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Abstract

This work is devoted to build sub-word language models for German Large Vocabulary
Continuous Speech Recognition (LVCSR) Systems. The motivation of using a sub-words
based system comes from its ability to model unseen compound words in the training cor-
pus by compounding sequences of sub-units forming new words. The two techniques we
apply for the generation of sub-words, are based on syllables and letter n-grams. In three
scenarios, we investigate different techniques acting on the input split vocabulary and the
vocabulary for the language model and the pronunciation dictionary. Using a combina-
tion of full-words and syllables from the training corpus presents the most efficient split
method, which also leads to the best word error rate (WER) results during the decoding
task. This split method consists on keeping the most frequent words in the training corpus
and splitting the infrequent ones into syllables or characters.
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Zusammenfassung

Diese Arbeit beschäftigt sich mit dem Bauen automatischen Spracherkennungssystemen
für die Deutsche Sprache basierend auf Sub-word Sprachmodelle. Da die Deutsche Sprache
eine morphologisch reiche Sprache ist, ist es unmöglich für die Trainingsdaten alle möglichen
Wörter zu beinhalten. Aus diesem Grund entscheiden wir uns für die Benutzung von Sub-
words um die ungesehene Wörter im Trainingsset zu erkennen. Silben und Buchstaben n-
Gramme sind zwei Techniken für die Erzeugung von Sub-words. In drei Szenarien unter-
suchen wir verschiedene Techniken zum Einsatz von Sub-words in der Spracherkennung,
wo die Wörter-Splitmethoden sich ändern. Hierbei werden unterschiedliche Vokabulare
für Sprachmodelle und Ausprachewörterbücher verwendet. Eine Kombination aus Voll-
Wörter und Silben aus dem Trainingskorpus führt zum besten Splitten des Trainingssets
und entsprechend zu der besten Wort Fehler Rate (WER) beim Dekodieren. Die verwen-
dete Split Methode besteht darin, die häufigsten Wörter zu behalten und alle restlichen
Wörter in Silben oder Buchstaben aufzuteilen.
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1. Introduction

The technological development leap in the past 30 years was marked by using a complex
and innovative machines in research. Input devices such as keyboard or remote control
are needed to manipulate these machines, but human target to communicate without input
through keyboard. Today it is possible to use speech which is the most natural way of
human communication to communicate with machines.
Speech technologies allow people around the world to participate in the information rev-
olution and to link people together, helping to overcome language barriers.

Automatic Speech Recognition (ASR) is one of these technologies which allow a smooth
and comfortable human-machine interaction. It can be used in different domain such as
in-car systems, telephony, education and daily life. But ASR is available only for a few
languages comparing to about 7106 known living languages in the world [LSF14].

The ASR system considered in this thesis is a large vocabulary continuous speech recog-
nition (LVCSR) system. LVCSR system is able to deal with a large vocabulary of words
more than 100k pronounced continuously in a fluent manner. An preprocessing is needed
in LVCSR system to convert the speech signal into a sequence of feature vectors. There-
after looking for the highest probable sequence of words that leads to the acoustic features
by using a statistical approach.

1.1 Motivation
The German language is known by rising types of lexical as a large number of distinct
lexical forms. Word compounding, inflection, and derivation are the most factors that
generated this phenomena. These 3 types of morphological processes can be defined as
follows [Fea12]:

• Derivation: add affixes to form new words.

• Inflection: the formation of grammatical variants of a word.

• Word compounding: join (compose) words together to form new words.

1



2 1. Introduction

Hence, the rich morphology nature of German language is one of the main difficulties
concerning the German Large Vocabulary Continuous Speech Recognition (LVCSR) sys-
tems based on whole-words or full-words as vocabulary units. The fundamental problems
of these full-words speech recognition systems are that the training data and Speech data
can not contain all words in vocabulary.

To avoid these problems, LVCSR systems can use the sub-word language models based
on word decomposition or word splitting into fragments. Sub-word units occur more
frequently and can be trained more robustly than words. They also offer the possibility
to deal with the challenge of unseen words in training data by compounding sequences
of sub-units to form new words. Consequently the improvement of the word error rate
(WER) which is the standard evaluation measure for LVCSR systems. Basically, the goal
of the ASR system is to minimize WER measured on the decoded output.

1.2 ASR Challenges
An ASR system aims to transcribe an unknown spoken utterance into its most likely writ-
ten word sequence. The major challenges in unrestricted, continuous speech recognition
are [Mou14]:

• No indication of the word or sub-word boundaries in the acoustic signal.

• There is a considerable variation in the speaking rates in continuous speech.

• Words are pronounced inaccurately in fluent speech and the most of these are the
word endings.

• Environmental noise affect on the quality of the speech signal.

• The recognition system should take into account the correlation between semantic
and syntactic shape of the language in the same manner to human-to-human com-
munication.

1.3 Structure of the Thesis
After the introduction in Chapter 1 and an overview of the ASR system and his different
components. We introduce the tools that we have used for our experiments. Then an
overview of the related work given in Chapter 3 with a definition of some sub-word units.
A brief overview of the linguistic characteristics of German language are presented in the
chapter 4. In Chapter 5 , we give a detailed description of our experimental setup. In
Chapter 6, we discuss our experiments and evaluate the results. Finally, the Chapter 7
summarizes our work and present future perspectives.
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2. Fundamentals

This chapter contains basic information helpful for reading this thesis. In Section 2.1, an
overview of a typical speech recognition system is given and the different components are
defined. In 2.1.3.2, evaluation criteria for system and LM performance are described. In
Section 2.2, the used tools are introduced.

2.1 Automatic Speech Recognition
Automatic speech recognition (ASR) has the role to convert human speech signal into
written text with the help of an automatic process through computer. The human speech
is recorded with a microphone and used as input speech signal of the traditional ASR
process. The basic architecture of an ASR system is presented in Figure 2.1. The speaker

Figure 2.1: Architecture of ASR system.

uses his or her apparatus to produce speech, which as signal through the signal processing
unit captured. The parameterization of observed acoustic signal into a sequence of acous-
tic vectors X = X1X2...Xn is made by an acoustic analysis. Our goal is to define the
most likely word sequence W = W1W2..Wm in relation to our acoustic observation X

3



4 2. Fundamentals

and the acoustic model and language model. Moreover, with the ASR process we have to
find the word sequences that maximize this P(W|X) .

To achieve this, we apply Bayes rule 2.1 [BAY58] to rewrite the word sequence in the
following form 2.2, which recapitulates the computational model used for large vocab-
ulary continuous speech recognition (LVCSR) and decomposes the required probability
P(W|X) into two components.

P(W|X) =
P(X|W)P(W)

P(X)
(2.1)

Ŵ = argmax
w

P(W|X)

= argmax
w

P(X|W)P(W)

P(X)

= argmax
w

P(X|W)P(W)

(2.2)

In Equation 2.1 the probability P(X|W) represent the acoustic models which is the rep-
resentation of the knowledge about acoustics, phonetics, gender and dialect differences
among speakers. Since there is a large number of words, we try to decompose them into
a sub word units when creating an acoustic model. This procedure is very closely related
with the phonetic modeling.

Generally, the language model captures the linguistic properties of the language and pro-
vides the A-priori-Probability P(W) of a word sequence W. The language model works
one level higher and observes the relations between words. Since some words are more
likely to co occur with others and also the occurrence sequence plays a role, all this addi-
tional information is present in the language model.

The decoder, which tries to find Ŵ in 2.2, uses both acoustic and language models and
searches the most probable word sequence as a result. Because of the dictionary or lex-
icon, this defines the mapping from words to sub-word units, usually phonemes. is the
search limited.

The ultimate goal of the speech research in the last years is to have an apparatus to under-
stand fluently spoken speech. Despite ASR technology is well developed in many fields
and applications, machines still find difficulty to transcribe speech if we change the acous-
tic environment or the speaker.

Therefore, the objective of current ASR research is the recognizing of speech through
machines with 100% accuracy. Even words are spoken by speakers different in age, sex
and with different accent. Also, regardless of vocabulary size and the existing unwanted
sound in the environment. Today, accuracy can reach 90% or more if you trained only an
individual speaker’s voice and if there is a lot of vocabularies.

Acoustic model, pronunciation dictionary and language model, which are the basis three
components of an ASR system, are described in more detail in the following sections.

4



2.1. Automatic Speech Recognition 5

2.1.1 Acoustic Model

An acoustic model (AM) is used in ASR to determine statistical representations of each
of the audio signal (distinct sounds) that represent a word W in term of feature vectors.
A phoneme calling each set of these statistical representations which represent a smallest
unit of Language and can change the meaning of the word. The German language has
about 25 distinct sounds that are useful for speech recognition, and thus we have 25 dif-
ferent phonemes. But due to co-articulation there are many more sounds that occur when
speaking German.

As observed in Section 2.1, the objective of the acoustic modeling is to compute the
likelihood that the observation of a sequence of an acoustic vectors X = X1X2...Xn will
be produced for a given word sequence W = W1W2..Wm. Therefore, we need to have
a large speech corpus and the statistical representations for each phoneme in a language.
These statistical representations are created by using a special training algorithms and are
called Hidden Markov Model (HMM), which is the most popularly used phoneme model
in the LVCSR system and each phoneme has its own HMM.
HMM,

The Figure 2.2 shows a three-state-left-to-right HMM typically used in speech recogni-
tion.
A Hidden Markov Model λ = (A,B,Π) can be defined as a five-tuple consisting of
[RJ86]:

• S: is the set of States S = {s1, s2, ..., sn} with n is the number of states.

• Π: is the initial probability distribution, Π(si) = P (q1 = si) probability of si being
the first state of a sequence

• A: is the matrix of state transition probabilities: 1 ≤ i, j ≤ n
A = (aij) with aij = P (qt+1 = sj|qt = si) going from state si to sj .

• B: is the set of emission probability distributions/densities, B = {b1, b2, ..., bn}
where bn(x) = P (ot = x|qt = si) is the probability of observing x when the system
is in state si.

• V: is the alphabet of possible emitted feature vectors.
The observable feature space can be discrete V = {x1, x2, ..., xv}, or continuous
V = Rd.

According to [Rab89], Evaluation, Decoding, and Learning problems are the fundamental
problems of HMM.

Evaluation Problem which is to calculate the probability of the model that λ has gen-
erated sequence X by giving the HMM λ = (A,B,Π) and the observation sequence X.
This problem is solvable with Forward Backward Algorithm.

Decoding problem aims to give the HMM λ = (A,B,Π) and the observation sequence
X to calculate the most likely sequence of hidden states that produces this observation.
Viterbi Algorithm can solve this problem.

5



6 2. Fundamentals

Figure 2.2: HMM, generating an observation of feature vectors X = X1X2X3

[SK06]

Learning problem which is optimizing the parameters of λ so that the probability of
observing the vector sequence X is maximized by giving the HMM λ = (A,B,Π) and
the observation sequence X. BaumWelch algorithm is a solution for this problem and it is
considered the traditional method for training HMM.

We can use different typologies such as: Linear model, Bakis model, left-to-right model,
Alternative paths, Ergodic model to design a HMM. In ASR we apply the Bakis model
[Bak76] for each section of a phone (begin -b, middle -m, end -e) to represent each HMM-
state model. The Figure 2.3 shows how to connect the HMMs together to form words

Figure 2.3: HMM for the word "can"
[Sch08]

for example "can" . Similarly, words can be joined together to cover complete utter-
ances [You96]. However, depending on the context where it occurs or when spoken by
a different speaker the same phoneme sounds different. For example, the phoneme /s/

6



2.1. Automatic Speech Recognition 7

sounds different in the two words "sound" and "this". Therefore, to obtain a good pho-
netic discrimination we need to train different HMMs for each different context. Here we
talk about Allophone models if a specific phoneme has too much possible HMMs. Ben-
jamin Lee Whorf was the first to use the term allophone in 1940 which is a set of multiple
possible spoken sounds or phones used to pronounce a single phoneme in a particular
language [Tra59] [Lee96].

Moreover, the simplest and most common strategy is to use triphones models as a group
of three phone, where each phone has a distinct HMM for each unique pairs of left and
right neighbors [You96]. A triphone represent a three linear HMMs states and the possible
transitions are the loop, the forward and the skip transition [SN02].

Due to the large variation of triphones, a lot of them may not been observed enough often
in the training data. This can be solved by the using of phonetic decision trees which is
an automatic method for modeling the context dependence of pronunciation, to estimate
which phones sounds similar in different context based of questions about the left and
right neighbors [BdSG+91] [YOW94]. Here we talk about context-dependent phoneme
model which is usually used by the modern LVCSR systems.

Furthermore, linguistic knowledge are needed to choose the context questions. According
to [GO15] these questions may include tests for:

• A specific phone, phonetic classes such as stop and vowel.

• More restrictive classes for example voiced stop and front vowel.

• More general classes like voiced consonant.

Typically, there are about 100 questions for each context (left vs. right).

Figure 2.4 displays how to use a decision to cluster the center state of some /e/ triphones.

Clustering algorithm is needed for the phonetic discrimination as follows [Sch12]:

1. Initialize one cluster containing all contexts (or join all context in one cluster)

2. For all clusters: compute distance of subclusters

3. Perform the split that get the largest distance (information gain)

4. Continue with step 2 until satisfied (number of clusters)

HMMs can be divided into two distinct categories: continuous HMM and discrete HMM,
while the emission probabilities themselves can be discrete. In ASR the discrete HMMs
are infrequently used [MR+02].

The Gaussian Mixture Models (GMMs) represents the emission probability, which is
probability density functions, for continuous HMMs. The problem is that this approach
requires a larger set of training data since there are many parameters to be estimated.

Depending on the tying degree of the Gaussians in the system we distinguish between
Fully-continuous HMMs, where each model has its own codebook of Gaussians and
Semi-continuous HMMs, where one codebook of Gaussians are shared by all models.
As shown in Figure 2.5 for the Fully-continuous HMMs, the states that correspond to the

7



8 2. Fundamentals

Figure 2.4: Decision tree used to cluster the center state of some /e/ triphones
[Hol01]

Figure 2.5: Example for Fully-continuous HMMs
[Sch08]

same acoustic phenomenon share the same acoustic model. The parameters of the emis-
sion probabilities can be estimated more robustly and the training data can be exploited
better. But it requires a larger set of training data since there are many parameters to be
estimated [Sch08].

The semi-continuous HMMs aims to solve this problem by using parameter tying to share

8



2.1. Automatic Speech Recognition 9

Figure 2.6: Example for semi-continuous HMMs
[Sch08]

more data between the parameters as illustrated in Figure 2.6, where there is only one
codebook of Gaussians in the system. Every acoustic model has its own set of mixture
weights, but shares the same Gaussian codebook [Sch12]. This approach reduces the
amount of parameters that is estimated enormously and offers a compromise between
accuracy and trainability.

2.1.2 Pronunciation Dictionary
The pronunciation dictionary or lexicon contains a list of words with associated pronun-
ciation represented as a combination of phonemes.

Generally most words have a single pronunciation. Multiple pronunciations, pronuncia-
tion variants, are allowed to account for pronunciation variability [HHSL05]. However in
speech recognition, many pronunciation variants cause recognition errors in the form of
deletions, insertions or substitutions of phoneme [MGSN98].

To represent the phoneme we need a standard phonetic alphabet such as SAMPA (Speech
Assessment Methods Phonetic Alphabet) [W+97] or IPA (International Phonetic Alpha-
bet) [Ass99]. SAMPA is a machine-readable phonetic alphabet based on ASCII-7 symbol
set (codes) and IPA is a an alphabetic system of notation for sounds of languages based
on the Latin alphabet.

As illustrated in Figure 2.7 the generation of the pronunciations dictionary can be statis-
tical or rule-based. Also rule-based can be completely manual or manually supervised.
By completely manual we need experts in linguistics to type the phone sequence for each
given word. If the generation is manually supervised, we create rules from an existing
dictionary to product pronunciations of new entries. In this method to provide pronunci-
ations for inflected forms and compound words, a reasonably sized starting dictionary is
required [Sch12].

Moreover the statistical method is often based on the sequitur Grapheme-to-Phoneme
(G2P) method [BN08]. The basic principal is to apply graphone (or grapheme-phoneme

9



10 2. Fundamentals

joint-multigram) approach to the alignment problem and to use standard language mod-
eling techniques to model transcription probabilities [BN03]. The most challenge of the

Figure 2.7: Pronunciation Dictionary Generation.
[Sch12]

production of the pronunciation modeling is the pronunciation variants. It exits more than
one pronunciations for the same word and it depends on the context or co-articulation
effects, dialects, accents and emotions [Sch12]. This problem can be solved if we have
the possibility to add and to mark multiple pronunciation variants of the word in the dic-
tionary as seen in this example of one German word:

durch (1) {{ D WB } U ER { CH WB }}
durch (2) {{ D WB } U I { CH WB }}
durch (3) {{ D WB } U R { CH WB }}
durch (4) {{D WB } U R { X WB }}

In this example the markers of the beginning and end of words WB (Word Boundary) are
clearly specified for the entry of more than one phoneme.

The size of the dictionary varies from few to millions of words and depends on the appli-
cation and the language. Thousand words and above usually used for speech recognizers
for LVCSR.

2.1.3 Language Model

The language model provides the A-priori-Probability of a word sequence W = w1,w2, ...,wn.
This corresponds to P(W) in Equation 2.1. Using the definition of conditional probabil-
ity, the probability of a word sequence can be written as follows:

10



2.1. Automatic Speech Recognition 11

P(W) = P(w1,w2, ....,wn) =
n∏

i=1

P(wi|w1, ...,wi−1) (2.3)

The goal of the language model in speech recognizer application is to calculate the prob-
abilities P(wi|w1, ...,wi−1) for all possible next word in a context called history H (for a
word to be seen in a defined context).

For example, if in the English language the context is "I live in a white" then the proba-
bility of the next word being "house" is a lot higher than the probability of the next word
being "mouse" [Kil09].

Even for a large vocabulary size V there is a huge number of possible histories, when
computing P(w| H). Since many of the word sequences in the history will never be ob-
served or would be observed very few times, it is not possible accurately to estimate this
probabilities [Par11].

To come over this, choose for vocabulary the most frequent set of words in the training text
and group the histories into a tractable number of equivalence classes P(w|H) = P(w|Φ(H)).
Equation 2.3 can then be rewritten as follows:

P(W) =
n∏

i=1

P(wi|w1, ...,wi−1) =
n∏

i=1

P(wi|Φ(w1, ...,wi−1)) (2.4)

where Φ : h → C associates a history h to an equivalence class belonging to a finite set
C [BBV04].

Two typical types of language models are the n-gram LM, which uses a probabilistic
approach, and the Context Free Grammar LM, which is based on formal languages. N-
gram LM is presented in the following paragraph.

2.1.3.1 Statistical Language Models (N-grams)

The probability of a word in N-gram language models depends only on the n-1 previous
words. Therefore the equivalence class in equation 2.4 can be simply based on the several
previous words. We talk about a trigram if the word depends on the previous two words
P(wi|wi−1,wi−2). Similarly, we can have unigram: P(wi), or bigram: P(wi|wi−1)
language models. The trigram is particularly powerful, as most words have a strong de-
pendence on the previous two words, and it is estimated reasonably well with an attainable
corpus [ID10]. Generally a language models contain special symbols indicating the start
< s > and end < /s > of a sentence. < /s > is necessary at the end of the sentence to make
the sum of the probabilities of all strings equal 1 [ID10]. As a word sequence "< s > I live
in a white" may have a relatively high probability but its probability as a sentence "< s >
I live in a white < /s >" will be very low. For example, the probability of sentence "I live
in a white house" is given in the equation 2.5. The sentence is split into the trigrams.

• <s> <s> I

• <s> I live

• I live in

• live in a

11



12 2. Fundamentals

• in a white

• a white house

• white house </s>

• house </s> </s>

P(I, live, in, a,white,house) = P(I| < s >,< s >) ∗P(live| < s >, I) ∗P(in|I, live)

∗P(a|live, in) ∗P(white|in, a) ∗P(house|a,white)
(2.5)

In equation 2.6 a trigram LM is used to calculate the probability of a word, which depends
on its two preceding words that can be seen in a defined context.

P(wi|wi−2,wi−1) =
#(wi−2,wi−1,wi)

#(wi−1,wi)
(2.6)

where #(X) is the number of times the specified sequence of words (X) occurs in the
training data.

Generally a large training set of text that contains million words is necessary to train a n-
gram model. In fact the number of possible n-grams can be increased exponentially with
relation to n. For example for V vocabulary of word and for n=3, we have a V 3 possible
trigrams. For typical LVCSR there is V 3 a very high number of trigrams. Sometimes
many possible n-grams are not seen or in some cases few appears in the training data. The
effect of unseen n-gram in a word sequence of the test data is to have a probability of zero.
That leads to sparsity problem, which is the hard problem in n-gram modeling. Therefore
various smoothing techniques have been developed to guarantee that all possible word
combinations are assigned nonzero probabilities [SDSV] [Mou14]. In section 2.1.3.3 we
define smoothing techniques with more details.

2.1.3.2 Evaluation

The standard evaluation metric of an automatic speech recognition is the word error rate
(WER) [Dou98], which is based on the Levenshtein distance [Lev66], also called the edit
distance. WER is the percentage of word errors in the hypothesis sentence compared to the
reference sentence. The following errors can occur after the alignment of the hypothesis
and the reference text [Sch14]:

• Substitution: A wrong word is recognized.

• Deletion: A word from the reference is missing in the hypothesis.

• Insertion: The recognizer inserts a word that is not actually spoken.

Figure 2.8 shows the possible errors output of an automatic speech recognition system.
The vertical axis represents the reference, and the horizontal output sequence of the sys-
tem [Sch14].

Search for a given reference the minimum number of insertion i, deletion d and substitu-
tion s needed to transform the hypothesis into the reference. The equation 2.7 of WER
after identifying the errors is estimated as follows:

WER =
#substitutions + #deletions + #insertions

#words(reference)
∗ 100 (2.7)

12



2.1. Automatic Speech Recognition 13

Figure 2.8: Possible errors of an automatic speech recognition system.
[Sch14]

To evaluate the performance of a language model, a metric called perplexity is used. The
perplexity is defined as 2Hp(T), where Hp(T) is the cross-entropy of the language model
on a set of test sentences T, containing |T|w words.

Hp(T) =

∑
t∈T log2 P(t)

|T|w
(2.8)

ppl = 2Hp(T) (2.9)

A low perplexity is an indicator that the language model is good. [KP02] shows that lower
perplexity values correlate with lower word error rates.
The combination of two different language models, called linear interpolation, can im-
prove the performance of speech recognition. The probability P(wa,ha) of a word wa
given a history ha for the interpolated languages models L1 and L2 is represented as
follows:

P(wa,ha) = (1− λ)PL1(wa,ha) + λPL2(wa,ha),0 6 λ 6 1 (2.10)

where λ is the interpolation weights, which is automatically calculated to decrease the
perplexity of a set of a development data [SDSV].

2.1.3.3 Smoothing

The building of an n-gram language model requires a large training data that does not
include all possible n-grams. But some n-grams which are irrelevant and meaningless can
appear at least once in the training data. In order to avoid zero probability problem, the
unseen n-gram in training data, different smoothing technique are used [KN95].

"Whenever data sparsity is an issue, smoothing can help performance, and data sparsity
is almost always an issue in statistical modeling. In the extreme case where there is so

13



14 2. Fundamentals

much training data that all parameters can be accurately trained without smoothing, one
can almost always expand the model, such as by moving to a higher n-gram model, to
achieve improved performance. With more parameters data sparsity becomes an issue

again, but with proper smoothing the models are usually more accurate than the original
models. Thus, no matter how much data one has, smoothing can almost always help

performace, and for a relatively small effort." Chen and Goodman (1998)

Laplace or add one smoothing (e.g Add-1-Smoothing) is the simplest smoothing tech-
nique which is used for the first time by Lidstone and Jeffays [Lid20]. By this method
adding the count of one for all possible n-grams as seen in Equation 2.11.

Plaplace(wi|wi−1...wi−1+n) =
C(wi−1+n...wi−1wi) + 1

C(wi−n+1...wi−1) + V
(2.11)

where V is the total number of possible n-1-grams . Add-1-Smoothing is problematic
because of the moving of mass probabilities. To solve this problem we have to use Add-
δ-Smoothing, where δ is a smaller fractional mass.

Paddδ(wi|wi−1) =
C(wi−1wi) + δ

C(wi−1) + Vδ
(2.12)

The problem of this technique is how to choose a good value for δ?.

Discounting, backing-off and interpolation are different strategies and advanced tech-
niques used to improve smoothing for language models [Kat87] [GNW95] [NEK94]
[NMW97]. Discounting techniques means to subtract a fixed number from each n-gram
count and to distribute it to the unseen or not occur frequently n-grams. In equation 2.13
an absolute discounting method is illustrated.

Pabs(wi|wi−1) =

{
max{C(wi−1wi)−D,0}

C(wi−1)
ifC(wi−1wi) > 0

λ(wi−1)Pabs(wi) otherwise
(2.13)

Another example for discounting is Good-Turing estimate which is based on the estima-
tion of probability of n-grams which occur r times with the probability of n-grams which
occur r + 1 times. r∗ = (r + 1)Nr+1

Nr
: where Nr (respectively Nr+1) is the number of

n-grams that occur r (respectively r+1) times and Discount dr ≈ r∗

r
.

Another way to smooth the probability distributions of the n-grams is the back-off smooth-
ing techniques like Katz Smoothing. The katz smoothing as presented in equation 2.14 use
the Good-Turing discounting. The main idea is to use the lower order n-1-grams model
to estimate the probability of n-grams with zero counts and to discount the n-grams with
nonzero counts to increase mass probability for the unseen n-grams [Kat87].

Pkatz(wi|wi−1) =


C(wi−1wi)
C(wi−1)

ifr > k

dr
C(wi−1wi)
C(wi−1)

ifk > r > 0

α(wi−1)Pkatz(wi) ifr = 0

(2.14)

Chen and Goodman [CG96] have evaluated and compared the different existing smooth-
ing techniques for statistical language models. They judge the dominance of the Katz
algorithm for a given large training data and the advantage of the Jelinek-Mercer for a

14



2.1. Automatic Speech Recognition 15

few training data. Moreover they conclude that the most performed algorithm is the mod-
ified Kneser-Ney.

Another technique to smooth a language model is the linear interpolation. It is irrelevant
to have seen n-grams in the training data or not. The linear interpolation differs from
backoff in that it use always information from lower order n-grams even if the n-grams
with non-zero counts. The recursive definition is represented as follows [CG96]:

Pinterp(wi|wi−1
i−n+1) = λi−1i−n+1PML(wi|wi−1

i−n+1) + (1− λi−1i−n+1)Pinterp(wi|wi−1
i−n+2)

(2.15)

where PML(wi|wi−1
i−n+1) is the n-gram maximum likelihood model and λi−1i−n+1 is the in-

terpolation weight.

2.1.4 Decoder

As shown in figure 2.1 the decoder combines the language model which provides P(W)
and the acoustic model which provides p(X|W). The role of the decoder is to find for a
given feature sequence X the word sequence W which maximizes the probability P(W|X)
to solve the equation 2.2.

A sequence of states in an HMM represents the word sequence W. The total amount of
HMM state sequences defined the search space. A typical search spaces may have half
million HMM states sequences. A given 12 words per sentence and a vocabulary of
70,000 words have millions possible word sequences. The critical issue is impossible to
compute the most likely sequence of words by evaluating the likelihoods of all possible
sequences. Therefore an intelligent algorithm that scans the search space and finds the
best hypothesis is needed [Sch12].

The search can be organized in two ways namely depth-first search or breadth-first search.
While the depth-first algorithm aims to follow the most promising hypothesis until the
end of the speech is reached, the breadth-first approach evaluates all hypotheses in par-
allel [You96]. Instances of the depth-first search or stack decoding algorithms are the
Dijkstra [Dij59] and the A* algorithm [Jel69] [Pau91].

The A* search use a heuristic function to expand the node first which gives the best
promise that leads to the best path to the goal. According to [You96] Breadth-first de-
coding is more frequently referred to as Viterbi decoding.

Where the search space is huge in typical LVCSR tasks, pruning techniques is needed as
an optimization method to throw away the unpromising parts of the search space. The
beam search approaches which use the pruning technique are particularly effective for
LVCSR [NHUTO92].

15



16 2. Fundamentals

2.2 Tools
The tools used are the SRI Language Model toolkit which is responsible for building
language model. JANUS is used to recognize speech and Sequitur G2P to generate pro-
nunciations of new words. Hyphen and Morfessor to segment words into syllables.

2.2.1 SRI Language Model Toolkit

The SRI Language Modeling Toolkit (SRILM) [S+02], developed by the SRI Speech
Technology and Research Laboratory (STAR Lab) is a collection of C++ libraries, exe-
cutable programs, and helper scripts designed to allow both production of and experimen-
tation with statistical language models for speech recognition and other applications.

SRILM is freely available for research purposes. The toolkit supports creation and evalu-
ation of a variety of language model types based on N-gram statistics, as well as several
related tasks, such as statistical tagging and manipulation of N-best lists and word lattices.

The main tasks of SRILM are to estimate and evaluate the statistical language models for
speech recognition. Estimation is to create a languages model from training data. Eval-
uation is to compute the probability of a test corpus, conventionally expressed as the test
set perplexity. To perform these tasks, two purposes called ngram-count and ngram are
included in SRILM toolkit [S+02].

The function of ngram-count is to estimate n-gram language models after the generation
and manipulation of the ngram counts. It is better for text data to count how often words
and word sequences occur in. The resulting counts are used to build language model.
More options are available by SRILM to adjust it. For examples the basis options are:

• -order n to determine the order of the estimated LM. The default order is 3.

• -text textfile to generate N-gram counts from it

• -lm lmfile to estimate a language model from the total counts and to write it to lmfile

• type of discounting algorithm to use such as Good-turing, absolute, Witten-Bell,
and modified KneserNey. The default discounting method is Good-turing.

A standard LM hat trigram order, with Good-Turing discounting and Katz backoff for
smoothing would be created by:

ngram-count -text Trainingdata -lm lm

The function of ngram is to score sentence, to compute perplexity, to generate sentences,
and to interpolate various types of model. It is responsible to evaluate the performance of
a resulting language models on a test data by computing the perplexity as follows:

ngram -lm lm -ppl Testdata

16



2.2. Tools 17

Linear interpolation allows the combination of two or more LMs by taking a weighted
sum of the probabilities given by the component language models . The optimization of
the interpolation weights is doing on the held-out data. Simple and fast to calculate are
the advantages of the linear interpolation. The output is a probability estimate due to the
probability estimation of the inputs [BK05].

2.2.2 Janus Recognition Toolkit

The Interactive Systems Laboratories at Carnegie Mellon University, USA and Karlsruhe
Institute of Technology (KIT), Germany have developed the Janus Recognition Toolkit
(JRTK) which is a speech recognition system [LWL+97] [FGH+97]. Known that the
aim of the JRTK is to be used in all speech recognition experiments, it has proven effi-
cacy strikingly in handwriting, biosignal, emotion and silent speech recognition. These
toolkit consists of a C codebase configurable via TCL/TK scripts based environments al-
low building different recognizers.

The janus speech recognizer uses the concept of Hidden Markov Models (HMMs) for
acoustic modeling [StÃ12]. Scripts are used to control the speech recognition compo-
nents from codebooks over dictionaries to the decoder and to make the exchange easy.
Moreover the object oriented architecture of the recognizer allows re-utilization of the
components. In [RW95] details about the train procedure with Janus.

The ibis decoder which is a part of the JRTK is used to decode the test and to develop the
set. It is a one pass decoder described in [SMFW01] that uses linguistic context polymor-
phism. It uses all available language model information. The Ibis decoder compared to
the Sclite [Fis06] from NIST speech recognition scoring toolkit is the best way to evaluate
the speech recognition systems.

2.2.3 Sequitur G2P

Sequitur G2P is a trainable data-driven Grapheme-to-Phoneme converter developed at
RWTH Aachen [BN08]. It is open source software. Sequitur G2P is able to transform
each sequence of graphemes which is the basic unit of written speech to sequences of
phonemes which is the basic acoustic unit of speech. It utilizes statistical graphone ap-
proach (or joint-sequence models) to accomplish this task. The graphone method is ap-
plied to the alignment problem. As shown in Figure 2.2.3 [BN03], the pronunciation of
"speaking" may be regarded as a sequence of five graphones.

From an existing training dictionary and after nine iterations of model training it is pos-
sible to infer pronunciations of new entries without known pronunciations. The output
is performed by finding only the most likely pronunciation sequence for each word. Al-
though pronunciation variations also can be generated, we allowed only one pronuncia-
tion. Words contain unseen characters in the training having no output. Therefore, it is
advised to clean the list of word to gain time. Sequitur has been used in this work for
training and to generate the pronunciations of sub-word and full-word vocabulary.

17



18 2. Fundamentals

Figure 2.9: Sequitur G2P.

2.2.4 Morfessor

The ultimate goal in the morphological segmentation task is to segment words into mor-
phemes which represent the smallest meaning-carrying units. Morfessor [SVG+14] is an
unsupervised morphological segmentation algorithm used to produce a simple morphol-
ogy of a natural language from a large raw corpus or text data. Morfessor simultaneously
builds a morph lexicon and represents the corpus with the induced lexicon using a proba-
bilistic maximum a posteriori mode [CLV06].

Morfessor Baseline is the first version of Morfessor was developed by [CL02], its soft-
ware implementation, Morfessor 1.0, released by [CL05].

Morfessor 2.0 is a rewrite of the original, widely-used Morfessor 1.0 software, with well
documented command-line tools and library interface. It includes algorithmic improve-
ments and new features such as semi-supervised learning, online training, and integrated
evaluation code [SVG+14].

Over the past years, Morfessor was used for a wide range of languages and applications.
The applications include large vocabulary continuous speech recognition [HCS+06], ma-
chine translation [VVCS07], and speech retrieval [ACP+09]. Morfessor is well-suited for
languages with concatenate morphology or compound words, and the tested languages
include Finnish and Estonian [HPK09], German [EDMSSN10], and Turkish [ACP+09].

2.2.5 Hyphen

According to [Ném06] Hyphen is a high quality hyphenation and justification library
based on the TeX hyphenation algorithm. This algorithm [Lia83] was developed in 1983
by Franklin Mark Liang.

"The new hyphenation algorithm is based on the idea of hyphenating and inhibiting
pattern. These are simply strings of letters that , when they match in a word, give use
information about hyphenation at some point in the pattern. For example "-tion" and

"c-c" are good hyphenating patterns. An important feature of this method is that a
suitable set of pattern can be extracted automatically from the dictionary."

Franklin Mark Liang (1983)
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Peter Novodvorsky from ALTLinux cut hyphenation part from libHnj to use it in OpenOf-
fice.org. The compound word and non-standard hyphenation are supported by László
Németh.

In this thesis a German dictionary for hyphenation (hyph_de_DE.dic) is needed as input
data and it is based on the converted TeX hyphenation pattern "dehyphn.tex".
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3. Related work

In this chapter, we discuss the related work that deals with sub-word models for LVCSR
systems. But firstly we have to define some types of sub-word units that are the base of
many related work and to talk about the known challenges for sub-word models.

3.1 Sub-Word Units
A sub-word based LM is an estimation of LM through sub-word units or equivalently
sub-lexical units. Sub-word units are some fractions of the graphemic word. The size
of the vocabulary to be recognized and the sufficient training data for creating effec-
tive reference models have a major impact on the choice of the fundamental unit for a
recognition task [LJSR89]. The choice of the sub-word type is one of the problems of
sub-lexical language modeling. According to [LJ14] phones (which are the basis for
writing down a language and the smallest segments of sounds that can be distinguished
within words) and multiphone such as syllables, demisyllables, and diphone are possible
choices for subword units that can be used to describe a language. The most used type
of sublexical units are: morphemes [CPCZ06] [C+06]; [CHK+07] [LPR+03] [XNN+06],
syllables [Maj08] [SLE05] [XMZ+96] and graphones based on arbitrary word fragments
[BN05] [BN08] [Gal03].

3.1.1 Morpheme
The smallest linguistic component of the word that holds a semantic meaning called
morpheme which is one possible type of sub unit Full-words are used to generate mor-
phemes by applying morphological decomposition based on supervised or unsupervised
approaches. [MSSN13] Linguistic knowledge is required for the supervised approaches.
Therefore, supervised approach is a knowledge-driven approach, while the unsupervised
approach is statistical data-driven approaches. Language independent and their applica-
bility to any language are the most important characteristics for unsupervised approach
[Mou14].

Generally, morphemes for German, Polish and Turkish LVCSR experiments are generated
via unsupervised approaches implemented in a tool called Morfessor. In Section 2.2.4, we
describe Morfessor in more detail.
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3.1.2 Syllable

A syllable is another type of sub-word unit and is composed of one or more written letters
representing a unit of speech [Mou14]. It can also be known as a component of phono-
logical words. The syllables represent a set of written sub-words which can be used for
sub-word based language modeling although they are always linked to its pronunciation.
Normally, a syllable is made up at least of a central element (nucleus) that can either be
a vowel or a diphthong [Mou14]. Consonant clusters can surround the nucleus and must
satisfy the phonotactic restrictions to form a valid syllable [KJ96]. In many languages,
syllabification which means to divide a word into syllables need linguistic and phonetic
rules to achieve it [HM14].

3.1.3 Graphones

A different type of unit is the graphone which is formed by joining together the graphemic
sub-word with its context dependent pronunciation. Therefore, a graphone is a combina-
tion of two parts which are a graphemic part and a phonemic part.

In LMs it is advised to use graphone to enable the capture of different context dependent
pronunciations of sub-words on the LM niveau rather than the lexical niveau. This is an
implicit combination of pronunciation model and language model in one common distri-
bution [Mou14].

The problem of high OOV rates can be solved with this approach. The consolidation of
the traditional word model with a specialized graphone-based model is dedicated for mod-
eling OOV words. This OOV modeling has the objective to be capable to write out new
words as sequences of graphones. Habitually, the presence of the OOV words help to allo-
cate the neighboring words causing the mis-recognition of in-vocabulary words [Mou14].

Beacause each OOV words causes 1.5 to 2 errors rate in [BN05], the successful recogni-
tion of OOV words have a positive impact on the recognition of the neighboring words.
Usually, the type of graphemic part determines the type of the graphone [BN05] [Gal03],
have used only fragment-based graphones, where the graphemic parts are just arbitrary
fragments take into consideration length constraints but not linguistic considerations.
[BN08] describe that the grapheme-to-phoneme (G2P) conversion model is the base to
choose the set of graphones. In Section 2.2.3, we describe Sequitur G2P in more details.

3.1.4 Challenges for Sub-Word models

Two main challenges for sub-word models are: pronunciation variability and data sparse-
ness.

3.1.4.1 Pronunciation Variability

[WTHSS96] and [SOA09] concluded that in conversational speech the spoken words are
often pronounced differently from their dictionary pronunciation.
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This variability is one of the main challenges facing speech recognition discussed in
[OSS05]. [ADL99] describe many reasons (factors) for this pronunciation variability such
as the degree of formality of the situation, the relationship and age difference between the
speaker and the listener which his language competency is taken into consideration with
the background noise.

Substitution of one sound to another can caused variation by context dependent phones
and Gaussian mixtures. But by [JWB+01], evident deletion of sound are badly. According
to [WTHSS96] speaking style, which causes great pronunciation variability, is an impor-
tant factor to determine the performance of LVCSR system.

According to [FL99] different words may be pronounced canonical or non-canonical
which is predominately not recognized. An example in [LFLM12] in German, "haben
wir" (we have) is canonically pronounced [h a: b @ n v i:6] (using the SAMPA inter-
national transcription alphabet), but can be pronounced as [h a m a] or [h a m v a] in
colloquial speech. Another examples in [ADdMAL05] occur in French; voulait (wanted):
[v u l E]→ [v l E ], c’est à (that is): [s E t a]→ [s t a].

3.1.4.2 Data Sparsity

Another challenge for a given training data is the number of sub-word units which can
reach a few thousands of triphone units in a typical language. In this case and for in-
sufficient resources such as audio data and dictionary it is difficult to train conventional
models for languages or dialects. Therefore it is advised to investigate models based on
units that are more language-independent and robust to data sparseness.

In another word, if sub-word occur most frequently than the full-words in training data
can help to reduce the effect of data sparsity. The two challenges of sub-word modeling
help the speech recognition to progress only in restricted application and large resources
languages. Therefore speech recognition is not used for unrestricted applications, such as
court room transcription, closed captioning and freestyle dialogue systems [LFLM12].

3.2 Literature Review
[EDMSSN10] investigate the use of sub-lexical LMs for German large vocabulary and

continuous speech recognition (LVCSR). They compare three approaches for word de-
composition which are supervised, unsupervised word decomposition and the graphone-
based decomposition. Moreover, they conclude that the best approach is to use a vo-
cabulary of fragments generated by unsupervised methods, along with some fraction of
full-words (around 5k).

Linguistic knowledge is required for supervised approaches. For example in [ADA00]
a set of about 340 rules has been manually developed for splitting compound German
words. [BFRB96] use a hand corrected lexicon for recognition, where compound words
are manually decomposed. Lexical and syntactic knowledge in [EDGR+09] [KK01] are
the base of other supervised approaches rely on morphological analysis.
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Supervised methods have a positive impact on the performance of the recognizer, but they
require labor-intensive work. On the contrary the unsupervised approaches, which are
data-driven statistical-based approaches do not need any linguistic knowledge and can be
applied to any language. In [AD03] a set of 800k decomposition rules are automatically
extracted.

The minimum description length principle (MDL) [CHK+07] and compound splitting al-
gorithm [OVHDJ03] [LWKR00] are the base of other unsupervised methods. In [CHK+07]
the development of the compound splitting algorithm is based on sorting, word length, and
word frequency information. While in 8 the splitting of compound word depends on the
statistical relevance of the resulting constituents.

In [SMSN11a] the use of morpheme and syllable based units is investigated for building
sub-lexical LMs for LVCSR of Polish. Here, morphemes and syllables are combined
with their pronunciations and are the base of a different type of sub-lexical units. They
build LM based on graphone. They used the text corpora to select vocabulary (N most
frequent words) and to estimate back-off N-gram LMs by the SRILM toolkit. Moreover,
they concluded that the best results is morphemic graphones with a vocabulary of 70k
full-words plus 277k graphones.

[SMSN11b] presents the use of hybrid lexicons and LMs based on three mixed types of
sub-lexical units for building an open vocabulary LVCSR system for German language.
For the most frequent in-vocabulary words, normal full-words are used. While, for less
frequent in-vocabulary words, graphemic morphemes or syllables are used. According
to [SMSN11b] the use of morphemic sub-words outperforms the use of syllabic sub-
words for German language. Due to the high length of compound word in German the
number of syllables per word is relatively much great than the number of morphemes

In [KK01], the authors propose four different approaches to segment words into shorter
fragments. Depending on the needed target function (OOV-rate, WER, LER) one of the
segmentation strategies comes off as winner.

[VKV13] presented a novel algorithm, called Greedy 1-Grams (G1G), which learns a
subword vocabulary based on unigram likelihood. It provided the best performing sub-
word vocabulary for a Finnish LVCSR task.

[LFLM12] reviews past, present, and emerging approaches to sub-word modeling. In
order to make clean comparisons between many approaches, the review uses the unifying
language of graphical models. They have motivated the need for breaking up words into
sub-word units and surveyed some of the ways in which the research community has
attempted to address the resulting challenges, including traditional phone-based models
and less traditional models using acoustic units or subphonetic features.

In [MSD+12], the authors propose a simple approach to learn the subword units from
the data. This approach is based on very simple rules and frequency of occurrence of
these units in the training data. The idea is to keep the most frequent words and split all
the meaning words into syllable and to keep the most frequent syllables plus words and
split all remaining tokens into individual characters. This approach guarantees that all
infrequent words can be spelled into characters or syllables.
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[SSG10] use statistical (no linguistic knowledge is required) and grammatical word split-
ting approaches for Turkish language. Even in noisy environments [AT08] using syllables
acoustic units improve the performance of ASR systems of Arabic spoken proverbs.

[Par11] propose a probabilistic model to learn sub-word units for hybrid speech recog-
nizers by segmenting a text corpus while exploiting side information.

[LJSR89] discuss the use of three types of fundamental units. Namely whole word
units, phoneme-like units and acoustic subword segment units, the last two represent the
subword units. Linguistic definitions define the phoneme-like units, while acoustic sig-
nal realizations specify absolutely the acoustic segment units. According to [LJSR89]
and [T.S88] by the acoustic segment units there is no mismatch problem as encountered
with the phoneme-like units or linguistic sub-word.
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4. Properties of German Language

In this thesis all the experiments are based on German language which represent a good
example of morphological rich languages. A brief overview of the linguistic characteris-
tics of German language are presented in the next section.

4.1 German Morphological Rich Language
As presented in figure 4.1, German is one of a number of Germanic languages, a fam-
ily which also includes Dutch, Norwegian, English, Danish and Swedish. It is one of
the world’s major languages and the most widely spoken first language in the European
Union. Globally, German is spoken by approximately 120 million native speakers and
also by about 80 million non-native speakers. In Germany, Austria, and Liechtenstein
is German the only official language and one of the official languages of Switzerland,
Luxembourg, and Belgium. German is the second most commonly used scientific lan-
guage and the third largest contributor to research and development. It is also a dominant
language in business, culture, history, literature, philosophy and theology [Wik15a]. Ger-
many is ranked number 5 in terms of annual publication of new books. One tenth of all
books (including e-books) in the world are published in German. German is also after
English and Russian, the third most used language used by websites [w3t15].

German is a highly inflected language and contains a large vocabulary. Due to the inflec-
tion phenomenon, a large number of words can be derived from the same root. A root, or
root word, is defined as a word that does not have a prefix (in front of the word) or a suffix
(at the end of a word). The root word called base word is the primary lexical unit of a word,
and of a word family, which carries the most significant aspects of semantic content and
cannot be reduced into smaller constituents [Wik15b]. For example from the root word
"’fahr"’ "’driving"’ can be formulated "’fahren"’ "’drive"’, "’Fahrer"’ "’driver"’, "’Fahrt"’
"’ride"’, "’Nachfahr"’ "’descendant"’, "’Fahrrad"’ "’bicycle"’, "’fahrend"’ "’driving"’, etc.

4.1.1 Prefix

According to [Mih11] a prefix is an affix which is placed before the stem of a word.
Adding it to the beginning of one word changes it into another word. Also, the using of
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28 4. Properties of German Language

Figure 4.1: The Germanic languages today.

prefixes can change the meaning of German verbs. Most of them are separable prefixes
and are derived from prepositions. As their name would imply, separable prefixes can be
detached [Dar15b]. That means to split off the separable prefix and to move it after the
verb or to the end of the sentence. For example, "mitgehen" - "to go along" which can
be split like in "Gehen Sie mit?" - "Are you going with?" [Dar15b]. Another example is
"durchfahren". While the prefix "durch-" can have various definitions, here it takes on the
meaning of continuation through to an end. Hence ’durchfahren" means: to pass through;
to go non-stop [Dar15b]. The table 4.1 contains some examples of the separable prefixes.

ab- durch- aus- auseinander- dabei-
um- vor- weg- wieder- zu-
an- auf- bei- da- dazwischen-

Table 4.1: Some German separable prefixes.

The table 4.2 contains the different possible inseparable prefixes of German language.
As the term "inseparable" indicates, the inseparable prefix, in contrast to a separable
one, remains attached to the stem in all forms of the conjugation, including the finite
form [Dar15b]. For example the prefix "be-" in word "besprechen" - "to discuss": "Wir
besprechen die Situation" - " We’re discussing the situation".

be- emp- ent- er-
ge- hinter- miss- wider-

ver- zer-

Table 4.2: German inseparable prefixes.

4.1.2 Suffix
A suffix is a group of letters placed after the root of a word. The German language contains
about 113 suffixes. German often employs suffixes to add meaning or to produce other
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parts of speech. In one hand some of suffixes presented in table 4.3 can form Nouns. For
example the suffix "-ung" is frequently used to create a noun die "Befreiung" - "liberation"
by attaching it to a verb stem "befreien" [Dar15c]. In other hand some of suffixes in
table 4.4 can form adjectives and adverbs. For example the suffix "-bar" can be affixed
to nouns or verbs to denote "-ability" or a possession of the implied quality: "dankbar" -
"grateful", "lesbar" - "legible" [Dar15c].

-ant -art -chen -e -ent
-zeug -ung -keit -heit -er
-ling -or -lein -schaft -tät

Table 4.3: Some Suffixes for Forming Nouns.

-arm -artig -fach -frei -haft
-mal -los -lich -isch -ig
-voll -sam -wert -würdig -er

Table 4.4: Some Suffixes for Forming Adjectives and Adverbs.

4.1.3 Compound Word

Mark Twain said "the compound words the German language uses to capture precise or
complex meanings, which are a cause of irritation for novices and a delight for those who
manage to master the tongue".

German offers the possibility of combining of words. Compound words are formed when
two or more stem words are put together to form a new word with a new meaning. Com-
pound words fall within three categories and it is not unusual to find the same word in
more than one group. Here are the three types of compound words [k1215]:

• Closed compound words presented in table 4.5 are formed when two unique words
are joined together.

• Open compound words illustrated in table 4.6 have a space between the words but
when they are read together a new meaning is formed.

• Hyphenated compound words presented in table 4.7 are connected by a hyphen.
The sign (-) used to join words to indicate that they have a combined meaning.

Noun Verb Adjective adverb Preposition
Noun Wort+bildung seil+tanzen blitz+schnell fluss+abwärts
Verb Koch+topf dreh+bohren klopf+fest Tauge+nichts Reiss+aus
Adjective Blau+helm rein+waschen hell+gelb rund+weg rund+um
Adverb Wieder+wahl davon+laufen immer+grün immer+fort aussen+vor
Preposition Gegen+satz wider+sprechen vor+laut vor+weg neben+an

Table 4.5: Some closed compound words.
[Rei05]
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30 4. Properties of German Language

Adjective + Verb Noun + Verb Verb + Verb
dabei sein Rad fahren fahren lassen
gesund sein Schuld haben kennen lernen
laut reden Tennis spielen sitzen bleiben
sauber schreiben Staub saugen spazieren gehen
frei sprechen Recht bekommen liegen lassen

Table 4.6: Some open compound words.

Eurozonen-Ländern UN-Generalsekretär Politik-Arbitrage
Online-Ressource deutsch-französischen Kaffee-Ersatz
medizinisch-technische geistig-kulturelle Hoch-Zeit
Internet-Zensur EU-Haushalts Mehrzweck-Küchenmaschine
Schwimm-Meisterschaft Lotto-Annahmestelle Umsatzsteuer-Tabelle

Table 4.7: Some hyphenated compound words.

The closed compound words in table 4.5 have no connect element between the determiner
and the primary word. But in some other cases is needed to use the connect element such
as "-e-" in "Wartezimmer" - "waiting room", "-en" in "Gedankenfreiheit" - "freedom of
thought" and "-s-" in "Staatspolizei" - "state police" to form the resulted closed compound
words [Dar15a].

German language have a large quantity of closed compound words, especially nouns. The
most compound verbs are a combination of root word and a prefix or suffix.

Moreover, the German language is known for its extremely long compound nouns. The
Duden dictionary includes a 67 letter compound noun: "Grundstücksverkehrsgenehmi-
gungszuständigkeitsübertragungsverordnung", which means "Land transport permit trans-
fer of competence Regulation".

In this thesis only the hyphenated and closed compound words are investigated.
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5. Experimental Setup

In this chapter we define our baseline sub-word language models for German LVCSR.
Then we define the different data resources and scripts used for our experiments. Some
experiments have the same implementation methods and belong to one of the proposed
three scenarios.

5.1 Expanded Baseline sub-word German ASR system

The goal of this thesis is to buil a sub-word language models for German LVCSR. There-
fore, our baseline is based on an expanded sub-word German LVCSR system, with 19,2
WER, done by the Institute for Anthropomatics in KIT [KHM+].

The data sources of the expanded baseline system are:

• 180 hours of Quaero training data from 2009 to 2012.

• 24 hours of broadcast news data.

• 160 audio from the archive of parliament of the state of Baden-Württemberg, Ger-
many.

According to [KHM+] the Quaero training data is manually transcribed. Moreover using
the "dev2014" for test. The segmentation of audio data is automatic based on the SVM
segmentation approach.
The expanded baseline system use context-dependent quinphones with three states per
phoneme and a left-to-right HMM topology without skip states. The German acoustic
models use 6000 distributions and codebooks [KHM+]. An initial pronunciation dictio-
nary based on the Verbmobil Phones is used. The building of the language models is
based on the SRILM toolkit with modified Kneser-Ney smoothing and the top 300k Ger-
man words [KHM+].

In this thesis we use the same expended baseline acoustic model and test speech data. And
we use a different pronunciation dictionary and language model for the decoding task.
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32 5. Experimental Setup

5.2 Data Resources
5.2.1 Corpus Data
To have the possibility to compare our results to the result of the expanded baseline ASR
system, we have to use the same text corpora. Therefore, all experiments in this thesis are
based on 10 texts corpora chosen from 28 texts of the expanded baseline ASR system. As
shown in table 5.1 if we use these 10 texts to build the language model and take the same
dictionary and acoustic model of the expanded baseline ASR system, the word error rate
(WER) is 22,5%.

ASR system Sub-word Expanded Baseline (Exp. B.) Our Sub-word Baseline
Dictionary Exp. B. Dict. Exp. B. Dict.
AM Exp. B. AM Exp. B. AM
LM Exp. B. 28 Texts LM 10 Texts LM
WER 19,2% 22,5 %

Table 5.1: Expanded Baseline and our Baseline Sub-word ASR system.

The table 5.2 presented the characteristics of these different 10 texts. These characteristics
are the size of the text, the number of full-words and the number of hyphenated composed
words.

Size # Full-words # Hyphenated C. Words
Text 1 331M 47,725k 156k
Text 2 32M 4,498k 23k
Text 3 216M 32,176k 367k
Text 4 736M 109,716k 1,236k
Text 5 689M 102,797k 1,238k
Text 6 312M 46,477k 560k
Text 7 1,7G 256,671k 3,021k
Text 8 3,7G 553,790k 6,280k
Text 9 2,2G 325,516k 3,871k
Text 10 37M 5,545k 14k

Table 5.2: The 10 used Texts.

5.2.2 Dictionary
In our different experiments we use the same baseline acoustic model, but we should
build the language model and the dictionary. Therefore, the Sequitur G2P tool is used to
generate our dictionary.

g2p.py –model model-9 –apply dict-vocab

Previously we have to create the models by using the baseline dictionary as "train.lex".
In this thesis we use the model-9 to extend the dictionary. Here the different procedure
needed to train the models:
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g2p.py –train train.lex –devel 5% –write-model model-1
g2p.py –model model-1 –train train.lex –devel 5% –write-model model-2
g2p.py –model model-2 –train train.lex –devel 5% –write-model model-3

.

.

.
g2p.py –model model-8 –train train.lex –devel 5% –write-model model-9

5.2.3 Scripts and Tools for Split

In this section we describe the used scripts and tools to decompose a word or a compound
words into sub-words. And we explain the the employment of the select vocabulary script
and the letter n-gram script.

5.2.3.1 Hyphenation Tool

The figure 5.1 show how we use the Hyphenation tool in this thesis and mainly in Scenario
1 and Scenario 3. The input data are our vocabulary or text corpus and the German dictio-
nary for hyphenation (hyph_de_DE.dic). The output are split words into suitable syllable.
For example "bundeskanzleramt" - (Federal Chancellery) is split into"bun=des=kanz=ler=amt"

Figure 5.1: hyphenation Tool.

5.2.3.2 Morfessor Tool

As shown in figure 5.2 we use the Morfessor Tool to decompose the word into sub-words.

morfessor -t Split-Vocab -T Text-To-Split –output-format-separator "+ "

Our Morfessor split model use the "Split-Vocab". This vocabulary of distinct words
should contain the most frequently words in the training corpus. We do not include less
frequent words in order to avoid irregularities. Morfessor is able to decompose all unseen
words.

As we said the split by Morfessor is based on the given "Split-Vocab". Therefore, if the
"Split-Vocab" not contains the sub-words that could compose a word, the Morfessor split
this word into characters.

For example, if we want to split the word "durchfahren" - (drive through) and the "Split-
Vocab" contains "durch" and "fahren". The result is "durch+ fahren". Here we attach a "+"
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marker to the end of every sub-word to allow for a deterministic recovery to full-words in
the recognition output. But if we have "durch", "fahren", "fah" and "ren" as vocabulary
in the input "Split-Vocab", the result is "durch+ fah+ ren". The Morfessor tool follows
the principle of the minimum description length (MDL). That means that the Morfessor
always try to use the smallest given sub-word to decompose a word.

Figure 5.2: Morfessor Tool.

5.2.3.3 Full Compound Split Script

As shown in figure 5.3 we use the Full Compound Split Script to decompose the word
into sub-words.

cat Text-To-Split | ./Full-Compound-Split-Script -c –filtermode –vocab Split-Vocab

The input data should contain the "Split-Vocab" and the "Text-To-Split". Always the
decomposition of the word depends of the given "Split-Vocab". For example, we want to
split the word "Bundeskanzleramt"- (Federal Chancellery). If the "Split-Vocab" contains
the vocabulary "bundes", "kanzler", "bundeskanzler" and "amt", then the possible result
are "bundeskanzler+ amt" and "bundes+ kanzler+ amt". But the Full-Compound-Split-
Script hat a function to choose the best one. The table 5.3 below explains how to choose
the best (178 > 94), if we have more then one decomposition possibilities.

In other words, when there is more then one syllabification possibilities, the one with the
longest syllables is chosen.

Figure 5.3: Full Compound Split Script.
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5.2. Data Resources 35

bundeskanzler+ amt
132 + 32 = 178

13 letters 3 letters
bundes+ kanzler+ amt

62 + 72 + 32 = 94
6 letters 7 letters 3 letters

Table 5.3: The possibilities to split the word "Bundeskanzleramt" based on the given Split-
Vocab.

It is possible that some words will not be decomposed. Because the "Split-Vocab" not
includes the sub-words that could compose these words. In this case and different to the
Morfessor the "Full-Compound-Split-Script" not decompose words into characters.

5.2.4 Split-Word-Syllable-Character-Script

The figure 5.4 shows the script used in scenario 3 to split the training corpus. The split
vocabulary contains top Wk words, top Sk syllables and vocabulary characters. All vocab-
ulary in training corpus will be decompose into syllables and character if it is not include
in the top Wk.

Figure 5.4: Split-Word-Syllable-Character-Script.

5.2.4.1 Select-Vocabulary-Script

The Select-Vocabulary-Script is one of the SRI language Model Toolkit scripts. It selects
a maximum-likelihood vocabulary from a mixture of corpora.

Select-Vocabulary-Script -heldout file text 1 text 2 ... text 10

The necessary input data are the held out file and our 10 split texts which are split by using
the "Full-Compound-Split-Script". The "Select-Vocabulary-Script" picks a vocabulary
from the union of the vocabularies of text 1 through text 10 in order to maximize the
likelihood of the heldout file [AV03].
The output as shown in figure 5.5 is the list of words in all of the input corpora together
with their weights. This list may subsequently be sorted to put the words in decreasing
order of weight [AV03].
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Figure 5.5: Select Vocabulary Script.

5.2.4.2 Letter-N-gram Script

We use the Letter-N-gram Script to split the word into Letter-N-grams character. The size
of the Letter-N-grams is from 2 up to 6 Letters. For example the word "dienst" - (service)
as input and the output are "di, ie, en, ns, st, die, ien, ens, nst, dien, iens, enst, diens, ienst
" and "dienst". The figure 5.6 shows even how to produce Letter-N-grams from the word
"straße"- (street).

Figure 5.6: Letter-N-gram Script.

5.3 Experiments Scenarios

The different experiments in this thesis have applying one of three possible scenarios. The
term "scenario" means that we have always the same experiments implementation and we
only change the input data. These three scenarios will be presented with more details.
Moreover they share the same expanded baseline ASR acoustic model, the test speech
data and the same methods to build the dictionary 5.7 and the language model 5.8.

5.3.1 Building Dictionary

To build the dictionary two input data are needed. These data are the extended base-
line dictionary and the dictionary vocabulary. We use the "Search-Vocab-Pronunciation-
Script" to search the vocabulary in the extended baseline dictionary. If it exist we take it
and if not exist we use the Sequitur G2P to generate word pronunciation.
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Figure 5.7: Building Dictionary.

5.3.2 Building Language Model
The building of the language model is based on the input vocabulary also called language
model vocabulary and the split training corpus. We have to choose the n-gram language
model. In the three scenarios the most used n-gram is the 4-gram.

Figure 5.8: Building Language Model.
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5.3.3 Scenario 1

The figure 5.9 represents the different stages for scenario 1. The "Training Corpus" con-
tain the 10 training texts. First, we use the "Hyphenation Tool" based on the German
dictionary for hyphenation (hyph_de_DE.dic) to split the "Training Corpus". The result is
a hyphenated training corpus which contains syllables. These will be sorted by occurrence
to take the top 10000 vocabularies as "Split Vocabulary".

Second, the "Split Vocabulary" beside the "Full-Compound-Split Script" are needed to
split the "Training Corpus". The most frequently vocabulary will be selected based on
the "Select-Vocabulary Script". These vocabularies varied between 10k and 100k are
necessary to build the dictionary and the language model.

5.3.4 Scenario 2

The main goal of the scenario 2 is to compare three different experiments based on three
different input split vocabulary (Split-Vocab) to split the training corpus. The three input
split vocabulary are top 10k full-words, top 10k letter n-grams and top 10k full-words +
10k letter n-grams. The same dictionary will be used by the three experiments and three
new different language models must be built.

5.3.4.1 First Approach

The figure 5.10 shows two separately methods to find the most frequently words and
letters n-gram based on the "Training Corpus" as input data. On the left, the words are
sorted by occurrence. On the right, after the using of the letter n-gram script we have a
letter n-gram vocabulary. The length of the letter n-grams varied from 2 up to 6 letters.
We take always the most frequent.

Both top Wk words and top LNk letter n-grams represent together the language model
and dictionary vocabulary. In this First Approach two split methods Morfessor Tool and
"Full-Compound-Split Script" are used to split the training corpus. We want to know if
the Morfessor is helpful to improve the WER in the scenario 2.

5.3.4.2 Second Approach

The second approach of scenario 2 is based as shown figure 5.11 of top 10k letter n-
grams to split the training corpus. Using the "Full-Compound-Split Script" to build for
the second approach its own language model.

5.3.4.3 Third Approach

The third approach differs to the first two approaches by combining the top 10k letter
n-grams and the most frequent 10k full-words to create the needed split vocabulary (see
figure 5.11). We combine the top Wk full-words and the top LNk latter n-grams to build
the language model and the dictionary.
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Figure 5.9: The Main Stages of Scenario 1.

5.3.5 Scenario 3

The figure 5.12 shows the scenario 3 which share with the scenario 1 some same imple-
mentation phases. The result of the count of vocabulary of the "Training Corpus" is a 9
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Figure 5.10: The Main Stages of First Approach Scenario 2.

million sorted words list. We use the 60k vocabulary of the extended baseline as the split
vocabulary. The training corpus after split will be hyphenated and sorted.

The idea of the scenario 3 is to keep the most frequent words and split all the meaning
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Figure 5.11: The Main Stages of Second and Third Approach Scenario 2.

words into syllable and to keep the most frequent syllables plus words and split all re-
maining tokens into individual characters. This approach guarantees that all infrequent
words can be spelled into syllables or characters.
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Figure 5.12: The Main Stages of Scenario 3.

What distinguishes the scenario 3 from the other scenarios is combining the top Wk words
and the top Sk syllables to form the new split vocabulary. Also the language model vocab-
ulary contains the top Wk words, the top Sk syllables and the vocabulary character. While
only the Wk words and the top Sk syllables are needed to have the dictionary vocabulary.
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6. Experiment and Evaluation

In this chapter, all the experiments are described and the results are evaluated and ana-
lyzed. In each scenario we build an ASR system and calculate the word error rate (WER).
Sometimes we find some practical problems that can be solved by theoretical knowledge
or change the input data and compare the output. To make mistakes which are in the eyes
of some academic intuitive due to their experience and then try to overcome them helps
us to understand more the mechanism of the ASR system.

To understand better the three scenarios which were implemented independently from
each other we should describe the origin of the input data to the decoder. Since the acous-
tic model and the test speech data do not vary during our experiments. The main questions
that remain are:

• What is the used split vocabulary to split the training corpus?

• What are the used vocabularies to build the LM and the dictionary?

The table 6.1 describes the three scenarios that we considered in our experiments in order
to answer the previous questions.

Split Vocab. LM Vocab. Dict Vocab.
Scenario 1 10k TS Top Nk Top Nk
1. App of Scenario 2 10k TW TW + TLN TW + TLN
2. App of Scenario 2 10k TLN TW + TLN TW + TLN
3. App of Scenario 2 10k TW + 10k TLN TW + TLN TW + TLN
Scenario 3 TW + TS TW + TS + Vocab. character TW + TS

Table 6.1: The needed Vocabulary for all Scenarios.

• Top Nk: the most frequent vocabulary after using the select vocabulary script.

• Top Wk (TW): the most frequent words in the training corpus.

• Top Sk (TS): the most frequent syllables in the training corpus.

• Top LNk (TLN): the most frequent letter n-grams in the training corpus.
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6.1 Experiments of Scenario 1
After the split of the corpus data based on the hyphenation script, we use the 10k most
frequently syllables as split vocabulary to split the training data. We then use the se-
lect vocabulary script to choose the top 100k vocabularies which we use to generate the
dictionary and to build the language model.

When building the dictionary, we first search for the dictionary vocabulary in the extended
baseline dictionary and adopt them if found. Otherwise we use the Sequitur G2P tool to
generate them. The table 6.2 shows a comparison between using only the given dictionary
vocabulary and the G2P tool and additionally using the expanded baseline dictionary as
a reference. This method has proved to be was a good way 5.7 of building the dictionary
and will be adopted in the rest of the scenarios.

Nur G2P Dictionary G2P with original Dict.
WER 47.4% 40.9%

Table 6.2: The generation of the Dictionary.

We tried to generate the language model using different n-grams: which are 4, 5 and 6 -
gram. The results of Word Error Rate are shown in the table 6.3. We notice that increasing
the n-gram does not necessarily improve the WER. We use the 4-gram in the following
scenarios as it has the best results in the first scenario.

4-gram LM 5-gram LM 6-gram LM
WER 40.9% 41% 45.2%

Table 6.3: Results of increased n-gram LM.

6.2 Experiments of Scenario 2
In the second scenario, we used "letter n-grams" instead of syllables. The letter n-grams
are brute force split sub-words sorted by occurrence. We split the corpus data into every
possible sub-word of 2 to 6 letters and take the most occurring ones.
The reason of to choose 2 letters as minimum length and 6 as maximum length of the
letter n-grams is interpreted from Figure 6.1.

Figure 6.1 illustrates the number of vocabularies based on the number of the characters in
the hyphenated corpus data in scenarios 1. Syllables with 2 and 3 characters are dominant.
In scenario 2, the syllables have 6 characters as maximum size. The split vocab contain
10k frequently full-words including 5k full-words have number of characters from 2 up
to 6.

To improve the vocabulary we add the most occurring full-words from the corpus data.
We combine them with the top LNk (letter-N-grams) to create the language model and
dictionary vocabulary.
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Figure 6.1: Number of Vocabularies based on the Number of Characters.

6.2.1 First Approach

In the first approach of scenario 2, we have two experiments. The first one based on the
original created language model and dictionary vocabulary. In the second, attaching a "+"
sign to the end of all language model and dictionary vocabulary.

6.2.1.1 First Experiment of 1.App of Scenario 2

As described in Figure 6.2, there is improvement in the Result of WER if we increase the
size of the sub-words and fix the size of the full-words. Here we have increasing at the
same time the size of the letter n-gram and the size of the total vocabulary. Therefore we
can not summarize anything.

To find out which parameter has the influence on the result we have combine the top Wk
full-word and the top LNk letter n-gram so that the total size of the vocabulary is maximal
100k. We varied LNk between 5k and 95k and Wk between 95k and 5k as shown in
table 6.4.

In some experiments of this first approach, we tried the Morfessor tool as a supplementary
method to split the training corps. Which did not deliver better results and was unstable
in many experiments.

The WER and the perplexity are proportional to the augmentation of the percentage of
the full-words in the 100k vocabularies. And this tabl 6.4 shows that we have no gain if
we add the letter n-grams to the full-words to create the language model and dictionary
vocabulary.
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Figure 6.2: Improvement in the Result of WER by fixing the Size of the Full-Words and
varying the Size of the Sub-Words.

LM Full-words Letter n-gram
Full-Compound Split Morfessor
WER [%] PPL WER [%] PPL

4-gram

5k 95k 40.1 199 - 733
10k 90k 35.7 218 - 766
20k 80k 32.9 234 51.3 769
30k 70k 31.4 245 52.6 769
40k 60k 30.2 252 - 769
50k 50k 30.1 258 51.5 769
60k 40k 29.1 263 - 769
70k 30k 28.9 267 50.3 768

100k - 28.6 276 - -

Table 6.4: Experimental Results of experiment 1 of Scenario 2.

6.2.1.2 Second Experiment of 1.App of Scenario 2

Add a sign "+" at the end of all vocabularies that means that the new vocabulary size is
200k distributed as follows: 100k vocabularies contain original full-words and letters n-
gram and 100k vocabularies with suffix "+" at the end. This modification of the vocabulary
size and adding a suffix like "+" to the half of the vocabularies help us to have the results
presented in table 6.5. The minimum observed WER is achieved using 50k letters n-gram
and 50k full-words. A clearer description 100k (50k with suffix "+" + 50k) letters n-gram
and 100k (50k with suffix "+" + 50k) full-words. These result can prove that using big
vocabulary size improve the WER in this thesis.
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LM Full-words Letter n-gram
Full-Compound Split Script
WER [%] PPL

4-gram

10k 90k 32.7 207
20k 80k 30.3 221
30k 70k 29.1 231
50k 50k 27.3 242

Table 6.5: Experimental Results of Experiment 2 of Scenario 2 based on Adding the Suffix
"+" to 100k vocabularies.

6.2.2 Second Approach

In the second approach we use the most frequent 10k letter n-grams to split the training
corpus. The split is doing through the "Full-Compound Split Script". Top Wk and top LNk
together represent the needed vocabulary to build the dictionary and the language model.
The table 6.6 shows that increasing the full-words size from 50k to 95k and decreasing the
letter n-grams size from 50k to 5k improve 1,2% the WER. This approach is characterized
by the higher perplexities results.

LM Full-words Letter n-gram
Full-Compound Split Script
WER [%] PPL

4-gram

50k 50k 36.5 1231
60k 40k 35.9 1249
70k 30k 35.7 1265
80k 20k 35.6 1315
90k 10k 35.6 1293
95k 5k 35.3 938

Table 6.6: Experimental Results of 2 Approach of Scenario 2.

6.2.3 Third Approach

In the third approach both the Top 10k Wk and top 10k LNk represent the new split
vocabulary with new size 20k. This approach is characterized with the rapprochement
between the different WER results. Only 0.6% difference in the WER between the first
cell of the table 6.7 and the last one. 29.7% is the lowest WER result.

LM Full-words Letter n-gram
Full-Compound Split Script
WER [%] PPL

4-gram

50k 50k 30.9 345
60k 40k 30.3 356
70k 30k 30.3 359
80k 20k 30 361
90k 10k 29.8 363
95k 5k 29.7 336

Table 6.7: Experimental Results of 3 Approach of Scenario 2.
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Based on this approach we decide to use for the third scenario a combination of full-words
and syllables to split the training corpus.

6.3 Experiments of Scenario 3

In scenario 3 the training corpus is sorted and the most frequent full-words Wk is taken.
After the hyphenation of the sorted training corpus, the hyphenated corpus will be sorted
and the most frequent syllables Sk is taken. In the scenario 3 adding the top Wk to the
split vocabulary. Adding the vocabulary of characters to the top Wk and top Sk to build
the language model and the dictionary it is what distinguishes the scenario 3.

To find the best combination of full-words and Syllables to have the best result, table 6.8
introduces a set of experiments in which the size of full-word is increased gradually up to
95k. And the size of syllables is decreased from 95k up to 5k.

LM Full-words Syllables
Full-Compound Split
WER [%] PPL

4-gram

1k 30k 38.1 60
5k 5k 32.8 69
5k 15k 32.3 91
5k 95k 32 98
10k 90k 30 125
20k 5k 29.1 124
20k 30k 28.3 154
20k 80k 28.2 158
30k 70k 27.7 180
40k 5k 28 161
40k 30k 27.4 191
40k 60k 27.4 196
50k 50k 26.9 207
60k 40k 26.4 215
70k 30k 26.5 221
80k 20k 26.3 225
90k 10k 26.3 223
95k 5k 26.4 214

Table 6.8: Experimental Results of Scenario 3 (4-gram).

In tabel 6.8 the minimum observed WER is achieved in two combinations using 80k full-
words + 20k syllables and 90k full-words and 10k syllables.

6.4 How to improve the WER in Scenario 3?

In this section we describe the 3 ideas doing to improve the WER. These are using 6-gram
language model instead of 4-gram and using a grapheme dictionary. At the end adding
syllables pronunciation variation and characters variations to the dictionary.
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6.4.1 6-gram Language model

The table 6.9 shows a summary of the best achieved WERs based on a 6-gram language
model. We observe here that we have almost the same results as 4-gram LM or 0,1%
worse. But the results of the perplexities is better as the 4-gram LM.

LM Full-words Syllables
Full-Compound Split Script
WER [%] PPL

6 n-gram

50k 50k 27 204
60k 40k 26.5 212
70k 30k 26.5 218
80k 20k 26.3 221
90k 10k 26.4 217
95k 5k 26.4 207

Table 6.9: Experimental Results of Scenario 3 (6 n-gram).

6.4.2 Grapheme Dictionary

In addition to systems with a phoneme-based dictionary, we also built grapheme-based
recognition system By using the same data and only replacing the original pronunciation
dictionary with grapheme dictionary which is a 1:1 mapping approach between letters and
sounds.

The table 6.10 shows that in this ASR system the using of the grapheme dictionary not
improve the WER.

LM Full-words Syllables
Full-Compound Split Script

WER [%]

4-gram

50k 50k 29
60k 40k 28.1
70k 30k 27.2
80k 20k 27.3
90k 10k 27.2
95k 5k 27.4

Table 6.10: Experimental Results of Scenario 3 based on Grapheme Dictionary.

6.4.3 Syllables and Characters Pronunciation Variants

In this section we add another one syllables and from two up to three characters pro-
nunciations variants to the original dictionary. Using the G2P sequitur to generate 10
pronunciations variants for every character. Then we select the best two or three pronun-
ciations. After performing this approach the average reduction in the WER is around 0.3%
compared to the use of one pronunciation variant for syllables. The tables 6.11 shows that
the minimum observed WER, 26%, is achieved using 60k full-words and 40k syllables.
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LM Full-words Syllables
Full-Compound Split Script

WER [%]

4-gram

50k 50k 26.4
60k 40k 26
70k 30k 26.2
80k 20k 26.1
90k 10k 26.3
95k 5k 26.2

Table 6.11: Experimental Results of Scenario 3 based on Syllables and Characters Pro-
nunciation Variants.

6.5 Statistics of the best Results
In this section we give an overview about the split training corpus of the 6 best experiments
results based on statistics. Then in detail for the ASR system with 26% WER result.

The table 6.12 represents the statistics Results for split training corpus for the best 6 Ex-
periments WER Results. The first thing that can be seen is the high proportion of the full
words in the split training data. We remember that the term word means the vocabulary in
a sentence between two spaces. This means that the top Wk frequently full words contain
the different prepositions, conjunctions and German articles. These are present almost in
all German sentence. And the figure 6.3 shows the number of occurrences of some of
them in the sorted training corpus.

Figure 6.3: The most frequently words in the training corpus data.

95.2% is the largest obtained proportion by 100k vocabularies contain 95k full words and
5k syllables. 40% from 95k full words are words contain up to 6 characters.
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As it’s known the quality of the split of the corpus data related to the given split vocabu-
lary. Therefore, the explanation of the exist of the vocabulary split with character is the
absence of the proper syllable in the split vocabulary to split it.

The percentage of the vocabulary split with character is a metric to evaluate the quality
of the syllables. The lower percentage of the vocabulary split with character, the higher
is the quality of the syllable. Table 6.12 shows the percentage of the full-words and the
percentage of the vocabulary split into syllables and characters in the 6 different training
corpus. As we see increasing the size of the full-word and decreasing the size of the
syllable increase the size of the vocabulary split into characters. And we can understand
that because of the need to make up the shortfall in the amount of syllable vocabulary.

Full-words Syllables
Split training Data

Full-Words [%] Syllables [%] Vocab. split into Characters [%]
50k 50k 93.19 6.69 0.12
60k 40k 93.9 5.94 0.16
70k 30k 94.45 5.32 0.23
80k 20k 94.88 4.79 0.33
90k 10k 94.24 4.32 0.44
95k 5k 95.5 3.96 0.54

Table 6.12: Statistics Results for split Training Corpus for the best 6 Experiments WER
Results.

The table 6.13 represents the results of the split 10 texts based on 60k full words and
40k syllable. Despite different sizes and the number of contained vocabulary the 10 split
texts maintained almost the same quote of full words, syllables and vocabulary split with
character.

Full-words Syll. Split Text Full-Words [%] Syll. [%] Vocab. split into Characters [%]

60k 40k

1 96.02 3.94 0.04
2 94.47 5.44 0.09
3 93.29 6.7 0.01
4 93.45 6.43 0.12
5 93.37 6.51 0.12
6 93.36 6.52 0.12
7 93.31 6.55 0.14
8 92.39 7.39 0.22
9 93.15 6.69 0.16

10 95.90 4.07 0.03

Table 6.13: Statistics Results for split 10 texts based on 60k Full-words and 40k Syllables.

The table 6.14 below shows some full-words output examples which represent our objec-
tive in this thesis
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Nutzbarkeit (usability) nutz+ bar+ keit
Spielzeug (toys) spiel+ zeug
Diagnose (diagnosis) dia+ gno+ se
Konzertsaal (concert Hall) kon+ zert+ saal
Vollzusage (voll engagement) voll+ zu+ sa+ ge
Überwachungsproblem (monitoring problem) über+ wa+ chungs+ pro+ blem

Table 6.14: Some Examples of Compounding Sequences of Sub-Units to form Full-
Words.
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7. Summary and future work

In this thesis, we built a LVCSR system for the German language based on sub-words.
The aim is to overcome the lack of vocabulary in the regular full-word speech recognition
systems by generating new vocabulary from the training data, which occurs especially
with morphological rich languages such as German. The decision of using a sub-words
based system is due to their capability to model unseen words in the training corpus by
compounding sequences of sub-units forming new words.

Our experiments are conducted on a German training corpus containing about 9 million
full-words. In three scenarios, we investigated the results of different techniques acting
on the input split, the language model and the dictionary vocabulary. Two techniques are
involved in generating sub-words, which are syllables and letter n-grams.

Our experiments show that using a combination of full-words and syllables from the train-
ing corpus leads to the best WER results. Improvement gains come from adding the syl-
lables and characters pronunciations variants to the dictionary, while no gain is achieved
by replacing the dictionary with a grapheme dictionary.

The main drawback of the sub-word based approach is that the degree of acoustic confu-
sion among different recognition units becomes higher, which is due to the short length
of the units. Therefore, as future work we propose a more driven and restricted use of
sub-words. For example, by fixing a maximum and a minimum length of units, or by
finding out syllables that have a meaning. We also suggest investigating other sub-word
extraction techniques, such as morpheme.

A different approach for estimating sub-words based Language Models could be the use
of feed-forward deep neural networks (DNNs).

Finally, we find it interesting to try our approach on building ASR for other morphological
rich languages, such as Arabic and Polish.
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