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Abstract

Deep learning techniques contribute signi�cant advances on dialogue systems. Never-

theless, although end-to-end neural approaches help to generate �uent and appropriate

response, there are some problems, among which a typical issue is the trend of generat-

ing "general", "safe" responses like "it’s a good idea" and "I don’t know what you mean".

This is because these fully data-driven systems lack grounding in the real world and infer

responses using only the collection of conversational transcriptions.

For this issue, we proposed a neural conversational model that is able to utilize ground

knowledge to produce meaningful and speci�c responses without traditional pipeline

structure by encoding ground knowledge with pre-trained model BERT. We use Trans-

former as encoder-decoder backbone and put forward 2 schemes: 1. use BERT embed-

ding corresponding to CLS token to represent a fact sentence; 2. use BERT embedding to

keywords in a fact sentence. Then BERT embedding are injected to each token in source

sequence, so that information from source sequence and external knowledge is combined.

In our experiments, we used the datasets and the evaluation metrics from the sentence

generation task in Dialog System Technology Challenges 7 (DSTC7-Track2). According

to the evaluation results, the proposed system worked �ne at the DSTC7-Track2 and per-

formed better than the baseline RNN model provided by the competition organizers, as

well as our own baseline RNN model and baseline Transformer model. In appropriateness

metrics, NIST scores are about 0.3 points higher than baselines, METEOR are 0.04 higher,

only BLEU are lower than baselines. In informativeness metrics, entropy are about 0.1

higher and diversity are 0.1 higher than baseline.
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Zusammenfassung

Deep-Learning-Techniken tragen zu erheblichen Fortschritten bei den Dialogsystemen

bei. Obwohl durchgängige neuronale Ansätze dabei helfen, eine natürliche und angemes-

sene Reaktion zu erzielen, gibt es einige Probleme, darunter der Trend zur Erzeugung von

”allgemeinen”, ”sicheren” Reaktionen wie ”it’s a good idea” und ”I don’t know what you

mean”. Dies ist darauf zurückzuführen, dass diese vollständig datengesteuerten Systeme

in der realen Welt keine Grundlage haben und Antworten nur unter Verwendung der

Sammlung von Gesprächstranskriptionen ableiten.

Für diese Ausgabe haben wir ein neuronales Konversationsmodell vorgeschlagen, das

in der Lage ist, das Grundwissen zu nutzen, um ohne traditionelle Pipeline-Struktur aus-

sagekräftige und spezi�sche Antworten zu erhalten, indem das Grundwissen mit dem vor-

geübten Modell BERT codiert wird. Wir verwenden Transformer als Encoder-Decoder-

Backbone und schlagen zwei Schemata vor: 1. Verwenden Sie die BERT-Embedding, die

dem CLS-Token entspricht, um einen Faktensatz darzustellen. 2. Verwenden Sie die BERT-

Embedding für Schlüsselwörter in einem Faktensatz. Anschließend wird jedem Token

in der Quellsequenz eine BERT-Embedding hinzugefügt, sodass Informationen aus der

Quellsequenz und externem Wissen kombiniert werden.

In unseren Experimenten verwendeten wir die Datensätze und Bewertungsmetriken

aus der Satzerzeugungsaufgabe in Dialog System Technology Challenges 7 (DSTC7-Track2).

Den Bewertungsergebnissen zufolge funktionierte das vorgeschlagene System beim DSTC7-

Track2 einwandfrei und schnitt besser ab als das von den Wettbewerbsveranstaltern zur

Verfügung gestellte RNN-Basismodell sowie unser eigenes RNN-Basismodell und Transformer-

Basismodell. Gemäß der Bewertung liegen die NIST-Werte in Angemessenheitsmetriken

etwa 0,3 Punkte über den Basiswerten, METEOR 0,04 und nur BLEU unter den Basiswer-

ten. In der Informationsmetrik ist die Entropie um etwa 0,1 höher und die Diversität um

0,1 höher als die Basislinie.
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1 Introduction

A dialogue system is a computer agent that makes interaction with human via conver-

sation. More precisely, in this thesis, it refers to non-task-oriented systems, which are

chatbots that generate proper responses given conversation inputs. Typically both query

and response are in text form. Dialogue systems have been widely used on a variety of

business scenario such as customer service and personal assistant.

In tradition, a dialogue system is usually built as a pipeline structure, as shown in

Figure 1.1. Such a system mainly consists of ASR (automatic speech recognition, convert

speech to text), NLU (natural language understanding, represent the semantics of natural

language), DM (dialogue modeling, manage �ow of conversation), NLG (natural language

generation, generate natural language from semantic representation) and TTS (text-to-

speech, convert text to speech). In this thesis, we consider texts as the input and output

of the system and only focus on NLU, DM and NLG.

Figure 1.1: Components of traditional pipeline for dialogue systems

Dialogue systems with pipeline require us to prede�ne structure of the dialogue states,

which needs independent components and is complicated and limited to very narrow

domain. Moreover, it cannot encode all the features that might be useful. With the devel-

opment of big data and deep learning techniques, neural network-based dialogue systems

trained in an end-to-end and data-driven fashion have attracted more and more attention

due to its great potential and application value. On the one hand, deep learning tech-

niques have shown their e�ectiveness on dealing with unstructured data such as images

and sounds. Since natural languages are also unstructured data and share many properties

with the others like local correlation, deep learning is expected to be good at dealing with

natural languages, including dialogues. On the other hand, deep learning, especially on

supervised learning schemes, usually requires large-scaled datasets for capturing complex

meaningful feature representations automatically, as well as learning response generation

strategies especially for dialogue systems. Nowadays, abundant conversation corpus can

be acquired on the Internet, which �rmly supports us training complicated neural net-

works and building open-domain conversation models. A large number of contributions
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1 Introduction

have been made on promoting the performance of dialogue systems by introducing deep

learning and utilizing massive data.

In general, two major approaches have been developed for non-task-oriented systems

– (1) generative methods such as sequence-to-sequence models, which generate proper

responses during the conversation. Typically, they are more widely used for conversing

with human on open domains; and (2) retrieval-based methods, which learn to select

responses from the current conversation from a repository and are more usually used on

speci�c scenarios (e.g. online shopping guide).

In this article, we mainly focus on neural network based sequence-to-sequence gen-

erative models, which are trained in a completely end-to-end and data-driven fashion,

without any hand-coding. Without requirement of manual e�orts in rule designing and

feature engineering, it is of convenience to develop an extensible open domain conversa-

tion system.

The original end-to-end conversation models are inspired by statistical machine trans-

lation [18], including neural machine translation [6, 17, 3]. Other works in this direction

include Long Short-Term Memory (LSTM) models [37, 19], the Hierarchical Recurrent

Encoder-Decoder (HRED) models [30], attention-based models [39, 22, 31], and further

the Transformer model [36]. These neural network based approaches produced impres-

sive results on probity and �uency, especially on large-scaled corpus.

Nevertheless, these fully data-driven systems are mainly based on question-response

pairs ignoring conversational context and do not have access to any external knowledge

(textual or structured), which makes it di�cult to respond substantively. While a human

focuses on the entities in the questions and thinks a substantive answer about the enti-

ties, the neural network-based system only take into account how to make an appropriate

response. For example, if the question is "Do you know the best restaurant nearby?", a

dialogue system could reply "Yes, I do.", while a human could answer "I would say Yangx-

iao is the best." Although the former is a correct answer, nobody would be satis�ed with

it. In contrast, traditional dialogue systems with pipeline can readily inject entities and

facts into responses, which indicates that we can combine the advantages of pipeline and

neural networks.

The 7th Dialog System Technology Challenge (DSTC7) track 2 proposes an End-to-

End conversational modeling task, where the goal is to generate conversational responses

that go beyond chitchat in order to produce system responses that are both substantive

and “useful” which can contain factual contents, by injecting informational responses.

So DSTC7-Track2 provides not only the social conversation corpus but also contextual-

related factual texts such as Foursquare, Wikipedia [12, 9]. The results are evaluated

by "appropriateness" (e.g. BLEU, METEOR) as well as "informativeness" (e.g. entropy,

diversity). Our experiments and evaluations are conducted with this task.

1.1 Goals

The experiment was performed according to the regulations of DSTC7-Track2. We �rst

build own seq2seq model baselines. Besides the baseline model provided by the DSTC

organizers, we also used our own primary seq2seq models as control groups.

2



1.1 Goals

Figure 1.2: Knowledge-grounded model architecture
1

We can abstract a knowledge-grounded model architecture as Figure 1.2. In many

realistic approaches, typically provided by the DSTC competing teams [33, 27, 42, 34],

the backbone encoder-decoder architecture are RNN and the facts are represented as

sentence-level features. They also made a contribution on promoting the performance

by sophisticate data preparations, output inference and candidates reranking. In this ar-

ticle, we focus on fact encoder, which means how the conversation history and the extra

knowledge are represented and how they are combined. Since the Transformer model re-

leased by Vaswani et al. has shown its high performance [36], we use the Transformer as

encoder-decoder backbone. It represents an input sequence as a list of augmented word

embeddings. Our proposed method introduces the extra knowledge on word level. Since

we make the incorporation on each word, representing the facts and combining it with

context using trainable parameters and adjusting the parameters while training would

cause massive computation workload. We turned to pre-trained models, BERT [7], which

are widely used coupled with �ne-tuning on downstream NLP tasks. We put forward

2 schemes: 1. utilize BERT sentence embedding; 2. extract important words from facts

and utilize their BERT context sensitive word embedding. Then we combine facts repre-

sentation and input sequence representation with attention mechanism. Since we aimed

to explore the in�uence by incorporating the facts, we set other condition as invariable,

such as decoding strategy and response selection mechanism. The machine systems for

comparison are the o�cial RNN baseline, our own RNN and transformer baseline.

To summarize, our work mainly includes:

1. prepare data, make essential data preprocess

2. build stable RNN and Transformer conversation model as baselines, use the Trans-

former model as backbone of our proposed model

3. select contextually relevant facts from world facts

1
Source: Galley M, Brockett C, Gao X, et al. End-to-End Conversation Modeling: Moving beyond

Chitchat[J]. 2018.
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1 Introduction

4. convert the contextually relevant facts to proper semantic representation with BERT

5. combine the source sequence representation and the fact representation on word

level with attention

6. generate responses and evaluate the results

1.2 Outline

chapter 2 gives an introduction into the fundamentals of this thesis, in particular the

Transformer, BERT and TF-IDF. chapter 3 reviews brie�y on the development of dialogue

system, especially the works that have great signi�cance on this thesis. chapter 4 clearly

describe the issue and our target. In chapter 5, we put forward our proposed methods.

In chapter 6, we discuss the details of implementation of our experiments and make an

evaluation on our proposed methods. In chapter 7, we have a review on our works and

discuss the future work.

4



2 Fundamentals

This chapter provides an essential introduction into the basic terminology, algorithms and

models that will be used within this thesis, in particular LSTM, the Transformer, BERT and

TF-IDF. This introduction should give a fundamental understanding of the basic concepts

and approaches.

2.1 Long short-termmemory (LSTM)

Recurrent neural network, RNN, is a type of neural network processing time series data,

which is traditionally dominant in NLP tasks with sequences [23]. In theory, RNN can

handle sequences of arbitrary length by carefully tuning the parameters, but in practice,

RNN does not perform well on long sequence. LSTM is a special type of RNN that can

learn long-term dependence information. LSTM was proposed by Hochreiter and Schmid-

huber [16] and has been improved and promoted by Felix Gers [11] and Alex Graves [14].

In this thesis, we built a baseline sequence-to-sequence model with LSTM.

LSTM network architecture is composed of a cell (the memory part of the LSTM unit)

and three "regulators", usually called "gates", for the information �ow inside the LSTM

unit: an input gate, an output gate and a forget gate, as shown in Figure 2.1.

Figure 2.1: LSTM architecture

The network can delete or add information to cell states through gates, which is a

combination of a sigmoid layer and a dot product operation, as shown in Figure 2.2.

This form of LSTM can be more precisely de�ned as follows: ht is the output of the

network at each time step, ft , it and ot are the forget, input and output gates respectively,

5



2 Fundamentals

Figure 2.2: Gate for information �ow control

ct is the cell memory state. � denotes an element-wise product, [] denotes concatenation.

ft = σ (Wf [ht−1, xt ] + b f )

it = σ (Wi[ht−1, xt ] + bi)

ot = σ (Wo[ht−1, xt ] + bo)

ct = it � tanh(Wд[ht−1, xt ] + bx ) + ft � ct−1

ht = ot � tanh(ct )

(2.1)

At the price of complexity, LSTM have been shown to be much more resilient to the

vanishing gradient problem, as well as being able to model long-term dependencies with

much greater reliability than RNN [11, 14].

2.2 Encoder-Decoder Architecture

Encoder-decoder architecture can be regarded as a general framework, under which dif-

ferent algorithms can be used to solve sequence-to-sequence tasks, which means, as lit-

erally, input one sequence and output another sequence and the lengths of both input

and output sequences are variable. Deep neural networks have achieved good results on

issues such as image classi�cation, where input and output can be expressed as a vector

of �xed length. If the image size is slightly changed, operations such as zero padding are

performed. However, in many NLP tasks, such as machine translation and automatic di-

alogues, we have only access to sequences without knowing their length in advance. The

encoder-decoder framework has emerged as the tasks require.

Encoder - Its role is to transform real world problems into mathematical problems,

technically, convert the input sequence into a �xed-length vector.

Decoder - Its role is to solve mathematical problems and turn them into real world solu-

tions, technically, convert the previously generated �xed vector into an output sequence.

Connecting the above two steps, a general diagram is shown as Figure 2.3:

Figure 2.3: Encoder-Decoder

Note that:

6



2.2 Encoder-Decoder Architecture

1. Regardless of the length of the input and output, the length of the context vector in

the middle is �xed.

2. We can choose di�erent encoders and decoders according to the tasks (it can be an

RNN, but usually a variant of LSTM or GRU).

We model the scenario as: input sequence in encoder X = (x1, x2, ..., xm), output se-

quence in decoder Y = (y1,y2, ...,ym), the whole encoder-decoder share an identical con-

text vector C = G(x1, x2, ..., xm). Then we have:

y1 = f (C)

y2 = f (C,y1)

y3 = f (C,y1,y2)

...

(2.2)

2.2.1 Attention Mechanism

As mentioned in section 2.2, there is only a context vector between encoder and decoder

in the traditional form, and the length of the context vector is �xed. It means, encoder

compresses all the sequence information into a �xed-length vector. There are two dis-

advantages: 1. the semantic vector cannot completely represent the information of the

entire sequence; 2. the information carried by the content entered �rst will be diluted or

covered by the information entered later.

In order to deal with the above problems, we can use attention mechanism. For exam-

ple, in machine translation, let the generated words not only focus on the global semantic

vectorC , but a set of semantic vectorsC1,C2,C3, ... that indicates which part of the input

sequence should be focused on when outputting words, then based on the area of interest

to produce the next output. The model structure is as follows:

Figure 2.4: Encoder-Decoder with attention

7



2 Fundamentals

In this form, we generate target sentence Y as follows:

y1 = f (C1)

y2 = f (C2,y1)

y3 = f (C3,y1,y2)

...

(2.3)

More generally, Vaswani et al. [36] gave attention mechanism a clear de�nition, which

plays a signi�cant role on combining di�erent level features. Assume that at the current

time step t , we have a query vector and a group of key vectors, a group of value vectors

respectively corresponding to the keys. Here query can be understood as a global vector

containing more information. We use this query and the keys to weight and sum all

value vectors to learn a more suitable new vector, which can be used for tasks such as

classi�cation or prediction.

Provided thatqt is the query on time step t . K is the key matrix, among whichks is a key

vector. V is the corresponding value matrix. We �rst perform a similarity calculation on

qt and each key to get an unnormalized score. For example, Bahdanau attention (additive)

[2] and Luong attention (multiplicative) [21].

s(qt ,ks) = Similarity(qt ,ks) (2.4)

The simplest dot product is used here, and the denominator is to adjust the inner prod-

uct result, so that the inner product is not so large. Then Softmax normalize the score as

the attention probability weight, as shown in following formula, where vs is an element

vector in V :

a(qt ,ks) =
exp(s(qt ,ks))∑N
i=1 exp(s(qt ,ki))

(2.5)

Then we weight and sum the values according to the weight corresponding to each key

and get the �nal output vector:

Attention(qt ,K,V ) =
m∑
s=1

a(qt ,ks)vs (2.6)

We can see that for the same key, di�erent queries will have di�erent output vectors.

Conceptually, attention can be understood as selectively �ltering a small amount of im-

portant information from a large amount of information and focusing on this important

information. This focus is re�ected by the weight. The larger the weight, the more fo-

cused it is on its corresponding value, that is, the weight represents the importance of

information, and value is its corresponding information.

2.2.2 The Transformer

The content of following section, including the formulas and the �gures, is from the paper

of Vaswani et al. [36]. In encoder-decoder framework for general tasks, the input (source)

and the output (target) are di�erent. For example, in English-Chinese machine translation,

8



2.2 Encoder-Decoder Architecture

the source is an English sentence, and the target is a corresponding Chinese sentence. The

attention occurs between a query in target and all elements in source, we can consider

key = value , query. Self-attention, as the name implies, refers not to the attention

between target and source, but to that occurs between the elements within source or

target. It can also be understood as a special attention where key = value = query.

With the introduction of self-attention, it is easier to capture long-distance interdepen-

dent features in a sentence, because with an RNN or LSTM, we need to calculate the se-

quence time step by time step. For long-distance interdependent features, it takes several

time steps to accumulate information before they can be linked. The longer the distance,

the more di�cult it is to capture information e�ectively.

However, self-attention will directly build the relationship between any two words in a

sentence through a calculation step, so that the distance between long-distance dependent

features is greatly shortened, which is conducive to utilize these features e�ectively. In

addition, self-attention also directly helps to increase the parallelism of the calculation.

Vaswani et al. [36] put forward a new Encoder-Decoder Architecture relying entirely

on self-attention to compute representations of its input and output without using RNN,

which is called the Transformer [36], as illustrated in Figure 2.5.

Figure 2.5: The Transformer - model architecture
1

Multi-head - besides extracting features with self-attention mentioned above, the Trans-

former contains multi-head attention. The multi-head refers to introduce multiple sets of

1
Source: Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Advances in neural infor-

mation processing systems. 2017: 5998-6008.
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2 Fundamentals

parameter matrices to perform linear transformations onQ , K , andV and obtain the self-

attention respectively, then concatenate all the results as the �nal self-attention output.

Figure 2.6: Multi-head attention
1

More precisely, multi-head attention can be calculated as follow:

MultiHead(Q,K,V ) = Concat(head1, ...,headh)W
O

headi = Attention(QW
Q
i ,KW

K
i ,VW

V
i )

(2.7)

In this way, the model has multiple sets of relatively independent attention parameters,

which theoretically can enhance the capabilities of the model.

Positional encoding - without the introduction of position information we cannot model

a sequence properly. If we shu�e the word order in the sentence, the result of attention is

still the same. The Transformer introduces position information by giving each position

a number, where each number corresponds to a vector. By combining the position vector

and the word vector, a certain position information is introduced for each word, so that

attention can distinguish words in di�erent positions. In the Transformer, sine and cosine

functions of di�erent frequencies are used for encoding positions:

PE(pos,2i) = sin(pos/100002i/dmodel )

PE(pos,2i+1) = cos(pos/100002i/dmodel )
(2.8)

The core idea of the attention mechanism in the Transformer is to calculate the rela-

tionship between each word in a sentence and all the words in the sentence. Using these

correlations to adjust the importance (weight) of each word can obtain a new represen-

tation for each word. This new representation not only contains the word itself, but also

the relationship between other words and this word, so it is a more global expression

than a simple word embedding vector. Attention reduces the distance between any two

positions in the sequence to a constant, so that reduce long term dependence problem. In

this thesis, we build our proposed model based on the Transformer architecture.

10



2.3 Bidirectional Encoder Representation Transformers (BERT)

2.3 Bidirectional Encoder Representation Transformers
(BERT)

In NLP tasks, a word or a sentence usually needs to be transform into semantic represen-

tation with respect to the context around it. Machine learning models, especially neural

networks, cannot directly deal with unstructured information such as texts, images and

videos, which have variable size. We must �rst convert the information into numerous

representation, in other word, a group of numbers, which is usually a scalar, a vector

or a matrix, so that the machine learning models can recognize them and use them in

calculation. This semantic representation is usually called embedding or encoding. Pre-

trained models are increasingly popular for obtaining embeddings in order to utilize the

massive data from the sophisticated datasets as well as reduce computation workload. In

this thesis, we use pre-trained model BERT to generate word embeddings and sentence

embeddings for the contextually relevant facts.

BERT, Bidirectional Encoder Representation Transformers [7], can be considered as a

general NLU (Natural Language Understanding) model, which provides support for dif-

ferent NLP tasks. It is built based on bi-directional Transformers. In actual use, we only

need to add an output layer for �ne-tuning according to speci�c tasks, instead of modi-

fying the model structure for speci�c tasks. This is an advantage of the pre-trained BERT

model.

The BERT model structure is an optimization of the OpenAI GPT model [31], and

changed its uni-directional Transformer structure to bi-directional. The paper of Devlin

et al. [7] argues that unidirectional language models severely limit the ability to pre-

train expressions, especially for �ne-tuning methods. Therefore, the BERT model uses a

two-way language model, and has obtained a huge capacity improvement. The author of

BERT proposed to use MLM (masked language model) to train language models. When

entering a sentence, randomly select some words to predict, and then replace them with a

special symbol. Although the model eventually see the input information in all positions,

but, because the words to be predicted have been replaced by special symbols, the model

cannot know in advance what words are in these positions, so that the model can learn

which word should to be �lled in based on the given labels.

However, the special symbol we use in the pre-training process will not appear in fol-

lowing concrete tasks. In order to be consistent with following tasks, the author enters

the original word or a random word at a certain proportion of the positions to be pre-

dicted. Because only part of the words in the input text sequence are used for training,

the e�ciency of BERT is lower than that of ordinary language models. The author also

pointed out that the convergence of BERT requires more training steps.

Another innovation of BERT is to add a next sentence prediction (NSP) task based on

two-way language model. It is to predict whether the text at both ends of the input BERT

is continuous text. The author points out that the introduction of this task let the model

better learn the relationship between continuous text fragments. During training, the

second segment of the input model will be randomly selected from all the text with a 50%

proportion, and the remaining 50% proportion is the subsequent text of the �rst segment.

11
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BERT training data uses English open source corpus "Book Corpus" and English Wikipedia

data, in total of 3.3 billion words. The basic version of BERT model has 100 million pa-

rameters, while the large version has more than 300 million parameters.

The basic structure of the BERT model is shown in Figure 2.7. In essence, a multi-layer

bi-directional encoder network is constructed using the Transformer structure. We only

need to add an output layer after the structure in Figure 2.7 according to the speci�c task.

Figure 2.7: BERT encoder
2

The pre-trained BERT model can be directly applied to a variety of tasks, including

sentence-level classi�cation, question answering, sequence labeling. The following �gure

illustrates single-sentence classi�cation tasks.

Figure 2.8: Single sentence classi�cation with BERT
3

2
Source: Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for

language understanding[J]. arXiv preprint arXiv:1810.04805, 2018.

3
Source: https://jalammar.github.io/illustrated-bert/
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2.4 TF-IDF

BERT has refreshed the records in 11 NLP tasks [7] and it played a signi�cant role in

our experiments. We use BERT to represent contextually relevant facts and the important

words among them.

2.4 TF-IDF

Tf-idf, short for term frequency–inverse document frequency, is a widely used weighting

technique for information retrieval. In this thesis, we used it for retrieving contextually

relevant facts from world facts and selecting the most important words. Tf-idf measures

the importance of a word to a document in a corpus.

On the one hand, if a word is important, it should appear multiple times in this doc-

ument. Therefore, we make "term frequency" (abbreviated as tf) statistics. On the other

hand, if a word is relatively rare in the corpus, but it appears in this document, it probably

re�ects the characteristics of this document and is the key word we need. In other word,

based on the document frequency, each word is assigned a "importance" weight. The com-

mon words like "the", "is" and "in" are given less weights, while the less common words

like "reinforcement learning" and "recommender systems" are given larger weights. This

weight is called "inverse document frequency" (idf).

Given a corpus C containing nd documents, a document d and a term t , one of the

possible de�nitions of tf-idf is calculated as follow:

tf-idf(d ,t ,C) = tf(d ,t ) × idf(t ,C)

tf(d ,t ) = number of occurrences of t in d

idf(t ,C) = log

nd
df(t ,C)

df(t ,C) = number of documents in C where t occurs

(2.9)

Add-one smoothing is widely used in idf to avoid zero denominator problem:

idf(t ,C) = log

nd
df(t ,C)

+ 1 (2.10)

2.5 Evaluation Metrics

For measuring appropriateness, BLEU [25], NIST [8] and METEOR [4] are used in our

thesis.

2.5.1 BLEU

The idea of BLEU [25] is to compare the overlap of n-grams (from unigram to 4-gram

in practice) between candidate responses and reference responses. The higher the over-

lap, the higher the quality of the translation. For a source sentence, we mark candidate

response as ci and a set of reference response as Si = {si1, si2, ..., sim}, where sim is a refer-

ence response example. ωk is an n-gram, hk(ci) is the number of occurrences of ωk in ci ,

13
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while hk(sij) is is the number of occurrences of ωk in sij . BLEU calculates the coincidence

precision according to the following formula:

CPn(C, S) =

∑
i

∑
kmin(hk(ci),maxj∈mhk(sij))∑

i

∑
k hk(ci)

CPn(C, S) prefers short response. BP (Brevity Penalty) is introduced to compensate this

trend, where lc is the length of ci , ls is the length of sij :

BP(C, S) =

{
1 if lc > ls

e1−
ls
lc if lc ≤ ls

BLEU is a weighted geometric mean of n-grams precision, as the following formula:

BLEUN (C, S) = BP(C, S) exp(
N∑
n=1

ωn logCPn(C, S))

Unigram precision can be used to measure the accuracy of word translation, while

higher-order n-gram precision can be used to measure the �uency of sentences. BLEU is

more suitable for evaluating machine translation than dialogue. It only regards precision

but a lot of high-quality conversation responses have low precision with the references,

which has been re�ected in [5]. Besides, BLEU tends to shorter candidates despite brevity

penalty. The shortages of BLEU were as well re�ected in some other works: [24] shows

that BLEU does not map well to human judgements in evaluating some natural language

generation tasks, [32] shows that BLEU does not re�ect meaning preservation very well.

2.5.2 METEOR

Compared to BLEU, METEOR [4] reintroduces recall and uses F-Score as metric com-

bining recall and precision. It looks only at unigram precision and recall and takes into

account word in�ection variations (via stemming) while matching. When evaluating �u-

ency, the concept of chunk was introduced. The calculation of METEOR requires a set of

alignment m in advance, and this calibration is based on WordNet, which is obtained by

minimizing the continuous and ordered chunks ch in the corresponding sentence. The

smaller the number of chunks, the longer the average length of each chunk, which means

the more consistent the word order of the candidate and reference responses.

2.5.3 NIST

NIST [8], short for National Institute of standards and Technology, is an improvement on

BLEU. While BLEU simply gives an equal weight to each n-gram and calculates n-gram

precision, NIST calculates how informative an n-gram is as well, introducing the concept

of In f ormation to every n-gram. When a correct n-gram is matched, it would be given

a higher weight if the n-gram is relatively rarer. For example, the words (unigram) "a",

"the" are usually given a lower weight while the bigram "carbon dioxide" is more likely to

get a higher weight. Besides, NIST does not involve with brevity penalty. Several works

[24, 15, 35] made comparison between BLEU, METEOR and NIST and have shown that

NIST and METEOR are more reliable for evaluating some NLG tasks.
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3 RelatedWorks

This chapter brie�y reviews relevant researches of our work, mainly about how other

researches utilizing external knowledge.

An intuitive idea to improve response quality is to take into account prior external

knowledge relevant to the conversation, which is a major di�erence between human and

conversational agent trained with source-target pairwise corpus. With the development

of name entity recognition (NER) and information retrieval (IR), it is of convenience to

�nd and extract the information relevant to the conversation so that build an external

knowledge base (KB). The incorporation of knowledge base has been explored for other

NLP tasks. [41] used both the words from knowledge base and the common words in vo-

cabulary for question-answering (QA) tasks, instead of tuple retrieval in knowledge base

in generation process. [29] proposed Pointer-Generator Networks. It introduced a mode

control mechanism to switch between copying tokens from knowledge base or input se-

quence and generating a new token, which enjoys the advantages of both extractive and

abstractive summarization.

3.1 Dialog System Technology Challenges 7

Many e�orts have been made to incorporate the non-conversational facts into fully data-

driven dialogue systems. In the sentence generation task in Dialog System Technology

Challenges 7 (DSTC7-Task2), this issue was discussed in focus.

In [12], [42] and [34], memory network is introduced to represent fact sentences and

couple them with sequence-to-sequence backbone. [27] used a hierarchical architecture

to encode input sequence and fact sentences as RNN hidden states respectively and com-

bine the hidden state using attention mechanism. All the competition related works rep-

resented the input sequence and the external knowledge at sentence-level as a vector and

as well manipulated the context vector at sentence-level. They all used RNN Encoder-

Decoder architecture as the conversation backbone.

Our experiments and evaluations are conducted with this task and we proposed a model

based on the Transformer and introduce fact information into word embeddings in dia-

logue encoder.
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4 Problem Description

In this section, we will clearly elaborate on the issue that this thesis aims at.

Our works target at improving the performance of neural network-based conversa-

tional response generation in single turn so that the generated response can be more

informative and contentful.

Figure 4.1: Comparison between responses from human and neural model
1

We illustrate it with the example in Figure 4.1. A normal neural conversation model

trained with source-target pairwise conversational corpus has no access to the tips on

top of the �gure. In the conversation corpus, the sentences like "XXX go to XXX" might

occur several times in source sequences, while the corresponding targets might usually

include "Have a good time". After training, the neural model remembers the relationship

that when the input has similar implication with "XXX go to XXX", the response is highly

probable to be "Have a good time". Comparatively, "Kusakabe" is very rare in corpus, and

the model does not have enough references to �gure out how "Kusakabe" has an in�uence

on the response. When the user inputs "Going to Kusakabe tonight.", the system recog-

nizes the query as "XXX go to XXX" ignoring "Kusakabe", and hence gives the response

"Have a great time!". If a human who has completely no impression on "Kusakabe" is

asked the same question, he might probably answer "Have a great time!" as well, because

1
Source: Galley M, Brockett C, Gao X, et al. End-to-End Conversation Modeling: Moving beyond

Chitchat[J]. 2018.

17



4 Problem Description

he might realize the question is "somebody goes to somewhere" and such answer is proper

in this situation. Thus, the response of the neural model deserves to be called "proper".

However, if a human know "Kusakabe" is a Japanese restaurant and "omasake" is a famous

dish in Kusakabe by reading the tips, he might realize the query is "go to a restaurant"

and politely give a suggestion using the knowledge from the tips, sothat the response is

comparatively substantive and contentful. In this scenario, the di�erence between the

responses from neural model and human can be mainly ascribed to the association with

the tips, in other word, external knowledge. It is to expect that if neural models had

access to the external knowledge, their response might contain substantive information

and concrete entities as well. This goal is same as that of grounded response generation

task at Dialog System Technology Challenge 7 (DSTC7-Track2). Thus, we conducted our

experiment on the condition of DSTC7-Track2.
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5 Methods for Knowledge-grounded
Conversation Models with Word-level
Incorporation

In this chapter, we will �rst illustrate the common architecture for the issue in the �rst

section. Then we will put forward our methods including facts retrieval, generating se-

mantic representation for the contextually relevant facts, incorporating fact information

into dialogue encoder and response selection in decoder, while introducing the concrete

methods used in each part of our own architecture.

5.1 Common Architecture

A neural conversation model architecture associated with non-conversational external

knowledge can be abstracted as Figure 5.1. In the following section, we will describe a

comparison between such architecture and a normal sequence-to-sequence backbone.

Figure 5.1: Knowledge-grounded model architecture
1

First, a knowledge base that contains world facts is available. In this thesis, world

facts are non-conversational texts that are organized as a group of sentences or short

paragraphs. When given a sequence input or conversational history, we have a facts

retrieval component for searching the most relevant facts according to the important part

1
Source: Ghazvininejad M, Brockett C, Chang M W, et al. A knowledge-grounded neural conversation

model[C]//Thirty-Second AAAI Conference on Arti�cial Intelligence. 2018.
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in the input. Such important part is usually substantive or concrete things like names,

countries and institute. With a dialogue encoder, conversation history is encoded into

semantic representation like in normal sequence-to-sequence model. However, instead

of feeding the semantic representation into decoder, the architecture �rst feeds it to a

facts encoder. With the facts encoder, the important part of contextually relevant facts are

recognized according to the semantic representation of input sequence and encoded into

semantic representation, which is usually in the same form with that of input sequence,

as well. Then a component combines the semantic representation of input sequence and

contextually relevant facts and feeds its output to a decoder. The decoder makes inference

like that in normal sequence-to-sequence model and generates the �nal response. s

5.2 Facts Retrieval

In our experiment, we used one of the most commonly used weighting technique for in-

formation retrieval, tf-idf, mentioned in section 2.4, for �ltering the contextually relevant

facts.

Tf-idf is very �exible in use. In order to �nd the most relevant facts given a input

sequence with tf-idf. There are two approaches used in our experiments:

1. We �rst �lter the important words in the query by blocking the "stop words" like "a",

"the" and "is", then calculate the tf-idf score of each important word in every document.

For a document, we consider the summation of all the tf-idf scores of the important words

as the relevance index of the query to the document. We calculate the relevance between

a query and a document from a corpus as the following formula, where q is a query, di is

a document, C is a corpus, tj is a "non-stop-word":

Relevance Index(q,di ) =
∑
tj

tf-idf(di, tj,C) (5.1)

We regularized term frequency with the length of the document, because we should pre-

vent the trend from favoring long documents.

2. Since tf-idf re�ects the importance of a word to the document, we can use tf-idf to

�nd the most important words in each document. Then we form a term frequency vector

with the important words for each document, where the element is the number of the oc-

currence of each important word in the document. We then calculate the similarity, such

as cosine similarity, between the vectors and so on search the most relevant documents

to a given query as we consider that higher similarity value two documents have, more

relevant they are.

sentence A: I have money

sentence B: I have no money

term frequency vector A: [1,1,1,0] I:1, have:1, money:1, no:0

term frequency vector A: [1,1,1,1] I:1, have:1, money:1, no:1

cosine similarity: cosθ =
1 × 1 + 1 × 1 + 1 × 1 + 0 × 1

√
1
2 + 12 + 12 + 02 ×

√
1
2 + 12 + 12 + 12

= 0.866

(5.2)
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5.3 Dialogue Encoder and Decoder

In our experiments, tf-idf is used for looking for the important words in contextually

relevant facts as well. For each contextually relevant fact, we kept 2 most important words

among it. If an important word occurs multiple times in the fact sentence, we take into

account all of them, using the average of their embeddings to represent this important

word. More detail will be mentioned in section 5.4.

5.3 Dialogue Encoder and Decoder

The Transformer, a new type of encoder-decoder architecture published by Vaswani et

al. [36], strongly draws public attention. It enjoys a lower computation workload and

is good at dealing with long-term dependency problem compared to the RNNs, so that

it can use more network layers to capture semantic implication and be applied to longer

sequences. Since there are a lot of long sentences (about 60 tokens) in the corpus and the

Transformer has shown its high performance, we used the Transformer as the encoder-

decoder backbone, unlike other works published for DSTC7-Track2 [33, 27, 42, 34, 10].

That means, our dialogue encoder represents the input sequence as a matrix or more pre-

cisely, a list of augmented word embeddings, which is the output of the last self-attention

block. The number of columns of the semantic representation matrix is same as the length

of the input sequence, while in RNN models an input sequence is represented as a �xed-

length vector. That avoids the loss of information by compressing the variable-length

input sequence into a �xed-length vector. It is illustrated in Figure 5.2:

Figure 5.2: Semantic representation of input sequence

In order to make a more comprehensive comparison, besides referring to the o�cial

baseline, we build our own baseline models in addition. We build not only a Transformer-
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based baseline, but also a traditional RNN encoder-decoder baseline, more precisely, with

long short-term memory (LSTM).

The decoder makes inference with the same mechanism of that in normal sequence-

to-sequence model, but its input is the combination of semantic representation of input

sequence and contextually relevant facts. Beam search and some other tricks is used

to improve the quality of the generated response, which will be mentioned in detail in

chapter 6.

5.4 Facts Encoder

This part is the focus point of this thesis. In the following 2 subsections, we will mention

how we encode the contextually relevant facts into semantic representation and how we

combine it with the semantic representation of the conversation history respectively.

5.4.1 Representing Facts with Pre-trained Models

The �rst task of facts encoder is to �lter the important part of the given contextually

relevant facts which is non-conversational texts and organized as a set of sentences or

short paragraphs with respect to the given semantic representation of input sequence

and encode the important part into semantic representation as well. The order can di�er

as well, �rst encode the facts and then �lter the important part.

In some DSTC7-Track2 relevant works [13, 34, 42], a fact sentence was represented as

bag-of-words, masking the less important "stop words" like "a", "the" and "is" in sentences

and forming a vector whose elements are the numbers of occurrences of the key words.

This method does not introduce trainable parameters, which enjoys a low computation

workload. It emphasizes the important part of the fact sentences well, since only the

key words that occurs relatively more times are involved in the bag-of-word vectors.

However, it loses the implication of word order and ignores the internal dependencies

between di�erent parts of the sentences. In other DSTC7-Track2 relevant works [27, 33],

a fact sentence was represented as hidden state vectors of RNNs, which are in same form

with the input sequence representation. This method utilizes the implication of word

order and the internal dependencies, but does not emphasize the important part explicitly

and requires a huge amount of computation, since it can be considered as a multi-channel

RNN architecture and introduce massive trainable parameters.

In order to better emphasize the important part, utilize the implication within sen-

tences and reduce computation workload, we need a novel word or sentence embedding

approach. In this thesis, we turn to a pre-trained natural language understanding (NLU)

model, BERT, Bidirectional Encoder Representation Transformers
2
. The methods that

encode words or sentences with BERT and then use the embedding for �ne-tuning for

other downstream tasks have been proven to be e�ective [7]. We used the single-sentence

mode of BERT, adding a "CLS" token at the front of a fact sentence and then feeding it

to BERT. With BERT we can convert a sequence to a vector containing the information

of the whole sequence, which is aligned with the "CLS" token and a list of vectors whose

2
See section 2.3
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elements are the augmented word embeddings of the corresponding tokens, through the

pre-trained parameters in BERT models. We put forward two schemes with BERT:

Scheme 1: Utilize the whole fact sentences. We can use the vector corresponding to

the "CLS" token to represent the whole fact sentence. This method have shown its e�ec-

tiveness [7]. Thanks to the extremely deep network architecture (24 layers) of BERT and

the self-attention mechanism, the implication within fact sentences is well exploited and

the important part is well emphasized. The extraction of sentence embedding is shown

in Figure 5.3.

Figure 5.3: Sentence embedding with BERT
3

Scheme 2: Utilize the important words in fact sentences. In the fact retrieval step, we

can �nd not only the contextually relevant facts, but also the most important and infor-

mative words in the facts with tf-idf. In order to better emphasize the important part

of the facts, we can use the augmented word embeddings of the important words from

BERT to represent the facts. Thanks to the word disambiguation by self-attention and

continuous bag-of-word (CBOW) mechanism in BERT, an augmented word embedding

contains not only the meaning of the corresponding word itself, but also the information

of surrounding words. It does not lose too much sentence-internal dependency and im-

plication if we set a proper sampling window around a word. For each fact, we sample

two key words from it. The architecture is shown in Figure 5.4.

3
Source: https://jalammar.github.io/illustrated-bert/
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Figure 5.4: Word embedding with BERT
3

Note that BERT uses WordPiece algorithm to reduce the size of vocabulary, which splits

rare words into sub-word characters. It is a trade-o� between sequence length and vo-

cabulary size. In order to couple BERT with the selected important words and word-level

incorporation in next step, we use the average of the representation vectors of the sub-

words to represent the complete word. It is illustrated as Figure 5.5.

Figure 5.5: Merge pieces of sub-words

If a word is considered as important word and occurs multiple times in the fact sen-

tence
4
, we use the average of the BERT embeddings of these words to represent it. Note

that BERT takes into account the surrounding context of a word and transforms an identi-

cal word into di�erent embeddings so that achieves word disambiguation. It is illustrated

as Figure 5.6.

4
See section 5.2
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Figure 5.6: Merge multiply occurring important words

The computation of BERT is in fact quite time-consuming, since it makes inference with

an extremely complicated model. We can �rst obtain the encoded fact representations and

store them on disk before the end-to-end training with conversation corpus, so that avoid

the time consuming for obtaining BERT embeddings. We only need to load the stored

representations from disk while training.

5.4.2 Combining embeddings with Attention Mechanism at word-level

Since our dialogue encoder represents the input sequence as a matrix or more precisely,

a list of word embeddings, the output of the last self-attention block in dialogue encoder,

the semantic representation matrix has the same length with the input sequence instead

of a �xed-length vector in RNNs. It is di�cult to incorporate the semantic representation

of facts into conversation history at sentence-level, because the input sequence is repre-

sented as a matrix in which the number of column is same as the length of input sequence,

which is variable, and each piece of fact information (word embedding of important word

or sentence embedding of fact sentence
5
) is represented as a �xed-length vector. On the

one hand, we could not compress the matrix into a vector, because the input of decoder is

as well a matrix with same shape. On the other hand, if we intend to map the vector into

a same-shaped matrix, a large amount of trainable parameters are required to deal with

the variable-length input sequence, which is di�cult to implement.

Instead, we proposed a method that incorporates the semantic representation of facts

into conversation history at word-level. More precisely, given vectors of encoded fact

(word embeddings or sentence embeddings), we manipulate each word vector in the in-

put sequence matrix respectively according to the given vectors. The fusion of dense

vectors at same or di�erent feature-level has been explored and proven to be e�ective.

In terms of word or sentence embedding, [36] introduced positional encoding into word

embedding without trainable parameters, [7] combine word embedding, segment embed-

ding and positional embedding with trainable parameters. More general in multi-model

fusion, [40] introduced video features into encoder-decoder frame with vector fushion.

These works inspired us to introduce fact information into each word vector in the input

sequence matrix.

5
See subsection 5.4.1
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5 Methods for Knowledge-grounded Conversation Models with Word-level Incorporation

Typically, addition and concatenation are widely used for combining dense vectors.

Assume that there is an n dimensional vector a and an m dimensional vector a. We can

simply append b after a, or �rst map b into an n dimensional vector b′ with a matrix W
sized n ×m and then perform vector addition a +b′. As shown in some experiments [12],

with addition we could usually obtain better results. Thus, we focus on combing with

addition. In our experiment, vectors from dialogue encoder and from facts encoder are

set to have same length. We do not need the matrixW and just perform a + b.

Assume that ti is the word vector on previous time step and f1, f2, ..., fk are the vectors

from facts encoder (sentence vector in Scheme 1, word vector in Scheme 2, see subsec-

tion 5.4.1). In order to focus more the important information in f1, f2, ..., fk with respect

to the relevance between ti and fj , j = 1, 2, ...,k , we need a set of scalar weights ω to

emphasize the facts more relevant to ti .

When it comes to the determination of weight parameters, it is natural to associate

attention mechanism
6
. We consider ti is a query and fj serve as both key and value. The

method that let key and value have a same source is widely used in NLP tasks [39, 36].

Dot production noted as pj between key fj and query ti is calculated and considered as

the relevance score between fj and ti . Then Softmax is calculated among p, so that we get

a set of weight parameters ω. It is shown as the following formulas:

pj = fj · ti

ω = Softmax(p)

(5.3)

With attention mechanism we get rid of high computation workload introduced by

using trainable parameters to determine ω. The process is illustrated in Figure 5.7, where

"Kusakabe" is a word in input sequence and now serves as a query q1. k1,v1, k2 andv2 are

word or sentence embeddings of the facts from facts encoder and serve as key and value.

k1 and v1 are same and from an identical fact, while k2 and v2 are same and from another

fact. After attention, fact information is weighted and injected into "Kusakabe", so that

an augmented word embedding "Kusakabe’" containing not only information from itself

but also information from facts is obtained.

6
See subsection 2.2.1
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5.5 Response Selection

Figure 5.7: Processes of weighting fact information with attention
7

Such combination via attention mechanism was performed at each word embedding of

input sequence from dialogue encoder, so that an augmented semantic representation of

conversation history containing information from facts is obtained and then is fed to the

next step of the architecture.

5.5 Response Selection

Usually, after the decoder complete beam search, a bunch of candidate responses are gen-

erated and we need to choose one among them as the deterministic response for the given

input sequence. The DSTC7-Track2 is no exception, which requires only one response

for a source sequence. In conversational response generation tasks, we seldom choose

the �rst one from the beam, which has minimum loss and is assigned highest probability,

because it is usually a short, trivial sentence like "Yes ." and "OK ." A reason could be, the

sequence-to-sequence models typically optimize the likelihood of outputs during train-

ing and the general responses do appear more frequently in the conversation corpus, it

is natural that the general and trivial responses would be assigned high probability [19,

38]. In order to improve quality of the generated responses, we could use some strate-

gies like selecting the longest candidate, the last candidate or the candidate containing

7
Source: https://jalammar.github.io/illustrated-transformer/
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5 Methods for Knowledge-grounded Conversation Models with Word-level Incorporation

most various words from the beam. In our experiment, we chose the candidate contain-

ing most various words as the deterministic response for the given input sequence, only

for our proposed model, but also for our own baseline Transformer model and baseline

RNN model.
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6 Experiments

This chapter is about the implementation of our experiments: section 6.1 introduces how

we obtained the dataset and the e�orts to make it suitable for training, section 6.2 men-

tions our experimental setup, including how we build the concrete framework, the setup

of hyper-parameters and the baseline we used and section 6.3 mentions the evaluation

metrics. The points worth of notice will be indicated.

6.1 Dataset

Our works target at improving the performance of neural network-based conversational

response generation in single turn so that the generated response can be more informative

and contentful. This goal is same as that of grounded response generation task at Dialog

System Technology Challenge 7 (DSTC7-Track2). Thus, we conducted our experiment on

the condition of DSTC7-Track2, which means that we used only the dataset (conversation

and external knowledge) provided by the organizers to train our model and evaluated

the performance by testing with the o�cial test set. The data collection and the �nal

calculation of evaluation score were executed with the o�cial scripts
1
.

Since it was a competition, the organizers did not provide an elaborate dataset like the

Ubuntu Dialogue Corpus [20]. Instead of directly releasing the data, the organizers pro-

vided the scripts for crawling data. The data preprocess is crucial. Without �ne preprocess

we could even hardly train a baseline sequence-to-sequence model.

6.1.1 Conversation Data

The conversational data is from a Reddit dump
2
. Reddit

3
is a network of communities,

where people can discuss about a topic on posts and the content can be voted up or down

by other people. Posts are organized by topics called "subreddits". The facts data is from

Common Crawl
4
. The source of facts are information sharing websites like Wikipedia

5
.

In our conversation corpus, each turn conversation is equipped with the subreddit

name indexed by a conversation ID and other information, as shown in Table 6.1.1. For

training our models, we only need the conversation ID (for looking for the relevant facts)

1
https://github.com/mgalley/DSTC7-End-to-End-Conversation-Modeling, DSTC7: End-to-End Conversa-

tion Modeling

2
http://�les.pushshift.io/reddit/comments/

3
https://www.reddit.com/

4
http://commoncrawl.org/

5
https://www.wikipedia.org/
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Training set Dev. set Test set

# dialogue turns 2,364,228 119,478 13,440

# facts 15,180,800 1,675,056 582,944

# tagged facts 2,185,893 369,423 139,406

Table 6.1: Data statistics of conversation and facts corpus

Figure 6.1: Sample conversation turn

and the conversational context and response pair. We did not regard the turns because we

aimed at single-turn response generation and considered all the previous turns as conver-

sation history. For an identical conversational context, there might be several responses,

which has di�erent response scores. We found that only the responses with best score

are not su�cient for training and many responses with lower scores are of high qual-

ity in grammar and content, so we collected all the dialogue turns in our rudimentary

conversation dataset.

Since the conversation is from a social media source, it contains extremely various

words and a lot of noise, which requires data preprocess. We must reduce the vocabulary,

because too large vocabulary is not bene�cial for fully data-driven neural conversation

models and we used pre-trained model BERT, whose vocabulary is limited. First, all the

words were lowercased and all the non-letter characters were eliminated except the basic

punctuation marks. The words or phrases containing too special information like tele-

phone number, website link and date are replaced with corresponding special tokens like

<number>, <link> and <date>. Then some tools like spaCy and our own rules were ap-

plied to the dialogues for regularizing the words. For example, "u . s ." is regularized as

"u.s." and "don’t" is converted to "do n’t". The repeating tokens in corpus were then re-

moved, in order to avoid them causing repeating tokens in generated responses. After the

manipulation, we chose the most 20000 frequent words to form our vocabulary.

On the one hand, too short sequence might not be informative and contentful and

it is not bene�cial for training a conversation model aiming at generate long and vivid

responses. On the other hand, although our sequence-to-sequence backbone and BERT

are based on the Transformer, which is relatively good at dealing with long sequence,
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6.1 Dataset

there is still a limit. Too long sequence might be beyond the capacity of the Transformer.

Therefore, we kept only the turns whose source and target sequence have both more than

4 tokens. For the sequences with more than 64 tokens, we kept only the last 64 tokens.

After the preprocess for conversation data, about 1.3 million pairs were kept, which is

still su�cient for training our model.

Training set Dev. set Test set

# dialogue turns 1,354,483 4,542 13,440

Table 6.2: Data statistics for conversation corpus after proprocess

We constructed our vocabulary with words, instead of using the popular WordPiece

methods like Byte Pair Encoding (BPE), because our model aimed at making incorporation

at word-level. After our �ne preprocess, a vocabulary with 20000 words was constructed

and is suitable for training.

6.1.2 Facts Data

When it comes to the facts data, since they are crawled through the name entities in

conversation corpus (name entity recognition was completed by the organizers), in our

facts corpus, each fact is assigned a conversation ID as well, which means the "world facts"

of a conversation pair
6

is the group of facts that have same conversation ID with the

conversation pair. The crawled content from the website was split into a set of sentences.

Most fact sentences are declarative sentences like information from Wikipedia and a few

are sentences that express one’s opinion like comment from Foursquare
7
. With the o�cial

Figure 6.2: Sample fact

scripts, almost all the text of the original pages was kept in the rudimentary facts data,

including tags like <title>, <p>, <h1-6>. This �rst step of our preprocess is to remove

6
See section 5.1

7
https://foursquare.com/
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the tags making the sentences more like natural declarative sentences. Then the rules for

preprocessing the facts data are same with those for conversation data. We removed the

facts with no more than 4 tokens.

After preprocessing the facts, we performed fact retrieval with tf-idf
8
, so that for each

conversation, 10 facts were selected as contextually relevant facts from up to 10000 world

facts and kept. Note that if a conversation has less than 10 "world facts", we compensated

by repeating the most relevant fact so that 10 relevant facts were obtained. Besides, 20

keywords (each fact 2 keywords) from the contextually relevant facts are collected, which

will be used as well for the next step.

6.2 Experimental Setup

After data preprocess and vocabulary construction, we were able to build the end-to-end

architecture. In this section, the implementation of training and testing will be discussed,

including how we build the concrete framework, the setup of hyper-parameters and the

baseline we used.

6.2.1 Framework

The implementation is based on PyTorch
9

and OpenNMT
10

.

PyTorch is an open source deep learning framework. It is easy to deploy and �exible

in use. A lot of libraries are built based on PyTorch and a large and active community

�rmly supports the users. For our sequence-relevant task, its advantage of constructing

computation process dynamically brings much convenience, which is good at dealing

with variable length sequence.

OpenNMT is an open source neural machine translation system, which is built on end-

to-end fashion. It provided a stable sequence-to-sequence backbone, including the Trans-

former and LSTM. We conducted our proposed methods by modifying the basic algorithm

and process �ow of OpenNMT framework.

6.2.2 Implementation Details

The complete architecture is shown in subsection 6.2.2. Note that Figure 5.1 is only a

concept architecture, in experiment, the encoded fact is injected to source sequence word

embedding in the �rst Transformer encoder block and does not go directly to decoder.

We used a PyTorch version BERT open-sourced by HuggingFace to generate our en-

coded fact representation
11

. BERT uses WordPiece algorithm, split rare words into sub-

word characters for reducing vocabulary size. For example, “jacksonville” is represented

as [”jack”, ”##son”, ”##ville”]. If a keyword in our Scheme 2
12

was split by WordPiece,

8
See section 5.2

9
https://pytorch.org/

10
http://opennmt.net/OpenNMT-py/

11
https://github.com/huggingface/transformers

12
See subsection 5.4.1
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Figure 6.3: Complete architecture

word embedding representing the whole word was calculated as the average of all the

pieces. Note that we performed BERT calculation and extracted the required part (vector

corresponding to CLS token or vectors corresponding to keywords) as encoded facts. For

each fact, we sample two keywords from it. If the keyword appears multiple times in the

fact, the average of word embeddings of the same words is considered as the word vector

of this word. Note that we store it on disk as text that contains a series of �oating point

numbers in advance, and load the text while training and testing. In the ideal situation,

the system is supposed to generate the encoded fact representation during training or

testing, because in practical application like business scenario, the system has no access

to the text of conversation history in advance and hence have no way to recognize the

required facts. However, in our experimental environment, it is quite time-consuming

for calculating BERT, which make the training 2-3 times slower, hence we had to use this

trick. We could make improvement on this if we are able to use multi-GPU. For example,

at the run-time of current batch, the system generate the encoded facts with BERT for

next batch. It is one of the expectations in future work.

We obtained the word embedding with trainable parameters for both encoder and de-

coder. At �rst, we attempted to use pre-trained parameters like Glove [26] for reducing

the computation workload, but it could hardly train. The reason might be that BERT

and Glove are not coupled well in this situation and the too few trainable parameters.

Therefore, we introduced trainable parameters for the word embedding, the amount is

vocabulary size(20000) × lenдth o f word vector . It did increase the computation work-

load, but with that our model was able to train without crash.
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6.2.3 Hyperparameters

Table 6.3 shows the hyperparameter we set for generating encoded fact representation

with BERT
13

.

parameter description value

bert_model Use which BERT model bert-base-uncase

do_lower_case Coupled with uncased BERT true

layers Capture the output from which layers -1

max_seq_length Maximum number of tokens of the input 128

Table 6.3: Hyperparameters for BERT

Table 6.4
14

shows the hyperparameter we set for training our proposed model.

parameter description value

word_vec_size Word embedding size for source and target 768

share_embeddings Share the word embeddings between en-

coder and decoder

True

position_encoding Use a sin to mark relative words positions True

encoder_type Type of encoder layer to use transformer

decoder_type Type of decoder layer to use transformer

layers Number of layers in encoder/decoder 6

rnn_size Word embedding size in Transformer en-

coder and decoder (the name is still "rnn")

768

global_attention The attention type to use dotprod

self_attn_type Self attention type in Transformer scaled-dot

heads Number of heads for transformer self-

attention

8

transformer_� Size of hidden transformer feed-forward 512

param_init_glorot Init parameters with xavier_uniform True

batch_size Maximum batch size for training 48

batch_type Batch grouping for batch_size sents

normalization Normalization method of the gradient sents

accum_count Accumulate gradient this many times 1

max_generator_batches Maximum batches of words in a sequence to

run the generator on in parallel

2

train_steps Number of training steps 1000000

13
The parameters use default value are not mentioned in the table.

Source: https://github.com/huggingface/transformers

14
The parameters use default value of OpenNMT are not mentioned in the table.

Source: http://opennmt.net/OpenNMT-py/options/train.html
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optim Optimization method adam

dropout Dropout probability 0.2

label_smoothing Label smoothing value epsilon. Probabilities

of all non-true labels will be smoothed by

epsilon

0.1

learning_rate Starting learning rate 0.001

decay_method Use a custom decay rate noam

warmup_steps Number of warmup steps for custom decay 4000

Table 6.4: Hyperparameters for our proposed method

Note that in our experiment, a bigger batch size did not mean a shorter computation

time, instead a proper and smaller one brings better training e�ciency. The reason could

be that the GPU we used has a large memory size but a small Flops. Theoretically, ex-

panding batch size k times will result in the computation workload expanding

√
k times.

Our GPU (one side of Nvidia K80) has a relatively big 11GB memory size and is limited by

computation performance, no matter how big the batch is, it can only perform the same

amount of computation. Since the computation workload increases, the required time

increases as well. Only with the GPU limited by memory size can we reduce the run time

by increasing batch size, for sure until it reaches the limit of memory size.

6.2.4 Baseline

6.2.4.1 O�icial Baseline

The baseline models provided by DSTC7-Track2 organizers include constant, random,

seq2seq and human response:

• constant: The response is always "i don’t know what you mean .", no matter what

the input sequence is.

• random: The system randomly select a target sequence in training set as the re-

sponse.

• seq2seq: a GRU-based seq2seq generation model, under the framework of Keras
15

.

It is a pretty rudimentary model since it is a baseline for a competition. It does not

involve external knowledge. In terms of sequence-to-sequence backbone, it does

not use attention and beam search, instead greedy search. It uses teacher forcing

strategy for decoding, the input of decoder at current time step is not the output at

last time step but the token from reference sequence. The hyperparameter is shown

in Table 6.5
16

.

15
http://keras.io/

16
https://github.com/mgalley/DSTC7-End-to-End-Conversation-Modeling/tree/master/baseline
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• human: The system gives responses from human, which are picked up from the

Reddit posts. The responses that have highest score are selected as the response for

a query.

parameter description value

token_embed_dim length of word embedding vector 100

rnn_units number of hidden units of each GRU cell 512

encoder_depth number of GRU cells stacked in the encoder 2

decoder_depth number of GRU cells stacked in the decoder 2

dropout_rate dropout probability 0.5

max_num_token if not None, only use top max_num_token

most frequent tokens

20000

max_seq_len tokens after the �rst max_seq_len tokens

will be discarded

32

Table 6.5: Hyperparameters for o�cial seq2seq baseline
17

6.2.4.2 LSTM Baseline and Transformer Baseline

Since our focus point is to explore the in�uence by incorporation of fact information in

word-level on top of Transformer based model, we put forward two baseline as well. First

is an RNN (LSTM) model without facts incorporation, second is a Transformer model

without facts incorporation. Both are build based on PyTorch and OpenNMT and use the

same preprocessed conversation data and the same vocabulary with our proposed facts-

involved model. Besides, we used as many the same hyperparameters for the proposd

methods as possible so that to the utmost extent, provided identical condition for compar-

ison. The comparison re�ects not only the in�uence by replacing RNN with Transformer

in response generation task, but also the in�uence by injecting facts information into

basic Transformer conversation model. It is signi�cant because no other DSTC7-Track2

relevant work uses Transformer as the sequence-to-sequence backbone.

6.3 Evaluation and Discussion

We used the Evaluation Metrics provided by the DSTC7-Track2 organizers and calculated

the scores with the o�cial scripts
18

. For measuring appropriateness, BLEU [25], NIST [8]

and METEOR [4] are used, which is mentioned in section 2.5.

For measuring informativeness, Entropy and Diversity are introduced. Diversity is

calculated as Equation 6.1:

n_Diversity =
number of types of occurring n-grams

number of n-grams

n = 1, 2 (6.1)

17
Source: https://github.com/mgalley/DSTC7-End-to-End-Conversation-Modeling/tree/master/baseline

18
https://github.com/mgalley/DSTC7-End-to-End-Conversation-Modeling/tree/master/evaluation/src
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Entropy is calculated as Equation 6.2:

n_Entropy = −
∑

n−дram

m

N
log

m

N

n = 1, 2, 3, 4

m is the number of occurrences of an n-gram

N is the total number of n-gram

(6.2)

Naturally, higher Entropy and Diversity can be considered as high response diversity

and containing more vocabulary, so on they can re�ect high informativeness of responses.

6.3.1 Results

The evaluation was performed with the o�cial script. 2208 samples from the test set were

used for calculating the scores. The result was shown in Table 6.6 and Table 6.7, in which

we list the scores from two groups that won the prize as well (provided by the organizers),

in order to more comprehensively learn from the results.

Models nist1 nist2 nist3 nist4 bleu1 bleu2 bleu3 bleu4 Meteor

constant 0.175 0.183 0.184 0.184 39.7 12.8 6.06 2.87 7.48

random 1.573 1.633 1.637 1.637 26.4 6.7 2.24 0.86 5.91

seq2seq 0.849 0.910 0.915 0.916 45.2 14.8 5.23 1.82 6.96

human 2.424 2.624 2.647 2.650 34.1 12.4 5.72 3.13 8.31

LSTM 0.668 0.712 0.721 0.722 41.7 14.4 5.11 1.88 6.96

Transformer 0.610 0.656 0.659 0.661 46.3 15.5 5.59 2.13 7.00

scheme1 1.002 1.059 1.065 1.067 40.9 13.7 4.95 1.98 7.04

scheme2 1.114 1.177 1.184 1.185 34.8 11.2 4.65 1.95 7.07

team X 1.925 2.039 2.047 2.047 37.1 11.3 3.66 1.35 6.71

team Y 1.419 1.509 1.515 1.515 36.8 10.9 3.70 1.32 6.43

Table 6.6: Appropriateness metrics. O�cial baselines include constant, random, seq2seq

and human. LSTM and Transformer are our own encoder-decoder backbone

baseline. Scheme1 and scheme2 are our proposed model incorporating exter-

nal knowledge via sentence embedding and word embedding respectively, see

section 5.4. Team X
19

and team Y
20

are results by 2 other competing groups.

19
Team X: Tanaka R, Ozeki A, Kato S, et al. An Ensemble Dialogue System for Facts-Based Sentence Gen-

eration[J]. arXiv preprint arXiv:1902.01529, 2019.

20
Team Y: Zheng J, Kasturi S, Mason Lin X C, et al. The OneConn-MemNN System for Knowledge-

Grounded Conversation Modeling[J]. 2019.
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Models entropy1 entropy2 entropy3 entropy4 div1 div2 avg_len

constant 2.079 1.946 1.792 1.609 0.000 0.000 8.000

random 6.493 9.670 10.403 10.467 0.160 0.647 19.192

seq2seq 3.783 5.017 5.595 5.962 0.014 0.048 10.604

human 6.589 9.742 10.410 10.445 0.167 0.670

LSTM 3.813 5.237 5.643 6.085 0.022 0.073 9.729

Transformer 3.676 5.119 5.666 6.072 0.023 0.077 10.624

scheme1 3.931 5.399 5.887 6.183 0.026 0.079 10.928

scheme2 4.152 5.401 5.846 6.143 0.036 0.113 11.807

team X 5.395 7.925 9.084 9.596 0.094 0.334 14.444

team Y 4.406 6.238 7.117 7.639 0.053 0.171 12.674

Table 6.7: Informativeness metrics

6.3.2 Discussion

In terms of appropriateness evaluations, we can �nd that human responses got obviously

higher scores than other groups in NIST, compared to BLEU and METEOR. This trend

is same as that in [35]. We can consider NIST as the most reliable metric for measuring

appropriateness of the responses generated by a machine system, among NIST, BLEU and

METEOR. According to the results, both our proposed models got higher scores in NIST,

compared to the machine baselines. This can re�ect that, our proposed methods for in-

troducing external knowledge have bene�t on improving the quality and appropriateness

of the generated responses. However, the winning teams had a higher score than ours.

They didn’t only focus on how to introduce facts, but make progress on other parts like

data preprocessing, facts retrieval and response reranking. This e�ort are also signi�cant

for improving quality of responses. In BLEU test which re�ects the precision of n-gram

matching, we can �nd that the Transformer baseline had highest scores, followed by the

o�cial seq2seq baseline. Other groups, including human responses, our proposed meth-

ods and the winning teams, didn’t have outstanding scores. On the one hand, we can

consider that the Transformer made progress on the performance of encoder-decoder ar-

chitectures since the n-gram precision increased. On the other hand, we can infer that

BLEU is not so reliable for evaluating response generation task since human responses

and the sophisticated models have lower scores than the simple models. In terms of ME-

TEOR, human responses had highest score, followed by constant response. The scores

of other machine responses fall on a small range. We can infer that METEOR can re�ect

the di�erence between human responses and responses from machine systems, but not

so good at judging the performance of di�erent systems.

In terms of informativeness evaluations, we can �nd that human responses got highest

scores in entropy and diversity, followed by random responses, which are sampled from

human responses on the Reddit posts. Human responses contain naturally most various

word and have highest average lengths. Compared to the baseline encoder-decoder mod-

els (o�cial seq2seq, our own LSTM and Transformer baselines), our proposed methods

have higher scores in entropy and diversity, especially in diversity. This re�ects that our

proposed methods that introduce contextually relevant facts made progress on making
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neural conversation model generate more vivid and contentful responses. This trend can

be found in "average length" term as well. The scores of our proposed models are higher

than baselines, but lower than human responses and the sophisticated models by other

winning teams. The e�orts on other steps like response reranking did have great contri-

bution on improving response diversity.

conversation

history

lebron , kyrie have the best-selling signature sneakers among nba

players

facts

lebron , kyrie have the best-selling signature sneakers among nba

players

lebron james and kyrie irving are chasing their third straight trip to

the nba �nals together . ( photo by gregory shamus / getty images

)

cleveland ’ s biggest stars , james and kyrie irving , have already

captured one title this year over golden state ’ s own dynamic duo

of stephen curry and kevin durant . nike sold more of james ’ and

irving ’ s signature sneakers in the u . s . than those of any other

active nba player during the 12 months ending in march 2017 , as

measured by dollar volume , according to matt powell , an analyst

at market research �rm npd group .

james has been one of the nba ’ s elite shoe salesman since he en-

tered the nba in 2003 armed with a seven-year , $ 90 million con-

tract from nike . early editions of lebron ’ s signature shoes were

not that well received , but sales took o� with the lebron vi . nike

was selling more than $ 300 million worth of lebron sneakers an-

nually by 2013 . the company locked up james to a “ lifetime ”

deal at the end of 2015 worth as much as $ 1 billion , according to

james ’ business manager maverick carter . nike released the 14 th

version of lebron ’ s signature shoe this season .

the current crop of nba stars compete on the court , but they can’t

touch a basketball legend who has not laced up his hightops for an

nba game when it comes to shoe sales .

the nba is a hot property globally right now with franchise values

soaring , but the performance basketball shoe market is struggling

and even king james is not immune . retailers and brands have

reported softness in the signature basketball market and powell

says he sees the same thing in his numbers with shoe sales for

james , curry and durant all down over the past 12 months .
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irving is the only player among the four best sellers without an

mvp trophy on his mantle ( the other three have combined for

seven mvps ) , but his shoe sales are on �re . nike brand presi-

dent trevor edwards said during a nike earnings call in march that

the kyrie 3 launched in december was the best-selling performance

basketball shoe in the market . credit the more a�ordable price of

$ 120 and the newness of the irving shoe . nike has also backed

irving ’ s shoes with its marketing muscle .

the current crop of nba stars compete on the court , but they can’t

touch a basketball legend who has not laced up his hightops for

an nba game when it comes to shoe sales . michael jordan is still

the king of nba sneakers with the nike subsidiary jordan brand

commanding more than 50 % of the basketball shoe market . the

jordan performance has been soft , but the retro business is " quite

strong " says powell . nike reported revenue for jordan of $ 2.8

billion last year , or more than 10 times the sales of any active nba

hoopster .

curry ’ s under armour kicks ranked third among the best-sellers

with durant ( nike ) in fourth . houston rockets point guard james

harden and his �rst signature shoe with adidas rounded out the

top �ve , although there was a big sales gap between durant and

harden says powell .

michael jordan is still the king of nba sneakers with the nike sub-

sidiary jordan brand commanding more than 50 % of the basketball

shoe market . the jordan performance has been soft , but the retro

business is " quite strong " says powell . nike reported revenue for

jordan of $ 2.8 billion last year , or more than 10 times the sales of

any active nba hoopster .

keywords

lebron, kyrie; lebron,irving; cleveland,james;

james, lebron; nba, legend; powell, durant; irving, kyrie;

jordan, nba; powell, curry; jordan, powell

LSTM i do n’t think he ’s going to be the best player .

Transformer he was the best player in the league .

scheme1 to be fair , lebron james ’s also the best player in the world .

scheme2 and that ’s why irving ’s the best player in the nba .

Table 6.8: Response example 1 for our proposed methods and baselines

In Table 6.8, a Response example from our proposed methods and baselines is shown.

We can �nd that both our LSTM baseline and Transformer baseline are able to generate

appropriate and �uent response. They all learnt from the conversation corpus and gen-

erated responses with a backbone "somebody is the best player". In comparison, both of

our proposed make progress on making the response more informative and contentful
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without losing the appropriateness and �uency. Besides the backbone "somebody is the

best player", by injecting the contextually relevant facts, the systems take into account

the relationship between the NBA players’ names and other named entities more than

the normal encoder-decoder models. In fact retrieval step, tf-idf helped us select the facts

with more special nouns or named entities, which were highly likely to be sampled as

keywords as well. With the contribution of the pre-trained parameters from BERT, the

systems represented the �ltered fact information properly and successfully made associ-

ation with the words, especially nouns in conversation history, so that it is more likely to

make the responses contain more special nouns or named entities.
21

conversation

history

A hiroshima policeman went to nagasaki to teach other police of-

�cers to duck and cover in the days between the bombings . not a

single o�cer died in the nagasaki blast .

LSTM i do n’t know if this is true , but i do n’t think it ’s true .

Transformer not sure if you ’re joking or not , but i think you ’re right .

scheme1 i wonder how many people died in hiroshima and nagasaki .

scheme2 hiroshima and nagasaki were more likely to be released in japan .

Table 6.9: Response example 2

conversation

history

Arsenal becomes the most winning team in the fa cup with 13 wins .

LSTM i ’m not sure what you ’re talking about .

Transformer i do n’t know what you ’re talking about .

scheme1 do n’t worry , arsenal can n’t a�ord it .

scheme2 this guy is a arsenal fan .

Table 6.10: Response example 3

In Table 6.9 and Table 6.10, two examples are shown, where both LSTM and Trans-

former baselines without external knowledge gave a �uent, but meaningless response,

while both our proposed models generated relatively contentful and informative responses

associating with the contextually relevant facts and containing more speci�c entities like

"arsenal" and "hiroshima" without losing the appropriateness and �uency.

21
Note that we do not care if the generated response is consistent in meaning with objective fact.
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7 Conclusions and Future Work

7.1 Review

In this thesis, we targeted at making improvement on neural network-based conversa-

tional response generation in single turn so that the generated response can be more

informative and contentful. The proposed model is supposed to be trained in a fully

data-driven fashion with minimal hand-coding. This goal is same as that of grounded re-

sponse generation task at Dialog System Technology Challenge 7 (DSTC7-Track2). Thus,

we conducted our experiment on the condition of the competition. The problem can be

abstracted as, given an input sequence and world facts, the proposed system is supposed

to be able to retrieve the contextually relevant facts from the world facts, then generate a

response with respect to both the contextually relevant facts and the input sequence.

The intuitive idea for this issue is to make some modi�cation on a traditional encoder-

decoder framework. After obtaining contextually relevant facts with tf-idf, we could en-

code them and feed them into dialogue encoder as well, making dialogue encoder take

into account both conversation history and the facts. Since Transformer was developed

and has been proven to be e�ective in many NLP tasks, enjoying the advantages of being

good at dealing with long sequence and requiring less computation so that more layers

could be involved, we paid more attention to Transformer instead of traditional RNN mod-

els. We built an LSTM encoder-decoder baseline to explore the improvement resulted by

using Transformer and meanwhile built a Transformer baseline to explore the in�uence

of the incorporation of fact information.

We implemented our experiment with deep learning framework PyTorch and made

modi�cation on the architecture of encoder-decoder model from OpenNMT. At �rst the

conversation data was too dirty to be used for training. After a series of data preprocess,

including tokenization, rule-based regularization and some transformation, we built a

vocabulary with 20000 words in word-level and managed to train reliable baseline LSTM

and Transformer models with the cleaned data.

Then we put forward a method for injecting fact information into dialogue encoder.

Since we used Transformer, there is no more a �xed length vector containing the infor-

mation of the whole input sequence, instead, a list of word embeddings, whose length is

same as the input sequence. We �rst transformed the facts into semantic representation

with BERT in 2 schemes: 1. use the vector corresponding to CLS token to represent the

sentence; 2. use the vectors corresponding to two key words in the sentence to represent

it. The key words were found at the fact retrieval step as well. The size of vectors from

BERT and word embedding in dialogue encoder was set to be same, so that we could con-

veniently perform attention calculation. With attention we got the relevance between

each fact and the word, and then weighed the fact according to the relevance by softmax.
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7 Conclusions and Future Work

After the summation of original word embedding and the weighted facts, an augmented

word embedding was obtained, which contains information from both the word itself and

the facts. It was followed by normal encoder and decoder functions and a set of candidate

responses was then generated. In order to improve response diversity so that improve the

quality of �nal responses, we selected the responses containing most various words as the

�nal response. The selection was applied to both our proposed model and the baselines.

Finally the automatic evaluation about both appropriateness and informativeness was

conducted with the o�cial script. According to the result, our proposed method not only

remains well-performed on generating appropriate and �uent response, but also makes

progress on making the responses more informative and contentful. In appropriateness

metrics, NIST scores are about 0.3 points higher than baselines, METEOR are 0.04 higher,

only BLEU are lower than baselines. In informativeness metrics, entropy are about 0.1

higher and diversity are 0.1 higher than baseline. However, our scores are still obviously

lower than the winning teams and human.

7.2 Future Work

Reviewing on the works that we have done, there is still a long way to go to perfectly

realize our target. In this thesis, we mainly focused on the mechanism of obtaining rep-

resentation of facts and the method of injecting it into dialogue encoder. In some joint

parts of our whole architecture
1
, some methods are quite rudimentary and rule-based.

For example, we could �nd a better way to �nd contextually relevant facts than tf-idf, a

statistical or neural-based method to determine the �nal response instead of the response

containing most various words. In terms of obtaining semantic representation of facts,

we can introduce a more sophisticated method instead of simply using embeddings corre-

sponding to CLS token or words (average of word pieces). For example, combining BERT

with Power Mean[28] and Smooth Inverse Frequency[1], or introduce a small amount of

trainable parameters.

In term of the experiment, there is also some detail worth improving. For example, we

store the vectors from BERT on disk as text that contains a series of �oating point numbers

in advance, and load the text while training and testing to avoid consuming too much

time for calculating BERT. However, the system is supposed to generate the encoded fact

representation meanwhile training or testing, because in practical application the system

has no access to the conversation history in advance and hence have no way to recognize

the required facts. We could make improvement on this if we are able to use multi-GPU,

like that at the run-time of current batch, the system generates the encoded facts with

BERT for next batch.

1
See Figure 5.1
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