumed to be independent from

each other is formulated first. Subsequently, the formulation is generalized to encompass

the modelling of dependencies within the observations of a sequence.

Pattern classification

In a standard non-sequence supervised learning setting, there exists a input space X = RM

of M-dimensional input vectors and a target space Y, which, in the case of the classifi-

cation tasks considered in this thesis, is equivalent to the finite set of possible classes

C = {C
1

, . . . CK}. Learning in this context means asking a computer to learn from given

data the parameter set ✓ of a model f✓ : X ! Y, which specifies the label Ck 2 C (or

multiple labels) that belongs to a given input x 2 X . The learning procedure stops when

the parameters ✓ are optimal with respect to a task-specific error-function or performance

measure. The data consists of input-target pairs (x, y), where each pair is assumed to be

drawn independently from the same distribution DX⇥Y over the input and target space.

The data is usually partitioned into three disjoint sets, the training set S, the validation

set and the test set. Only the data in the training set is used to fit the model parameters.

In order to compare the performance of di↵erent hyperparameter choices, a model’s perfor-

mance is evaluated on the validation set. It is important to evaluate a model on data that

8

2.3. Problem Formulation 9

has not been used in training the model in order to correctly evaluate the generalization

capabilities of the model. Only in maintaining this separation can overfitting (see Section

5.3) be correctly recognized and the comparison between di↵erent models’ performances

is based on the true generalization capabilities of each model. Howecer, since during the

process of selecting the best combination of hyperparameters for a model, the performance

on the validation set is used to select the best model, a systematic bias towards models

that perform well on the validation set is introduced. The best model on the validation set

might thus not be the model that has the highest generalization performance and instead

be the model that performs best on the validation set. Therefore, the performance of the

final model that is reported for the designated task is evaluated on the separate test set,

which has not been used in the process until this point.

Although ultimately, for a given input x, the corresponding target label Ck is of interest,

most supervised learning algorithms, such as the approach presented in this thesis, model

a conditional probability for each possible label p(Ck|x), Ck 2 C. This has the advantage

that, in a setting where to each input x exactly one output label can be associated, a

hypothesis h(x) can be computed easily:

h(x) = argmax
Ck

p(Ck|x). (2.1)

In cases where multiple labels can be associated to an input x, a label is associated with

an input if its probability is higher than a custom threshold t(x). This leads to:

h(x) = {Ck | p(Ck|x) > t(x), Ck 2 C}. (2.2)

The binary classification problem is a special case of (2.1), in which C = {C
1

, C
2

} and

p(C
1

|x) = 1� p(C
2

|x).

The most common principle by which a model is fitted to the data is by the maximum like-

lihood (ML) principle (Bengio et al., 2016). In this setting, the estimator ✓ML for the op-

timal parameters ✓⇤ maximises the likelihood of ✓ given the training data L(✓|S) = p(S|✓):

✓ML = argmax
✓

p(S|✓) = argmax
✓

Y

(x,y)2S

p(y|x, ✓). (2.3)

In order to find ✓ML, the maximization of the likelihood is formulated as the minimization

of a cost function O. The standard approach is to transform the likelihood into the negative

log-likelihood and minimize the resulting term:

O(✓;S) = � ln
Y

(x,y)2S

p(y|x, ✓) = �
X

(x,y)2S

ln p(y|x, ✓). (2.4)

9

10 2. Disfluency Detection and Punctuation Prediction

Sequence labelling

The previous discussion introduced the concept of pattern classification. Since the tasks of

disfluency detection and punctuation prediction are examples of sequence labelling tasks,

the previously introduced formulation is now extended to model the tasks at hand. This

thesis follows the notation style in Graves et al. (2012) in order to formulate the following.

Whereas in the pattern classification case, the input space X was equivalent to RM and Y
was equivalent to C, when considering labelling sequences, the input space is equivalent

to the set of all sequences of real valued M-dimensional vectors (RM)⇤, which is being

mapped to a sequence of labels C⇤. In order to denote the di↵erences between a M-

dimensional real-valued vector input x with a corresponding label y and a sequence of

M-dimensional real-valued vectors x and the corresponding sequence of labels y, the latter

are notated in bold letters. Although both sequences x and y in an element (x,y) 2 S

may be of arbitrary length, the length of the input sequence and the length of the sequence

of labels are assumed to be equivalent in modelling disfluency detection and punctuation

prediction. Models that perform the task of sequence labelling consequently model p(y|x)
and compute a hypothesis h(x).

In modelling the word sequence explicitly as a sequence, it is possible to capture and model

the dependencies between words in a sentence. As has been explained in Section 2.1, this

capability is beneficial in modelling the relationships of disfluencies with their surrounding

context.

10

3. Related Work

3.1. Disfluency Detection

The body of research on disfluency detection is hard to analyse with respect to performance

on the task. This is because di↵erent research groups use di↵erent corpora with respective

di↵erent annotation schemes and evaluation metrics. Additionally, disfluency detection

can be viewed as an extension to the speech recognition problem or as a processing step

following automatic speech recognition. Consequently, some research e↵orts rely only on

acoustic/prosodic features, while others use lexical information alone or a combination of

both. In this analysis of related work, the focus therefore lies on modelling techniques.

In early work on disfluency detection, Heeman & Allen (1999) introduce a statistical

language model for speech recognition, which models speech disfluency detection along

with further tasks such as part of speech (POS) tagging and the identification of discourse

markers, speech repairs and intonational phrases. In addressing these tasks jointly, they

receive better results compared to modelling each task separately.

Charniak & Johnson (2001) employ a boosting model of linear classifiers to identify edit

regions in the switchboard corpus. Johnson & Charniak (2004) improve upon their results

by introducing a noisy channel model based on a Tree-Adjoining-Grammar. A syntac-

tic parser-based language model as introduced by Charniak & Johnson (2001) is used to

rescore the output of the noisy channel model. In a noisy channel approach, it is assumed

that the fluent data F has passed through a noise-inducing channel which produces the dis-

fluent dataD. In order to retrieve the mostly likely input string F̂ = argmaxF P (F |D), the

right-hand side is reformulated according to Bayes’ Theorem: F̂ = argmaxF P (D|F)P (F).

Here, P (F) represents a language model over the fluent data and P (D|F) represents the

noisy-channel model that needs to be learned from the data. A further noisy channel

approach is described in Maskey et al. (2006), in which the authors formulate the task as

a phrase-level statistical machine translation problem.

Honal & Schultz (2003) present a noisy channel approach, which is combined with N-gram

language model scores to retrieve the best hypothesis. In Rao et al. (2007a), this model has

been analysed with respect to its performance in improving spoken language translation.

They achieve up to 8% improvement on BLEU scores by removing disfluencies prior to

translation. Similar to Rao et al. (2007a), W. Wang et al. (2010) investigate the e↵ect

of cleansing the input to a machine translation system prior to translation. They employ

a combination of statistical models using Hidden Markov Models, Conditional Random

Fields (CRF) and heuristic rule-based systems.

Fitzgerald, Hall, & Jelinek (2009) employ a CRF approach, using several features as input

for their model. Beside language model features and lexical features, they use the output

of the system proposed by Johnson & Charniak (2004). Zwarts & Johnson (2011) evaluate

the model presented by Johnson & Charniak (2004) with respect to the e↵ect of the

language model choice on the disfluency prediction task. They experiment with di↵erent

11

12 3. Related Work

language models built from external sources and show that adding large external sources

improves the reported F-measure (see Section 4.3) on held-out data. Whether or not the

external sources are transcripts of spoken language or written texts does not influence

overall performance significantly. Furthermore, the authors experimented with reranking

using a minimal expected F-measure loss function, achieving improved results compared

to using the negative log conditional likelihood of the training data (see Section 2.3).

Qian & Liu (2013) employ Max-margin Markov Networks with the goal to better balance

precision and recall in their system. Their model consists of three consecutive steps, which

is an implementation of a stacked-learning approach. In passing over the cleaned-up data

again, they can improve their results.

Zwarts et al. (2010) extend the noisy channel model approach presented by Johnson &

Charniak (2004) with the notion of incremental disfluency detection. Instead of processing

an utterance as a whole in order to provide labels for each element in the utterance, an

incremental model marks disfluencies as soon as possible.

In Hough & Purver (2014), the authors distinguish between strong incremental detection

and left-to-right operating systems. While the latter also process an utterance left-to-right,

only the former are designed and evaluated for their incremental performance. Honnibal &

Johnson (2014), for example, introduce structured averaged perceptrons for training cou-

pled with a beam search decoder. According to Hough & Purver (2014), the hypotheses

in Honnibal & Johnson (2014) tend to jitter, thus resulting in worse incremental detec-

tion performance. In Hough & Schlangen (2015), the authors employ Recurrent Neural

Networks in order to model the disfluency detection task. Along with a Markov Model

decoder, they report results comparable to previous results by Hough & Purver (2014).

In addition to lexical features, prosodic cues extracted from the speech signal have proven

useful in detecting speech disfluencies. Savova & Bachenko (2003), for example, performed

an extensive study of prosodic cues for four types of disfluencies. E. Shriberg et al. (1997)

use decision trees to model prosodic cues assuming known word boundaries. Stolcke et al.

(1998) model speech disfluencies and sentence boundaries as hidden events at inter-word

boundaries. They combine decision trees as in by E. Shriberg et al. (1997) for the modelling

of prosodic cues with a N-gram language model to predict at most one of the hidden events

at the word boundaries. Liu et al. (2006) compare Hidden Markov Models, Maximum

Entropy Models and Conditional Random Field approaches for modelling disfluencies as

well as sentence boundaries, using lexical as well as prosodic features.

3.2. Sentence Segmentation and Punctuation Prediction

Reconstructing punctuation and sentence boundaries into spoken language has been inves-

tigated using a variety of di↵erent approaches. As in the case of disfluency detection, the

di↵erent approaches can not sensibly compared in terms of performance because di↵erent

corpora, di↵erent features (prosodic and/or lexical) and di↵erent evaluation criteria were

employed over the years. This review therefore concentrates on the techniques applied to

the task.

12

3.2. Sentence Segmentation and Punctuation Prediction 13

Hidden Markov Models (HMM) have been used in a variety of combinations in order to

predict di↵erent structural events such as sentence boundaries and punctuation marks. In

an HMM, words represent the observations and the hidden states model pairs of words

and interword events. The transition probabilities between hidden states are estimated

using a hidden event N-gram language model, which models the joint distribution of the

sequence of words and events. Stolcke et al. (1998) introduced this technique, modelling,

amongst others, disfluencies, punctuation marks and sentence boundaries and combining

lexical with prosodic features. The disadvantage in using HMM lies in that instead of

maximising the posterior probability p(e|W,F) of an event e given the observed words W

and features F , they maximise the joint probability p(W,E) of both, words and hidden

events. As such, these generative model are not ideal for classification tasks.

Christensen et al. (2001) investigate finite state machines and a neural network based

approach for punctuation prediction. In their work, they focus on predicting full stop,

comma and question marks. They compare the e↵ectiveness of lexical features and prosodic

features in both models, showing that from the range of possible prosodic features, pause

duration is the most indicative for punctuations.

Huang & Zweig (2002) introduce a maximum entropy model which directly models the

posterior probability and predicts comma, period and question mark on the switchboard

corpus. Since in a maximum entropy model the choice of features is essential, the authors

report results on a variety of prosodic and lexical features. They find that their lexical

feature based model outperforms the prosodic feature based model and report that distin-

guishing between punctuation and question mark is prone to errors. Maximum entropy

models have the disadvantage that they cannot capture long-term dependencies that may

be required, especially when predicting question marks. Lu & Ng (2010a) perform an

extensive comparison between HMM and maximum entropy models. They find that the

HMM model is stronger in incorporating prosodic features than the maximum entropy

model and vice versa for lexical features.

In treating punctuation prediction and sentence boundary detection as sequence tagging

task, they have been approached using CRF. Liu et al. (2005) employ this technique for

sentence boundary prediction, showing that it can outperform both, HMM and maximum

entropy approaches on this task using both, acoustic and lexical features. It combines the

strength of both, by incorporating sequential information like HMM (constrained by the

N-gram language model) and being trainable in a discriminative fashion like the maximum

entropy approach. Lu & Ng (2010b) use dynamic random fields for punctuation prediction

using only lexical features, outperforming the HMM based approach.

Liu et al. (2006) compare HMM, maximum entropy and CRF approaches for sentence

boundary detection with respect to their di↵erences in performance with di↵erent fea-

tures. They showed that adding additional lexical features to words improves performance

compared to only using words.

The authors in Xu et al. (2014) combine a deep neural network with a CRF approach.

Prosodic features are embedded using a deep neural network, which is then integrated with

13

14 3. Related Work

lexical features and used as input for the CRF in order to model the posterior distribu-

tion for sentence boundaries. Their approach outperforms previous approaches modelling

prosodic features with decision trees by a wide margin.

A further neural network based method has recently been presented by Tilk & Alumäe

(2015). They use an LSTM recurrent neural network (see Section 6.3) in a two-stage

approach. First, they train a LSTM language model on a large corpus of text in the

Estonian language. The features represented by this model are then used, along with

pause durations, as features in a second LSTM network, which is then fine-tuned to predict

full-stops and commas.

14

4. Data and System

In this thesis, experiments were conducted on two data sets: The switchboard disfluency

annotated corpus presented by Godfrey et al. (1992) and a multi-party meeting data set

first discussed by Cho, Niehues, & Waibel (2014). This chapter reviews the characteristics

of both data sets, discusses preprocessing of the data and the labels used in detecting

disfluencies and predicting punctuations.

4.1. Meeting Data Set

In a globally connected society, meetings between people from di↵erent countries speaking

di↵erent languages is certainly no rarity. Whether these people sit around the same table

during the meeting or talk via video conferences, their spoken sentences are of interest

for several NLP applications. Possible scenarios in a multi-party meeting are the genera-

tion of a well-written transcript, the extraction of relevant information or the automated

translation between participants not familiar with the same language.

Severe challenges for ASR systems arise in the setting of multi-party meetings. Usually,

participants use suboptimal configurations of microphones and there is, depending on the

formality of the meeting, a large chance that speakers overlap. The reason for the latter is

that humans, when absorbed in a discussion, have a deep understanding of the context of

the meeting and can therefore successfully predict and finish another speaker’s sentence.

In cases where speakers do not have individual microphones, it is very challenging to decide

who spoke when, especially when spoken sentences overlap (Ostendorf et al., 2008). The

word error rate in such situations is therefore higher, making the application of downstream

NLP tasks even more challenging.

Assuming an ASR system is capable of capturing the words spoken during a meeting with

a su�ciently low error rate, NLP systems are faced with transcripts that are rich in disflu-

encies. Cho, Niehues, & Waibel (2014) compare the amount of disfluencies in this data set

with a corpus consisting of transcribed university lectures and find that sentences spoken

in the meeting data set contain roughly twice the amount of disfluencies. It is therefore

of paramount importance to reconstruct meeting transcripts prior to the designated NLP

application and to properly identify disfluencies as well as insert punctuation and sentence

boundary information.

The data set at hand was designed with the purpose to advance the state of the art

in multi-party meeting translation. It consists of recordings of eight meeting sessions

held in English. Each meeting involves five to twelve di↵erent participants witch are

both, native and non-native English speakers. The meeting sessions were transcribed and

manually annotated. For future research purposes, the annotators created a grammatically

corrected version in addition to labelling disfluencies. They were allowed to reorder, remove

and even add words into this corrected version if they felt it to be necessary. By doing

so, the annotators created, for each spoken sentence, a clean and fluent reference version

without modifying the meaning of the original sentence. See Table 4.1 for an example

15

16 4. Data and System

original: I have a comment with error analysis as well as uhm
reference: I have a comment concerning error analysis, too.

Table 4.1.: Example for an original, disfluent sentence and its cleaned reference version.

of an original sentence and its reference version. Although it is not considered in this

thesis, these reference versions of the sentences can be regarded as the gold standard for a

disfluency cleaned and punctuation enriched spoken language transcript.

4.1.1. Disfluency Annotation Scheme

The annotation scheme for this data set was designed in the style of the work by Johnson

& Charniak (2004) and has been used before by Fitzgerald, Hall, & Jelinek (2009) and

Cho et al. (2013). Using this scheme, disfluencies are categorized into filler, (rough)

copy and non-copy. The latter two categories are more fine-grained classifications of what

in the notation of E. E. Shriberg (1994) is called the reparandum. The labels equivalent to

the interregnum and repair are missing in this scheme. After reviewing the special char-

acteristics of the meeting data set, the authors in (Cho, Niehues, & Waibel, 2014) decided

to extend this scheme by introducing a fourth category, interruption, which reflects the

fact that in a multi-party meeting setting, speakers interrupt each other frequently.

A word sequence is labelled as a (rough) copy if it is followed by an exact or very close

copy. In the example “+/it ’s/+ it ’s also using” the word sequence “it ’s” has been

surrounded with the symbolds +//+, marking the words as a (rough) copy. Non copy

sequences are used to mark word sequences that were aborted by the speaker. The ensuing

word sequence may either be a moderately altered version of the non copy sequence and

carry the same intended meaning or it may introduce a new idea. In the sequence “-/it

really/- most of them”, the words “it really” are marked as a non copy using the symbols

-//-. Words that are labelled as interruption are surrounded with the symbols #//#,

such as in the following example:

Speaker A: I ’ll have to do that this afternoon #/and beginning of next/#
Speaker B: Okay, does that mean you can start writing rules?

Table 4.2.: Example for a conversation containing an interruption.

The annotators decided that the second part of the first speaker’s sentence has been

interrupted by the second speaker and therefore marked it as an interruption. Fillers

are marked by enclosing them within the symbols <> such as in the phrase “<uh> let ’s

see”.

4.1.2. Statistics

Following the argumentation in Section 2.3, the meeting corpus was split into a training

set, validation set and test set. The eight available meeting sessions were split up in three

parts as depicted in Table 4.3. Joined together, the meeting transcripts in the training

16

4.2. Switchboard Data Set 17

set amount to roughly 4k sentences consisting of roughly 39k words. The validation set

consists of circa 600 sentences and roughly 8.5k words. With ca 1.7k sentences and 15k

words in the test set, the available data was split into training, validation and test set at a

ratio of 62:14:24. This split follows the procedure by Cho et al. (2015). It is worthy to note

that the average sentence length is below ten words per sentence, which is short compared

to written text. In counting disfluencies, only words were taken into considerations and

punctuations were omitted. For example, the annotated sentence “<well ,> I don’t recall

if”, was counted as containing only one filler word. As it can be seen in Table 4.3, roughly

20% of the words in the transcripts are marked as disfluent. This is a remarkably high

percentage compared to the previously mentioned lecture corpus (Cho, Fünfer, et al., 2014)

(11%) and comparable to the Switchboard Corpus, in which 21% of the words are disfluent.

Training Validation Test
Sessions m002, m003,

m005, m006b,
m008

m007, m001a,
m006a

m004

Sentences 3,987 610 1,772

D
is
fl
u
en
ci
es

filler 2,658 6.8% 566 6.8% 999 6.7%
interruption 2,427 3.5% 481 5.7% 1,165 7.8%
non copy 846 2.0% 153 1.8% 268 1.8%
(rough) copy 1,443 5.7% 258 3.0% 885 5.9%
fluent 31,469 81.0% 7,009 82.8% 11,610 77.8%
Total 38,843 100.0% 8,469 100.0% 14,927 100,0%

P
u
n
ct
u
at
io
n full stop 3,354 8.6% 491 5.8% 1576 10.6%

comma 2,357 6.1% 406 4.8% 1,061 7.1%
question mark 632 1.6% 118 1.4% 195 1.3%
no punctuation 32,500 83.7% 7,454 88.0% 12,095 81.0%
Total 38,843 100.0% 8,469 100.0% 14,927 100,0%

Table 4.3.: Meeting data set statistics.

4.2. Switchboard Data Set

The switchboard data set (Godfrey et al., 1992) consists of several hundred telephone

conversations between two people, each about a predetermined topic. In this thesis, the

disfluency tagged transcripts as provided by the Linguistic Data Consortium were used.

More specifically, all the *.dff files from the Penn Treebank III release (Marcus et al.,

1999) in the directory /dysfl/dff/swbd/ were used for training, validation and testing.

As a preprocessing step, all non-disfluency annotated words (such as for noise or unin-

telligible words) were ignored. In case a whole utterance of a speaker consisted only of

these non-disfluency annotated words, the previous and ensuing utterance by the other

speaker were joined into one utterance. Additionally, all partial words (words marked by

a hyphen) were removed as in other research on this data set (Honnibal & Johnson, 2014;

Zwarts & Johnson, 2011; Johnson & Charniak, 2004) because it more realistically reflects

a NLP setting (Zwarts & Johnson, 2011). Partial words are considered to be disfluencies

17

18 4. Data and System

at sub-word level and their identification and elimination is the task of the ASR system

(X. Wang, 2015).

4.2.1. Disfluency Annotation Scheme

The switchboard disfluency annotation scheme (Meteer et al., 1995) follows E. E. Shriberg

(1994) in the annotation of edits and di↵erentiates between a variety of classes for fillers.

Fillers are annotated with { } as shown in the exemplary sentence “{D Well, } I have

plenty”. The type of filler (in this case a discourse marker) is encoded with a single

capital letter after the opening bracket. There are five classes for fillers in the switchboard

corpus. filled pause such as “uh” or “uhm” are encoded by the letter “F”. discourse

marker (“you know”, “well”), as shown before, are encoded by the letter “D”. The capital

letter “E” denotes explicit editing terms (“I mean”, “sorry”) and the letter “C” encodes

coordinating conjunction, such as “and then” or “but”. Finally, the letter “A” encodes

the category aside, which are word sequences that interrupt the flow of the sentence.

Since the last category is very rare, it has been ignored in this thesis.

The sentence“[when I, + {F uh, } before I] got married”contains a complete reparandum,

interregnum, repair structure inside the squared brackets. Every word in-between the

opening bracket and the plus sign is considered as part of the reparandum and therefore

tagged as RM in the following. The interregnum, following the plus sign, is always encoded

as one of the filler categories mentioned above. However, the interregnum is not mandatory,

therefore the plus sign can be followed directly by the repair. As a matter of fact, the repair

also is not necessary, in case the speaker does not repeat herself or provides a substitution

but instead deletes the spoken words. Every word, either following the interregnum, or

directly following the plus sign, until the closing square bracket is considered the repair.

Since identifying the interregnum is not of interest, there exists no label for it, except

for its label attributed to its role as a filler. Equally, the words inside the repair are not

modelled in this thesis and do not have a designated label.

The switchboard corpus contains several examples of nested edit structures as shown in in

the following example:

label:
orig.: [[

RM
I +

RM
I] +

0
I

0
don

0
’t

0
want

0
it]

This example shows the chaining of two edit structures. Since the primary interest lies

in identifying reparanda in order to produce a clean, fluent version of the transcript, in

situations such as these, all elements before the last interruption point are treated as

reparandum, ignoring its inner structure.

label:
orig.: [

RM
I

RM
liked, + {F

F
uh, } [

RM
I , +

0
I]

0
liked]

0
it
0
a

0
lot

In the second example, there is an edit structure in the repair of an edit structure. Similar

to the previous example, this situation is disentangled by ignoring its complications. The

fact that the words to the right of the first plus sign (until the second closing square

18

4.2. Switchboard Data Set 19

bracket) is part of a repair structure, is ignored and the repeated “I” is treated like a

normal repair structure.

As opposed to the meeting corpus, there may be more then one label associated to a word.

In the following example, the word “uh” is part of a reparandum, while, at the same time,

it needs to be labelled as a filled pause.

label:
orig.:

0
it [

RM
is [

RM
not, + {F

F/RM
uh , }

RM
not ,] +

0
is

0
not]

0
necessary

Although ultimately one might not care which category of disfluency will be detected,

removing one label would hinder the model in learning to predict correctly. If, for example,

the word “uh” in the upper example were to be only classified as part of a reparandum,

the model would be punished for (correctly) predicting a filled pause. By enforcing the

model to decide for one of the two plausible labels, the model would have to learn this more

complicated situation in which filled pauses must not be identified as such inside reparanda.

This corresponds to a more complicated partitioning of the input space which is making

the task harder, considering the small amount of these situations that is available for

training. Consequently, learning disfluency detection on the switchboard data set requires

modelling the task as a multi-label learning problem.

In the meeting data set, a speaker’s turn is either considered complete or marked as an

interruption if the speaker’s last sentence was not finished. In the switchboard data set,

however, the annotation is such that a speaker may finish a turn after the other speaker’s

interruption. In the following example, the interruption by speaker B is marked with the

symbols “--”.

A: we did get the wedge cut out by building some kind of --
B: A cradle for it.
A: -- a cradle for it.
(Slash-unit annotation (Section 4.2.2) has been removed)

In order to predict these disfluencies, they are included as a label to the last word before

the interruptions. For the previous example, the first sentence is encoded as follows:

0
we

0
did

0
get

0
the

0
wedge

0
cut

0
out

0
by

0
building

0
some

0
kind

--
of

Depending on whether an ASR system provides turn information or not, disentangling

pieces of conversation that are interrupted in order to correctly infer which words are

disfluent, can be a challenging task.

4.2.2. Slash-unit Annotation

Additionally to punctuation marks, the switchboard corpus is annotated with slash-units.

Slash-units correspond to the previously discussed sentence-like units and are marked with

the sign“/”at their boundaries. Participants in telephone conversations do not consistently

speak in grammatically correct, full sentences, but nevertheless convey meaning in what

19

20 4. Data and System

they say. The annotators were therefore encouraged to mark word sequences as slash-units

if they felt that it was complete. This includes correct sentences, but may also be smaller

units, such as continuers and short sentences as in the following dialogue:

A: Yeah, / Right. /
B: A cradle for it. /
A: Uh-huh. / I guess he ’s young. /

As is evident by the above example, the beginning of a speaker’s turn marks the beginning

of a slash-unit. It is, however, also possible for a speaker’s slash-unit to continue after the

other speaker’s turn, if the slash-unit was left uncompleted. In the following example, the

speaker was interrupted and finishes her turn after the interruption:

A: we did get the wedge cut out by building some kind of --
B: A cradle for it. /
A: -- a cradle for it. /

For cases, in which a slash-unit is left incomplete by a speaker, the annotators marked the

word sequence as an incomplete slash-unit with the symbols “-/”. In these situations, the

speaker either starts a new sentence or does not finish a sentence after being interrupted,

as in the following example.

A: They ’re always necessary. / If you put enough patience into, -/
B: Yeah, / Just be consistent and diligent --
A: Uh-huh. /
B: -- with it / {C and,} {F um, } -/

Speaker A did not carry on her second sentence after speaker B’s first turn. Therefore,

the word sequence between the last slash-unit label (it may be a complete slash-unit or an

incomplete slash-unit) and the ending of this slash unit is considered incomplete.

For predicting (incomplete) slash-units, the last word of a slash unit carries the corre-

sponding label. The first sentence of the last example is therefore encoded as follows:

0
They

0
’re

0
always

/
necessary.

0
If

0
you

0
put

0
enough

0
patience

-/
into,

4.2.3. Statistics

The switchboard data set was divided into a training, validation and test set in the same

partitioning as by Johnson & Charniak (2004) and Qian & Liu (2013): The training set

consists of the conversations named sw[23]*.dff, the validation set is built out of all files

named sw4[5-9]*.dff and the test set contains all files named sw4[0-1]*.dff. With

a total of 1.5 million words, the switchboard corpus is about 24 times as large as the

meeting data set (see Table 4.4). As in the meeting data set, only words were taken into

consideration for counting the number of difluencies. Because the number of aside tokens

is very small, they have been omitted, just as exclamation marks have been removed. The

20

4.3. Performance Evaluation 21

total amount of labels, also counting fluent words, exceeds 100% on each data set because

words may be labelled with more than one category. The same holds true for punctuations.

In most cases where there is a full stop, a slash-unit boundary is encountered. Also counting

those words that are not followed by a punctuation mark or slash-unit boundary, the total

amount of punctuation labels (also counting slash-units) can exceed 100%.

From the perspective of some applications, such as machine translation, the total amount

of words that need to be removed in order to receive a cleaned version of the transcripts is

of interest. For counting the total amount of disfluent words, all words inside an incomplete

slash-unit were counted as being disfluent. Every words following a slash-unit boundary

up to the incomplete slash-unit label -/ are thus treated as words to be removed. In

case a speaker’s incomplete slash-unit is interrupted by the other speaker, only the words

following the interruption are counted as being part of the incomplete slash-unit. Although

interruptions are listed and treated as disfluencies in Table 4.4, it is assumed that they will

not be removed. Incomplete slash-units, however, although they are listed as punctuations

due to purpose in sentence segmentation, need to be removed for a fluent speech transcripts.

Training Validation Test
Transcripts sw[23]*.dff sw4[5-9]*.dff sw4[0-1]*.dff

Words 1,314,636 112,618 65,484
Disfluent words total 274,056 20.58% 25,191 22.37 % 14,449 22.06%

D
is
fl
u
en
ci
es

F: filled pause 39,680 3.0% 4,050 3.6% 2347 3.6%
E: explicit editing 6452 0.5% 637 0.6% 370 0.6%
D: discourse marker 42,550 3.2% 3,980 3.5% 2,472 3.8%
C: coordinating conjunction 50,131 3.8% 4,240 3.8% 2,158 3.3%
RM: reparandum 67,879 5.2% 6,642 5.9% 3,789 5.8%
--: interruption 10,020 0.8% 1,196 1.1% 860 1.3%
0: no disfluency 1,101,762 83.8% 92,505 82.1% 53,730 82.1%
Disfluency tokens total 1,318,474 100.3% 113,250 100.6% 65,726 100,4%

P
u
n
ct
u
at
io
n

full stop 100,965 7.7% 8,956 8.0% 4,649 7,1%
comma 204,591 15.6% 16,069 14.3% 10,028 15.3%
question mark 6,977 0.5% 483 0.4% 415 0.6%
/: slash-unit 156,268 11.9% 11.849 10.5% 7,062 10.8%
-/: incomplete slash-unit 19,243 1.5% 1,581 1.4% 961 1.5%
no punctuation 978,362 74.4% 84,313 74.9% 49,312 75.3%
Punctuation tokens total 1,466,406 111.5% 123,251 109.4% 72,427 110,6%

Table 4.4.: Switchboard data set statistics.

4.3. Performance Evaluation

When reporting the performance on a classification task, the minimum costs that is achiev-

able in minimizing the costfunction of the classifier (see Section 2.3) may not necessarily

reflect the classifier’s performance with respect to its desired behaviour. Therefore, the

performance measure is usually specific to the task that is learned by the classifier. Al-

though improving on the classifier’s cost function should correspond to an improvement

in its performance measure, both do not necessarily need to be the same. A common

21

22 4. Data and System

measure for a classifier’s performance is accuracy. Accuracy simply measures the percent-

age of examples that the system classified correctly, which is the same as measuring one

minus the error rate. Accuracy is, however, not an appropriate performance measure for

tasks in which the class label distribution over examples is highly skewed, such as in many

NLP tasks and in disfluency detection and punctuation prediction in particular. A high

overall accuracy might reflect the case in which the classifier achieves excellent results

on the majority class while completely ignoring the performance on the minority classes.

Ideally, a good classifier performs well on the minority classes while not deteriorating in

performance on the majority class. For these reasons, for classification tasks involving im-

balanced data sets, other performance measures, such as receiver operating characteristics

and the F-measure based on precision and recall, are better suited (He et al., 2009). In

the literature on NLP tasks, performance is usually reported in terms of precision, recall

and the F-measure, which are therefore going to be the performance measures of choice

for reporting the performance on disfluency detection and punctuation prediction in this

thesis.

Binary classification

In a binary classification setting, the F-measure, which is also called the F� -score, is

defined as the weighted harmonic mean of precision (PR) and recall (RC):

FM� =
(1 + �2) · PR ·RC

�2 · PR ·RC
, (4.1)

with precision and recall defined in terms of true positives (TR), false positives (FP) and

false negatives (FN):

PR =
TP

TP + FP
, (4.2)

RC =
TP

TP + FN
. (4.3)

In an intuitive explanation, precision determines the exactness of the classifier, while pre-

cision measures how thorough the classifier is in identifying all positive examples. The

F-measure balances precision and recall according to the parameter �, since there is usu-

ally a trade-o↵ in optimizing for both. Whenever the term F-measure is used, it implies

that FM� with � = 1 is referred to.

Determining true positives, false positives and false negatives requires transforming the

output of a probabilistic classifier, such as a neural network, into a definite hypothesis

h(x) about the class label that belongs to a given example. In the case of a binary

classification task (y 2 {C
1

, C
2

}) this is done by imposing a threshold on the probability

p(C
1

|x) of example x belonging to class C
1

(which is equivalent to 1� p(C
2

|x))(see (2.2)).

22

4.3. Performance Evaluation 23

With this, TP, FP and FN can be determined for, for example, the training set S:

TP =
X

(x,y)2S

h(x) · y, (4.4)

FP =
X

(x,y)2S

h(x) · (1� y), (4.5)

FN =
X

(x,y)2S

(1� h(x)) · y. (4.6)

By increasing the threshold that determines h(x), it is possible to directly influence the

trade-o↵ between precision and recall in a probabilistic classifier to a preferred ratio.

Multiclass classification

For disfluency detection and punctuation prediction it is not only of interest if a certain

word is disfluent or not, or if is followed by a punctuation mark or not. Instead, the

classifier’s performance on individual disfluency classes and individual punctuation marks

is relevant. Detecting disfluencies and punctuation marks in the meeting data set therefore

belong to the set multiclass classification tasks. In this setting, an example x is labelled

with exactly one of K > 2 labels (y 2 C = {C
1

, . . . , CK}). In case of the meeting data

set, a word carries one of the labels {filler, interruption, non copy, (rough) copy,

no disfluency} by encoding a fluent word as carrying the label no disfluency. In this

multiclass classification setting, there are two possible ways of averaging across labels for

a definition of the F-measure (Sokolova & Lapalme, 2009). Both are based on a per-label

definition of TP, FN and FP:

TPk =
X

(x,y)2S

h(x)k · yk, (4.7)

FPk =
X

(x,y)2S

h(x)k · (1� yk), (4.8)

FNk =
X

(x,y)2S

(1� h(x)k)·yk. (4.9)

The micro F-measure averages over labels by first aggregating TP, FP and FN for all labels

and then computing PR, RC and FM based on these aggregates:

PRmicro =

PK
k=1

TPkPK
k=1

(TPk + FPk)
, (4.10)

RCmicro =

PK
k=1

TPkPK
k=1

(TPk + FNk)
, (4.11)

FMmicro,� =
(1 + �2) · PRmicro ·RCmicro

�2 · PRmicro ·RCmicro
. (4.12)

Alternatively, the macro averaged F-measure is defined as the average over label-specific

F-measures that are computed as in the binary case:

23

24 4. Data and System

PRk =
TPk

TPk + FPk
PRmacro =

1

K

KX

k=1

PRk, (4.13)

RCk =
TPk

TPk + FNk
RCmacro =

1

K

KX

k=1

RCk, (4.14)

FMk,� =
(1 + �2) · PRk ·RCk

�2 · PRk ·RCk
FMmacro,� =

1

K

KX

k=1

FMk,�. (4.15)

Whereas the micro F-measure favours larger classes, macro F-measure treats all classes

equally (Sokolova & Lapalme, 2009; Sorower, 2010). Since in the tasks considered in this

thesis, the performance on specific classes is of interest, the focus will lie on comparing

the individual FMk,�. Since for many downstream NLP applications that improve by

operating on a disfluency-cleaned transcript, the classes of identified disfluencies is not

directly relevant (statistical machine translation, for example, can be improved by simply

removing disfluencies), experiments will also report a version of the F-measure Fdisf that

does not distinguish between individual labels. For the disfluency detection task on the

meeting data set, for example, the set of labels is aggregated into the two labels {no
disfluency, disfluency}, with

h0(x) = disfluency, h(x) 6= no disfluency

and

h0(x) = no disfluency, h(x) = no disfluency.

Consequently, in addition to the individual labels, presented results will contain F-measure,

precision and recall for disfluency as well.

Multilabel classification

In the switchboard data set, each word can carry none, one or more disfluency labels.

Equally, a word can be followed by no punctuation mark, a comma or, for example, a

full stop and a slash-unit boundary at the same time. For this multilabel classification

setting, Sorower (2010) proposes the macro-averaged and micro-averaged F-measure as in

the multiclass classification setting. Consequently, results on the switchboard data sets will

be reported on the individual FMk,�, as well as an aggregated F-measure for disfluency

following the same argumentation as in the multiclass classification setting. In contrast to

the multi-class classification task, it is not necessary to explicitly model no disfluency,

because in the multilabel classification setting, an input does not have to correspond to

exactly one label.

4.4. System Architecture

This section introduces technical details of the system that was used to preprocess the data

sets and to run, as well as evaluate the experiments described in the following chapters. All

24

4.4. System Architecture 25

code written during this thesis is, at the moment of its publication, available on github un-

der the directory https://github.com/matthiasreisser/Disfluency_detection. All

paths to files or directories in the following sections are relative to this github directory.

No data files have been synchronized with github because of their size and the fact that

the meeting dataset is not publicly accessible.

4.4.1. Preprocessing and Feature Generation

Meeting data set

Reproduction of results for the meeting data set are possible by repeating the following

steps. In /data/meeting, execute the following bash scripts:

1. preprocess.sh: This script traverses the raw text files for the training, validation

and test data sets in /data/meeting/00_raw and generates corresponding cleaned

files in /data/meeting/00_clean. Cleaning the data involves the removal of notes,

repair of annotators’ mistakes that have been found during the data preparation,

the removal of superfluous annotations and splitting annotations that span multiple

words into one label per word. This process was implemented using sed commands

and scripts provided in /data/meeting/perlScripts. These scripts, as well as the

scripts referred to in the rest of this section, reuse code that has been used for

generating the results by Cho et al. (2015).

2. createFeatures.sh: This script traverses the cleaned text files to produce a va-

riety of files, one for each feature. These files can be found in /data/meeting/

02_finished. Finally, it concatenates these features into one file for each data set.

Each file contains the data matrix in which each row corresponds to a data point and

each column corresponds to a feature. These files can be found in /data/meeting/

03_original. The createFeatures.sh script calls several perl scripts that can be

found in /data/meeting/perlScripts.

3. vectorsCreate.sh: This script produces the final data in /data/meeting/

04_featureVectors that is used in training the models. The logic in this script

involves replacing words with their embeddings, POS tags with one-hot encodings

as well as centering of features. Feature vectors with alternative word embedding

dimensions can be found in /data/meeting/04_featureVectors200 and /data/

meeting/04_featureVectors50

Switchboard

The steps for recreating the feature vectors used in training on the switchboard data

set essentially follow the same logic as for the meeting data set. All files related to the

switchboard data set can be found in /data/switchboard.

1. preprocess.sh: This script traverses the raw text files, whose links lie in /data/

switchboard/00_raw and removes the headers of every text file contained in the

switchboard corpus, storing the raw speech transcripts in /data/switchboard/text.

Subsequently, it removes superfluous annotations, executes logic that ensures that

subsequent lines of text belong to alternating speakers and reformats spacing and

25

https://github.com/matthiasreisser/Disfluency_detection
preprocess.sh
createFeatures.sh
createFeatures.sh
vectorsCreate.sh
04_featureVectors
preprocess.sh

26 4. Data and System

punctuation. The cleaned text files are then stored in /data/switchboard/02

_clean/individual.

2. correctdatasetSplit.sh: This script merges the cleaned text files from the previ-

ous step into train, validation and test data sets, storing them in /data/switchboard/

02_clean.

3. createFeatures.sh: This step is analogous to the corresponding step for the meet-

ing data set, whose output is stored in /data/switchboard/03_finished and data/

switchboard/04_original.

4. vectorsCreate.sh: This step is equal to the corresponding step for the meeting

data set. Its output is stored in /data/switchboard/05_featureVectors.

The scripts for preprocessing and feature generation for the switchboard data set have been

optimized to parallelize computational expensive steps for the di↵erent data set splits. Due

to the size of the switchboard data set, reproducing the above steps can, depending on the

available infrastructure, take several hours. The cause of the high computational costs lies

in that some lexical and language model features require, for a given word, the traversal

of the following words in this current, highly ine�cient, implementation.

4.4.2. Model Training

The implementation of the experiments was done using Blocks (van Merriënboer et al.,

2015), which is strongly integrated with Fuel (van Merriënboer et al., 2015) for data han-

dling. Blocks is a library which encapsulates the Theano (Bergstra et al., 2010) compu-

tational graph and allows for easy specification of recurrent neural network architectures.

The logic for data handling (i.e. feature selection, conversion into mini-batches and imple-

menting shift (see 6.2)) lies in /data. These files are used in the respective experiments

in /main, such as, for example /main/Meeting/meetingDisf.py for training a recurrent

disfluency detection model on the meeting data set. Blocks supplies functionalities for plot-

ting training progress as well as saving and loading models. Where necessary, classes in the

Blocks and Fuel framework have been extended for the specific requirements that arose in

the progress of this thesis. These extensions can be found in /utils for Blocks extensions

and in /data/init.py as well as in the respective files in /data for Fuel extensions.

Individual experiments and their resulting models can be found in /models. In this folder,

all bash scripts, which set up the local environment and control experiments by passing

the desired arguments as arguments to the designated python scripts, can be found. Upon

installing Blocks and Fuel along with their dependencies, it is these bash scripts that need

to be adapted for the local available hardware on which the models are to be trained.

4.4.3. Model Evaluation

During training, the performance of the model is regularly evaluated on the validation set.

Every time a new best model has been found, its parameters are saved in a folder named

according to the experiment’s parameters in /models. In case there exists a previous best

26

correctdatasetSplit.sh
createFeatures.sh
data/switchboard/04_original
data/switchboard/04_original
vectorsCreate.sh

4.4. System Architecture 27

model for an experiment, it is overwritten (See Section 5.3 for an argumentation for this

procedure). The arguments specifying the concrete configuration of the experiment are

saved in a configuration file in the same folder, allowing reloading and restarting of the

exact experiment at a later stage. In order to evaluate the performance of a model on,

for example, the test set, there exist evaluation scripts in /models. Upon specification

of the data set and the specification of the folder name corresponding to the model to

be evaluated, these evaluation scripts load the trained model and return performance

measures on the data set.

27

5. Neural Networks for Sequence

Modelling

The term artificial neural networks, or neural networks for short, encompasses a set of

models and algorithms that have enjoyed increasing success and popularity over the last

decade. Neural networks have been applied to a large variety of tasks, ranging from super-

vised learning tasks in speech recognition (e.g. (Hannun et al., 2014)), natural language

processing (e.g. (Collobert et al., 2011)) to image (e.g. (Krizhevsky et al., 2012)) and video

recognition (e.g. (Le et al., 2011)). They have been successfully applied in unsupervised

learning settings (e.g. (D. P. Kingma & Welling, 2013)) because of their ability to learn

good representations of their inputs and have enjoyed success in research on reinforcement

learning (e.g. (Mnih et al., 2013)). Their recent success is largely due to the availability

of larger data sets as well as the increasing performance of computers, especially the avail-

ability of powerful GPUs, which allowed for models to become bigger and increase their

capacity (Bengio et al., 2016). In terms of neural networks, models with more layers, ergo

deeper models, became feasible and their increasing depth coined the popular phrase deep

learning. Originally, neural networks were proposed as a model to understand the human

mind (Rumelhart et al., 1986). Although it is clear that the processes in the human brain

are far more complex than what neural networks can express, it served as a source of

inspiration and shaped the term artifical neural networks.

Since, in this thesis, the focus lies on supervised classification and sequence labelling respec-

tively, this chapter introduces neural networks in this setting. First, classic feedforward

multilayer perceptrons will be examined and afterwards, their generalization to recurrent

neural networks for sequence modelling will be presented. Since the literature on this topic

is extensive, this chapter presents only the core concepts of the associated theory and the

reader is referred to, for example, Bengio et al. (2016) for a very recent and thorough dis-

cussion of neural networks and Graves et al. (2012) for a very comprehensive examination

of recurrent neural networks in supervised sequence labelling. Both sources serve as basis

for what is presented in the following sections and emphasise is given to the concepts and

ideas that will be explored in the following chapters.

5.1. Multilayer Perceptron

Standard feedforward neural networks, in the form that they are commonly used today,

are also called multilayer perceptron (MLP) (Rumelhart et al., 1985). In a MLP, several

layers composed of single units are connected to form a network of layers. Each layer in

such a neural network computes a function over a vector, which is either the input to the

network or the output of the previous layer. Finally, the model computes an output vector

that is interpreted as p(y|x). Joined together, these individual layers compute a function

that is parametrized by the connection strength between units of connected layers. These

connections are usually referred to as the parameters of the neural network, or, more

commonly, as its weights. A unit of a neural network layer, also sometimes referred to as

28

5.1. Multilayer Perceptron 29

neuron, computes a simple non-linear function on the weighted sum of its inputs. Even

though each unit computes only a simple function, joined together, the function that is

modelled by the neural network can become arbitrarily complex.

5.1.1. Forward Pass

In the following, superscript indices denote layers while subscript indices indicate units in

a specific layer.

The output of a neural network is computed by providing an input vector at the input layer

and passing the resulting activations of the first hidden layer as input to the next. The

activations of each layer are successively passed through the network until the activations

of the last layer are regarded as the output of the network. Consider a MLP with I nodes

in its input layer. In the following, let x 2 RI be an input to the network. Unit j is one

unit of the first hidden layer. With wij denoting the weight from from unit i to unit j and

bj a bias term, the activation aj is computed as:

aj = bj +
IX

i=1

wijxj . (5.1)

This activation is then passed through a non-linear activation function f to compute the

output hj of unit j:

hj = f(aj). (5.2)

More generally, for each hidden layer l 2 {1, . . . , L}, the output hl of the lth layer is

computed as

hl = f
⇣
bl +W lhl�1

⌘
, (5.3)

with h0 = x at the input layer. W l is the weight matrix connecting the layer l� 1 to layer

l and bl is the corresponding bias vector.

A variety of choices for the activation function f have been described in the literature.

The only constraint on f is that it must be di↵erentiable in order to enable the network

to be trained using gradient decent. Although linear functions are possible, the expressive

power of neural networks stems from the fact that non-linear transformations are used as

activation function. Popular choices for f are the sigmoid function �(x) and the hyperbolic

tangens:

�(x) =
1

1 + e�x
, (5.4)

tanh(x) = 2�(2x)� 1. (5.5)

Since the hyperbolic tangens is a linear transformation of the sigmoid function, both are

essentially equivalent except for di↵erences in learning dynamics due to their di↵erent

slopes. Another popular choice for activation function which has been favoured in more

recent literature is the rectifier linear unit (ReLU):

�(x) = max(0, x). (5.6)

29

30 5. Neural Networks for Sequence Modelling

The advantage of using ReLU instead of tanh or the sigmoid function lies in that ReLU

units do not saturate for large positive inputs. As a consequence, the gradient of rectified

linear units does not diminish and learning is simplified in these networks.

5.1.2. Output Layer and Cost Function

Let

aO = bO +WOhK (5.7)

be the input to the output layer of an MLP prior through transformation by the output

layer’s activation function. Depending on the task that is modelled and the associated

costfunction, the activation function for the output layer must be chosen specifically.

In the simple binary classification setting (y 2 {C
1

, C
2

}), the output layer contains only
one unit, which models p(C

1

|x) and should therefore be active if the input x carries the

target label C
1

. The sigmoid function is the logical choice for the activation function,

because it squashes aO into the interval (0, 1) and can therefore be directly interpreted as

conditional probability of the class label:

p(C
1

|x) = f✓(x) = �
�
aO
�

and

p(C
2

|x) = 1� �
�
aO
�
. (5.8)

f✓(x) is defined as the function that the neural network computes, parametrized by ✓,

which is the collection of all weight matrices and bias vectors in the network. By encoding

the target vector y such that y = 1 if C
1

is the correct class label for an example x and

y = 0 otherwise, then y is Bernoulli distributed with p = f✓(x):

p(y|x) = py(1� p)1�y. (5.9)

The above generalizes to the Multinoulli distribution (a special case of a Multinomial

distribution with n = 1) in case an example x may belong to one of K > 2 classes

(y 2 {C
1

, . . . , CK}). In order to correctly obtain the conditional probabilities for each

class label in this multiclass classification task, the softmax activation function is used

as the activation function at the output layer. The desired behaviour of the output layer

is such that the kth unit in the K-dimensional output layer corresponds to the conditional

probability of the example x belonging to the kth class. This functionality is exactly what

the softmax function provides:

p(Ck|x) = f✓(x)k = f(aO)k =
ea

O
k

PK
k0=1

ea
O
k0
, (5.10)

in which f denotes the softmax function. The output of the network thus is a K-

dimensional vector. The target vector y in such a setting is encoded as a one-hot vector: If,

for example, K = 6 and the true label for an example x is C
3

, y is encoded as (0, 0, 1, 0, 0, 0).

30

5.1. Multilayer Perceptron 31

In using this encoding scheme, y is Multinoulli distributed with pk = f✓(x)k and

p(y|x) =
KY

k=1

pyk. (5.11)

In the third setting that is relevant to the thesis, an example may belong to any number

of K classes. In this multilabel classification task, the target vector y can therefore

be considered a tuple of random variables (y
1

, . . . , yK). If, for example, K = 6 and the

true labels for an example x are C
2

and C
4

, the corresponding one-hot encoded vector is

(0, 0, 1, 0, 1, 0, 0). In the simplest form of expressing this situation, it is feasible to assume

that the probability of one class is conditionally independent from the other classes. The

joint distribution over labels can thus be expressed as

p(y|x) = p(y
1

, . . . , yk|x) =
KY

k=1

p(yk|x). (5.12)

Now it is possible to decompose this learning task into learning K di↵erent neural networks

because each task is assumed independent from each other given the input vector. However,

since it is, in many cases, justified to assume that the labels yk share common factors given

x, sharing parameters of the model is a more powerful approach.

Cross Entropy

The optimization of a MLP follows the argumentation given in Section 2.3. Following the

maximum likelihood principle for finding the parameters ✓ of the model, by substituting

(5.9) into (2.4) and simplifying the logarithm, the cost function for the binary classification

task is given by:

O(✓;S) = �
X

(x,y)2S

ln
⇥
(f✓(x))

y(1� f✓(x))
1�y
⇤

= �
X

(x,y)2S

y ln (f✓(x)) + (1� y) ln (1� f✓(x)) (5.13)

The resulting costfunction is also called the cross entropy cost function. The same argu-

ment can be applied to the multiclass classification problem. By substituting (5.11) into

(2.4), the cost function becomes:

O(✓;S) = �
X

(x,y)2S

ln

"
KY

k=1

(f✓(x)k)
yk

#

= �
X

(x,y)2S

KX

k=1

yk ln(f✓(x)k). (5.14)

yk in the above refers to the kth entry in a one-hot encoding of the target vector.

For optimizing a multi-label MLP, a task-specific cost function has been proposed in the

past by Zhang & Zhou (2006). It uses a pairwise ranking loss, which minimizes the number

of miss-orderings between a pair of true labels and false labels for a given example. Nam et

31

32 5. Neural Networks for Sequence Modelling

al. (2014) propose an alternative method, which is an extension to the previously described

cost function for the binary classification setting and will be used in this thesis. The costs

associated with one example (x, y) is simply the sum over the binary costs associated with

each label. Consequently the cost function to minimize in the multi-label case is given by:

O(✓;S) = �
X

(x,y)2S

KX

k=1

ln
⇥
(f✓(x)k)

yk(1� f✓(x)k)
1�yk

⇤

= �
X

(x,y)2S

KX

k=1

yk ln (f✓(x)k) + (1� yk) ln (1� f✓(x)k) . (5.15)

F-measure

Fitting a neural network through maximization of the cross entropy is not the only possi-

bility. Often, especially in classification settings, the final performance of the model is not

reported in terms of the cost function that is used in fitting the model. Instead, as argued

in Section 4.3, the F-measure better reflects how good a classifier solves the classification

task on an unbalanced data set. Since ultimately, the classifier’s performance in terms

of F-measure is of interest, it would be desirable to optimize for the F-measure directly.

Following this argumentation, the e↵ects of using a modification of the F-measure as cost

function is investigated in Section 6.4. This approach has been previously presented in

the context of neural networks in (Pastor-Pellicer et al., 2013) for the binary classification

case and is here extended for the multi-class and multi-label case.

Computing the F-measure involves choosing the most probable label (2.1) or those labels

whose conditional probability lies above a threshold (2.2). However, in choosing a definite

hypothesis for the calculation of the F-measure, all the additional information contained

in the probabilistic interpretation of the neural network’s output is lost. Additionally,

the argmax function (2.1) is not di↵erentiable. Both, the loss of information, as well as

the practical issue of non-di↵erentiability which is required for its applicability in gradient

decent empower the argument to not use the F-measure as it is defined for the evaluation of

a classifier’s performance. Instead, for training a neural network, the probabilistic version

of the F-measure is determined by redefining TP, FP and FN, using f✓(x) instead of the

hypothesis h(x):

TPprob,k =
X

(x,y)2S

f✓(x)k · yk, (5.16)

FPprob,k =
X

(x,y)2S

f✓(x)k · (1� yk), (5.17)

FNprob,k =
X

(x,y)2S

(1� f✓(x)k) · yk. (5.18)

Following the argumentation in Section 4.3, TPprob,k, FPprob,k and FNprob,k for each pos-

sible label k are averaged according to the macro-averaging fashion. In order to perform

gradient descent on this probabilistic version of the F-measure, the cost function is defined

32

5.1. Multilayer Perceptron 33

as the negative of the F-measure:

O(✓;S) = � 1

K

KX

k=1

(1 + �2) · PRk ·RCk

�2 · PRk ·RCk

= � 1

K

KX

k=1

(1 + �2) ·
P

(x,y)2S
f✓(x)k · yk

P
(x,y)2S

(f✓(x)k + �2 · yk)
. (5.19)

by substituting (5.16), (5.17) and (5.18) into (4.13), (4.14) and consequently into (4.15).

5.1.3. Training Neural Networks

Gradient Decent

The most popular method for minimizing the cost function of a neural network is gradient

descent (Cauchy, 1847). The idea behind gradient descent is to compute the gradient of

the cost function with respect to the weights of the network in order to find the direction

of steepest descent. Subsequently, the weights are adjusted such that one moves into the

direction of steepest descent of the cost function. The update rule for the neural network’s

weights is therefore given by:

✓ ✓ � ↵r✓ O(S; ✓). (5.20)

The cost function O, which is to be minimized, is a function of both, the model parameters

✓ and the data in the training set S. The parameter ↵ is the learning rate, which determines

the size of the step into the direction of the steepest descent. Most cost functions, including

the previously discussed cross entropy, can be expressed as a sum over the costs associated

with each data point L(x, y; ✓) in the training set S:

✓ ✓ � ↵r✓

X

(x,y)2S

L(x, y; ✓). (5.21)

Evaluating r✓ O(S; ✓) can be very expensive, since it involves computing the gradient of

the costs associated with each data point in S. Although this computation of the gradient is

exact, this so-called batch gradient descent is rarely used. The alternative approach, called

stochastic gradient descent (SGD), is computationally feasible compared to batch gradient

descent. In SGD, instead of computing the exact (deterministic) gradient r✓ O(S; ✓), an

approximate (stochastic) gradient is computed on a subset Sm 2 S of the training data:

✓ ✓ � ↵r✓

X

(x,y)2Sm

L(x, y; ✓). (5.22)

The variant using m > 1 examples per subset is called mini-batch stochastic gradient

descent (as opposed to online stochastic gradient descent for m = 1). Applying mini-

batch SGD (referred to as SGD in the following) involves repeatedly sampling mini-batches

and computing the weight update according to (5.22) until a stopping criterion is met.

33

34 5. Neural Networks for Sequence Modelling

The choice of the stopping criterion will be discussed in Section 6.1.2. Besides being

computationally tractable for arbitrarily sized data sets, SGD converges faster and its

stochasticity helps in escaping local minima (Graves et al., 2012).

A critical choice to the success of applying SGD is the correct choice of the hyperparameter

↵, which is called the learning rate. There exist several sophisticated approaches for tuning

the learning rate that will be discussed in Section 6.1.2.

Backpropagation

Using gradient descent requires computing the derivative of the cost function with respect

to each weight of the network. Since neural networks are explicitly designed with this

di↵erentiability in mind, they can be trained using gradient descent. The technique used

to e�ciently compute this gradient in a neural network is called backpropagation, which is

a repeated application of the chain rule. The reason why backpropagation is so e�cient

lies in that the partial derivatives of O with respect to each weight wij can be decomposed

recursively. This decomposition is possible by recognizing the fact that the activation of

units in the network aggregate the influence of previous weights (closer to the input).

The reader is reminded that superscript indices denotes layers, while subscript indices

denote specific units in a layer. In order to generalize the derivates to an arbitrary hidden

layer l 2 {1, . . . , L}, the function given in (5.1) and (5.2) are reformulated:

alj = blj +
X

i2l�1

wl
ijh

l�1

i , (5.23)

hkj = f(akj). (5.24)

In the above, wl
ij is the weight connecting one unit i in layer l� 1 to unit j in layer l. The

sum in (5.23) is over all units i in layer l � 1 (assuming a fully connected network) and f

is a layer-specific activation function.

As is evident in (5.22), the gradient of the mini-batch costs with respect to one specific

weight wij of the network decomposes as the sum of the gradients over each data point

in Sm. Therefore, in the following, the focus will lie on deriving @L(x, y; ✓)/@wij for one

data point (x, y).

Whereas in the forward pass, the network is traversed from input layer to output layer

(i.e. the input is propagated forward), in computing the e↵ect of changes of each weight

in the network on the cost function (i.e. the gradient), the network is traversed in the

opposite direction (the error is propagated backwards). Therefore, the derivation of the

gradients starts at the output layer, and then recursively considers every hidden layer l

before arriving at the input layer.

Following the chain rule, the gradient of L(x, y; ✓) with respect to the weights of the output

layer can be decomposed by acknowledging that the output of the neural network is equal

to the output of the output layer: hO = f✓(x). Furthermore, x influences the cost function

through f✓(x), the function computed by the neural network. The cost function is therefore

reformulated as L(f✓(x), y). The gradients for the weights of the output layer are then

34

5.1. Multilayer Perceptron 35

given by:
@L

@wO
ij

=
@L

@aOj

aOj

@wO
ij

(5.25)

The form of the previous equation depends on the choice of cost function, as well as

the corresponding activation function f in the output layer. Assuming a multi-class

classification task with a softmax activation function (5.10) in the output layer together

with the cross entropy cost function given in (5.14), this leads to:

@L

@aOj
=

@

@aOj
�
X

k

yk ln(f(a
O
k))

= �
X

k

yk
@ ln(f(aOk))

@aOj

= �
X

k

yk
1

f(aOk)

@(f(aOk)

@aOj

= �yj(1� f(aOj))�
X

j 6=k

yk
1

f(aOk)
(�f(aOk)f(aOj)) (5.26)

= �yj + yjf(a
O
j) +

X

j 6=k

ykf(a
O
j)

= �yj + f(aOj)
X

k

yk

| {z }
=1

= f(aOj)� yj . (5.27)

(5.26) follows from the fact that for the softmax function f :

@f(ak)

@aj
=

8
<

:
f(aj)(1� f(aj)) , if j = k

�f(aj)f(ak) , otherwise.
(5.28)

For the binary classification setting, as well as for the multi-label classification

setting, the cost functions in (5.13) and (5.14) along with the sigmoid activation function

f of (5.4) yield the following intermediate step for the gradient:

@L

@f(aOj)
=

f(aOj)� yj

f(aOj)(1� f(aOj))
. (5.29)

Since, according to the chain rule,

@L

@aOj
=

@L

@f(aOj)

@f(aOj)

@aOj
(5.30)

and with the following convenient form for the gradient of the sigmoid activation function,

�0(x) = �(x)(1� �(x)), (5.31)

35

36 5. Neural Networks for Sequence Modelling

it follows that

@L

@aOj
= f(aOj)� yj . (5.32)

In the binary classification setting, this is equivalent to f(aO)� y, since in this case, there

is only one unit in the output layer.

Computing these gradients for the probabilistic F-measure as a cost function has an

additional requirement that is di↵erent from computing the gradient for the cross entropy.

Using the F-measure as a cost function requires optimizing the network with mini-batch

SDG because the F-measure is not defined for a single data point. Except for this dif-

ference, the gradient with respect to the network’s weights is computed as in the cross

entropy case by propagating the error backwards through the network. In order to specify

@O(✓;Sm)/@f(aOj) for one specific data point (x, y) in the mini-batch, it is helpful to first

reformulate (5.19) into a sum of costs over each data point in Sm:

O(✓;Sm) = � 1

K

KX

k=1

(1 + �2)
X

(x,y)2Sm

f✓(x)k · ykP
(x0,y0)2Sm

�
f✓(x0)k + �2 · y0k

�

=
X

(x,y)2Sm

� 1

K
(1 + �2)

KX

k=1

f✓(x)k · ykP
(x0,y0)2Sm

�
f✓(x0)k + �2 · y0k

� =
X

(x,y)2Sm

L(x, y; ✓).

(5.33)

Consequently, it follows:

@L

@f(aOj)
= � 1

K
(1 + �2)

"
yjP

(x0,y0)2Sm

(f(aOj)
0 + �2y0j)

�
f(aOj) · yj

P
(x0,y0)2Sm

(f(aOj)
0 + �2y0j)

!
2

#
,

(5.34)

by using the relation

@f(aOj)
0

@f(aOj)
=

8
<

:
1, for (x, y) = (x0, y0)

0, otherwise,

in the above derivation.

Depending on whether the F-measure is used in a multi-class or multi-label case, f(aOj) is

either the softmax activation function (5.28) or the sigmoid function (5.31).

In order to compute the gradient with respect to the weights of the output layer and to

derive the gradients of the hidden layers, it is helpful to first redefine the gradients with

respect to a unit’s activation:

�lj
def
=

@L

@alj
. (5.35)

36

5.2. Recurrent Neural Networks 37

Therefore, using (5.35) in (5.25) for any layer l:

@L

@wl
ij

= �lj
@alj

@wl
ij

= �ljf(a
l�1

i) (5.36)

In the previous, f(al�1

i) is the activation of unit i in the previous layer. The form of

�lj depends on whether l represents the output layer or a hidden layer. For l = O, the

form of �Oj has been discussed previously in the context of di↵erent classification settings

(see (5.27) and (5.32)). In order to specify the gradients with respect to the output of a

unit in a hidden layer f(alj), it is necessary to consider how the error caused by f(alj) has

influenced all nodes that follow on the way to the output layer. This consideration can

be expressed as another application of the chain rule. In the following, the derivative is

calculated by summing the error over all the nodes i in the following layer l + 1 that is

attributed to them:

@L

@f(alj)
=
X

i

@L

@f(al+1

i)

@f(al+1

i)

@al+1

i

@al+1

i

@f(alj)
(5.37)

=
X

i

�l+1

i

@al+1

i

@f(alj)
(5.38)

=
X

i

�l+1

i wl+1

ji (5.39)

In (5.37), the first two derivatives were replaced with the error of the next layer �l+1

i ,

thus recursively specifying the gradient for every hidden layer in terms of the error in the

next hidden layer until, for the last hidden layer, the error is specified depending on the

classification setting. Computing the gradient with respect to the weights of the hidden

layers now is straightforward by using (5.38) in (5.30) to receive �lj

�lj =
@f(alj)

@alj

X

i

�l+1

i wl+1

ji (5.40)

and substitute it in (5.36).

5.2. Recurrent Neural Networks

Recurrent neural networks (RNN) are an extension to the multilayer perceptron, in which

recurrent connections in layers are allowed. In this section, the focus lies on presenting a

simple recurrent architecture which contains one layer that connects to itself (see Figure

5.1) and, in Section 5.2.2, an extension to the simple architecture that simplifies learning

in recurrent networks. By allowing recurrent connections, a neural network is enabled to

learn from sequential data because at each time step of the sequence, the RNN has access

to a compressed version of the entire history of the sequence it has processed so far. Thus

it can capture temporal relations in sequential data. In the following, each element of a

sequence will be referred to as an element in a temporal sequence. RNNs are, however,

not restricted to processing data with temporal relations. Recent literature applied RNNs

37

38 5. Neural Networks for Sequence Modelling

Input	layer

Feedforward layer

Recurrent	 layer

Feedforward layer

Output	layer

Figure 5.1.: Schematic of a recurrent neural network with two feedforward layers and one
recurrent layer. Each arrow indicates a weight matrix and a bias; own repre-
sentation.

to non-sequential data by presenting it to an RNN in a sequential fashion. Gregor et

al. (2015), for example, successfully modelled images as (two-dimensional) sequences by

traversing the pixels of an image sequentially. A core idea of recurrent neural networks that

allows their application on sequences of arbitrary lengths is the idea of parameter sharing,

which has been presented by Waibel, Hanazawa, et al. (1989) in a network-structure called

time-delayed neural networks. If one would have a separate set of parameters for each

time-step of a sequence, one would have to specify parameters for each possible length

of a sequence. By re-using parameters across time-steps, the model is able to learn and

generalize for sequences of arbitrary length.

5.2.1. Training Recurrent Neural Networks

Forward pass

The forward pass in a recurrent neural network can be explained by extending (5.23) to

atj =
X

i2I
wijx

t
i +

X

j02H
wj0jh

t�1

j0 . (5.41)

In the previous, xti depicts the ith element of the input vector xt at time t of the input

sequence x. For ease of notation, the fact that ajt is a unit of the first hidden (recurrent)

layer in the network, has been omitted. As in a standard feed forward layer, the input to a

unit j in a hidden layer contains the weighted sum over all input units. These weights are

not dependent on time, since, for each step in the sequence x, these weights are shared.

Additionally to the standard feed forward layer, the input to a unit j in a recurrent layer

contains the second sum. For each unit j0 in the hidden layer, its output at the previous

time step ht�1

j0 is added to the input of unit j at the next time step t. For ease of notation,

the bias terms in each sum have been omitted. Instead, it is possible to assume that xti and

ht�1

j contain an extra dimension, whose values are always equal to one. As a consequence,

the bias term is included in the respective weight matrices. The initial values h0j0 present

38

5.2. Recurrent Neural Networks 39

an additional parameter vector that needs to be correctly set or learned by the network

through SGD. Usually, these initial values are set to zero. The above notation generalizes

to the case in which there are more than one hidden layer or the recurrent connections

occur not in the first, but in later hidden layers.

Apart from the di↵erences in the input to a recurrent layer, the elements of a recurrent

neural network are equal to those in an MLP. Consequently, the same activation functions,

the same output layers and the same cost functions can be used as in the MLP case. For a

sequence (x,y), the associated costs can usually be decomposed as the sum over the costs

of misclassifying the individual elements at each time step:

L(x,y; ✓) =
X

t

L(xt, yt; ✓). (5.42)

Backpropagation through time (BPTT)

In the following, for ease of notation, the superscript in atj denotes time and thus lacks

notation for di↵erent layers. Therefore, a simple RNN with one recurrent (hidden) layer

between the input and output layer is considered. However, the equations presented here

generalize to a multi-layer recurrent neural network. For a MLP, �j captures how unit

j contributes to the error of what follows in the network. Since in a recurrent neural

network, a unit not only influences the output layer, but also influences the next time step

of the network, a unit in the recurrent layer needs not only consider the error with respect

to the units in the output layer, but also needs to include the unit’s influence on the error

in future time steps. The combined gradient for the output of a recurrent layer’s unit j

therefore is an extension of (5.40):

�tj =
@f(atj)

@atj

0

@
X

i2O
�tiwji +

X

j02H
�t+1

j0 wjj0

1

A . (5.43)

In the above, the first summand considers the error as it is backpropagated from each unit

i in the output layer O. Since L(x,y; ✓) is the sum over all L(xt, yt; ✓), �ti is computed

straightforward as in the MLP case, dependent on the classification task. In the way the

output of a recurrent network is computed by sequentially propagating x
1

until xT forward

through the network, the error is backpropagated from t = T to t = 1. Since beyond t = T

there is no error, �T+1

j0 is set to zero for all j0. The second summand in (5.43) therefore

aggregates the gradient information from future time steps.

In order to finally compute the gradient with respect to the weights of the recurrent layer,

the respective gradients in each time-step are summed, since the weights are shared across

time:
@L

@wij
=

TX

t

�tjf(a
t
i). (5.44)

39

40 5. Neural Networks for Sequence Modelling

5.2.2. LSTM

Although backpropagation through time gives a theoretical convenient way to train re-

current network architecture, practical issues arise in reliably learning long-term depen-

dencies. Particularly, the so-called vanishing or exploding gradient problem (Hochreiter,

1991; Hochreiter et al., 2001) hinder the optimization procedure. See Bengio et al. (2016),

Chapter 8, for an in-depth discussion of the problem. Applying the chain rule in computing

the gradient in BBTT involves multiplying the jacobian matrices of all future time steps.

This product tends to either vanish in cases where the individual elements are smaller

than one, or explode otherwise. Since, through the sharing of parameters, the matrices

are highly related to each other, it is more likely for the gradients to explode or vanish than

for the product to be balanced. While the vanishing of the gradient results in that the

gradient at a time step contains no error information from future time steps, the explosion

of the gradient leads to extreme changes to the network weights, potentially resulting in a

much more expensive situation in parameter space and ruining the so far achieved training

progress.

The destructive e↵ects of exploding gradients can be easily mitigated heuristically by

capping the maximum size of the gradients (gradient clipping). In order to ease the learn-

ing of long-term dependencies, several approaches have been made, the most popular of

which are the Long Short-Term Memory (LSTM) architectures (Hochreiter & Schmid-

huber, 1997). LSTM layers today are used widely in machine learning architectures that

include recurrent architectures. Although di↵erent variants of the LSTM architecture have

been proposed over the years, this discussion will introduce the most widely used vanilla

architecture, which is an extension of the original architecture and includes changes by

F. A. Gers et al. (2000) and F. Gers et al. (2000) to include the forget gate, peephole con-

nections and its training through BPTT. All experiments reported in this thesis involving

LSTM layers use this variant of LSTM. For a recent comparison of di↵erent LSTM vari-

ants’ performances, see Gre↵ et al. (2015), in which the authors find that the standard

LSTM performs comparably with other variants.

In an LSTM layer, the standard form of a unit’s computation (5.41) is extended to include

gates which provide it with the capability to remove or add information to its current

state. The units’ states can be interpreted as the LSTM layer’s memory and o↵ers a way

for the network to explicitly store information. The output of a LSTM unit thus not only

depends on the recurrent layer’s output of the previous time step and the current input as

in the standard recurrent layer, but also depends on the information encoded in each of the

LSTM units’ internal memory cell. At each time step, an LSTM unit updates its internal

memory cell’s state by manipulation of three explicit gating functions. In Graves et al.

(2012), each LSTM unit contained several memory cells that were manipulated jointly by

the same gating function. However, in the literature, units containing one cell only are the

established version of the LSTM architecture.

A graphical overview of an LSTM cell (adapted from Gre↵ et al. (2015)) can be seen in

Figure 5.2. Bold arrows represent weighted connections, while dashed arrows represent

40

5.2. Recurrent Neural Networks 41

+

+

+

+

g

!�

+

g’

� !

! �

input	 gate

output	 gate

forget	gate

cell	input

memory	
cell

f

i

o
hcell	output

peephole
connections

outputrecurrent

recurrent

recurrent

recurrent

recurrent

input

input

input

input

LSTM	cell

Figure 5.2.: Schematic of an LSTM cell, adapted from (Gre↵ et al., 2015).

information from a previous time step. Red arrows represent the peephole connections,

through which the cell state influences the individual gating functions.

Upon receiving the input xti from all units i in the input layer I (or the previous hidden

layer, respectively) as well as the LSTM layer’s output ht�1

j for each hidden unit j from

the previous time step, a proposal c̃t for the new cell state is formed by passing the input

through the non-linearity g:

c̃t = g(
X

i2I
wicx

t
i +

X

j2H
wjch

t�1

j

�
. (5.45)

The degree to which this new proposal is integrated into the cell’s memory is dependent

on the degree to which the cell forgets its current state, as well as to the degree to which

the proposal is allowed to influence the current state. The update of the cell’s state is thus

regulated by the input gate it as well as the forget gate f t. Both functions aggregate the

cell’s input and the weighted current cell state ct�1 through the peephole connections and

pass them through the sigmoid function. The sigmoid function squashes its input between

0 and 1 and thus specifies the extend to which the LSTM cell will forget and update its

state into ct respectively:

f t = �
�X

i2I
wifx

t
i +

X

j2H
wjfh

t�1

j + wcfc
t�1

�
, (5.46)

41

42 5. Neural Networks for Sequence Modelling

it = �
�X

i02I
wi0ix

t
i +

X

j2H
wjih

t�1

j + wcic
t�1

�
, (5.47)

ct = f tct�1 + itc̃t. (5.48)

Finally, the unit’s output ht is determined by passing the updated cell state through a

second non-linearity g0, regulated by the output gate ot. Analogously to the input and

forget gate, the output gate aggregates the input to the LSTM unit with the weighted cell

state. The peephole connection to the output gate, however, uses the updated cell state

ct as opposed to the other gating functions:

ot = �
�X

i2I
wiox

t
i +

X

j2H
wjoh

t�1

j + wcic
t
�
, (5.49)

and finally,

ht = otg0(ct). (5.50)

The key ingredient to the LSTM architecture’s e↵ectiveness in capturing long-term de-

pendencies lies in the way the LSTM cell retains information in its internal state. Inside

the inner loop of the LSTM cell, the current state is retained with a constant weight of

1. The extend to which information contained in this current state is kept over time is

explicitly controlled through the forget gate, as opposed to being completely overwritten

(i.e. forgotten) by the input to the unit as in a simple RNN architecture (see (5.41)).

Although the LSTM architecture is more complicated than a simple RNN layer, the func-

tion it computes is still di↵erentiable with respect to all weights (and the initial state c0).

The equations for the gradients of the network’s loss function with respect to each of the

parameters in a LSTM layer can be found in, for example, Graves et al. (2012).

It is worthy to mention that the presented LSTM architecture and its variants are not

the only option for combating the vanishing gradient problem. Other methods, including

second-order optimization techniques as well as careful initialization of the weights in

recurrent layers have been successful in learning long-term dependencies (Sutskever et al.,

2013). However. LSTM layers remain the most popular choice.

5.3. Overfitting

Maximizing the likelihood with SGD eventually will lead to a model which is very good

at modelling the data it has seen during training but su↵ers from bad performance on

the validation data set. Since the goal of any machine learning task is to fit a model that

generalizes well to unseen data, overfitting the model to the training data must be avoided.

Since the generalization capabilities lie at the heart of every machine learning problem,

the development of e↵ective regularization techniques is a wide and active area of research.

Especially in the deep learning field, in which the number of parameters of a model can

go into the billions, applying e↵ective regularization techniques is important. The most

42

5.3. Overfitting 43

e↵ective technique for avoiding overfitting is, of course, training on more data. Since data is

limited, this approach usually involves introducing artificial training examples by applying

noise to existing data. There is, however, no sensible interpretation of noise in the domain

of textual data that could be applied in the setting studied in this thesis. Chapter 7 as

well as Chapter 8 discuss approaches to learning from additional data (additional labels

in the case of Multi-Task learning and additional data from a related data source in the

Transfer Learning setting). Regularization techniques that are not task related but more

generally applicable to the training of neural networks are early stopping, dropout and

weight decay. The latter operates by applying a prior distribution on the weights of the

network to obtain their maximum a-posteriori estimator. Placing a prior on the weights

acts as a regularizing penalty term for undesirable, extreme parameter values.

Early stopping

Early stopping is, due to its simplicity and ease of implementation, one of the most widely

used forms of regularization. The basic idea is to evaluate the model’s performance regu-

larly on the validation set and to keep the parameter setting on which highest performance

on the validation set is reached. By stopping the optimization procedure before reaching

the maximally achievable likelihood on the training data, the kept parameters instead

maximize generalize performance on the validation set. Early stopping is a very popular

regularization technique since it does not involve any changes to the learning procedure

and does not prohibit using further regularization techniques. Additionally, by condition-

ing the optimality of the model parameters for the validation set not necessarily on the

cost function but on the actual performance metric of interest to the task at hand, it is

possible to implicitly mitigate the e↵ect of using a surrogate cost function for optimization.

This notion is further discussed in Section 4.3. Early stopping is implemented practically

by comparing the model’s performance on the validation set with the previously best

performance and writing the current model to disk if it outperforms the previously best

model.

Dropout

Dropout is a very e↵ective and commonly used regularization technique introduced by

Srivastava (2013). The original idea behind this technique is to stochastically set unit

activations in the layers of a network to zero with a predetermined probability. During

training of the network, the network is thus forced to make sense of the given example

using only a subset of its units. This e↵ectively prevents units in a layer from co-adapting

and results in several di↵erent representations of the data being learned. At test-time, the

model can be interpreted as a large ensemble of networks that share weights. Recently,

dropout has been interpreted from a bayesian perspective (Gal & Ghahramani, 2015)

and ongoing research investigates why dropout acts as such an e↵ective regularization

technique. Zaremba et al. (2014) investigated the use of dropout in recurrent neural

networks and found that adding dropout to the recurrent connections harms performance.

Consequently, when dropout is applied, it is applied solely to the non-recurrent connections

in the network.

Due to the fact that the models presented in this thesis are studied not with respect to

43

44 5. Neural Networks for Sequence Modelling

achieving highest possible accuracy on their respective tasks, network sizes relative to the

amount of available data are not pushed to be as large as possible. Possible in this context

is to be interpreted as that dropout was not required to regularize a large network that

would heavily overfit if dropout were absent. On the contrary, network sizes are relatively

small, such that by employing early stopping in combination with an e↵ective learning

rate schedule (see Section 6.1.2), overfitting was not an issue.

44

6. Capturing Time Dependencies through

Recurrent Architectures
This chapter describes the setup and results of experiments on both, the meeting data set

and the switchboard data set. It will be shown that, by extending the MLP architecture

with a recurrent architecture, the model can improve upon the feed forward baseline.

Hyperparameters for training the MLP as well as the RNN architecture are given and the

specific choices for these parameters are explained. Furthermore, results on experiments

with the LSTM architecture will be analysed, as well as results on experiments with the

probabilistic F-measure as cost function.

6.1. MLP Architecture as Baseline

In order to establish a baseline, this section first introduces experiments that aim to repro-

duce the results on the meeting data set reported by Cho et al. (2015). In their work, the

authors combine a standard feed forward MLP with a conditional random field approach,

and report results for the multi-task learning approach of jointly learning disfluency de-

tection and punctuation prediction on the meeting data set. Here, the focus will lie on

reproducing the neural network part of this work, first training each task separately, fol-

lowed by the reproduction of the actual results in Chapter 7. Contrary to their setup,

in this thesis, the network is not pre-trained with denoising autoencoders (Vincent et al.,

2010). In the following, the features extracted from the word transcripts as they are pre-

sented to the neural network will be described first, followed by the description of the

neural network architecture and the choice of hyperparameters.

6.1.1. Features

Using words in a neural network classifier is best done by embedding words in a low

dimensional feature space. Instead of building a model whose input layer is as wide as the

number of words in the dictionary, each word is mapped to a lower dimensional vector,

which is then presented to the network. By doing so, similar words in this vector space lie

closer together than dissimilar words and the network can easier learn and generalize. A

second advantage in using embedded words instead of a one-hot encoding of the vocabulary

is that it is possible to use large quantities of out-of-domain text data for training the

word embedding matrix. So instead of being limited to using the relatively small amount

of speech transcripts, robust embeddings can be created by including external data. The

word embedding matrix that maps each word in the vocabulary to an embedded word

vector was created using word2vec (Mikolov et al., 2013) on ⇠ 340 million words, including

the words of both, the meeting and the switchboard data set, and a vocabulary of ⇠ 182k

words. Punctuations have been removed in the training corpus and all words have been

converted to lower-case. As in Cho et al. (2015), the dimensionality of the embedded

vectors is 100. Additionally to the embedded words, POS tags were extracted from the

data and included in the feature vector in a one-hot encoding. Since a feed forward neural

45

46 6. Capturing Time Dependencies through Recurrent Architectures

network does not have access to the history of the word sequence, the feature vector for

each word includes the word embeddings and POS encodings of the two previous and the

two following words in the sentence, thus creating a context of words surrounding the

current word of interest. Although Cho et al. (2015) use a variety of lexical and language

model features, the following experiments are conducted using only word encodings and

POS tags in order to establish a baseline from which the e↵ect of adding additional features

can be evaluated.

6.1.2. Hyperparameters

In Cho et al. (2015), a MLP with three hidden sigmoid layers consisting of 500 units each

is trained on the meeting data set. The details of the optimization procedure were not

reported in their work, which is why, after preliminary experiments, the hyperparameters

were chosen to be as in Table 6.1. In the following, these parameters will be discussed.

Parameter Chosen value Range of experimented values
initial learning rate 0.002 {0.1, 0.01, 0.002, 0.001}
learning rate decay 0.7 {0.5, 0.6, 0.7, 0.8, 0.9}
optimizer RMSProp {standard SGD, Adam, RMSProp}
parameter initialization first layer: N (0, 0.01)

other layers: N (0, 0.1)
epochs 30
batch size 100 (meeting)

300 (switchboard)

Table 6.1.: Hyperparameters for the MLP experiment.

Performance criterion

As has been argued in Section 4.3, the cost function by which a neural network is trained

is not necessarily the same as the performance criterion of interest for the specific task. Al-

though one would not expect a huge di↵erence between the resulting network performance

when choosing between the overall F-measure for disfluencies and the F-measure for one

specific disfluency, performance was consistently better when choosing the F-measure of

rough copies in the meeting data set and the F-measure for reparandum in the switch-

board data set over the aggregate F-measure for all disfluency classes. Consequently, the

performance criteria in Table 6.2 were chosen in the respective setting for early stopping

as well as the learning rate schedule. punctuation stands for the aggregated F-measure

of all punctuation classes.

task disfluency detection punctuation prediction
meeting data set (rough) copy punctuation

switchboard data set reparandum punctuation

Table 6.2.: Performance criteria for di↵erent setting.

RMSProp

Preliminary experiments with di↵erent optimizers showed a clear advantage of using adap-

tive algorithms versus using standard stochastic gradient descent in terms of stability of

46

6.1. MLP Architecture as Baseline 47

the results with respect to changing architectures, learning rates, etc.. The advantage was

especially significant when training recurrent networks, in which standard SGD often failed

to converge. Di↵erences between Adam (D. Kingma & Ba, 2014) and RMSProp (Tieleman

& Hinton, 2012) were minimal, however RMSProp showed slightly better results in initial

experiments. Adam, as well as RMSProp (which can be understood as an extension to

Adagrad (Duchi et al., 2011)) modify the learning rate for each parameter in the network

separately, as opposed to standard SGD, which multiplies the gradient for each parameter

with the same learning rate (see (5.20)). For RMSProp, the optimizer used in this thesis,

the update rule for a specific weight w therefore changes to:

rtw = �rt�1

w + (1� �)

✓
@L

@w

◆
2

(6.1)

w w � ↵p
rtw

@L

@w
. (6.2)

In the above, � is called the decay factor and ↵ is the global learning rate. RMSProp

maintains a moving average of the squared gradient and exhibits very robust performance

in mini-batch gradient descent. RMSProp is, as of yet, unpublished, but referencing to

the lecture slides by Tieleman & Hinton (2012) seems to be an accepted form of reference

to RMSProp in the literature.

Learning rate schedule

In order to converge to a local optimum in SGD, it is necessary to anneal the learning

rate over time. This is because sampling from the training data introduces noise that does

not become zero, even when the parameters near or reach a local optimum. Formally, a

su�cient guarantee for convergence is, that
P1

k=1

↵k = 1 while
P1

k=1

↵2

k < 1, in which

k indexes the batches during training over time. In practice, the learning rate is reduced

heuristically, usually conditioned on the performance of the validation set, and training is

terminated after a limited amount of mini-batches. In preliminary experiments, reducing

the learning rate by multiplying it with 0.7 has shown best performance in this task. The

learning rate is reduced if the performance on the validation set does not improve between

two consecutive epochs, after the end of the second epoch at the earliest. An epoch is

said to have passed every time the training procedure has processed the training data

completely. Depending on the data set, its size and the complexity of the model along

with the characteristics of the machine learning task, the data is usually processed several

times over several epochs. Interestingly, conditioning the learning rate reduction on the

validation set costs has shown worse performance than conditioning it on the validation

set F-measure. At a certain time during the optimization procedure, the model starts to

overfit, the learning rate is reduced more often and converges towards zero. Since with

a su�ciently small learning rate, the change in parameters (5.22) becomes very small, it

makes no sense to continue training the model after this point. This convergence usually

is reached before the training procedure has processed the data 30 times, which is the

termination criterion.

The initial learning rate of 0.002, as well as a mini-batch size of 100 words for the meeting

47

48 6. Capturing Time Dependencies through Recurrent Architectures

data set and 300 words for the switchboard data set were chosen after initial experiments.

Higher mini-batch sizes lead to more e�cient gradient calculations by taking advantage

of fast matrix-matrix versus relatively slow vector-matrix multiplications (Bengio, 2012).

However, increasing the batch size might also lead to longer training times in terms of

training epochs, since there will be less gradient updates per epoch.

Weight initialization

The weights of the network are initialized randomly by drawing from the normal distri-

bution N (µ,�2). Initial experiments showed that drawing from N (0, 0.01) for the first

hidden layer and drawing from N (0, 0.1) for all other layers showed good results and this

initialization scheme was therefore maintained throughout this thesis.

6.1.3. Meeting Data Set

Results for the experiment run with the above configuration are given in Table 6.3for the

meeting data set. A detailed inspection of the di↵erent labels of the disfluency classification

task for the meting data set reveals that the model is not able to learn the concept of non-

copy and is very conservative in its prediction of interruptions, leading to an overall low

F-measure. As expected, the model is good at identifying filler since they encompass a

limited variety of words and, in most cases, do not depend heavily on the context in which

they are embedded. Equally to the discussion by Cho et al. (2015), the MLP exhibits

overall conservative behaviour with lower recall and higher precision.

F-measure Precision Recall
disfluency 49.85 79.24 36.36

filler 71.77 77.19 67.07
interruption 6.37 53.57 3.39
non copy 0 0 0
(rough) copy 40.95 60.37 30.99
no disfluency 90.30 84.25 97.28

Table 6.3.: Results for disfluency detection on the meeting data set.

Predicting punctuations with the above architecture and configuration leads to the results

given in Table 6.4. The overall higher F-measure on punctuation is higher than full-

stop and comma respectively, which shows that the model is not able to reliably distinguish

between both. For the purpose of sentence boundary detection, this inability to distinguish

is not a hindrance, however for other purposes, this might be an inconvenience. Due to

the very small amount of training data, as well as due to the strong dependence on the

first words in a sentence, the model fails to understand the concept of question marks.

Results on the recurrent architectures, as well as results with the switchboard data set

will show that the lack of training data is indeed the main contributing factor to the bad

performance on question marks.

6.1.4. Switchboard Data Set

The same architecture and configuration given above were used to train a model for disflu-

ency detection and a model for punctuation prediction on the switchboard data set. The

48

6.1. MLP Architecture as Baseline 49

F-measure Precision Recall
punctuation 63.98 69.59 59.22

full stop 41.66 59.32 32.11
comma 33.77 28.39 41.66
question mark 0 0 0
no punctuation 92.33 90.77 92.94

Table 6.4.: Results for punctuation prediction on the meeting data set.

results given here serve as a baseline for experiments in later sections. They show that the

MLP architecture has di�culties identifying the label interruption and does not excel

in identifying reparandum structures. Since interruptions make up only 0.8% of the words

and are highly variable in terms of which words they are composed of, as well as in terms

of which words follow, these results are not surprising. Edits, on the other hand, which

make up only 0.5% of the words in the training data, are highly structured in that a small

amount of words are labelled as edits. Consequently, although they are very sparse, the

model is very good at identifying them. reparandum structures, which exhibit the same

di�culties as with interruption in that they are highly variable, exist comparably often

with 5.2% of the words. Therefore, the model is able to learn the concept of a reparandum,

while failing to understand interruption.

F-measure Precision Recall
disfluency 83.61 92.14 76.52

interruption 7.15 91.42 3.72
coordinating conjunction 88.25 84.85 91.93
discourse marker 93.06 95.29 90.93
explicit editing 94.41 97.68 91.35
filled pause 96.68 95.20 98.21
reparandum 63.09 84.97 50.17

Table 6.5.: Results for disfluency detection on the switchboard data set.

It is interesting to compare the model’s performance for punctuation prediction on the

di↵erent data sets. From comparing Table 6.4 with Table 6.6, it can be surmised that the

greater availability of training data leads to the significantly higher performance in these

comparable tasks. Also, from Table 6.6 it can be seen that the model’s ability to identify

incomplete slash-unit, as well as question mark is relatively low.

F-measure Precision Recall
punctuation 87.57 89.15 86.05

full stop 67.89 71.70 64.47
comma 76.63 79.08 74.32
question mark 37.89 77.61 25.06
slash-unit 82.51 81.99 83.04
incomplete slash-unit 33.24 53.85 24.04

Table 6.6.: Results for punctuation prediction on the switchboard data set.

49

50 6. Capturing Time Dependencies through Recurrent Architectures

6.2. Simple Recurrent Architecture

The power of RNN architectures lies in their ability to capture the information contained in

a sequence of events and use the context information it needs from the history of observed

events. This is an advantage compared to MLP approaches, for which the observable

context is fixed and determined beforehand by concatenating words before and after the

current word of interest. However, in presenting the network with a context-window of

two words as in the above experiments, the MLP is able to use two words after its current

word. The capability to access future context is essential in order to identify reparanda,

since their role as such becomes apparent only in the face of the words that follow.

Consider the example sentence “I do think I strongly believe that”. In the moment that

the model processes the words “I do think”, it is impossible to determine that these three

words are part of a reparandum structure. Assuming that it is possible to classify the first

three words of this sentence upon having processed the fourth word “I”, the MLP, with a

context window of two words, cannot possibly know that the first word in the sentence is

part of a reparandum. Depending on the sentence, the assumption that it is possible to

identify the reparandum upon having processed the interregnum or the first word of the

repair structure might even be too optimistic.

In order to further extend on this notion, for the recurrent architecture, the input-target

sequence pairs have been shifted s steps in time, such that the label for an input xt

corresponds to the label yt+s that the network sees at time t + s. Therefore, in addition

to the past context, all the words in the sub-sequence {xt, . . . ,xt+s} along with their

additional features (e.g. POS tags) can be considered by the network before formulating

a hypothesis for the label corresponding to xt. In the above exemplary sentence “I do

think I strongly believe that”, upon shifting the target sequence for two steps in time, the

learning task would look like this:

y:
x:

-
I

-
do

RM
think

RM
I

RM
strongly

0
believe

0
that

0
-

0
-

Assuming that for each input word xt, the two surrounding words are still included in

the input vector, the network now has the possibility to consider the words “I do think I

strongly”, before having to predict the label for the first word in the sentence. The first

experiments with recurrent architectures therefore focus on identifying the step size s that

leads to the best performance.

Mini-batch training in a recurrent neural network requires cutting the training data into

smaller sequences that can be presented to the network concurrently. In modelling an

ASR output word stream that contains no sentence boundaries, there is no assumption

about the start and end of a sequence. Therefore, the text is cut arbitrarily into equal

length sub-sequences. Out of these sub-sequences, batches are formed and presented to

the network. The disadvantage of this approach is that the network, at the beginning of

each sequence, starts without knowledge of the words that lie before the first word that is

presented to the network. Likewise, the knowledge accumulated by the end of a sequence

is lost. The easiest way to alleviate this problem is to increase the length of the individual

50

6.2. Simple Recurrent Architecture 51

sequences in a mini-batch. This, however introduces an increased computational burden

because the RNN needs to be rolled out across a longer period of time, through which the

gradients must be propagated through. Also, the assumption that a spoken word influences

the decision of whether another word, say, 100 time steps in the future, is disfluent or not,

seems not to be justified in light of the characteristics of spoken language.

Instead, in future improvements on this system, the hidden states of the network at the

end of a mini-batch sequence will be used to initialize the hidden state at the beginning of

the next mini-batch sequence. In order to achieve this, the training data will be cut into

a number of approximately equal length sequences. The number of sequences is equal to

the desired batch size. These individual sequences are then cut into sub-sequences of the

desired length that one would want to propagate the errors through. In order to sensibly

associate the knowledge accumulated in the hidden state at the end of one such mini-batch

sub-sequence, the sub-sequences are presented to the network in sequence.

Since a recurrent neural network is able to encode the past context it has seen, in combi-

nation with the above introduced shift parameter, the network should be able to learn the

correct mapping between words and labels without the need for explicitly adding past and

future words to the word at a time step. However, experimenting with a reduced feature

set lead to significantly worse performance compared to using the full context window as

in the MLP setting. Therefore, also for reasons of comparability of the results, the experi-

ments with recurrent architectures were run with the same feature vectors as for the MLP

architecture.

The space of possible recurrent neural network architectures is unlimited. For simplicity

and comparability with the MLP setting, an architecture with just one recurrent layer

was chosen for these experiments. The resulting architecture consists of one hidden non-

recurrent sigmoid layer before the recurrent layer with sigmoid activation, as well as one

hidden sigmoid non-recurrent layer after the recurrent layer. Figure 5.1 gives a schematic

overview of this architecture. Compared to the MLP architecture, the middle hidden

layer was replaced with a recurrent layer, which leads to an increase in the total number of

model parameters by 5002. Although increasing the number of model parameters increases

the model’s expressive power on its own, it is reasonable to argue that the increased

performance of the recurrent model is due to the addition of the recurrent layer and not

only because of the increased number of parameters. This argument is reasonable because

the MLP architecture is already exhibiting overfitting behaviour on the meeting data set

when the learning rate is not annealed.

6.2.1. Hyperparameters

Sequence length

The length of individual sequences that are processed by the network determines the

amount of past context that is considered by the network for a given word late in the

sequence. The longer the sequence, the more information is available to the network for

determining the correct label of a word. However, as it has been motivated at the beginning

of this section, longer sequences lead to an increased computational burden. At the same

51

52 6. Capturing Time Dependencies through Recurrent Architectures

Parameter Chosen value Range of experimented values
initial learning rate 0.002 {0.1, 0.01, 0.002, 0.001}
learning rate decay 0.7 {0.5, 0.6, 0.7, 0.8, 0.9}
optimizer RMSProp {standard SGD, Adam, RMSProp}
parameter initialization first layer: N (0, 0.01)

other layers: N (0, 0.1)
epochs 30
batch size 5 (meeting)

5 (switchboard)

padding 5 {0,5,10,20}
sequence length 20 (meeting) {20,50,100}

100 (switchboard)
shift 2 (meeting) {0, 1, 2, 3, 4, 5}

3 (switchboard)

Table 6.7.: Hyperparameters for recurrent architectures.

time, since weights in a recurrent network are shared across time, longer sequences have

a similar e↵ect as an increased batch size with respect to time to convergence. Increasing

the sequence length may therefore lead to longer training times. In order to alleviate the

fact that in a recurrent network a gradient update involves sequence length times batch

size number of words, instead of only the batch size number of words, the batch size for

recurrent architectures was reduced to five. Since data in the switchboard data set is not

as scarce as in the meeting data set, the sequences were chosen to have a length of 100

words, while words in the meeting data set are processed in sequences of 20 words.

Padding

At the beginning of Section 6.2, it has been explained that the activation of the recurrent

layers at the end of a word sequence is not transferred to the initial state of the recurrent

layer at the beginning of the next sequence. Therefore, at the beginning of each sequence,

the network has no knowledge of the words that came before, and it is not surprising that

performance for the first words in a sequence is worse than for words that come later in the

sequence. Without the knowledge about previous context, the advantage of using recurrent

architectures is lost compared to MLP architectures. At the same time, by introducing

the shift parameter s, the labels for the s last words at the end of a sequence are lost. For

a sequence of length T , the last input word xT is presented to the network along with the

label yT�s. Therefore, the beginning and the end of a sequence are padded with words,

whose labels are masked by zeros and are thus not considered for the calculation of the

error of the sequence. These padded words only serve the purpose for introducing su�cient

history such that the network can correctly classify the beginning of the actual sequence of

interest and they allow for the consideration of the last words in the sequence of interest.

While the number of additional words at the end of a sequence is equal to s, the number

of words at the beginning was determined to be five in preliminary experiments.

Shift

In order to determine a suitable value for the shift parameter, a grid search over the values

{0, 1, 2, 3, 4, 5} was done for the tasks disfluency detection, punctuation prediction, as well

52

6.2. Simple Recurrent Architecture 53

as the multi-task setting (see Chapter 7) for both, the meeting as well as the switchboard

data set. Table 6.8 shows the di↵erences in F-measure performance for varying values of

the shift parameter for disfluency detection on the switchboard data set. As it can be seen,

the impact of the shift value on the performance is not significant. The same conclusion

about the influence of the shift parameter on network performance can be drawn for all

other settings, on both data sets. The results for these settings can be found in Appendix

A.

Shift 0 1 2 3 4 5
interruption 36.26 35.74 27.43 47.42 48.37 39.72
coordinating conjunction 90.55 90.12 90.97 91.20 90.90 90.91
discourse marker 94.63 94.62 94.37 94.28 93.94 94.28
disfluency 85.49 86.04 86.55 85.83 85.46 86.19
explicit editing 96.36 95.85 95.63 95.80 96.48 96.41
filled pause 97.47 97.63 97.47 97.63 97.62 97.61
reparandum 65.20 68.26 69.71 69.34 68.75 68.84

Table 6.8.: Disfluency detection on the switchboard data set with varying shift value and
full context window. The table shows F-measure on the validation set.

Since any given input in the sequence xt is the concatenation of the current word with

two previous and two following words in the sentence, it stands to reason that enough

future context is captured in xt for the network to perform reasonably well even for s < 2.

By shifting the target sequence for more than s > 2, the model apparently does not gain

in performance, because there are not enough situations in the training data where this

combined level of foresight (shift plus context in the input vector) is necessary. In order

to confirm this intuition, experiments were conducted, in which the input vector xt was

reduced to only contain the word embedding and POS tag for the current word of interest.

The results of these experiments can be found in Appendix B. In comparison to the model

trained on context windows, the model trained on the reduced feature vectors (Table 6.9)

does indeed benefit from the introduction of the shift parameter. The detection of every

disfluency, except for filled pause, benefits significantly from shifting the labels by one

time step. Increasing the shift to two time steps still results in improved performance on

all labels, however not as significantly. Those disfluency classes whose detection perfor-

mance heavily rely on the context in which they are embedded, namely interruption and

repadandum, profit again by increasing the shift parameter to three time steps.

By separating the input word from its corresponding target label in time, the task of

correctly identifying the relationship between them becomes increasingly harder. Conse-

quently, the speed of convergence decreases, and, for s > 3, the model is still improving

after the termination criterion of 30 epochs has been reached. For a shift of more than

three time steps, training generally did not converge within 30 epochs. In order to study

the influence of higher shift values, training was allowed to continue for 150 epochs for

the case of disfluency detection on the switchboard data set. However, even after this

prolonged training time, the models were still improving. Consequently, a shift of more

than three time steps is impractical for the switchboard data set. As it can be seen in the

53

54 6. Capturing Time Dependencies through Recurrent Architectures

Shift 0 1 2 3 4⇤ 5⇤

interruption 1.16 25.05 27.97 31.96 27.40 23.59
coordinating conjunction 82.85 89.01 90.59 90.75 90.39 90.06
discourse marker 85.13 94.12 94.58 94.36 94.01 93.56
disfluency 71.49 83.14 85.91 85.74 84.61 83.93
explicit editing 63.77 96.17 96.20 96.10 95.72 94.85
filled pause 97.50 97.60 97.62 97.70 97.59 97.52
reparandum 1.75 55.49 66.32 67.45 64.57 61.95

Table 6.9.: Disfluency detection on the switchboard data set with varying shift value and
reduced context window. The table shows F-measure on the validation set. ⇤

Training was run for 150 epochs.

(a) Shift of three time steps (b) Shift of four time steps

Figure 6.1.: Training and validation costs over mini-batch iterations for disfluency detec-
tion on the switchboard dataset. Values correspond to an average over the
last 500 mini-batches. The total gradient norm is plotted in green.

comparison between Figure 6.1a and Figure 6.1b, it takes the model increasingly longer

to make initial headway in identifying any relationship between input and label at all. In

Figure 6.1b it becomes apparent that the model was allowed to continue to train and still

improves after 30 epochs (circa 78, 000 mini-batches).

Similar deductions can be made from the other settings on the switchboard data set (Ap-

pendix B). For the task of punctuation prediction (Table B.5), increasing the shift value

from zero to one improves the performance significantly. Further increasing the shift value

continues to improve the results until a peak seems to have been reached at a shift of

three or four time steps. Results for the concurrent training of disfluency detection and

punctuation prediction show similar results (Table B.6).

In analysing the results for the meeting data set, the aforementioned di�culties in relating

a shifted label to the corresponding input word become apparent. There is not enough

training data for the model to be learn the concept of (rough) copy in a recurrent model

without a context window. Since the early stopping criterion is related to the performance

54

6.2. Simple Recurrent Architecture 55

of (rough) copy, except for s = 0, no model has been saved to disk. For predicting

punctuations on the meeting data set, the results (Table B.2) show similar behaviour as

on the switchboard data set. In increasing the shift parameter from zero to one, the model

improves significantly. For a shift of two time steps, the model improves on full stop.

For other shift values however, the model fails to converge. For the concurrent training of

both tasks (Table B.3), the model is unable to learn about (rough) copy and comma for

a shift value of zero. In increasing the shift to one time step however, the model is able to

learn these concepts. The prediction of full stop also benefits from introducing a time

shift.

In a live productive environment, increasing the shift parameter increases the latency of

the system because a label for a given word is received only after s further words have

been processed. The decision about the optimum shift parameter therefore needs to take

latency requirements to the system into account. As it can be seen from, e.g. the results

in Table 6.9, the gains in performance from larger shift parameters diminish. This is

because situations in which far foresight is required for predictions are less common than

easier situations. For the following experiments involving the switchboard data set, a value

of three for the shift parameter has been chosen as a compromise between performance,

convergence speed and latency. For the meeting data set, taking into account the small

amount of data and that the models have di�culties in converging for larger values, a shift

value of two will be used.

6.2.2. Meeting Data Det

The results on the test set for training a recurrent neural network with the architecture

and hyperparameters discussed above are depicted in Table 6.10. The input vectors for

this experiment, as well as all further experiments in this thesis, include a context window

of two past and two future words, as opposed to the experiments related to the tuning of

the shift parameter in the previous section.

F-measure Precision Recall
disfluency 52.27 (+2.43) 71.77 (�7.46) 41.10 (+4.75)
filler 70.26 (�1.52) 76.81 (�0.38) 64.73 (�2.34)
interruption 11.96 (+5.59) 34.59 (�18.98) 7.23 (+3.84)
non copy 0.68 (+0.68) 4.17 (+4.17) 0.37 (+0.37)
(rough) copy 41.41 (+0.46) 49.12 (�11.25) 35.79 (+4.81)
no disfluency 89.90 (�0.40) 85.01 (+0.75) 95.38 (�1.90)

Table 6.10.: Results for disfluency detection on the meeting test set with the recurrent
architecture. Di↵erences to own results on the MLP architecture (see Table
6.3) are given in parentheses. Results are reported on the meeting test set.

Overall, the model gains in F-measure performance compared to the MLP architecture

by better balancing precision and recall. Especially for (rough) copy and interrup-

tion, the di↵erences in this balance to the MLP architecture are significant. Especially

for interruption, the trade-o↵ results in an overall increased F-measure performance.

Overall, however, the introduction of a recurrent layer has not led to a hugely improved

performance.

55

56 6. Capturing Time Dependencies through Recurrent Architectures

F-measure Precision Recall
punctuation 67.17 (+3.18) 73.53 (+3.94) 61.82 (+2.60)
full stop 52.56 (+10.89) 57.21 (�2.11) 48.60 (+16.50)
comma 35.11 (+1.34) 35.45 (+7.06) 34.78 (�6.88)
question mark 0 (+0.00) 0 (+0.00) 0 (+0.00)
no punctuation 93.06 (+0.73) 91.38 (+0.61) 94.79 (+0.85)

Table 6.11.: Results for punctuation prediction on the meeting test set with the recurrent
architecture. Di↵erences to own results on the MLP architecture (see Table
6.4) are given in parentheses. Results are reported on the meeting test set.

The results for punctuation prediction with the recurrent architecture (Table 6.11) show an

improvement versus the MLP architecture. Especially for full stop, the model has sig-

nificantly higher recall, leading to a significantly increased F-measure. Increased precision

in predicting comma at the cost of reduced recall leads to an overall increased F-measure

for this label. For question mark, the model is still not able to learn because of the lack

of enough training data.

6.2.3. Switchboard Data Set

The results for disfluency detection on the switchboard data set with the recurrent archi-

tecture (Table 6.12) show a significant improvement for those labels that were suspected

to improve most through the introduction of the recurrent layer in the model. Both,

interruption as well as reparandum show significantly higher recall, leading to an over-

all improved F-measure. The correct identification of both disfluency classes relies more

heavily on the context in which they are embedded. By providing the model with context

of past words, combined with the foresight induced by shifting the labels, the model is

capable of better detecting these labels. Overall it seems that introducing a recurrent layer

results in higher recall, a better balance between recall and precision and consequently a

higher F-measure.

F-measure Precision Recall
disfluency 85.36 (+1.75) 85.75 (�6.40) 84.98 (+8.46)
interruption 54.84 (+47.68) 53.67 (�37.75) 56.05 (+52.33)
coordinating conjunction 89.58 (+1.33) 86.01 (+1.15) 93.47 (+1.53)
discourse marker 92.64 (�0.43) 93.97 (�1.33) 91.34 (+0.40)
explicit editing 94.68 (+0.27) 95.59 (�2.10) 93.78 (+2.43)
filled pause 97.49 (+0.81) 97.28 (+2.08) 97.70 (�0.51)
reparandum 68.64 (+5.54) 71.92 (�13.06) 65.64 (+15.47)

Table 6.12.: Results for disfluency detection on the switchboard data set with the recurrent
architecture. Di↵erences to own results on the MLP architecture (see Table
6.5) are given in parentheses. Results are reported on the switchboard test
set.

The introduction of a recurrent layer improve the results for punctuation prediction on

the switchboard data set (Table 6.13) significantly in the identification of question mark.

Since the correct placement of a question mark often depends on the first words in a

sentence, having access to the history of past words at the end of a sequence is expected to

56

6.3. LSTM 57

help in marking questions correctly. Furthermore, the results for punctuation prediction

show that an overall increased recall for all labels better balances recall with precision.

Except for comma, this relation holds and increases the overall F-measure for these labels.

F-measure Precision Recall
punctuation 88.42 (+0.84) 86.25 (�2.91) 90.71 (+4.66)
full stop 72.00 (+4.11) 70.47 (�1.23) 73.60 (+9.13)
comma 75.74 (�0.89) 69.05 (�10.03) 83.86 (+9.53)
question mark 64.58 (+26.70) 70.25 (�7.36) 59.76 (+34.70)
slash-unit 85.10 (+2.59) 82.93 (+0.94) 87.39 (+4.36)
incomplete slash-unit 39.51 (+6.28) 44.58 (�9.27) 35.48 (+11.45)

Table 6.13.: Results for punctuation prediction on the switchboard data set with the re-
current architecture. Di↵erences to own results on the MLP architecture (see
Table 6.6) are given in parentheses. Results are reported on the switchboard
test set.

6.3. LSTM

The LSTM architecture, as it that has been introduced in Section 5.2.2, is the most widely

used recurrent architecture in the recent literature. The advantage of LSTM architectures

is that long-range dependencies in the data can be easier learned. Consequently, it is

interesting to evaluate how a recurrent architecture with a LSTM layer instead of a stan-

dard recurrent layer performs. The implicit hypothesis in using a LSTM architecture for

disfluency detection and punctuation prediction is therefore that performance is higher on

those labels that exhibit long-term dependencies.

As can be see in Table 6.14, introducing the LSTM layer leads to an overall small im-

provement in performance for disfluency detection on the meeting data set. There are,

however, no significant improvements to be gained. The increased precision for non copy

can not be considered interesting in light of the extremely small recall for this label. On the

switchboard data set (see Table 6.16), disfluency detection performance su↵ered slightly

compared to the simple recurrent architecture. The F-measure for every label in lower

than the F-measure for the alternative, simpler structure.

Performance for punctuation prediction with an LSTM architecture increased slightly com-

pared to using a simple recurrent architecture on the meeting data set (see Table 6.15). The

model has built a rudimentary understanding of question mark, however since training

data is scarce, the F-measure is still very low. On the switchboard data set, performance

does not di↵er significantly from the baseline.

The hypothesis that disfluency or punctuation labels with long-term dependencies might

exhibit higher performance when using a LSTM architecture needs to be rejected in light

of the results presented here. Performance is compareable and the increased complexity

of a LSTM architecture can not be justified. Apparently, the tasks considered here do

not exhibit long-term dependencies that the normal recurrent architecture is not able to

learn. In the following chapters, experiments are therefore reported on the simpler, faster

to train recurrent architectures.

57

58 6. Capturing Time Dependencies through Recurrent Architectures

F-measure Precision Recall
disfluency 52.90 (+0.63) 72.29 (+0.52) 41.71 (+0.60)
filler 70.48 (+0.23) 75.57 (�1.24) 66.03 (+1.30)
interruption 12.09 (+0.13) 31.88 (�2.71) 7.46 (+0.23)
non copy 1.43 (+0.74) 16.67 (+12.50) 0.75 (+0.37)
(rough) copy 42.17 (+0.76) 50.97 (+1.86) 35.97 (+0.17)
no disfluency 90.00 (+0.10) 85.14 (+0.14) 95.43 (+0.05)

Table 6.14.: Results for disfluency detection on the meeting data set with the LSTM archi-
tecture. Di↵erences to results with the standard recurrent architecture (see
Table 6.10) are given in parentheses. Results are reported on the meeting test
set.

F-measure Precision Recall
punctuation 68.81 (+1.65) 69.65 (�3.88) 68.00 (+6.18)
full stop 56.32 (+3.77) 52.28 (�4.92) 61.04 (+12.44)
comma 32.96 (�2.14) 37.35 (+1.90) 29.50 (�5.28)
question mark 7.86 (+7.86) 12.79 (+12.79) 5.67 (+5.67)
no punctuation 92.81 (�0.25) 92.55 (+1.17) 93.06 (�1.73)

Table 6.15.: Results for punctuation prediction on the meeting data set with the LSTM
architecture. Di↵erences to results with the standard recurrent architecture
(see Table 6.11) are given in parentheses. Results are reported on the meeting
test set.

F-measure Precision Recall
disfluency 85.15 (�0.22) 89.11 (+3.36) 81.52 (�3.46)
interruption 30.17 (�24.67) 75.70 (+22.03) 18.84 (�37.21)
coordinating conjunction 89.41 (�0.18) 85.84 (�0.17) 93.28 (�0.19)
discourse marker 92.62 (�0.01) 93.34 (�0.62) 91.91 (+0.57)
explicit editing 93.69 (�0.99) 93.07 (�2.53) 94.32 (+0.54)
filled pause 97.30 (�0.19) 96.95 (�0.33) 97.66 (�0.04)
reparandum 68.12 (�0.52) 75.58 (+3.66) 62.00 (�3.64)

Table 6.16.: Results for disfluency detection on the switchboard data set with the LSTM
architecture. Di↵erences to results with the standard recurrent architecture
(see Table 6.12) are given in parentheses. Results are reported on the switch-
board test set.

F-measure Precision Recall
punctuation 88.50 (+0.09) 86.21 (�0.03) 90.92 (+0.22)
full stop 71.47 (�0.53) 69.46 (�1.02) 73.60 (+0.00)
comma 76.13 (+0.40) 69.70 (+0.65) 83.88 (+0.02)
question mark 66.13 (+1.55) 74.40 (+4.14) 59.52 (�0.24)
slash-unit 84.85 (�0.25) 82.67 (�0.26) 87.15 (�0.24)
incomplete slash-unit 40.75 (+1.24) 46.95 (+2.37) 36.00 (+0.52)

Table 6.17.: Results for punctuation prediction on the switchboard data set with the LSTM
architecture. Di↵erences to results with the standard recurrent architecture
(see Table 6.13) are given in parentheses. Results are reported on the switch-
board test set.

58

6.4. F-measure as Cost Function 59

6.4. F-measure as Cost Function

Instead of maximizing the log-likelihood of the data (see (2.4)) through minimization of the

cross entropy cost function, other cost functions for training neural networks are possible.

As has been argued in Section 5.1.2, since ultimately a model’s performance in terms of

F-measure is relevant, it is interesting to evaluate the use of a probabilistic version of the

F-measure (see (5.19)) as a cost function. Since the F-measure is especially suited for

evaluating unbalanced data sets, the implicit hypothesis is that a network, when trained

with the probabilistic F-measure cost function on the unbalanced meeting or switchboard

data sets, performs better than when trained with the cross entropy cost function.

This hypothesis, however, showed to be di�cult to evaluate, because in the available time

for hyperparameter tuning in the course of this thesis, only the task of disfluency detection

on the switchboard data set was successfully trained to convergence with the F-measure

cost function. With a learning rate of 0.0002 and otherwise equivalent hyperparameters

and architecture setting as described in Section 6.2.1, the results for training disfluency

detection on the switchboard data set are given in Table 6.18.

F-measure Precision Recall
disfluency 84.30 (�1.06) 88.05 (+2.30) 80.86 (�4.12)
interruption 44.39 (�10.45) 40.15 (�13.53) 49.62 (�6.42)
coordinating conjunction 90.42 (+0.84) 88.81 (+2.79) 92.10 (�1.36)
discourse marker 93.28 (+0.65) 97.09 (+3.12) 89.76 (�1.58)
explicit editing 95.56 (+0.88) 96.63 (+1.04) 94.51 (+0.72)
filled pause 97.62 (+0.13) 98.30 (+1.01) 96.96 (�0.74)
reparandum 64.48 (�4.15) 79.41 (+7.49) 54.28 (�11.35)

Table 6.18.: Results for disfluency detection on the switchboard data set with the F-
measure cost function. Di↵erences to results with the cross entropy cost func-
tion (see Table 6.12) are given in parentheses. Results are reported on the
switchboard test set.

Within the 30 epochs of training, the model is still slightly improving on reparandum.

Overall, the performance of training with the F-measure cost function is worse than with

cross entropy on the more di�cult labels interruption and reparandum. It is interesting

to see how the trade-o↵ between precision and recall emerges in this setting compared to

cross entropy. The overall lower recall suggests that the F-measure trained model is more

conservative in its predictions. The higher precision on the individual labels also suggests

the same. Instead of producing false positives, the model accepts that it will miss some

positive labels.

6.5. Summary

In this chapter, several experiments in applying neural networks to disfluency detection

and punctuation prediction were presented. Introducing recurrent architectures showed

di↵erent levels of improvements for the di↵erent labels involved in these tasks. Overall,

the performance for the aggregated labels disfluency and punctuation improved, which

59

60 6. Capturing Time Dependencies through Recurrent Architectures

is an important distinction for label-invariant downstream NLP tasks. As has been argued

in the respective sections, the F-measure improvements can be, in most cases, attributed to

a higher recall for the individual labels. The introduction of the LSTM architecture showed

no significant improvement compared to the simple recurrent architecture. It stands to

reason that the tasks considered here do not pose a significant challenge with respect to

long-term dependencies that the simple recurrent architecture cannot cope with.

Future work on applying recurrent neural networks to disfluency detection and punctuation

prediction will include studying a wider variety of neural network architectures. Whereas

the focus of this work lay in showing the advantages of recurrent architectures over MLP

architectures, actually maximizing the predictive accuracy on the respective task will in-

volve experimenting with deeper and wider architectures, more sophisticated initialization

schemes and the study of other possible features. Introducing deeper architectures will

also require studying the e↵ect of dropout and further regularization techniques.

Due to time constraints, experiments with the probabilistic F-measure as cost function

were not as extensive as the other experiments in this thesis. The results on disfluency

detection on the switchboard data set show promising results with respect to the di↵erent

balance of precision and recall, compared to the cross entropy cost function. Further

research in this direction will include studying the gradient dynamics induced by using

di↵erent cost functions that lead to these di↵erences in balance. It is to be assumed that

the results from these studies will give insight into the dynamics of the hyperparameter

space that prevented the models to converge on the other tasks. One possible approach

would be to combine two cost functions in order to benefit from each function’s advantages.

Furthermore it is also interesting to study the e↵ects of building ensembles of models with

di↵erent precision and recall balance and investigate their predictive performance.

60

7. Regularization through Multi-Task

Learning

Learning punctuation prediction and disfluency detection jointly can be expected to im-

prove the generalization capabilities of the neural network, if it is justified to assume that

both tasks can be sensibly learned together. In Cho et al. (2015) and X. Wang et al.

(2014), this approach was successful for a variety of models. By introducing a second out-

put layer in a neural network, the costs for each task can be calculated separately in a joint

model (see Figure 7.1 for a schema of a recurrent multi-task network). Both output layers

might be connected to the same last hidden layer in the network, or there might be sev-

eral task-dependent hidden layers between the last joined layer and the respective output

layer. The model is thus separated into task-specific parameters closer to the output layer

and shared parameters closer to the input layer. Because the parameters shared between

tasks see more input-target pairs than if each task was modelled by a dedicated network,

those shared parameters have higher statistical strength, and can generalize better. This

is true, however, only, if the not otherwise specifiable closeness assumption with respect to

punctuation prediction and disfluency detection is true in this setting. By training both

tasks simultaneously, the model will generate, in the shared layers, a representation of the

data that is serviceable to both tasks.

The cost function, which this network is trained to minimize, results from adding the

costs from both individual layers. This distinction between layers is only relevant in the

multi-class environment, such as with the meeting data set. In this case, each output

layer can have only one positive label for a given input. Consequently, each output layer

computes the softmax function over its activations (see Section 5.1.2) and no activations

of the respective other output layers must be included.

In the multi-label environment, the logistic function constitutes the activation function

of the output layers. It is, as opposed to the softmax function, not a vector function

and distinguishing between two task-specific output layers is equivalent to considering one

larger joint output layer. The remaining network architecture settings used in this chapter,

as well as the corresponding training hyperparameters, are equivalent to the settings in

Section 6.1.2, unless otherwise noted.

In comparing the influence of a joint treatment of both tasks versus their individual per-

formance, the di↵erences between the recurrent architecture and the MLP architecture

does not lie in the foreground. However, since the comparison of recurrent architectures

versus MLP is a central part of this thesis, experiments on both, the MLP architecture as

well as the recurrent architecture introduced in the previous chapter will be investigated.

61

62 7. Regularization through Multi-Task Learning

Input	layer

Feedforward layer

Recurrent	 layer

Feedforward layer

Disfluency Punctuation

Figure 7.1.: Schematic of a multi-task recurrent neural network. Each arrow indicates a
weight matrix and a bias; own representation.

7.1. MLP Architecture

7.1.1. Meeting Data Set

In Cho et al. (2015), the authors report results of jointly learning the disfluency detection

task with the punctuation prediction, using the hyperparameters introduced in Section 6.1.

Their results, as well as the results of the MLP architecture’s performance that have been

recorded in this thesis, are depicted in Table 7.1. Considering that the results reported

here were achieved without pre-training and using only word embeddings and POS tags

as features, it can be assumed that the di↵erences arise from the use of di↵erently chosen

hyperparameters.

The generalization capabilities of the model in detecting disfluency increases by including

the information from the punctuation prediction task. In both, precision and recall, there

is an improvement compared to the performance of the separately trained models. On the

other side, punctuation prediction also benefits from the joint learning task. The model

improves its prediction capabilities of full stop and starts to form a concept of question

mark.

7.1.2. Switchboard Data Set

Jointly training disfluency detection and punctuation prediction on the switchboard data

set leads to a disastrous and inexplicable decrease in performance on both tasks for the

MLP architecture. Although the code for producing these results has been thoroughly

analysed for errors, a mistake in programming can, of course, not be ruled out. Assuming,

however, that no coding errors were made, the results indicate that the model is stuck in

a bad local optimum without being able to escape. The fact that the performance of the

recurrent network architecture (see Table 7.4) on the joint learning task does not show

similar detrimental results gives reason to belief that no property inherent to the data set

is responsible for these bad results. Further experimentation on network architecture and

62

7.2. Simple Recurrent Architecture 63

F-measure Precision Recall
disf. (Cho et al., 2015) 49.31 81.08 35.43

disfluency 51.33 (+1.48) 79.37 (+0.13) 37.93 (+1.57)
filler 71.25 (�0.52) 76.91 (�0.27) 66.37 (�0.7)
interruption 9.13 (+2.75) 44.55 (�9.02) 5.08 (+1.69)
non copy 0 (+0.0) 0 (+0.0) 0 (+0.0)
(rough) copy 43.25 (+2.30) 62.26 (+1.89) 33.13 (+2.15)
no disfluency 90.44 (+0.14) 84.57 (+0.32) 97.18 (�0.09)
punc. (Cho et al., 2015) 52.82 65.31 44.35

punctuation 67.51 (+3.53) 76.84 (+7.25) 60.20 (+0.99)
full stop 56.28 (+14.61) 57.88 (�1.44) 54.76 (+22.65)
comma 30.59 (�3.17) 39.23 (+10.85) 25.07 (�16.59)
question mark 8.98 (+8.98) 22.0 (+22.0) 5.64 (+5.64)
no punctuation 93.38 (+1.05) 91.13 (+0.36) 95.75 (+1.81)

Table 7.1.: Results for joint training of punctuation prediction and disfluency detection
on the meeting data set with the MLP architecture. Di↵erences to the MLP
performance when separately trained (see Table 6.3 and Table 6.4) are included
in parentheses. Results are reported on the meeting test set.

hyperparameters might lead to insights about these results, but were out of scope for this

thesis.

F-measure Precision Recall
disfluency 30.19 (�53.42) 17.80 (�74.35) 99.49 (+22.96)
interruption 23.24 (+16.09) 14.62 (�76.81) 56.65 (+52.93)
coordinating conjunction 77.24 (�11.01) 64.79 (�20.07) 95.63 (+3.69)
discourse marker 67.29 (�25.78) 51.33 (�43.97) 97.66 (+6.72)
explicit editing 95.03 (+0.61) 95.59 (�2.13) 94.51 (+3.15)
filled pause 87.94 (�8.74) 78.68 (�16.53) 99.68 (+1.47)
reparandum 12.45 (�50.65) 6.68 (�78.30) 91.55 (+41.38)
punctuation 38.91 (�48.66) 24.88 (�64.28) 89.28 (+3.23)
full stop 0.07 (�67.82) 100.0 (+28.30) 0.03 (�64.43)
comma 28.53 (�48.10) 17.20 (�61.88) 83.61 (+9.29)
question mark 10.87 (�27.01) 87.50 (+9.89) 5.80 (�19.26)
slash-unit 77.48 (�5.03) 78.92 (�3.07) 76.09 (�4.94)
incomplete slash-unit 3.61 (�29.63) 2.10 (�51.75) 12.85 (�11.19)

Table 7.2.: Results for joint training of punctuation prediction and disfluency detection on
the switchboard data set with the MLP architecture. Di↵erences to the MLP
performance when separately trained (see Table 6.5 and 6.6) are depicted in
parentheses. Results are reported on the switchboard test set.

7.2. Simple Recurrent Architecture

7.2.1. Meeting Data Set

The performance gains for the recurrent network architecture are comparable to the results

reported for the MLP in the previous section. The F-measure for disfluency increases due

to an overall higher precision and recall. Notably, the model also starts to form a concept

of question mark. Interestingly, the advantage of the recurrent architecture compared to

63

64 7. Regularization through Multi-Task Learning

the MLP in punctuation prediction seems to have been lost. Compared to the results in

Section 7.1.1, the F-measure is slightly lower.

F-measure Precision Recall
disfluency 53.82 (+1.54) 73.96 (+2.19) 42.30 (+1.19)
filler 71.11 (+0.86) 78.44 (+1.63) 65.04 (+0.31)
interruption 12.91 (+0.95) 25.24 (�9.36) 8.67 (+1.44)
non copy 2.34 (+1.65) 16.13 (+11.96) 1.26 (+0.89)
(rough) copy 42.43 (+1.02) 54.34 (+5.22) 34.80 (�1.00)
no disfluency 90.17 (+0.27) 85.22 (+0.22) 95.72 (+0.33)
punctuation 66.35 (�0.82) 76.18 (+2.65) 58.76 (�3.05)
full stop 55.10 (+2.54) 59.47 (+2.26) 51.33 (+2.73)
comma 31.59 (�3.52) 39.44 (+4.00) 26.35 (�8.43)
question mark 10.19 (+10.19) 13.66 (+13.66) 8.12 (+8.12)
no punctuation 93.15 (+0.10) 90.77 (�0.62) 95.66 (+0.87)

Table 7.3.: Results for joint training of punctuation prediction and disfluency detection
on the meeting data set with the recurrent architecture. Di↵erences to the
recurrent performance when separately trained (see Table 6.10 and 6.11) are
depicted in parentheses. Results are reported on the meeting test set.

7.2.2. Switchboard Data Set

As opposed to the performance di↵erences with the MLP architecture, results on the

recurrent network architecture (Table 7.4) are more in line with expectations. Overall

performance for disfluency detection increases slightly, except for the detection of in-

terruption. The F-measure for this label is reduced drastically, which is caused by an

unfavourable trade-o↵ between precision and recall compared to the separately trained

models. Equally, for punctuation prediction the performance increases slightly for punc-

tuation, while exhibiting an unfavourable trade-o↵ between precision and recall for full

stop and incomplete slash-unit.

64

7.3. Summary 65

F-measure Precision Recall
disfluency 86.12 (+0.75) 91.85 (+6.10) 81.05 (�3.93)
interruption 39.00 (�15.83) 77.14 (+23.47) 26.10 (�29.95)
coordinating conjunction 90.53 (+0.94) 88.90 (+2.89) 92.21 (�1.26)
discourse marker 93.21 (+0.57) 96.07 (+2.11) 90.51 (�0.84)
explicit editing 95.24 (+0.56) 96.77 (+1.18) 93.75 (�0.03)
filled pause 97.53 (+0.04) 98.26 (+0.98) 96.81 (�0.89)
reparandum 69.72 (+1.08) 80.93 (+9.01) 61.24 (�4.40)
punctuation 88.61 (+0.19) 90.84 (+4.59) 86.48 (�4.23)
full stop 70.52 (�1.48) 78.15 (+7.68) 64.24 (�9.35)
comma 78.02 (+2.28) 79.96 (+10.91) 76.17 (�7.68)
question mark 66.67 (+2.08) 77.98 (+7.73) 58.22 (�1.54)
slash-unit 85.56 (+0.45) 86.72 (+3.79) 84.43 (�2.97)
incomplete slash-unit 31.24 (�8.27) 57.78 (+13.21) 21.41 (�14.08)

Table 7.4.: Results for joint training of punctuation prediction and disfluency detection on
the switchboard data set with the recurrent architecture. Di↵erences to the
recurrent performance when separately trained (see Table 6.12 and 6.13) are
depicted in parentheses. Results are reported on the switchboard test set.

7.3. Summary

In this chapter, the e↵ect of jointly learning disfluency detection and punctuation predic-

tion in one shared model was investigated. Results for experiments on the meeting data

set and the switchboard data set for the MLP architecture as well as a recurrent neural

network architecture were reported and analysed. Except for an inexplicable extreme per-

formance loss for the MLP architecture on the switchboard data set, jointly training both

tasks showed a positive influence on the performance of both tasks. This is in line with

previously reported results in which both tasks were combined. Especially considering the

fact that the additional computational costs of training the weights of not one, but two

output layers is comparably small, including punctuation information, if available, into

the task of disfluency detection, is a sensible choice.

Future work on multi-task learning will include experimenting with more sophisticated

network structures. Decoupling the task-specific layers further towards the input layers

might improve results if both tasks are not as related as one might think. In designing an

architecture with a recurrent layer for each specific task, it is possible to experiment with

di↵erent optimal shift values for each task.

65

8. Transfer Learning across Data Sets

One major drawback for learning on the meeting data set is that it is comparably small

for training a deep neural network. As a consequence, more complex models tend to

overfit easily, while smaller models might not be capable to express the relation between

input and targets to a satisfying degree. Apart from the previously introduced multi-

task learning setting, the most straight-forward solution to the problem of not having

enough data is to acquire more data. This, however, can be a costly endeavour. Since the

meeting data set is limited and acquiring more data is not possible, in this chapter it will be

investigated if, instead of getting more meeting data, it is possible to improve generalization

by incorporating knowledge from a similar task on a similar data set, namely detecting

disfluencies on the switchboard data set. In this so called transfer learning setting, it is

assumed that some of the relations that are learned on the switchboard data set are relevant

for the meeting data set and can be exploited to improve generalization performance.

In the following, two possible approaches to combining knowledge from the switchboard

data set into disfluency detection and punctuation prediction on the meeting data set

will be evaluated. Firstly, two possibilities to reuse a model, which has been trained on

the switchboard data set, are investigated. This is followed by an investigation of the

regularizing power of the switchboard data set on the meeting data set during parallel

training of both data sets in one shared model.

8.1. Fine-tuning of a Switchboard Model

Since disfluency detection and punctuation prediction are very similar on the switchboard

data set compared to the tasks on the meeting data set, it stands to reason that the

knowledge contained in the layers of a switchboard-trained model should provide a good

starting point for the training of the meeting data set. Except for the weights of the

output-layer, which are label-specific for each data set, the representation of the data

in the lower layers can be considered task-specific. In order to form an intuition about

this distinction between label-specific knowledge in the output layer and more general,

task-specific knowledge in the lower, hidden layers, it is reasonable to consider the role of

word-embeddings. These word-embeddings that are used as input features to the network

for all experiments reported in this thesis, can be considered specific for any task in natural

language processing. If the word embedding matrix encodes the meaning of words such

that similar words lie closer together than words with dissimilar meanings, then one can

imagine the higher layers in a trained network to represent intermediate concepts between

the meaning of words and the concept of, for example, an interruption or a (rough)

copy. Depending on how close the task, on which the initial model was trained on, is to

the task, on which the model will be fine-tuned, the more useful the representation in the

upper layers will be for the new task. Azizpour et al. (2014), for example, give an in-depth

discussion of the transferability of visual features. In the visual domain, intermediate

representations can be easily visualized and therefore allow for an easier interpretation

66

8.1. Fine-tuning of a Switchboard Model 67

of this intuition. For the natural language domain there is, however, no intuitive way to

interpret the intermediate representations, and assessing their usefulness requires empirical

verification. The idea of training recurrent neural networks in a modular way is not a

new concept. (Waibel, Sawai, & Shikano, 1989) combines networks trained on individual

datasets encompassing di↵erent consonant classes for phoneme recognition by fine-tuning

select parts of each model. Since the size of networks that are able to model all consonants

at the same time were prohibitively expensive to train at the time, techniques to combine

select models into one larger model were born out of necessity. In their work, the authors

compare di↵erent approaches to combining two separate network and report best results

when all parameters of the joint model were fine-tuned.

Due to the relative small depth of the network architectures considered here (only consider-

ing the number of layers, not the fact that the recurrence in the network can be considered

deep), experiments are conducted in two settings. All layers, except for the output layer,

are used to initialize the network designated for training on the meeting data set. In

one setting, the error is propagated through the whole network. In the second setting,

the error is propagated through the output layer only, ignoring the error resulting from

imperfect weights in the lower layers. The assumption in this setting is that the represen-

tation learned in the lower layers is su�ciently good for the meeting disfluency detection

and punctuation prediction task to perform well, without the need to compute gradients

and updates for the lower layers. Especially with respect to the burden of computing the

gradients for a network unrolled in time, this simplification leads to a large reduction in

computational e↵ort. In the first setting, the whole network is fine-tuned to provide the

best possible task-specific representation for the meeting data set.

Since recurrent architectures have been shown to outperform MLP architectures on the

considered learning tasks, the experiments were conducted on the recurrent architecture

presented in Section 6.2.1. Since the lower layers already converged, the learning rate was

chosen to be 0.0002 after initial experiments. The output layer was initialized by drawing

from N (0, 0.1). It is important to note that, since the switchboard model was trained with

a shift of three time steps, for the fine-tuning, the meeting data target labels were also

shifted by three time steps. This is in contrast to the shift of two time steps for previous

experiments on the meeting data set. All other architecture settings as well as the training

hyperparameters were chosen to be identical to previous experiments in Section 6.2.

In each of the following experiments, the model is initialized with the weights of a model

that has been trained on the switchboard data set until convergence. For each of the

respective tasks, the initial switchboard models correspond to the models presented in

Section 6.2 and Section 7.2 for the joint training of punctuation prediction and disfluency

detection.

8.1.1. Fine-tuning all Layers

As it can be seen in Table 8.1, the performance in detecting disfluencies improves signifi-

cantly when fine-tuning all layers of a model that is trained on the switchboard data set.

Especially the performance on (rough) copy increased to a large extent. Recall increased

67

68 8. Transfer Learning across Data Sets

by a large margin, indicating that more words were labelled as (rough) copy; at the same

time precision increased as well, showing that more of the increased number of positive

labels were, in fact, correctly identified. All other labels also profited and resulted in a

high increase in performance of disfluency.

F-measure Precision Recall
disfluency 56.58 (+4.31) 76.50 (+4.73) 44.89 (+3.78)
filler 71.22 (+0.97) 80.71 (+3.90) 63.73 (�1.00)
interruption 13.17 (+1.21) 36.79 (+2.19) 8.02 (+0.79)
non copy 6.86 (+6.18) 8.88 (+4.71) 5.60 (+5.22)
(rough) copy 54.72 (+13.31) 67.42 (+18.30) 46.05 (+10.25)
no disfluency 90.71 (+0.81) 85.92 (+0.92) 96.06 (+0.68)

Table 8.1.: Results for disfluency detection on the meeting data set when fine-tuning a
model pre-trained on the switchboard data set. Changes in performance to
the model trained on the meeting data set alone (see Table 6.10) are given in
parentheses. Results are reported on the meeting test set.

Results on punctuation prediction (Table 8.2) also show a large increase in performance.

Especially full stop and question mark improve drastically.

F-measure Precision Recall
punctuation 71.72 (+4.55) 81.45 (+7.92) 64.06 (+2.25)
full stop 60.93 (+8.37) 64.21 (+7.00) 57.97 (+9.36)
comma 35.74 (+0.63) 44.06 (+8.61) 30.07 (�4.71)
question mark 32.12 (+32.12) 55.00 (+55.00) 22.68 (+22.68)
no punctuation 94.23 (+1.18) 91.99 (+0.61) 96.59 (+1.79)

Table 8.2.: Results for punctuation prediction on the meeting data set when fine-tuning
a model pre-trained on the switchboard data set. Changes in performance to
the model trained on the meeting data set alone (see Table 6.11) are given in
parentheses. Results are reported on the meeting test set.

In the same was as for the seperately trained tasks, performance on the meeting data set

increases when jointly training disfluency detection and punctuation prediction. Results

for this experiment can be seen in Table 8.3.

8.1.2. Fine-tuning the Output Layer

Results for the experiments in this section are given in relation to the performance results

of Section 8.1.1. As it can be seen for the task of disfluency detection (Table 8.4), training

only the output layer achieves worse performance than fine-tuning the whole model. In

fact, performance is even slightly worse compared to the results from using a randomly

initialized model. Apparently, the representation learned from the switchboard data set

at the last hidden layer is suboptimal for disfluency detection for the meeting data set.

For punctuation prediction, however, the representation learned with the switchboard

data set proves to be very helpful for punctuation prediction on the meeting data set (see

Table 8.5). The improvement in performance over the fully fine-tuned model make this

experiment the best performing configuration for punctuation on the meeting data set.

68

8.1. Fine-tuning of a Switchboard Model 69

F-measure Precision Recall
disfluency 56.13 (+2.31) 81.59 (+7.63) 42.78 (+0.48)
filler 71.64 (+0.53) 76.54 (�1.91) 67.33 (+2.3)
interruption 7.40 (�5.51) 57.38 (+32.14) 3.95 (�4.72)
non copy 0.00 (�2.34) 0.00 (�16.13) 0.00 (�1.26)
(rough) copy 55.23 (+12.81) 68.05 (+13.71) 46.48 (+11.68)
no disfluency 91.06 (+0.89) 85.61 (+0.39) 97.24 (+1.53)
punctuation 71.19 (+4.84) 83.04 (+6.86) 62.30 (+8.89)
full stop 60.24 (+5.14) 64.18 (+4.71) 56.76 (+5.43)
comma 34.34 (+2.75) 44.90 (+5.46) 27.80 (+1.46)
question mark 24.72 (+14.53) 45.21 (+31.54) 17.01 (+8.89)
no punctuation 94.27 (+1.12) 91.66 (+0.90) 97.02 (+1.36)

Table 8.3.: Results for joint training of punctuation prediction and disfluency detection on
the meeting data set when fine-tuning a model pre-trained on the switchboard
data set. Changes in performance to the model trained on the meeting data
set alone (see Table 7.3) are given in parentheses. Results are reported on the
meeting test set.

F-measure Precision Recall
disfluency 50.77 (�5.81) 83.66 (+7.15) 36.44 (�8.45)
filler 68.90 (�2.32) 74.71 (�6.00) 63.93 (+0.20)
interruption 0.0 (�13.17) 0.00 (�36.79) 0.00 (�8.02)
non copy 0.0 (�6.86) 0.00 (�8.88) 0.00 (�5.60)
(rough) copy 51.65 (�3.07) 76.78 (+9.36) 38.92 (�7.13)
no disfluency 90.66 (�0.05) 84.37 (�1.55) 97.97 (+1.90)

Table 8.4.: Results for disfluency detection on the meeting data set when fine-tuning the
output layer of a model pre-trained on the switchboard data set. Changes in
performance to the complete fine-tuned model (Table 8.1) are given in paren-
theses. Results are reported on the meeting test set.

Without training the lower layers, the model is able to better balance precision and recall,

leading to an overall improved performance.

F-measure Precision Recall
punctuation 73.62 (+1.91) 79.18 (�2.27) 68.80 (+4.73)
full stop 61.18 (+0.25) 63.03 (�1.18) 59.43 (+1.46)
comma 38.62 (+2.88) 42.57 (�1.50) 35.34 (+5.28)
question mark 31.36 (�0.76) 48.39 (�6.61) 23.20 (+0.52)
no punctuation 94.32 (+0.09) 92.92 (+0.93) 95.77 (�0.82)

Table 8.5.: Results for punctuation prediction on the meeting data set when fine-tuning
the output layer of a model pre-trained on the switchboard data set. Changes
in performance to the complete fine-tuned model (Table 8.2) are given in paren-
theses. Results are reported on the meeting test set.

In the joint learning of punctuation prediction and disfluency detection without fine-tuning

of the lower layers, the model can improve upon the results for disfluency detection as

well as punctuation prediction (see Table 8.6). In this configuration, the performance for

disfluency is the best achieved compared to the other experiments in this thesis.

69

70 8. Transfer Learning across Data Sets

F-measure Precision Recall
disfluency 56.98 (+0.86) 82.81 (+1.22) 43.44 (+0.66)
filler 72.73 (+1.09) 77.46 (+0.93) 68.54 (+1.20)
interruption 10.99 (+3.59) 47.41 (�9.96) 6.21 (+2.26)
non copy 0.73 (+0.73) 16.67 (+16.67) 0.37 (+0.37)
(rough) copy 53.95 (�1.28) 69.75 (+1.70) 43.99 (�2.49)
no disfluency 91.23 (+0.17) 85.78 (+0.17) 97.42 (+0.18)
punctuation 72.27 (+1.08) 82.01 (�1.03) 64.59 (+2.30)
full stop 61.27 (+1.03) 62.52 (�1.65) 60.06 (+3.30)
comma 34.23 (�0.12) 48.36 (+3.46) 26.48 (�1.32)
question mark 27.96 (+3.24) 34.07 (�11.13) 23.71 (+6.70)
no punctuation 94.34 (+0.07) 92.11 (+0.44) 96.68 (�0.34)

Table 8.6.: Results for joint training of punctuation prediction and disfluency detection on
the meeting data set when fine-tuning the output layer of a model pre-trained
on the switchboard data set. Changes in performance to the complete fine-
tuned model (Table 8.3) are given in parentheses. Results are reported on the
meeting test set.

8.2. Joint Training of the Meeting and the Switchboard Data

Set

Input	layer

Feedforward layer

Recurrent	 layer

Feedforward layer

Meeting	 Task Switchboard	Task

Input	layer

Feedforward layer

Recurrent	 layer

Feedforward layer

Meeting	 Task Switchboard	Task

Figure 8.1.: Schematic of jointly training a recurrent neural network. During training,
batches of meeting data (left) and switchboard data (right) are alternated.

Instead of separating the learning of the switchboard data set from the learning of the

meeting data set and performing one after the other, it is possible to jointly train both

tasks in one shared model with randomly initialized parameters. In order to achieve this,

each batch of switchboard data is followed by a batch of meeting data and vice versa. As

is depicted in Figure 8.1, there is a separate output layer for each data set. No gradients

with respect to the parameters of the data set-specific output layer are computed when a

mini-batch of data from the other data set is trained.

In order to have an error signal that is balanced between both output layers, the meeting

70

8.3. Summary 71

data set tasks are treated as a multi-label learning task. Consequently, in contrast to

previous experiments, the output layer for the meeting data computes the logistic function

as opposed to the softmax function. Unfortunately, evaluating the influence of this setting

on the performance of training with the meeting data set alone was out of scope of this

thesis. Apart from the addition of a separate output layer and the corresponding change

in the cost function, the results presented here were achieved with the same architecture

settinga and hyperparameters as presented in Section 6.2.1.

The results depicted in Table 8.7 show how the jointly trained model results in a higher

F-measure for disfluency detection than the model that is solely trained on the meeting

data set. Especially for (rough) copy, the performance increase is significant. However,

compared to the results in the previous section, the increase in F-measure is not as high.

F-measure Precision Recall
disfluency 54.37 (+2.09) 71.25 (�0.53) 43.95 (+2.85)
filler 70.99 (+0.73) 78.59 (+1.78) 64.73 (+0.00)
interruption 14.55 (+2.58) 27.08 (�7.52) 9.94 (+2.71)
non copy 4.87 (+4.18) 5.98 (+1.81) 4.10 (+3.73)
(rough) copy 52.18 (+10.77) 67.30 (+18.18) 42.61 (+6.82)

Table 8.7.: Results for disfluency detection on the meeting data set when trained con-
currently with disfluency detection on the switchboard data set. Changes in
performance to the model trained on the meeting data set alone (Table 6.10)
are given in parentheses. Results are reported on the meeting test set.

Similarly, for punctuation prediction (see Table 8.8), the results compare favourably to

training on the meeting data set alone. Especially for question mark and for full stop,

performance increases. As in the case for disfluency detection however, performance in-

creases not as much as in the experiments presented in the previous section.

F-measure Precision Recall
punctuation 68.57 (+1.41) 75.57 (+2.05) 62.76 (+0.94)
full stop 56.08 (+3.53) 58.52 (+1.32) 53.84 (+5.24)
comma 34.16 (�0.95) 39.70 (+4.25) 29.97 (�4.81)
question mark 17.89 (+17.89) 23.53 (+23.53) 14.43 (+14.43)

Table 8.8.: Results for punctuation prediction on the meeting data set when trained con-
currently with disfluency detection on the switchboard data set. Changes in
performance to the model trained on the meeting data set alone (Table 6.11)
are given in parentheses.

8.3. Summary

In this chapter, several approaches to transfer knowledge from the bigger switchboard data

set to the smaller meeting data set were investigated. In the first approach, the knowledge

about the switchboard data that is encoded in the parameters of a trained model was

used to initialize the model for the meeting data set. Instead of starting from randomly

initialized model parameters, the model already converged to solve a di↵erent, but very

closely related task on the switchboard data set. Subsequent training on the meeting

71

72 8. Transfer Learning across Data Sets

data set either fine-tuned the whole model in order to solve the target task or used the

features from the last hidden layer of the switchboard model as input features for fitting

a task-specific output layer. Experiments were conducted for disfluency detection and

punctuation prediction alone, as well as for the joint learning of both tasks.

Future research will include studying di↵erent degrees to which the target model is ini-

tialized with the weights from the source model. For example, it might be more successful

to only use the first hidden layer and randomly initialize the rest of the target model.

In studying deeper architectures, the choices for integrating source and target models

become more plentiful. Also, when fine-tuning a pre-trained model, the choice of learn-

ing rate per layer becomes more relevant. Whereas the randomly initialized output layer

might converge faster with a higher learning rate, lower layers might start to overfit fast

if the learning rate is not appropriately tuned. The fact that results could be improved

by keeping the lower layers of the pre-trained model fixed suggest that this was the case

and using a lower learning rate for the lower layers might indeed lead to increased perfor-

mance. Alternatively to adapting the learning rate, it is also interesting to investigate if

performance can again be increased when first, the output layer is trained separately and,

after convergence, the whole model is fine-tuned again.

Besides incorporating the knowledge contained in the switchboard data set by initializ-

ing with a pre-trained model, the e↵ect of jointly training on the meeting data set and

the switchboard data set was studied in this chapter. Although the results were not as

convincing as the results from fine-tuning a switchboard model, performance increases

were reported compared to training the meeting data set tasks on a randomly initialized

model. Future work on this technique will involve studying more sophisticated approaches

in weighing the influence of meeting data gradients versus the gradients of the switchboard

data set. This might include passing several batches of meeting data for every batch of

switchboard data, or vice-versa. Studying the combined e↵ect of jointly learning on two

data sets at the same time with jointly learning both tasks at the same time was out of

scope for this thesis, but will be part of future research.

Finally, since fine-tuning a pre-trained model gave very good results, fine-tuning the word

embedding matrix is a promising extension to this paradigm. The word-embedding matrix

was fitted on a very large corpus of data and thus provides a very robust representation of

the words of the English language. However, task-specific changes to this embedding might

result in a better suited representation. Future work will therefore include experiments

in which gradients with respect to the word embeddings are included into the training

procedure.

72

9. Conclusion and Future Work

This thesis investigated the application of recurrent neural network architectures in speech

disfluency detection and punctuation prediction. Di↵erent approaches to applying these

models in di↵erent settings have been motivated, described and evaluated in experiments.

Furthermore, the influence of jointly learning punctuation prediction with disfluency detec-

tion in a shared model was studied and evaluated. In order to account for the limitations of

the meeting data set with respect to the amount of available data, this thesis furthermore

investigated di↵erent approaches to transferring knowledge from the larger switchboard

data set to the meeting data set.

Extending a standard MLP architecture to include a recurrent layer showed improvements

in performance between 0.8 and 3.2 in F-measure on the aggregated labels disfluency and

punctuation for both, disfluency detection and punctuation prediction on the considered

data sets. Specific disfluency classes and punctuation labels improved by an impressive

margin, demonstrating the advantage of using a recurrent architecture. Replacing the sim-

ple recurrent architecture with a LSTM architecture showed mixed results. This leads to

the conclusion that the considered tasks do not exhibit significant long-term dependencies

that the simple recurrent architecture cannot learn.

One focus of this thesis lay in showing the di↵erences between an MLP architecture and

a comparable (in numbers of parameters) recurrent architecture. The space of possible

recurrent architectures, however, is huge and future work will encompass the study of

alternative architectures in order to improve the models’ predictive performance. In order

to alleviate the issues related to the shift parameter, using a bidirectional recurrent network

is especially interesting. In a bidirectional recurrent network, the network is given access

to all future words in addition to all past words at a given time. For a given subsequence of

words, the network thus can learn how future words influence the decision of whether this

subsequence is a reparandum. However, along with this powerful advantage of bidirectional

architectures comes the disadvantage that such a system cannot be used in a low latency

productive environment. For practical purposes, it is desirable to identify disfluencies and

punctuation marks as soon as possible, and not after having processed the whole sequence.

Depending on the use-case in which such a system is embedded, bidirection architectures

might be very promising and useful models.

Combining punctuation prediction and disfluency detection into one task results in a fur-

ther increase in F-measure performance for the aggregated label disfluency for both data

sets. Apart from an inexplicable performance loss for the joint learning of the switchboard

dataset with the MLP architecture, this multi-task learning approach improved the perfor-

mance independent of the considered architectures. Especially the results on the meeting

dataset, in which the small amount of available training data is a limiting factor, the joint

learning led to an improvement of 1.5 point of the F-measure. By supplying the network

with two labels for each input word, it was able to generate more robust features for both

tasks, respectively. For the switchboard data set, the performance increase was not as

73

74 9. Conclusion and Future Work

significant. Due to the large amount of available training data, the internal network repre-

sentations are already very robust. In order for the advantages of the multi-task approach

to be prominently visible in the switchboard data set, deeper and wider architectures will

be considered in future work.

In addition to considering di↵erent architecture choices for the combination of punctuation

prediction and disfluency detection, experimenting with the cost function will be part of

future research. In the presented experiments, the costs for misclassifying punctuation

is equal to the costs for misclassifying disfluencies. By weighing their importance, it is

possible to direct the learning task towards the more relevant task while retaining the

benefits of training on two tasks at the same time.

Transferring knowledge from the switchboard data set to the learning tasks on the meet-

ing data set showed significant improvement compared to training on the meeting data set

alone. By initializing the model for the meeting data set tasks with the weights of the cor-

responding trained switchboard data set model, the F-measure on punctuation prediction

and disfluency detection increased between 4.3 and 6.5 points on the aggregated labels

disfluency and punctuation. Learning on both data sets concurrently showed to be

not as e↵ective as fine-tuning the switchboard model. Although the annotation schemes

di↵er between data sets, the experiments in this thesis show how it is possible to combine

them in a successful way. Future work on transfer learning will include experimenting

with layer-specific learning rates, di↵erent architectures and also include fine-tuning of the

word-embedding matrix during training.

The input vectors for the models used in this thesis consisted of 100 dimensional word

embeddings as well as POS tags in a one-hot vector encoding. Depending on system

latency demands it might be feasible to introduce additional features, which simplifies the

learning task. As in the work by Cho et al. (2015), possible features include language model

features as well as further lexical features. Speaker information, when available, as well as

turn information should improve results, especially in the multi-party meeting data set.

Additionally, acoustic features have proven to be helpful in detecting both, punctuations

as well as disfluencies, and their introduction will be part of future research.

A challenge that is inherent to disfluency detection and punctuation prediction is that

the data sets are extremely unbalanced. Individual classes make up as little as 0.5%

of all words in the data set. In this thesis, the e↵ects of this skewed label distribution

were investigated briefly by experimenting with a probabilistic F-measure cost function

for training the network. The results are interesting with respect to the precision and

recall balance compared to networks trained with the cross entropy cost function. Future

work in this direction shall address further possibilities for dealing with unbalanced data

sets. Promising approaches in the literature include sub-sampling the overrepresented

word sequences or super-sampling the underrepresented word sequences. Furthermore, by

using cost-sensitive learning approaches, the learning progress can be steered towards the

underrepresented labels.

On a more abstract level, applying bayesian machine learning techniques to the meeting

74

75

data set is a promising way to increase performance. Especially in the domain of limited

data, bayesian approaches give a principled way to avoid overfitting by putting higher

probability on simpler models. In combination with deep neural networks, bayesian neural

networks (Neal, 2012) are an active area of research and applying them to disfluency

detection on the meeting data set is an interesting avenue for future work.

The focus of the this thesis lay in showing the influence of recurrent architectures, multi-

task learning and transfer learning. Experiments showed the strengths and shortcomings

of these approaches and thus investigated principled ways for increasing the performance

of these tasks in the deep learning domain. As such, the results reported here leave a lot of

room for improvement by performing more intensive hyperparameter tuning, introducing

more sophisticated architectures in combination with regularization techniques and more

sophisticated optimization techniques. For maximizing the performance of a disfluency

detection and punctuation prediction system for its application in a downstream NLP

task, the whole bag of deep learning tricks that are available should be investigated. This

thesis gave an experimental evaluation of more principled approaches and as such serves

as a basis for informed future performance maximization.

75

10. Declaration

Ich versichere hiermit wahrheitsgemäß, die Arbeit selbstständig verfasst und keine an-

deren als die angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder inhaltlich

übernommenen Stellen als solche kenntlich gemacht und die Satzung des Karlsruher In-

stituts für Technologie (KIT) zur Sicherung guter wissenschaftlicher Praxis in der jeweils

gültigen Fassung beachtet zu haben.

Karlsruhe, den 15. 11. 2015

Matthias Reisser

76

References

Azizpour, H., Razavian, A. S., Sullivan, J., Maki, A., & Carlsson, S. (2014). From generic

to specific deep representations for visual recognition. CoRR, abs/1406.5774 .

Batista, F., & Mamede, N. (2011). Recovering capitalization and punctuation marks on

speech transcriptions (Unpublished doctoral dissertation). PhD thesis, Instituto Superior

Técnico.

Benesty, J. (2008). Springer handbook of speech processing. Springer Science & Business

Media.

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep archi-

tectures. In Neural networks: Tricks of the trade (pp. 437–478). Springer.

Bengio, Y., Goodfellow, I. J., & Courville, A. (2016). Deep learning. Retrieved from

http://goodfeli.github.io/dlbook/ (Book in preparation for MIT Press)

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., . . .

Bengio, Y. (2010). Theano: a cpu and gpu math expression compiler. In Proceedings

of the python for scientific computing conference (scipy) (Vol. 4, p. 3).

Cauchy, A. (1847). Méthode générale pour la résolution des systemes d’équations simul-

tanées. Comp. Rend. Sci. Paris, 25 (1847), 536–538.

Charniak, E., & Johnson, M. (2001). Edit detection and parsing for transcribed speech.

In Proceedings of the second meeting of the north american chapter of the association

for computational linguistics on language technologies (pp. 1–9).

Cho, E., Fünfer, S., Stüker, S., & Waibel, A. (2014). A corpus of spontaneous speech in

lectures: The kit lecture corpus for spoken language processing and translation. LREC,

Reykjavik, Iceland .

Cho, E., Ha, T.-L., & Waibel, A. (2013). Crf-based disfluency detection using seman-

tic features for german to english spoken language translation. In Proceedings of the

international workshop for spoken language translation (iwslt), heidelberg, germany.

Cho, E., Kilgour, K., Niehues, J., & Waibel, A. (2015). Combination of nn and crf models

for joint detection of punctuation and disfluencies. In Sixteenth annual conference of the

international speech communication association.

Cho, E., Niehues, J., & Waibel, A. (2014). Machine translation of multi-party meetings:

Segmentation and disfluency removal strategies.

77

http://goodfeli.github.io/dlbook/

78 References

Christensen, H., Gotoh, Y., & Renals, S. (2001). Punctuation annotation using statistical

prosody models. In Isca tutorial and research workshop (itrw) on prosody in speech

recognition and understanding.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011).

Natural language processing (almost) from scratch. The Journal of Machine Learning

Research, 12 , 2493–2537.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online

learning and stochastic optimization. The Journal of Machine Learning Research, 12 ,

2121–2159.

Ferreira, F., & Bailey, K. G. (2004). Disfluencies and human language comprehension.

Trends in cognitive sciences , 8 (5), 231–237.

Fitzgerald, E., Hall, K., & Jelinek, F. (2009). Reconstructing false start errors in sponta-

neous speech text. In Proceedings of the 12th conference of the european chapter of the

association for computational linguistics (pp. 255–263).

Fitzgerald, E., & Jelinek, F. (2008). Linguistic resources for reconstructing spontaneous

speech text. In Lrec.

Fitzgerald, E., Jelinek, F., & Frank, R. (2009). What lies beneath: Semantic and syntactic

analysis of manually reconstructed spontaneous speech. In Proceedings of the joint con-

ference of the 47th annual meeting of the acl and the 4th international joint conference

on natural language processing of the afnlp: Volume 2-volume 2 (pp. 746–754).

Gal, Y., & Ghahramani, Z. (2015). Dropout as a bayesian approximation: Representing

model uncertainty in deep learning. arXiv preprint arXiv:1506.02142 .

Gers, F., Schmidhuber, J., et al. (2000). Recurrent nets that time and count. In Neural net-

works, 2000. ijcnn 2000, proceedings of the ieee-inns-enns international joint conference

on (Vol. 3, pp. 189–194).

Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual

prediction with lstm. Neural computation, 12 (10), 2451–2471.

Godfrey, J. J., Holliman, E. C., & McDaniel, J. (1992). Switchboard: Telephone speech

corpus for research and development. In Acoustics, speech, and signal processing, 1992.

icassp-92., 1992 ieee international conference on (Vol. 1, pp. 517–520).

Graves, A., et al. (2012). Supervised sequence labelling with recurrent neural networks

(Vol. 385). Springer.

Gre↵, K., Srivastava, R. K., Koutńık, J., Steunebrink, B. R., & Schmidhuber, J. (2015).

Lstm: A search space odyssey. arXiv preprint arXiv:1503.04069 .

Gregor, K., Danihelka, I., Graves, A., & Wierstra, D. (2015). Draw: A recurrent neural

network for image generation. arXiv preprint arXiv:1502.04623 .

Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E., . . . oth-

ers (2014). Deep speech: Scaling up end-to-end speech recognition. arXiv preprint

arXiv:1412.5567 .

78

References 79

He, H., Garcia, E., et al. (2009). Learning from imbalanced data. Knowledge and Data

Engineering, IEEE Transactions on, 21 (9), 1263–1284.

Heeman, P. A., & Allen, J. F. (1999). Speech repairs, intonational phrases, and discourse

markers: modeling speakers’ utterances in spoken dialogue. Computational Linguistics,

25 (4), 527–571.

Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen netzen. Diploma,

Technische Universität München.

Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J. (2001). Gradient flow in recur-

rent nets: the di�culty of learning long-term dependencies. A field guide to dynamical

recurrent neural networks. IEEE Press.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation,

9 (8), 1735–1780.

Honal, M., & Schultz, T. (2003). Correction of disfluencies in spontaneous speech using a

noisy-channel approach. In Interspeech.

Honnibal, M., & Johnson, M. (2014). Joint incremental disfluency detection and de-

pendency parsing. Transactions of the Association for Computational Linguistics, 2 ,

131–142.

Hough, J., & Purver, M. (2014). Strongly incremental repair detection. arXiv preprint

arXiv:1408.6788 .

Hough, J., & Schlangen, D. (2015). Recurrent neural networks for incremental disfluency

detection. In Sixteenth annual conference of the international speech communication

association.

Huang, J., & Zweig, G. (2002). Maximum entropy model for punctuation annotation from

speech. In Interspeech.

Johnson, M., & Charniak, E. (2004). A tag-based noisy channel model of speech repairs.

In Proceedings of the 42nd annual meeting on association for computational linguistics

(p. 33).

Jones, D. A., Wolf, F., Gibson, E., Williams, E., Fedorenko, E., Reynolds, D. A., & Ziss-

man, M. A. (2003). Measuring the readability of automatic speech-to-text transcripts.

In Interspeech.

Kingma, D., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980 .

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114 .

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing systems

(pp. 1097–1105).

79

80 References

Le, Q. V., Zou, W. Y., Yeung, S. Y., & Ng, A. Y. (2011). Learning hierarchical invariant

spatio-temporal features for action recognition with independent subspace analysis. In

Computer vision and pattern recognition (cvpr), 2011 ieee conference on (pp. 3361–

3368).

Liu, Y., Shriberg, E., Stolcke, A., Hillard, D., Ostendorf, M., & Harper, M. (2006). Enrich-

ing speech recognition with automatic detection of sentence boundaries and disfluencies.

Audio, Speech, and Language Processing, IEEE Transactions on, 14 (5), 1526–1540.

Liu, Y., Stolcke, A., Shriberg, E., & Harper, M. (2005). Using conditional random fields

for sentence boundary detection in speech. In Proceedings of the 43rd annual meeting

on association for computational linguistics (pp. 451–458).

Lu, W., & Ng, H. T. (2010a). Better punctuation prediction with dynamic conditional

random fields. In Proceedings of the 2010 conference on empirical methods in natural

language processing (pp. 177–186).

Lu, W., & Ng, H. T. (Eds.). (2010b). Better punctuation prediction with dynamic condi-

tional random fields. Association for Computational Linguistics.

Marcus, M. P., Santorini, B., Marcinkiewicz, M. A., & Taylor, A. (1999). Treebank-3,

ldc99t42. CD-ROM. Philadelphia, Penn.: Linguistic Data Consortium.

Maskey, S., Zhou, B., & Gao, Y. (2006). A phrase-level machine translation approach for

disfluency detection using weighted finite state transducers.

Meteer, M. W., Taylor, A. A., MacIntyre, R., & Iyer, R. (1995). Dysfluency annotation

stylebook for the switchboard corpus. University of Pennsylvania.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). E�cient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781 .

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Ried-

miller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint

arXiv:1312.5602 .

Nam, J., Kim, J., Menćıa, E. L., Gurevych, I., & Fürnkranz, J. (2014). Large-scale multi-

label text classification—revisiting neural networks. In Machine learning and knowledge

discovery in databases (pp. 437–452). Springer.

Neal, R. M. (2012). Bayesian learning for neural networks (Vol. 118). Springer Science &

Business Media.

Ostendorf, M., Favre, B., Grishman, R., Hakkani-Tur, D., Harper, M., Hillard, D., . . .

others (2008). Speech segmentation and spoken document processing. Signal Processing

Magazine, IEEE , 25 (3), 59–69.

Pastor-Pellicer, J., Zamora-Mart́ınez, F., España-Boquera, S., & Castro-Bleda, M. J.

(2013). F-measure as the error function to train neural networks. In Advances in

computational intelligence (pp. 376–384). Springer.

80

References 81

Qian, X., & Liu, Y. (2013). Disfluency detection using multi-step stacked learning. In

Hlt-naacl (pp. 820–825).

Rao, S., Lane, I., & Schultz, T. (2007a). Improving spoken language translation by au-

tomatic disfluency removal: Evidence from conversational speech transcripts. Training ,

6370 (46300), 6–50.

Rao, S., Lane, I. R., & Schultz, T. (2007b). Optimizing sentence segmentation for spoken

language translation. In Interspeech (pp. 2845–2848).

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representa-

tions by error propagation (Tech. Rep.). DTIC Document.

Rumelhart, D. E., McClelland, J. L., Group, P. R., et al. (1986). Parallel distributed

processing: Explorations in the microstructure of cognition, vol. 1-2. Cambridge, MA.

Savova, G., & Bachenko, J. (2003). Prosodic features of four types of disfluencies. In Isca

tutorial and research workshop on disfluency in spontaneous speech.

Shriberg, E., Bates, R. A., & Stolcke, A. (1997). A prosody only decision-tree model for

disfluency detection. In Eurospeech (Vol. 97, p. 23832386).

Shriberg, E., Stolcke, A., Jurafsky, D., Coccaro, N., Meteer, M., Bates, R., . . . Van Ess-

Dykema, C. (1998). Can prosody aid the automatic classification of dialog acts in

conversational speech? Language and speech, 41 (3-4), 443–492.

Shriberg, E. E. (1994). Preliminaries to a theory of speech disfluencies (Unpublished

doctoral dissertation). Citeseer.

Snedeker, J., & Trueswell, J. (2003). Using prosody to avoid ambiguity: E↵ects of speaker

awareness and referential context. Journal of Memory and language, 48 (1), 103–130.

Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for

classification tasks. Information Processing & Management , 45 (4), 427–437.

Soltau, H., Saon, G., & Sainath, T. N. (2014). Joint training of convolutional and non-

convolutional neural networks. to Proc. ICASSP .

Sorower, M. S. (2010). A literature survey on algorithms for multi-label learning. Oregon

State University, Corvallis .

Srivastava, N. (2013). Improving neural networks with dropout (Unpublished doctoral

dissertation). University of Toronto.

Stolcke, A., Shriberg, E., Bates, R. A., Ostendorf, M., Hakkani, D., Plauche, M., . . .

Lu, Y. (1998). Automatic detection of sentence boundaries and disfluencies based on

recognized words. In Icslp.

Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of ini-

tialization and momentum in deep learning. In Proceedings of the 30th international

conference on machine learning (icml-13) (pp. 1139–1147).

81

82 References

Tieleman, T., & Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a running

average of its recent magnitude. COURSERA: Neural Networks for Machine Learning,

4 .

Tilk, O., & Alumäe, T. (2015). Lstm for punctuation restoration in speech transcripts. In

Sixteenth annual conference of the international speech communication association.

van Merriënboer, B., Bahdanau, D., Dumoulin, V., Serdyuk, D., Warde-Farley, D.,

Chorowski, J., & Bengio, Y. (2015). Blocks and fuel: Frameworks for deep learning.

arXiv preprint arXiv:1506.00619 .

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P.-A. (2010). Stacked

denoising autoencoders: Learning useful representations in a deep network with a local

denoising criterion. The Journal of Machine Learning Research, 11 , 3371–3408.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., & Lang, K. J. (1989). Phoneme

recognition using time-delay neural networks. Acoustics, Speech and Signal Processing,

IEEE Transactions on, 37 (3), 328–339.

Waibel, A., Sawai, H., & Shikano, K. (1989). Modularity and scaling in large phone-

mic neural networks. Acoustics, Speech and Signal Processing, IEEE Transactions on,

37 (12), 1888–1898.

Wang, W., Tur, G., Zheng, J., & Ayan, N. F. (2010). Automatic disfluency removal

for improving spoken language translation. In Acoustics speech and signal processing

(icassp), 2010 ieee international conference on (pp. 5214–5217).

Wang, X. (2015). Advances in punctuation and disfluency prediction (Unpublished doc-

toral dissertation). National University of Singapore.

Wang, X., Sim, K. C., & Ng, H. T. (2014). Combining punctuation and disfluency

prediction: An empirical study.

Xu, C., Xie, L., Huang, G., Xiao, X., Chng, E. S., & Li, H. (2014). A deep neural network

approach for sentence boundary detection in broadcast news. In Proc. interspeech.

Zaremba, W., Sutskever, I., & Vinyals, O. (2014). Recurrent neural network regularization.

arXiv preprint arXiv:1409.2329 .

Zhang, M.-L., & Zhou, Z.-H. (2006). Multilabel neural networks with applications to

functional genomics and text categorization. Knowledge and Data Engineering, IEEE

Transactions on, 18 (10), 1338–1351.

Zwarts, S., & Johnson, M. (2011). The impact of language models and loss functions on

repair disfluency detection. In Proceedings of the 49th annual meeting of the association

for computational linguistics: Human language technologies-volume 1 (pp. 703–711).

Zwarts, S., Johnson, M., & Dale, R. (2010). Detecting speech repairs incrementally

using a noisy channel approach. In Proceedings of the 23rd international conference on

computational linguistics (pp. 1371–1378).

82

Appendices

83

A. Results for Shift Experiments, full

Context Window
Appendix A contains the results for training the recurrent neural network model introduced

in Section 6.2 with di↵erent shift values. Input vectors contain the word embeddings and

POS tags for the current word plus a two word context window of past and future context.

Results are reported on the validation set.

Shift 0 1 2 3 4 5

F
-m

ea
su
re

disfluency 55.07 56.22 55.93 55.50 0 0
filler 77.74 78.17 76.57 77.41 0 0
interruption 0.75 1.44 5.63 1.52 0 0
non copy 0 0 1.22 0 0 0
no disfluency 92.82 93.02 92.71 93.14 90.59 90.59
(rough) copy 35.32 37.08 38.08 36.41 0 0

P
re
ci
si
on

disfluency 73.49 75.29 71.26 78.21 0 0
filled pause 82.16 81.61 80.43 79.19 0 0
interruption 12.50 10.00 14.52 40.00 0 0
non copy 0 0 9.09 0 0 0
no disfluency 89.24 89.41 89.53 89.14 82.80 82.80
(rough) copy 41.46 45.73 44.92 52.55 0 0

R
ec
al
l

disfluency 44.04 44.86 46.03 43.01 0 0
filled pause 73.77 75.00 73.06 75.70 0 0
interruption 0.39 0.78 3.49 0.78 0 0
non copy 0 0 0.65 0 0 0
no disfluency 96.69 96.93 96.13 97.50 1.00 1.00
(rough) copy 30.77 31.19 33.06 27.86 0 0

Table A.1.: Disfluency detection on the meeting data set with varying shift value, valida-
tion set performance.

84

85

Shift 0 1 2 3 4 5

F
-m

ea
su
re

comma 31.10 30.53 37.12 25.29 30.29 9.13
no punctuation 94.69 95.05 94.97 94.81 94.65 94.96
full stop 38.54 37.09 34.78 38.82 37.41 39.93
punctuation 60.17 60.77 61.49 61.49 61.35 55.20
question mark 17.28 2.92 0 1.67 0 0

P
re
ci
si
on

comma 31.95 31.58 32.59 26.87 26.16 38.89
no punctuation 94.45 94.24 94.52 94.70 94.84 93.02
full stop 36.56 37.24 38.33 34.44 37.68 35.20
punctuation 61.37 65.20 63.77 62.05 60.50 67.82
question mark 31.82 10.53 0 50.00 0 0

R
ec
al
l

comma 30.30 29.56 43.10 23.89 35.96 5.17
no punctuation 94.94 95.87 95.41 94.93 94.47 96.99
full stop 40.73 36.94 31.84 44.49 37.14 46.12
punctuation 59.01 56.90 59.37 60.95 62.23 46.55
question mark 11.86 1.69 0 0.85 0 0

Table A.2.: Punctuation prediction on the meeting data set with varying shift value, vali-
dation set performance.

85

86 A. Results for Shift Experiments, full Context Window

Shift 0 1 2 3 4 5

F
-m

ea
su
re

comma 29.02 31.65 29.30 30.61 34.94 21.52
disfluency 55.37 57.22 58.46 56.32 57.65 49.34
filler 78.80 78.35 78.47 76.07 79.16 80.15
interruption 6.68 7.66 10.57 8.06 9.69 0
non copy 0 0 0 0.90 0 0
no disfluency 92.98 92.97 93.29 92.77 93.06 92.98
no punctuation 94.86 95.03 95.15 95.00 94.25 95.03
full stop 35.70 36.53 35.47 36.48 34.28 38.83
punctuation 61.14 62.23 59.86 61.23 62.09 51.75
question mark 13.27 12.50 13.16 9.57 0 0
(rough) copy 31.13 36.33 37.58 36.88 33.78 14.56

P
re
ci
si
on

comma 29.56 29.41 31.45 29.53 27.05 44.72
disfluency 74.98 73.03 76.39 71.52 74.54 85.93
filled pause 80.24 77.97 83.40 80.06 80.86 85.42
interruption 21.74 17.82 17.09 20.99 23.26 0
non copy 0 0 0 7.69 0 0
no disfluency 89.30 89.78 89.88 89.61 89.73 87.80
no punctuation 94.53 94.69 93.91 94.32 95.47 92.32
full stop 34.21 37.70 38.89 38.41 35.82 41.28
punctuation 62.81 63.96 67.16 64.85 57.25 72.38
question mark 29.41 33.33 22.39 28.13 0 0
(rough) copy 45.38 48.57 51.53 42.86 43.07 46.09

R
ec
al
l

comma 28.50 34.25 27.42 31.77 49.35 14.17
disfluency 43.89 47.03 47.35 46.44 47.00 34.60
filled pause 77.41 78.73 74.08 72.46 77.53 75.50
interruption 3.95 4.88 7.65 4.99 6.12 0
non copy 0 0 0 0.48 0 0
no disfluency 96.97 96.40 96.96 96.15 96.65 98.81
no punctuation 95.20 95.36 96.42 95.69 93.05 97.91
full stop 37.33 35.43 32.61 34.73 32.87 36.64
punctuation 59.55 60.60 53.99 57.98 67.82 40.27
question mark 8.57 7.69 9.32 5.77 0 0
(rough) copy 23.69 29.02 29.58 32.37 27.79 8.65

Table A.3.: Punctuation prediction and disfluency detection on the meeting data set with
varying shift value, validation set performance.

86

87

Shift 0 1 2 3 4 5

F
-m

ea
su
re

interruption 36.26 35.74 27.43 47.42 48.37 39.72
coordinating conjunction 90.55 90.12 90.97 91.20 90.90 90.91
discourse marker 94.63 94.62 94.37 94.28 93.94 94.28
disfluency 85.49 86.04 86.55 85.83 85.46 86.19
explicit editing 96.36 95.85 95.63 95.80 96.48 96.41
filled pause 97.47 97.63 97.47 97.63 97.62 97.61
reparandum 65.20 68.26 69.71 69.34 68.75 68.84

P
re
ci
si
on

interruption 62.07 66.51 76.05 45.06 43.49 64.06
coordinating conjunction 86.84 86.30 88.47 88.73 87.34 87.73
discourse marker 94.22 94.82 94.96 95.46 92.92 94.38
disfluency 89.48 88.59 90.32 85.79 84.11 88.57
explicit editing 97.13 97.41 96.78 96.65 98.37 98.05
filled pause 98.17 98.15 97.93 97.91 97.84 98.42
reparandum 76.93 74.12 77.07 71.45 69.53 74.19

R
ec
al
l

interruption 25.61 24.44 16.74 50.04 54.48 28.79
coordinating conjunction 94.59 94.30 93.62 93.80 94.77 94.32
discourse marker 95.05 94.42 93.79 93.13 94.99 94.19
disfluency 81.83 83.63 83.08 85.88 86.86 83.93
explicit editing 95.60 94.35 94.51 94.98 94.66 94.82
filled pause 96.79 97.11 97.01 97.36 97.41 96.81
reparandum 56.57 63.25 63.63 67.35 67.98 64.21

Table A.4.: Disfluency detection on the switchboard data set with varying shift value,
validation set performance.

Shift 0 1 2 3 4 5

F
-m

ea
su
re

comma 74.86 74.74 74.03 73.53 75.50 75.63
incomplete slash-unit 32.09 38.05 37.47 38.35 36.22 34.63
full stop 71.52 72.54 71.88 71.80 73.45 73.21
punctuation 88.58 88.85 88.49 88.51 88.61 88.56
question mark 63.79 62.63 62.16 59.40 62.16 58.09
slash-unit 83.63 84.60 83.92 84.95 84.63 83.62

P
re
ci
si
on

comma 67.53 66.57 65.36 64.57 68.47 70.30
incomplete slash-unit 50.41 46.22 41.08 43.79 43.81 38.53
full stop 75.70 76.20 74.70 76.58 71.64 69.95
punctuation 87.77 87.47 86.26 86.59 86.66 87.67
question mark 70.60 73.33 68.15 62.08 69.67 67.58
slash-unit 80.71 81.75 80.78 82.48 80.85 77.77

R
ec
al
l

comma 83.98 85.20 85.36 85.37 84.14 81.83
incomplete slash-unit 23.54 32.34 34.44 34.12 30.87 31.44
full stop 67.79 69.23 69.26 67.59 75.36 76.80
punctuation 89.41 90.28 90.85 90.51 90.64 89.48
question mark 58.18 54.66 57.14 56.94 56.11 50.93
slash-unit 86.75 87.66 87.31 87.58 88.78 90.42

Table A.5.: Punctuation prediction on the switchboard data set with varying shift value,
validation set performance.

87

88 A. Results for Shift Experiments, full Context Window

Shift 0 1 2 3 4 5

F
-m

ea
su
re

interruption 26.04 35.66 36.86 39.18 25.28 27.94
coordinating conjunction 90.58 91.36 91.10 92.03 91.52 91.49
comma 79.25 78.64 78.65 78.69 77.95 78.96
discourse marker 95.04 94.74 94.71 95.02 94.30 94.29
disfluency 85.99 86.90 87.07 87.26 86.73 86.68
explicit editing 96.05 96.61 95.84 96.08 95.87 95.08
filled pause 97.71 97.86 97.73 97.78 97.71 97.52
incomplete slash-unit 36.70 29.96 30.45 32.97 34.93 31.14
full stop 68.20 65.18 67.19 68.01 70.13 69.57
punctuation 88.25 88.37 88.18 88.64 88.49 88.36
question mark 62.09 60.63 58.69 60.67 62.30 57.24
reparandum 65.62 69.49 71.10 70.36 70.00 69.39
slash-unit 84.07 84.98 84.78 85.58 84.77 85.19

P
re
ci
si
on

interruption 76.40 72.00 72.71 71.61 73.11 76.70
coordinating conjunction 89.36 91.86 92.26 91.24 91.39 90.49
comma 78.70 76.58 76.74 77.01 75.40 80.18
discourse marker 95.67 95.40 96.01 96.51 94.92 95.37
disfluency 93.30 92.69 91.91 92.00 92.36 92.64
explicit editing 98.24 98.38 97.47 98.04 97.86 98.25
filled pause 98.58 98.77 98.67 98.77 98.69 98.44
incomplete slash-unit 50.35 55.93 56.23 58.95 47.80 51.76
full stop 81.29 84.59 83.64 83.57 78.74 82.45
punctuation 90.47 90.75 90.85 90.83 89.06 90.97
question mark 75.82 69.55 81.23 71.28 73.60 71.09
reparandum 85.38 82.79 79.91 80.67 82.04 83.20
slash-unit 85.59 87.58 88.20 86.76 84.43 85.78

R
ec
al
l

interruption 15.69 23.70 24.69 26.97 15.28 17.08
coordinating conjunction 91.84 90.87 89.96 92.84 91.65 92.51
comma 79.81 80.80 80.66 80.45 80.68 77.79
discourse marker 94.42 94.10 93.45 93.57 93.69 93.23
disfluency 79.74 81.79 82.72 82.99 81.76 81.44
explicit editing 93.95 94.89 94.25 94.19 93.97 92.10
filled pause 96.85 96.96 96.81 96.81 96.75 96.63
incomplete slash-unit 28.87 20.46 20.88 22.89 27.51 22.27
full stop 58.74 53.02 56.14 57.33 63.22 60.17
punctuation 86.14 86.11 85.65 86.55 87.93 85.89
question mark 52.57 53.73 45.95 52.80 54.01 47.91
reparandum 53.29 59.87 64.04 62.38 61.05 59.51
slash-unit 82.60 82.52 81.60 84.42 85.11 84.61

Table A.6.: Punctuation prediction and disfluency detection on the switchboard data set
with varying shift value, validation set performance.

88

B. Results for Shift Experiments, no

Context Window
Appendix B contains the results for training the recurrent neural network model introduced

in Section 6.2 with di↵erent shift values. Input vectors contain the word embeddings and

POS tags for the current word without a context window. Results are reported on the

validation set.

Shift 0 1 2 3 4 5

F
-m

ea
su
re

disfluency 43.85 0 0 0 0 0
filler 78.12 0 0 0 0 0
interruption 0 0 0 0 0 0
non copy 0 0 0 0 0 0
no disfluency 92.76 90.57 90.56 90.56 90.56 90.59
(rough) copy 0 0 0 0 0 0

P
re
ci
si
on

disfluency 89.45 0 0 0 0 0
filled pause 85.86 0 0 0 0 0
interruption 0 0 0 0 0 0
non copy 0 0 0 0 0 0
no disfluency 87.04 82.76 82.76 82.75 82.75 82.80
(rough) copy 0 0 0 0 0 0

R
ec
al
l

disfluency 29.04 0 0 0 0 0
filled pause 71.65 0 0 0 0 0
interruption 0 0 0 0 0 0
non copy 0 0 0 0 0 0
no disfluency 99.29 100 100 100 100 100
(rough) copy 0 0 0 0 0 0

Table B.1.: Disfluency detection on the meeting data set with varying shift value, valida-
tion set performance. Input features contain word embedding and POS tags
for one word.

89

90 B. Results for Shift Experiments, no Context Window

Shift 0 1 2 3 4 5

F
-m

ea
su
re

comma 4.07 32.46 22.55 0 0 0
no punctuation 93.55 95.02 94.98 93.63 93.63 93.62
full stop 16.87 30.70 39.25 0 0 0
punctuation 29.26 58.78 58.18 0 0 0
question mark 0 0 0 0 0 0

P
re
ci
si
on

comma 11.76 30.28 27.80 0 0 0
no punctuation 89.99 93.77 93.66 88.02 88.02 88.01
full stop 21.59 37.21 37.98 0 0 0
punctuation 51.75 66.05 65.92 0 0 0
question mark 0 0 0 0 0 0

R
ec
al
l

comma 2.46 34.98 18.97 0 0 0
no punctuation 97.41 96.30 96.34 100.00 100.00 100.00
full stop 13.85 26.12 40.61 0 0 0
punctuation 20.39 52.96 52.07 0 0 0
question mark 0 0 0 0 0 0

Table B.2.: Punctuation prediction on the meeting data set with varying shift value, vali-
dation set performance. Input features contain word embedding and POS tags
for one word.

90

91

Shift 0 1 2 3 4 5

F
-m

ea
su
re

comma 0 32.50 7.12 0 0 0
disfluency 43.99 53.33 53.27 0 0 0
filler 76.29 79.15 80.26 0 0 0
interruption 0 1.53 4.21 0 0 0
non copy 0 0 0 0 0 0
no disfluency 92.59 92.96 92.99 90.58 90.55 90.50
no punctuation 94.03 95.25 95.01 93.58 93.58 93.62
full stop 9.00 34.67 39.35 0 0 0
punctuation 15.61 62.17 48.79 0 0 0
question mark 0 0 0 0 0 0
(rough) copy 0 30.68 23.60 0 0 0

P
re
ci
si
on

comma 0 29.89 29.87 0 0 0
disfluency 82.55 77.23 78.08 0 0 0
filler 79.14 83.56 82.64 0 0 0
interruption 0 13.64 29.63 0 0 0
non copy 0 0 0 0 0 0
no disfluency 87.19 88.81 88.77 82.78 82.73 82.65
no punctuation 88.90 94.41 91.90 87.94 87.94 88.00
full stop 25.81 38.75 41.87 0 0 0
punctuation 84.52 66.88 74.78 0 0 0
question mark 0 0 0 0 0 0
(rough) copy 0 45.89 40.28 0 0 0

R
ec
al
l

comma 0 35.62 4.04 0 0 0
disfluency 29.98 40.72 40.42 0 0 0
filler 73.65 75.18 78.02 0 0 0
interruption 0 0.81 2.27 0 0 0
non copy 0 0 0 0 0 0
no disfluency 98.69 97.51 97.65 100 100 100
no punctuation 99.79 96.10 98.34 100 100 100
full stop 5.45 31.37 37.12 0 0 0
punctuation 8.60 58.08 36.20 0 0 0
question mark 0 0 0 0 0 0
(rough) copy 0 23.04 16.69 0 0 0

Table B.3.: Punctuation prediction and disfluency detection on the meeting data set with
varying shift value, validation set performance. Input features contain word
embedding and POS tags for one word.

91

92 B. Results for Shift Experiments, no Context Window

Shift 0 1 2 3 4⇤ 5⇤

F
-m

ea
su
re

interruption 1.16 25.05 27.97 31.96 27.40 23.59
coordinating conjunction 82.85 89.01 90.59 90.75 90.39 90.06
discourse marker 85.13 94.12 94.58 94.36 94.01 93.56
disfluency 71.49 83.14 85.91 85.74 84.61 83.93
explicit editing 63.77 96.17 96.20 96.10 95.72 94.85
filled pause 97.50 97.60 97.62 97.70 97.59 97.52
reparandum 1.75 55.49 66.32 67.45 64.57 61.95

P
re
ci
si
on

interruption 100.00 61.44 75.65 65.97 69.39 67.06
coordinating conjunction 75.46 84.02 85.73 87.57 89.31 87.67
discourse marker 82.10 93.45 94.19 94.64 95.49 94.49
disfluency 85.72 89.29 90.30 88.44 88.34 88.48
explicit editing 98.05 97.73 96.97 97.57 98.67 95.83
filled pause 97.69 98.10 97.96 98.32 98.51 98.44
reparandum 42.97 74.91 78.83 73.08 70.62 71.69

R
ec
al
l

interruption 0.59 15.73 17.15 21.09 17.07 14.31
coordinating conjunction 91.84 94.63 96.03 94.16 91.49 92.60
discourse marker 88.38 94.79 94.97 94.09 92.58 92.66
disfluency 61.31 77.79 81.93 83.20 81.18 79.83
explicit editing 47.25 94.66 95.45 94.66 92.94 93.88
filled pause 97.31 97.11 97.28 97.08 96.69 96.61
reparandum 0.89 44.06 57.24 62.62 59.47 54.54

Table B.4.: Disfluency detection on the switchboard data set with varying shift value,
validation set performance. Input features contain word embedding and POS
tags for one word. ⇤Training was run for 150 epochs with the goal to reach
convergence. However, even with this prolonged training time the model was
still improving.

Shift 0 1 2 3 4 5

F
-m

ea
su
re

comma 50.38 74.93 75.74 73.75 75.41 65.25
incomplete slash-unit 7.97 34.53 37.42 35.94 31.64 0
full stop 55.66 72.17 73.36 74.32 74.13 65.44
punctuation 63.15 86.63 88.57 88.60 88.58 81.68
question mark 30.03 59.12 62.23 59.90 55.95 0
slash-unit 58.22 81.04 83.94 85.15 84.84 76.18

P
re
ci
si
on

comma 64.83 67.62 68.27 63.88 68.42 57.26
incomplete slash-unit 43.40 44.69 45.14 40.56 47.40 0
full stop 62.30 71.68 71.97 74.39 73.78 68.80
punctuation 64.08 84.15 86.51 85.55 87.16 79.71
question mark 32.45 65.25 69.85 74.46 68.67 0
slash-unit 47.19 75.95 78.95 82.11 81.21 71.70

R
ec
al
l

comma 41.20 84.01 85.06 87.22 83.99 75.84
incomplete slash-unit 4.39 28.13 31.95 32.27 23.74 0
full stop 50.29 72.67 74.81 74.25 74.49 62.40
punctuation 62.24 89.26 90.72 91.87 90.04 83.74
question mark 27.95 54.04 56.11 50.10 47.20 0
slash-unit 75.98 86.87 89.60 88.42 88.81 81.25

Table B.5.: Punctuation prediction on the switchboard data set with varying shift value,
validation set performance. Input features contain word embedding and POS
tags for one word.

92

93

Shift 0 1 2 3 4 5

F
-m

ea
su
re

interruption 0 10.06 17.52 39.93 14.04 0
coordinating conjunction 81.91 90.17 90.80 90.99 91.08 71.17
comma 47.94 77.38 78.90 77.72 78.07 67.76
discourse marker 81.46 94.30 94.59 94.26 94.43 83.34
disfluency 69.92 83.49 85.95 86.57 86.05 67.46
explicit editing 63.70 96.38 96.35 96.23 96.10 3.80
filled pause 97.49 97.83 97.72 97.69 97.71 96.73
incomplete slash-unit 2.36 27.68 28.82 20.48 22.78 0
full stop 50.75 67.20 68.91 64.05 67.53 53.75
punctuation 55.25 85.89 88.41 88.00 87.58 79.35
question mark 7.45 60.61 58.52 49.66 47.28 0
reparandum 0.70 54.57 65.94 69.04 68.11 6.00
slash-unit 54.71 80.60 85.00 84.66 84.56 74.51

P
re
ci
si
on

interruption 0 85.19 87.41 64.84 81.51 0
coordinating conjunction 75.45 88.18 88.59 90.13 90.09 79.29
comma 83.82 76.96 77.87 75.17 78.02 74.98
discourse marker 84.56 95.38 96.16 97.40 96.05 88.04
disfluency 86.77 93.77 93.44 91.95 91.87 91.47
explicit editing 97.67 98.52 97.92 98.04 98.01 92.86
filled pause 97.70 98.84 98.55 98.33 98.55 96.92
incomplete slash-unit 40.38 52.81 56.60 58.81 54.69 0
full stop 74.98 80.03 82.15 86.30 83.14 79.47
punctuation 87.73 88.29 90.45 90.88 90.98 89.30
question mark 53.85 79.08 78.32 81.14 77.33 0
reparandum 38.10 86.02 85.78 81.98 79.89 61.96
slash-unit 78.89 81.48 84.66 88.28 87.66 83.30

R
ec
al
l

interruption 0 5.34 9.74 28.85 7.68 0
coordinating conjunction 89.58 92.25 93.12 91.86 92.10 64.55
comma 33.57 77.81 79.97 80.45 78.12 61.80
discourse marker 78.58 93.24 93.08 91.32 92.88 79.11
disfluency 58.56 75.23 79.58 81.80 80.92 53.44
explicit editing 47.26 94.33 94.83 94.48 94.26 1.94
filled pause 97.28 96.84 96.90 97.06 96.89 96.53
incomplete slash-unit 1.22 18.76 19.34 12.40 14.39 0
full stop 38.36 57.91 59.34 50.92 56.85 40.61
punctuation 40.32 83.62 86.47 85.30 84.42 71.39
question mark 4.00 49.14 46.72 35.78 34.05 0
reparandum 0.36 39.96 53.55 59.62 59.37 3.15
slash-unit 41.87 79.73 85.35 81.32 81.68 67.39

Table B.6.: Punctuation prediction and disfluency detection on the switchboard data set
with varying shift value, validation set performance. Input features contain
word embedding and POS tags for one word.

93

	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Disfluency Detection and Punctuation Prediction
	2.1 Disfluencies in Spontaneous Speech
	2.2 Sentence Segmentation and Punctuation Prediction
	2.3 Problem Formulation

	3 Related Work
	3.1 Disfluency Detection
	3.2 Sentence Segmentation and Punctuation Prediction

	4 Data and System
	4.1 Meeting Data Set
	4.1.1 Disfluency Annotation Scheme
	4.1.2 Statistics

	4.2 Switchboard Data Set
	4.2.1 Disfluency Annotation Scheme
	4.2.2 Slash-unit Annotation
	4.2.3 Statistics

	4.3 Performance Evaluation
	4.4 System Architecture
	4.4.1 Preprocessing and Feature Generation
	4.4.2 Model Training
	4.4.3 Model Evaluation

	5 Neural Networks for Sequence Modelling
	5.1 Multilayer Perceptron
	5.1.1 Forward Pass
	5.1.2 Output Layer and Cost Function
	5.1.3 Training Neural Networks

	5.2 Recurrent Neural Networks
	5.2.1 Training Recurrent Neural Networks
	5.2.2 LSTM

	5.3 Overfitting

	6 Capturing Time Dependencies through Recurrent Architectures
	6.1 MLP Architecture as Baseline
	6.1.1 Features
	6.1.2 Hyperparameters
	6.1.3 Meeting Data Set
	6.1.4 Switchboard Data Set

	6.2 Simple Recurrent Architecture
	6.2.1 Hyperparameters
	6.2.2 Meeting Data Det
	6.2.3 Switchboard Data Set

	6.3 LSTM
	6.4 F-measure as Cost Function
	6.5 Summary

	7 Regularization through Multi-Task Learning
	7.1 MLP Architecture
	7.1.1 Meeting Data Set
	7.1.2 Switchboard Data Set

	7.2 Simple Recurrent Architecture
	7.2.1 Meeting Data Set
	7.2.2 Switchboard Data Set

	7.3 Summary

	8 Transfer Learning across Data Sets
	8.1 Fine-tuning of a Switchboard Model
	8.1.1 Fine-tuning all Layers
	8.1.2 Fine-tuning the Output Layer

	8.2 Joint Training of the Meeting and the Switchboard Data Set
	8.3 Summary

	9 Conclusion and Future Work
	10 Declaration
	References
	Appendices
	A Results for Shift Experiments, full Context Window
	B Results for Shift Experiments, no Context Window

