
Towards End-To-End Information
Retrieval:

Enabling Question Answering
Systems To Answer Open-Domain

Questions

Master’s Thesis of

Felix Schneider

at the Interactive Systems Lab
Institute for Anthropomatics and Robotics
Karlsruhe Institute of Technology (KIT)

Reviewer: Prof. Dr. Alex Waibel
Second reviewer: Prof. Dr. Tamim Asfour
Advisor: Dr. Jan Niehues

25. April 2018 – 25. October 2018

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself,
and have not used sources or means without declaration in the text.
Karlsruhe, October 24, 2018

. .
(Felix Schneider)

Dr. Crusher Here’s a question you shouldn’t be able to answer. . .Computer: What
is the nature of the universe?

Computer The universe is a spheroid region 705 meters in diameter.
Star Trek: The Next Generation—“Remember Me”

Abstract
In a traditional question answering (QA) task, a problem instance consists of

a question and a paragraph (called the context) in natural language. A system
must read and understand the context to find an answer to the question. Here it is
implicitly understood that the provided context contains all the information necessary
to answer the question. This task falls within the field of natural language processing
(NLP) and is closely related to reading comprehension. Being able to understand and
answer questions in natural language opens up myriad possibilities in human-computer
interaction.
Providing the system with a relevant piece of context implies that some amount

of information about the query is already known in advance. In a real problem
setting, the relevant context is often not known, as questions can concern a large
variety of topics. When the context is not known, the problem is said to be one of
open-domain question answering. There are already published models that achieve
good performance on the traditional question answering task. This work focuses on
methods to find an appropriate context paragraph from a large pool of candidates
covering many different topics.
This problem—finding one relevant piece of information in a corpus—is known

as information retrieval (IR). It has been widely studied, mostly in the context of
search engines. Existing systems typically work by constructing a search index and/or
comparing similar words in the question and context candidates. Neural networks
may be able to gain and use a deeper understanding of the meaning of the texts in
order to make a more informed decision. However, it is not computationally feasible
to apply neural network classifiers to a large corpus of possible contexts. Therefore,
we explore several alternative models that make do without applying a classifier to
every possible question-context pair.

i

Zusammenfassung
Bei einer traditionellen Question Answering (QA) Aufgabe besteht eine Probleminstanz
aus einer Frage und einem Absatz Text in natürlicher Sprache (dem Kontext). Um
das Problem zu lösen, muss ein System Frage und Kontext lesen, verstehen und unter
Zuhilfenahme der Informationen im Kontext eine Antwort formulieren. Es versteht sich
dabei implizit, dass der gegebene Kontext alle Information beinhaltet, die nötig sind,
um die Frage zu beantworten. Diese Aufgabenstellung fällt in das Feld des Natural
Language Processing (NLP) und ist eng verwandt mit Leseverständnis (Reading
Comprehension). Die Fähigkeit, Fragen in natürlicher Sprache zu verstehen und zu
beantworten eröffnet zahlreiche Möglichkeiten in der Mensch-Maschine-Interaktion.

Um das System mit relevantem Kontext zu versorgen, muss dieser schon im Vorfeld
bekannt sein. In einer realistischen Umgebung ist das oft nicht der Fall, weil mögliche
Fragen eine Vielzahl an unterschiedlichen Themen betreffen können. In diesem Fall
spricht man von einem Question Answering Problem mit offener Domäne. Es gibt
bereits publizierte Modelle, die gute Ergebnisse für die traditionelle Question Ans-
wering Problemstellung liefern. Diese Arbeit zielt darauf ab, aus einem Korpus von
Text über viele unterschiedliche Themen einen relevanten Absatz als Kontext für eine
gegebene Frage zu finden.
Dieses Problem (das Finden relevanter Information in einem Korpus) ist bekannt

als Information Retrieval (IR). Es wurde bereits ausgiebig untersucht, vor allem
im Kontext von Suchmaschinen. Bestehende Systeme funktionieren üblicherweise
so, dass sie einen Index erzeugen und/oder ähnliche Wörter in der Suchanfrage
und den Kandidaten vergleichen. Neuronale Netze könnten ein tieferes Verständnis
der Bedeutung der Texte erarbeiten und verwenden, um eine besser informierte
Entscheidung zu treffen. Allerdings ist es nicht zeitlich realistisch, einen neuronalen
Klassifikator auf jedes Dokument eines großen Korpus anzuwenden. Aus diesem Grund
untersuchen wir mehrere unterschiedliche Modelle, die ohne die Anwendung eines
Klassifikators auf jedes mögliche Frage-Kontext-Paar auskommen.

iii

Contents
Abstract i

Zusammenfassung iii

1 Introduction 1
1.1 Goals . 2
1.2 Outline . 3

2 Theory 5
2.1 Neural Networks . 5

2.1.1 Recurrent Neural Networks 8
2.1.2 Long Short-Term Memory . 9
2.1.3 Encoder-Decoder Models . 10

2.2 Information Retrieval . 13
2.2.1 TF-IDF . 13

3 Related Work 15
3.1 Question Answering . 15

3.1.1 State of the Art . 16
3.2 Datasets . 18

3.2.1 Stanford Question Answering Dataset (SQuAD) 18
3.2.2 QUASAR . 19
3.2.3 TriviaQA . 21
3.2.4 MS-MARCO . 21
3.2.5 RACE . 22
3.2.6 Others . 22

4 Data 23
4.1 Dataset Selection . 23
4.2 Dataset Preparation . 25
4.3 Full Wikipedia . 27

5 Methods 29
5.1 Models and Experimental Setup . 29

5.1.1 Loss function . 30
5.1.2 Transformations . 30
5.1.3 Word Embeddings . 31

5.2 IR Baseline . 32
5.3 Random Baseline . 32

v

Contents

5.4 Encoders . 33
5.4.1 SWEM . 33
5.4.2 LSTM . 33

5.5 Classifier . 35

6 Results 37
6.1 Evaluating the Dataset . 37
6.2 Baselines . 38
6.3 Individual Training and Mean Square Error 39
6.4 Training with Margin Ranking Loss 40

6.4.1 Hyperparameter Searching . 41
6.5 Classifier . 43
6.6 Full Stack . 46

6.6.1 Retrieval Evaluation . 49

7 Conclusion 51
7.1 Review . 51
7.2 Discussion . 51
7.3 Future Work . 53

vi

1 Introduction
Computers have allowed us to answer many questions we couldn’t answer or even
conceive of without them. They do so for the most part at much higher speed and
accuracy than humans. When we want to automate a task, a necessary first step
is always to bring the relevant data into a format suitable for the computer. If the
computer is unable to process some piece of information because it is not in a format
it can understand, it is of no use to any automated process. Therefore, the scope of
possible tasks that can be automated is limited by what data a computer can process.
When making data available to a computer, we typically transform it into a

structured, well-defined form. When no format exists yet to represent the type of
data we need, it is up to a designer to create one. When doing so, the designer must
necessarily make assumptions about the data and impose restrictions on it. Not all
data is equally well suited to such conversion and creating the format and converting
the data takes time and effort. No one format can describe all data. However, humans
can use language to communicate almost any concept to one another.
The language humans use to communicate is referred to as natural language, as

opposed to a formal language, such as a programming language, or mathematical
formulas. Formal languages are meant to communicate information from within a
narrow domain unambiguously and precisely. They follow strict rules and are relatively
easy for a computer to comprehend (in fact, many formal languages are constructed
for this very purpose). The effort to make computers understand and use information
expressed in natural language is an open field of interdisciplinary research known as
natural language processing (NLP).

At what point can a computer be said to have understood natural language? In
a complex system, a judgement based on observation of the sysem’s internal state
may not be possible. We cannot pause the system, look at the memory it uses, point
to a part of it and say: “That part is the system’s representation of the concept
of, say, a dog.” The system may use an internal representation of a concept that is
incomprehensible to us1.
In neural networks, the part of the network that transforms an input into the

system’s internal representation is referred to as the encoder, whereas the part that
transforms it back into a form we can understand (which can, but does not have to
be natural language) is referred to as the decoder. While we cannot judge whether
the representation produced by the encoder fully encapsulates the meaning of a text,
we can judge the output of the decoder. Applied to the question answering task, this

1It is likely that if we had the same level of insight into the internal workings of a human brain as
we have into a running computer program, we would find the representations of concepts therein
equally incomprehensible (for more information, see e. g. Patterson, Nestor, and Rogers [26]).

1

1 Introduction

means that we cannot know for certain whether a system has understood the context
paragraph, but we can judge whether or not it correctly answered the question.
This is not unlike education: We cannot know for certain whether a student has

understood a lesson, but we can judge whether they answer questions correctly. This
highlights the importance of good questions: If we choose poor questions, it may be
possible to answer them without actually understanding the text. In section 3.2, we
will discuss several published datasets containing different arrangements of questions
and contexts.

It could be noted that any problem any human has ever formulated can be posed in
the form of a question, resulting in a problem space that is impossibly large, including
vastly different examples such as “What is the square root of 4 315?”, “Does this
car offer good value for money?”, or “Is it right to eat animals?”. While fiction has
many examples of computers that could answer all these questions, real research
into question answering must be concerened with the domain of inquiry. Question
answering problems where questions are expected to remain within a particular topic
are called closed-domain, whereas problems where questions can have any structure
and ask about any topic are called open-domain question answering problems.

By that definition, most datasets discussed in section 3.2 pose open-domain question
answering problems. However, it could be argued that the topic of each question is in
fact constrained significantly: A question must be answerable using only the provided
context (remember that in the “traditional” question answering task, a problem
instance consists of the question and one paragraph of context). For this work, we
raise the bar on what constitutes an open-domain question answering problem by
requiring that no context is given, a problem instance consists only of a question and
the system has access to a global corpus independent of the questions. We refer to the
previous definition as a traditional question answering problem. It still does not fit
the definition for closed-domain, as the provided context and therefore the questions
can still be from any topic.

1.1 Goals

In many realistic applications, a question will be posed to a question answering system
without an appropriate context being known. If the question is posed by a human,
they would not even need to ask the question to the system if they knew the context
that contains the answer—they would be able to answer it themselves. Therefore,
the system should be provided in advance with a large amount of context documents
(such as Wikipedia articles) and be capable of finding a context paragraph that is
relevant to the query.

There are some proposed approaches to this problem that use a classifier to assign
a score to every paragraph for each question. This solution scales poorly with the size
of the knowledge corpus and becomes infeasible even when using only a fraction of all
Wikipedia articles (which don’t represent a reliable knowledge source by themselves).
A solution must be able to answer a question fast enough to be useful.

2

1.2 Outline

The contribution of this thesis concerns only the information retrieval aspect of the
system—finding the most relevant paragraph from the context corpus. Using that, an
existing question answering model is able to answer open-domain questions without a
context. The final step of this work will be to create the full pipeline to chain these
systems together into a fully featured open-domain question answering system. To
summarize:

1. The system must, given only a question in natural language, find a relevant
context paragraph from the corpus.

2. With this paragraph and the question, engage a question answering system to
answer the question.

3. The system’s response time must be fast enough to be useful (ideally less than 1
second per question).

4. The system must not perform many calculations on every possible question-
paragraph pair.

5. The system should scale favorably to larger corpus sizes.

6. The system may peform pre-calculations on every paragraph from the corpus,
so long as this only needs to be done once.

As the question answering system is not developed as part of this work, the main
performance metric of the developed model will be the percentage of questions that
could be answered using the context paragraph that the model predicts, regardless of
whether or not the question answering system actually finds the answer.

1.2 Outline
Chapter 2 gives an introduction into the basic models used in this thesis, in particular
neural networks and TF-IDF. In chapter 3, we discuss already published work on this
topic, as well as give an overview over the available datasets. In chapter 4 and 5, we
describe our data preprocessing and the models used in our experiments, respectively.
We show the results of the experiments in chapter 6 and draw our conclusions in
chapter 7.

3

2 Theory
This chapter provides a brief introduction into the underlying methods used in the
following experiments. This includes both a primer on artificial neural networks as
well as on non-neural information retrieval using the term-weighting scheme TF-IDF
(term frequency inverse document frequency).

2.1 Neural Networks
The initial inspiration for neural networks, more precisely called artificial neural
networks, comes from the function of biological neurons: A neuron has a number
of “inputs”—in the biological case these are synapses coming from other neurons
connected to it by dendrites—that stimulate the neuron with an electrical potential.
The level of activation of the neuron is a non-linear function of the sum of its inputs.
This level of activation could be considered the neuron’s “output”. In biological
neurons, the activation takes place as a discrete event called a spike, when the neuron
discharges some of its electric potential to other connected cells. However, modelling
biological neurons in this way, which involves simulating differential equations over
time, is too computationally expensive to be useful for most tasks. It is nevertheless
explored as, among other uses, a form of extremely distributed computing. These
types of models are called spiking neural networks [11].

More commonly, neural networks are abstracted to a computationally simpler form.
In this model, a neuron has some number of inputs x, each with a weight w (also
called the neuron’s parameters) and a non-linear activation function Φ. The output
of the neuron is calculated as

y = Φ(w>x) (2.1)

If we wish to apply a biological interpretation, calculating a scalar output for the
neuron could be seen as calculating the rate of activation, rather than calculating the
exact time of each activation event, although most models using neural networks are
not concerned with biological analogy and no attempt is made to find a biological
equivalent to more advanced techniques introduced below, such as gradient descent
and the different activation functions.
Initially, popular choices for the activation functions were the sigmoid function

σ(x) = 1
1+e−x and the tanh function, because their output is bounded (between 0 and

1 and -1 and 1, respectively) and they have a relatively simple derivative. A single
neuron can be used as a non-linear classifier. The parameters for the neuron are not
typically selected by the designer, but rather learned from data. In order to do so,

5

2 Theory

the output of the neuron is compared to a desired output called the label using an
error function (also called a loss).
A typical loss function for a single neuron is the square error E(y, y′) = (y − y′)2.

In order to update the parameters of the neuron, the contribution of each parameter
to the error is calculated. For the square error, the calculation is as follows:

d

dwi

(y − y′)2 = 2(y − y′) d

dwi

(y − y′)

= 2(y − y′) d

dwi

(Φ(w>x)− y′)

= 2(y − y′)xiΦ′(w>x)

(2.2)

Then the parameters of the neuron are updated in proportion to their contribution
to the loss:

w′i = wi + η
d

dwi

E(y, y′) (2.3)

The parameter η is called the learning rate. Because the parameters are updated
according their partial derivative of the error (called the gradient), this method of
learning is called gradient descent. Because it requires labeled data, it is considered
supervised learning.

A single neuron only produces a single output. It is common to group neurons into
layers with all neurons in a layer sharing the same inputs. However, each neuron still
has its own parameters, which are now a matrix W . Additionally, we introduce a new
bias parameter b that is added to the weighted sum of inputs. The definition then
becomes as follows:

y = Φ(Wx+ b) (2.4)
When using the same activation functions as before, they are applied element-wise

to the vector Wx+ b. However, we can also use activation functions that are applied
to the whole vector, such as the softmax function, which takes unscaled inputs and
computes a probability distribution.

s(x)i = exp(xi)∑
j exp(xj)

(2.5)

The softmax function is usually used in the final layer of a network used for
classification and its output is interpreted as the probability that the sample belongs
to a given class. In classification tasks, it is also common to use the crossentropy loss
function:

C(y, y′) = −
∑

i

y′i log(yi) (2.6)

In this case, y′ is the true probability distribution for a sample. In many cases, a
sample can belong to only one class in which case the probability distribution will be
zero for all other classes and one for the correct class.

6

2.1 Neural Networks

A significant improvement of neural networks and the development that led to their
popularity was the invention of the backpropagation algorithm [48]. This allowed
using multiple layers of neurons, with the input to each layer being the output of the
last. The derivative of the error is calculated with respect to every parameter in the
model (all weights and biases) and they are updated accordingly. There have been
several improvements to the update rule from simply adding the gradient scaled by a
learning rate constant, such as stochastic gradient descent:

w′i = wi + η
d

dwi

E(y, y′) + ξ (2.7)

where ξ is a random variable evaluated in each step. This is an improvement that
aims to combat a common problem of neural networks: Local minima. Because the
parameters never move against the gradients and the gradients are always directed so
as to reduce the error, it is possible for the model to be “stuck” in a configuration
where the error can no longer decrease, but a different configuration of parameters
exists which would have a lower error. This configuration cannot be reached by
gradient descent as defined in 2.3, because to get there, the model would have to take
a step that increases the error before it would decrease again. Adding a random term
to the update rule allows the model to continue improving in some of these cases.

Another common problem of neural networks, especially networks with many layers,
is the problem of vanishing gradients. This problem generally comes about in one of
two ways: Either a parameter is so removed (so many layers apart) from the loss that
its contribution to it is minute, or a neuron can become “saturated”, i. e. it has a
sigmoid or tanh activation function and the input to the function is very far from zero
in either direction. Both functions asymptotically approach a value in those cases,
which means their derivatives become infinitesimal. Both phenomena prevent the
model from making significant updates to its parameters, meaning it does not learn.
The two causes must be adressed seperately. The simplest solution would be to

simply refrain from using networks with many layers. However, it has been shown in
that order to solve complex problems, depth is preferable to width, as using networks
with wider layers would require more neurons in total, increasing the computational
complexity [38]. One way of adressing the vanishing gradient problem as a result of
many layers is the introduction of so-called residual connections, i. e. adding the input
of a layer back to its output:

y = Φ(Wx+ b) + x (2.8)

The second cause can be adressed by using a different activation function. The
requirements for an activation function for neural networks are primarily to be a
non-linear function, easy to calculate and to have a simple derivative. For this reason,
the rectified linear function has recently been popular:

f(x) =

x if x > 0
0 otherwise

(2.9)

7

2 Theory

This function can only saturate in one direction, rather than both like sigmoid
and tanh. Nevertheless, it does not completely solve the problem of saturation, as a
neuron can “die”, that is, its parameters can come to a point where the output of
the rectified linear function is zero for nearly all inputs. This case is best avoided by
choosing a lower learning rate. Despite this problem, the rectified linear function has
been empirically shown to work well in deep neural networks.

2.1.1 Recurrent Neural Networks
When dealing with sequential information, such as audio (which is sequential in time)
or text (which is sequential in that the words follow one another), we must model
dependencies between steps. If each step of the sequence were fed into the network
individually, they would be considered independent and no information could flow
from one step to the next. If they were fed in all at once, any dependency could
be modeled, but the whole sequence would have to be known in advance. For very
long sequences, this might also be a practical issue—the sequence or the resulting
calculation may be be too large for the computer’s memory.

Recurrent neural networks present a compromise between these two options: Input
is fed in sequentially (allowing sequences of arbitrary length) and the network has
access to some information from the previous step (making each run depend on all
previous ones). One such architecture is proposed by Elman [9]:

ht = Φh(Whxt + Uhht−1 + bh)
yt = Φy(Wyht + by)

(2.10)

Here, the network has access to the hidden state h from the previous step in order to
compute the current hidden state and output. The outputs of an RNN are themselves
a sequence of the same length as the input sequence, so it is possible to use multiple
layers of RNNs, each using the output of the last layer as input. When training
the network, the recurrent connections are unfolded, that is, the layer is duplicated
a number of times equal to the sequence length, into a version with no recurrent
connections. The duplicates share parameters and gradients are accumulated through
all steps of the network. This is called backpropagation through time.

An unrolled network has a depth equal to the sequence length, which may be dozens
or even hundreds of steps. This intensifies the vanishing gradient problem, explained
above. Also, because new information is added to the hidden state in each time
step, old information (which is important for long-term dependencies) may not be
retained. As a result, RNNs are poor learners and are largely incapable of modeling
long-term dependencies in the input data. They do however provide a solid framework
for handling input sequences of arbitrary length. Consider also this architecture:

ht = Φh(Whyt−1 + Uhht−1 + bh)
yt = Φy(Wyht + by)

(2.11)

8

2.1 Neural Networks

There is no input to this layer except for the initial hidden state h0. The output of
each step, along with the hidden state, is the input for the next step. This provides
a way for the network to generate an output sequence from a fixed-length input, an
important ability for tasks like machine translation or speech synthesis. While it
suffers from the same problems as the above RNNs, it provides a basic framework
for sequence-to-sequence tasks [36]. In these tasks, an input sequence is transformed
to a fixed-length representation, then an output sequence is generated from this
representation, which may have a different length than the input sequence (such as
English text being translated to German text).
In many applications, it is not only important to model the relationship between

one step of the input and the previous steps but also in the opposite direction i. e.
the following steps. For example, in the phrase “an apple”, the word “an” depends
on the following word “apple”. RNNs can only model backward dependencies. The
common solution is to use bidirectional RNNs. A second, independent RNN is fed the
input in reverse order. The output of the network at step t is the concatenation of
networks’ states after processing the input at position t (from the front). That means
the backward RNN must be calculated for n− t steps, where n is the total sequence
length, which must therefore be known in advance. This is the only drawback to the
model, otherwise it can be trained with the same methods as one-directional RNNs.
Neural networks have been shown to be able to deal with temporal information

without using recurrence, such as by using time-delayed neural networks (TDNNs) [42]
or convolutional neural networks (CNNs) [e. g. 10]. These non-recurrent models
have the advantage of being able to more effectively make use of parallel computing
hardware—in recurrent networks, calculations for the next timestep depend on the
result of the current timestep. Both paradigms are the subject of active research today,
and there are published models using recurrent networks as well as models using
non-recurrent networks (and some that use both!) that achieve state-of-the-art results
on a number of different tasks, such as sentence classification (non-recurrent [18],
recurrent [19]), speech recognition (non-recurrent [1], recurrent [8]) and of course
question answering (non-recurrent [52], recurrent [5]).

2.1.2 Long Short-Term Memory
Long Short-Term Memory (LSTM) cells [14] present a major improvement on the
“classic” RNN cells presented above. The major innovation of LSTMs is the intro-
duction of so-called gates. A gate is a neuron layer that determines how much of the
previous hidden state will be retained and how much the new input will affect the
hidden state. They do so dependent on the input and the previous hidden state. For
example, consider a network that is processing text. When encountering the sentence
“Lucy went to the doctor”, the network may decide that the words “to” and “the”
should have a lesser impact on the hidden state of the network than the words “Lucy”,
“went” and “doctor”, as they are not as important to capturing the meaning of the
sentence.
Similarly, another gate determines how much of the old hidden state should be

“forgotten”. Consider a network that should output the sentence “He has gone away”.

9

2 Theory

In order to know the correct grammatical form to use for the word “gone”, the network
must remember some part of the word “has”, as it determines that the sentence is
in the simple perfect. However, after the word “gone” has been output, no more
words that depend on the tempus of the verbs follow. The information can be safely
forgotten. More precisely, an LSTM can be defined as follows:

ft = σ(Wf [ht−1, xt] + bf)
it = σ(Wi[ht−1, xt] + bi)
ot = σ(Wo[ht−1, xt] + bo)
ct = it � tanh(Wg[ht−1, xt] + bx) + ft � ct−1

ht = ot � tanh(ct)

(2.12)

In this definition, ht is the output of the network at each timestep, ft, it and ot

are the forget, input and output gates, respectively and ct is the cell memory state.
� denotes an element-wise product, [·] denotes concatenation. LSTMs have been
shown to be much more resilient to the vanishing gradient problem, as well as being
able to model long-term dependencies with much greater reliability than RNNs. This
comes at the price of complexity, however: An LSTM has more parameters than a
traditional RNN (more than twice as many as the RNN model introduced above) and
requires additional calculations for the gates. Nevertheless, LSTMs have been widely
used for a variety of tasks, including question answering (see for example Chen et al.
[5] and Tay, Tuan, and Hui [37]).

2.1.3 Encoder-Decoder Models
A common neural network architecture is that of the encoder-decoder model. The
network consists of two parts, the encoder and the decoder. The encoder transforms
the input into an internal representation (typically with fewer features than the
original input). The decoder uses only this internal representation to perform the
task the network is designed for. The encoder is often not task-specific and may be
pre-trained on a different task, or using an unsupervised model.

One common way to train a non-task-specific encoder is to build an encoder-decoder
model with the task of recreating the input from its hidden representation. This
model is called an autoencoder. The idea is that the internal representation contains
enough information to exactly recreate the input and can therefore effectively replace
it. As it has fewer features than the input, a network working on the representation
learned by the encoder needs fewer parameters and may train faster (due to reduced
computational complexity) or converge in fewer training steps (which also leads to
faster training).
Another advantage of this model is that it allows training multiple decoders that

use the same encoder and vice-versa. This is one approach to machine translation—for
each source language, train an encoder and for each target language, train a decoder,
rather than a full network for each source-target pair.

10

2.1 Neural Networks

Yet another typical use of the encoder is to calculate a fixed-length representation
from an input that is a sequence of arbitrary length. Common methods include
a recurrent model like LSTMs, using the last output of the model as the final
representation, or pooling over all timesteps, such as element-wise max pooling:
yi = maxt yt,i or summation: y = ∑

t yt.

2.1.3.1 Word Embeddings

Neural networks work on continuous variables, i. e. floating point numbers. However,
text input consists of discrete units (words) without an inherent ordering or algebraic
operations. One approach to feeding them into the network is to treat each word as
its own binary feature and present the network at each step with a one-hot vector, i. e.
a vector that has zeros in all positions except the one corresponding to the current
word’s feature. This will mean a number of features equal to the vocabulary size
(usually at least 100 000), which is impractical to use throughout the whole network.

It is therefore the job of the first layer to drastically reduce the dimensionality of
the input to some managable number of features, in the order of several hundred.
Because the input to this layer is one-hot vectors, a simple optimization is to treat this
layer not as a matrix multiplication (as is normally the case) but as a simple lookup,
indexing the layer’s weight matrix. The rows of the weight matrix are referred to as
word embeddings. While it is possible to train word embeddings as part of training
the rest of the network, the large number of parameters makes it very difficult to train
them effectively without overfitting.

A common approach is to use word embeddings that have been pre-trained using an
unsupervised training method such as GloVe [27]. This has the advantage that there
are sensible word embeddings present even for words that don’t occur in the model’s
training set, which helps the model to generalize. Word embeddings are almost always
combined with more complex, task-specific encoders (however, see Shen et al. [35]).

2.1.3.2 Attention

The above methods of arriving at a fixed-length representation lose a lot of information—
we throw away all LSTM outputs except the last one or throw away all elements of
the sequence except the maximum in each dimension. Neural network performance
has been shown to improve massively when using an attention mechanism that allows
it to make use of all available information (see e. g. Seo et al. [34]). An attention
mechanism sits between the encoder and decoder and weighs all outputs of the encoder
(rather than a reduced representation), then calculates a weighted sum which is given
as output to the decoder. If the decoder produces a sequence, the attention mechanism
might even be invoked in every step, to determine what parts of the input are relevant
to the current output (consider for example a machine translation task where for
each output word, we must decide what word or words of the source language will be
translated next).

11

2 Theory

There exist different variants of attention mechanisms. Later on in the experiments,
we will use a variant of the trilinear attention based on Seo et al. [34] and Yu et al.
[52]. It is based on the trilinear similarity function for vectors a and b:

f(a, b) = w>[a, b, a� b] (2.13)

where w is a trainable vector.
As we are dealing with a question answering context, we have two inputs: a context

paragraph P ∈ Rn×d and a question Q ∈ Rm×d. The paragraph is a sequence of length
n, the question of length m and d is the dimensionality of the representation of each
word in the sequences. The attention mechanism must find correlations between the
paragraph and question and reduce the information of the paragraph to only that
which is relevant to the question. We do this by calculating the similarity matrix
S ∈ Rn×m:

Sij = f(Pi, Qj) (2.14)

where f is the trilinear similarity function as above and Pi, Qj are the i-th row of P
and the j-th row of Q, respectively. We now calculate a weighted sum of the question
vectors, according to how relevant they are to each paragraph vector. This means
we will perform n sums (one for each paragraph vector) and require n sets of weights
ai ∈ Rm with ∑

j aij = 1 for all i. We calculate the attention output A ∈ Rn×d as
follows:

AC
i = softmax(Si) ∈ Rn×m (2.15)
A = ACQ ∈ Rn×d (2.16)

QANet [52] and DCN [50] suggest an extension to this method which calculates a
weighted sum of context words for each word in the question. The authors of DCN
describe this mechanism as: “One possible interpretation for the operation [. . .] is
the mapping of question encoding into space of document encodings (sic)” [50].

AQ
j = softmax(S>j) ∈ Rm×n (2.17)
B = ACAQC ∈ Rn×d (2.18)

The final attention output is then [P,A, P � A,P � B] ∈ Rn×4d, following Seo
et al. [34]. Note that the attention output has reduced dimensionality from the
input—the variable question length has been removed. However, the output is still
not fixed-length. This is desired for the traditional question answering task, where we
want to find the start and end point of the answer span within the context paragraph.
For a sentence classification task with a fixed number of classes (like the one discussed
for this thesis, which has two classes: accept and reject), the dimensionality must
be further reduced. Following Kim et al. [19], we reduce by max-pooling along each
column, producing an output vector a ∈ R4d.

12

2.2 Information Retrieval

2.2 Information Retrieval
Information retrieval is the task of finding a piece of information in a collection of
such pieces that is relevant to a particular query. The related problem of cataloging
and indexing information to allow for faster and more accurate retrieval has been a
driving and shaping force in the development of computing since its very beginning,
even though the term information retrieval has been in use only since 1951 [24]. The
development of the internet has been especially motivating to advance the field of
information retrieval and has made the collection of large-scale datasets possible.

2.2.1 TF-IDF
Term frequency inverse document frequency (TF-IDF) [32] is a method of encoding
a sentence or paragraph into a sparse vector representation suitable for information
retrieval. Its central assumption is that if a sentence has a high occurence of a term
that is generally rare in the corpus, it is more important to the meaning of the sentence
than words which are frequent throughout the whole corpus. This assumption is not
entirely true from a semantic perspective (it can make a large difference whether
one sees “the man” or “a man”. Even though “the” and “a” are both very common
words, they can be defining for the meaning of the sentence in this case), but it largely
holds in the context of information retrieval, where we are often looking for specific
keywords that define the topic of a document.
The encoding is calculated (as the name implies) as the product of the term

frequency and the inverse document frequency for a document d and a term t:

TF-IDF(d, t) = TF(d, t) IDF(t)
TF(d, t) = number of occurrences of t in d

IDF(t) = log nd

DF(t) + 1

DF(t) = number of documents that contain t

(2.19)

where nd is the number of documents. This is only one possible definition of TF-IDF.
Common to all definitions is only that a weight is assigned to the term frequency
(the number of times a term occurs in a document) and the document frequency (the
number of documents in the corpus that contain a given term). The final encoding is
obtained by multiplying the two weighting factors. An alternative definition to the
above (which we will use in this work) is as follows:

TF′(d, t) = log(1 + TF(d, t))

IDF(t) = log nd −DF(t) + 0.5
DF(t) + 0.5

(2.20)

Because a single document will only contain a small fraction of words from the
vocabulary, the resulting vector will be very sparsely populated. In order to map a

13

2 Theory

term to a position in the vector, the system must hold a mapping structure in memory,
which constrains the system’s ability to parallelize the TF-IDF operation, as well
as taking up an unnecessarily large amount of memory. It is therefore common to
use the hashing trick: An index in the vector is assigned to each word by a stateless
hashing function. As the function is deterministic, its results do not need to be stored
in memory and the operation can be done in parallel.
However, using a hashing function comes with two drawbacks: First, hashing

collisions could occur, assigning two different words the same index in the vector.
This would either override or sum their respective TF-IDF terms, depending on the
implementation. While this may be unproblematic for some words, it is nevertheless
best avoided by selecting a large enough feature space (such as 220 or more features)
which makes hashing collisions increasingly unlikely. Storing the feature vectors as a
sparse matrix still allows for efficient storage in memory.

Secondly, when using a traditional lookup to assign words to indices in the vector,
there are as many entries in the vector as there are words in the vocabulary. Each
word is guaranteed to occur in at least one document, otherwise it would not be in the
vocabulary. Therefore, dividing by DF(t) is safe, is it can never be zero. When using
hashing, it is possible that no words map to a particular index in the vector, meaning
the document frequency would be zero. We therefore add a normalization in 2.20 to
avoid dividing by zero. A similar normalization can be applied to the definition in
2.19:

IDF(t) = log nd + 1
DF(t) + 1 + 1 (2.21)

In this case, the normalization is equivalent to adding an additional document to
the corpus which has all features.
In order to rank documents according to a query, the query is transformed into a

feature vector by the same algorithm, then it is compared to all documents in the
corpus using the inner product or dot product. If the vector is normalized, this is also
called the cosine similarity, as the resulting value is the cosine of the angle between
the two vectors.

sim(a, b) = a>b

best(q) = argmax
d

sim(TF-IDF(q),TF-IDF(d)) (2.22)

Because all entries in the TF-IDF vector are positive, the inner product is also
positive. If they are also normalized, the cosine similarity is bounded by [0, 1]. In
either case, an inner product of 0 indicates that the two documents have no word in
common and a high number indicates a strong similarity between the documents. For
performance reasons, the paragraph encodings are calculated ahead of time, as they
are independent of the query. The retrieval complexity scales with the number of
paragraphs in the corpus, but due to efficient sparse matrix storage and multiplication
algorithms, remains acceptable well into the millions of paragraphs.

14

3 Related Work
In this chapter, we will review previous research done on the problems of question
answering as well as information retrieval. We will also take inventory of the available
datasets for question answering.

3.1 Question Answering
The earliest approach to answering questions in natural language involved applying
grammatical analysis to the question, then retrieving the answer by a set of pre-defined
rules. This approach built on the successful application of rule-based transformation
to questions used in ELIZA [46]. ELIZA was not built to actually answer questions,
but instead turn them around on the asker—for example, given the question “Who
are you?”, the program may answer “Why are you interested in whether I am or not?”
This requires a syntactic analysis of the question that later programs built on, such
as Baseball [12], one of the first question answering systems. It is a closed-domain
system, answering questions on baseball statistics.
Rule-based systems continued to be dominant at least until the end of the 1990s

(see for example Voorhees [40]) and some are still developed today [31]. However,
designing a rule-based system requires enumerating every possible variation of question
or proposing a formal grammar that all questions must conform to. Similarly, to
extract information from natural language text, it must also be in a specific format.
These systems cannot deal with the variety present in natural language and cannot
be said to comprehend text. Nevertheless, analysis methods developed for rule-based
systems, such as part-of-speech taggers or named entity recognizers continue to be in
use to enrich the input features [5].
Rule-based systems often have strong requirements for the format of the question

(for example, that it must start with an interrogative) whereas the development of
question answering in general strives towards removing as many of these artificial
requirements as possible and allow asking questions in completely free-form natural
language.
While current datasets mostly consist of such challenges (i. e. with freeform ques-

tions), some datasets use cloze-style questions, an intermediate type between artificial
and freeform question: A cloze-style question is a statement with one or more of the
relevant words blanked out. The “answer” is the word or phrase that correctly fills in
the blank.
Cloze tests have been used in education (see for example Bachman [2]) to test

comprehension when learning a foreign language. It is an intermediary between a fixed-
format question and a freeform question, because the sentences that form the basis

15

3 Related Work

for the cloze are freeform, but a cloze-style sentence provides more contextual clues
to the answer than a question does, as well as being more similar to information the
system might find in context documents (which also describe facts using statements,
rather than questions).

3.1.1 State of the Art
The most successful question answering systems today are based on neural networks,
achieving near-human performance or in some cases even outperforming humans1.
Neural networks have been shown to be able to deal with the inconsistent structure
of natural language as well as recognize semantic subtleties, such as sentence en-
tailment [49]. They are therefore a promising (and widely researched) approach to
question answering.

3.1.1.1 Traditional Question Answering

In the traditional question answering task, some context information is provided for
each question, constraining the information retrieval portion of the task to only finding
the span of text within the context that represents the answer. A large number of
approaches to this task have been published, several of which we will discuss here
because of their relevance for this work:

QANet At the time of writing, QANet [52] is the best-performing published model
for the SQuAD dataset (see chapter 4). Its main innovation is that it refrains from
using recurrent neural networks like LSTMs, opting instead for an approach based on
convolutional neural networks. The authors report improved evaluation and training
speed as a result. It is mainly based on the BiDAF (Bi-Directional Attention Flow,
Seo et al. [34]) network and DCN (Dynamic Coattention Networks, Xiong, Zhong, and
Socher [50]), for their advances in attention mechanisms and classifier architecture.
QANet is a typical encoder-decoder network, encoding the context and question
through a number of convolutional operations, combining the representations through
an attention mechanism and using a classifier on the result to predict the beginning
and end of the answer span within the context.

Reinforced Mnemonic Reader The Reinforced Mnemonic Reader [16] is another
high-performing model for the SQuAD dataset. In addition to encoding question and
context vectors with recurrent neural networks (specificially, bidirectional LSTMs),
the mnemonic reader makes use of a novel Semantic Fusion Unit (SFU), which fuses
several vectors together using a gating process similar to that used in LSTMs. The
model can be trained both in the usual way, minimising the crossentropy error of the
predicted distribution of start and end pointers, and by using a reinforcement learning
technique, maximising the model’s expected reward, which is based on the answer’s
F1 score (a measure of the “overlap” between the true and predicted answer).

1On the SQuAD leaderboard (https://rajpurkar.github.io/SQuAD-explorer/), QANet outperforms
humans on the exact match metric.

16

https://rajpurkar.github.io/SQuAD-explorer/

3.1 Question Answering

Answer Re-Ranking Wang et al. [43] propose a method of re-evaluating answer
candidates from a question answering system. The question answering system (they
use R3 from [44]) returns the top 10 answers by probability and the re-ranker uses
criteria such as coverage of the context to select from them the top answer. In
compound, the system achieves a better accuracy than the question answering system
would have on its own.

3.1.1.2 Open-Domain Question Answering

In open-doman question answering, the context is either not directly provided along
with the question, or it is, but is too broad or too much to be used by the question
answering system directly. Such systems must use an information retrieval (IR)
component to narrow the available context down to a managable amount that can be
fed into the (mostly neural network based) question answering system. Because this
task is the focus of this work, we must measure our performance against the models
from this section. However, due to different datasets being used or different amounts
of context being retrieved, exact numbers are often difficult to compare.

DrQA Short for Document Reader Question Answering, DrQA [5] exemplarizes a
typical system for this problem: From a corpus of Wikipedia articles, the top five
articles are retrieved with TF-IDF [32]. Those articles are split into paragraphs and
all fed into the question answering system, which aggreagates answer candidates,
finally selecting the most likely answer from among all answer candidates from all
paragraphs from all articles. Because they also test mainly on the SQuAD dataset,
their work is an interesting point of comparison for the models proposed in chapter 5.

Classifiers Models such as R3 [44], relation-networks (RN) ranker [15] and super-
vised semantic indexing (SSI) [3] all follow the same basic principle: a classifier is
applied to all question-context pairs to determine the most likely context. While this
is a powerful method (see chapter 6), this method scales very poorly to large context
collections. R3 and RN operate on QUASAR-T (see section 3.2) and similar datasets,
ranking the passages provided by these datasets. SSI constructs a testing set of 10 000
or 100 000 passages by taking all correct results and filling the rest up with random
context paragraphs. Both approaches require prior knowledge about the problem
instance.

Wikipedia QA Another model to answer questions using Wikipedia as a knowledge
source is proposed by Ryu, Jang, and Kim [31]. It is a rule-based system that does not
use any machine learning techniques. Instead, it extracts structured information from
wikipedia articles using pre-defined regular expressions and exploiting the structure
explicitly embedded in Wikipedia. While they are able to answer over 85% of questions,
the results are practically impossible to compare to other models, because their model
is hand-tailored to the Korean-language Wikipedia, and their test set consists of only
600 (unpublished) questions which they collected themselves based on criteria which
they do not report.

17

3 Related Work

Name Type #Queries Context Length
SQuAD substring 107k one paragraph
QUASAR-S cloze 37k 50 documents or paragraphs
QUASAR-T freeform 54k 50 long or short passages
TriviaQA freeform 95k 6 documents
MS-MARCO freeform 182k 10 paragraphs
RACE multiple-

choice
100k one paragraph

WikiMovies list 220k several synthetic sentences
WikiHop substring 51k up to 64 paragraphs
CNN/Daily Mail cloze 1.4M 800 words on average
NarrativeQA freeform 47k synopsis or full

book/film script
MCTest multiple-

choice
2k 200 words on average

WikiQA substring 3k one paragraph
TREC-8 substring 200 shared 528k article corpus

Table 3.1: Overview of various question answering datasets.

3.2 Datasets
In the following section, we will review various published question answering, informa-
tion retrieval and reading comprehension datasets. In particular, we will differentiate
the datasets with regard to the broadness of the question domain or domains, whether
questions are automatically generated or posed by humans, what context is given
for each question, both to the system that answers the question as well as to the
humans or systems which designed the question. Other distinguishing features are
the grammatical variety of the questions, how distributed the required information is
(whether the answer requires reasoning over multiple pieces of evidence) and whether
answers are expected as free text, as a substring of the context, multiple-choice or
cloze-style fill-in-the-blank.

3.2.1 Stanford Question Answering Dataset (SQuAD)

The Stanford Question Answering Dataset (SQuAD) [29] is one of the more widely
studied question answering datasets. At the time of this writing, the leaderboard2

lists over 70 submissions for version 1.1 of the dataset. The best submissions have
exceeded human performance on the exact match metric. It could therefore be argued
that the challenge is “solved” and further study of this dataset is unlikely to yield
more interesting results. It remains of great interest to this work, however, precisely
because so many high-performing question answering systems exist on this task. In

2https://rajpurkar.github.io/SQuAD-explorer/

18

https://rajpurkar.github.io/SQuAD-explorer/

3.2 Datasets

Context: One of the most famous people born in Warsaw was Maria Skłodowska-
Curie, who achieved international recognition for her research on radioactivity and
was the first female recipient of the Nobel Prize. Famous musicians include Władysław
Szpilman and Frédéric Chopin. Though Chopin was born in the village of Żelazowa
Wola, about 60 km (37 mi) from Warsaw, he moved to the city with his family when he
was seven months old. Casimir Pulaski, a Polish general and hero of the American
Revolutionary War, was born here in 1745.
Question: How old was Chopin when he moved to Warsaw with his family?
Answer: seven months old

Figure 3.1: A sample problem instance from SQuAD.

chapter 4, we will transform this dataset into an open-domain challenge, while making
use of the already published results.
In order to create the dataset, the authors selected 536 articles from the English

Wikipedia from the top 10 000 articles by PageRank [25]3. After filtering tables,
images and paragraphs under 500 characters, the remainder is 23 215 paragraphs.
Using Amazon Mechanical Turk crowdsourcing, up to five questions were posed by
human annotators for each paragraphs, resulting in 107 785 questions in total.
Figure 3.1 shows a problem instance from SQuAD: One paragraph of context is

given in addition to the question, the answer is a substring from the text. In an
additional step, the authors collected up to four alternative answers for each question,
all of which are considered correct answers. Up to five questions share each context
paragraph. The paragraphs may share topics (as they may come from the same
article) but between them cover a wide variety of topics. Nevertheless, SQuAD is
not an open-domain question answering dataset. The authors point out that the goal
of open-domain question answering is “to answer a question from a large collection
of documents”, with this dataset not requiring that but rather requiring answer
extraction, i. e. finding the correct answer span in a single document.

In June 2018, version 2.0 of the dataset was released [28], which extends the existing
dataset with a new class of question-context pair: A problem instance where the
question can not be answered using the paragraph provided, often because of a subtle
semantic variation. While this introduces a necessary step of distinguishing whether
the paragraph is valid, pushing the problem closer to a true open-domain one, this
new feature is not useful for this work, which will continue to work with version 1.1
of the dataset as a result.

3.2.2 QUASAR

QUestion Answering by Search And Reading (QUASAR) [6] introduces two different
datasets with two different tasks: QUASAR-S and QUASAR-T.

3Using a list compiled by project Nayuki: https://www.nayuki.io/page/computing-wikipedias-

internal-pageranks

19

https://www.nayuki.io/page/computing-wikipedias-internal-pageranks
https://www.nayuki.io/page/computing-wikipedias-internal-pageranks

3 Related Work

Question: javascript—javascript not to be confused with java is a dynamic weakly-
typed language used for XXXXX as well as server-side scripting.
Answer: client-side
Context excerpt:
JavaScript is not weakly typed, it is strong typed.
JavaScript is a Client Side Scripting Language.
JavaScript was the **original** client-side web scripting language.

Figure 3.2: Sample problem instance from QUASAR-S.

Question: 7-Eleven stores were temporarily converted into Kwik E-marts to promote
the release of what movie?
Answer: the simpsons movie
Context excerpt:
In July 2007, 7-Eleven redesigned some stores to look like Kwik-E-Marts in select
cities to promote The Simpsons Movie.
Tie-in promotions were made with several companies, including 7-Eleven, which
transformed selected stores into Kwik-E-Marts.
“7-Eleven Becomes Kwik-E-Mart for ‘Simpsons Movie’ Promotion”.

Figure 3.3: Sample problem instance from QUASAR-T.

QUASAR-S (S for Stackoverflow) is a cloze-style closed-domain question answering
task consisting of 37 000 statements. The tasks have been automatically generated
from the programming help section of stackoverflow.com. Each statement is the
definition of a programming-related question tag (such as java or .net), as given on
the site. The tag itself is replaced by a placeholder. Two variations of the dataset exist,
with differernt forms of context: One version has 50 long parts (the full answer plus
the full text of the question) or 200 short parts (one sentence) from the 50 top-rated
question threads related to the question’s tag. Figure 3.2 shows a problem instance
from QUASAR-S.

QUASAR-T (T for trivia) consists of almost 54 000 human-written trivia questions
on a large variety of topics. As a knowledge base for answering these questions, it
uses ClueWeb09, a collection of about one billion web pages. However, the questions
were written and collected independently from this corpus and come from different
sources on the web. From the ClueWeb09 websites, 50 long (2048 characters) or 200
short (200 characters) context pseudodocuments are selected. Because of the nature
of the context retrieval, it is not guaranteed that the answer string is contained in
any context document.

Both QUASAR datasets provide more context than SQuAD, but the documents
are expected to be highly redundant, with the right answer being contained in more
than one context document.

20

stackoverflow.com

3.2 Datasets

Question: The Dodecanese Campaign of WWII that was an attempt by the Allied
forces to capture islands in the Aegean Sea was the inspiration for which acclaimed
1961 commando film?
Answer: The Guns of Navarone
Context excerpt:
The Dodecanese Campaign of World War II was an attempt by Allied forces to capture
the Italian-held Dodecanese islands in the Aegean Sea following the surrender of Italy
in September 1943, and use them as bases against the German-controlled Balkans.
The failed campaign, and in particular the Battle of Leros, inspired the 1957 novel
The Guns of Navarone and the successful 1961 movie of the same name.

Figure 3.4: Sample problem instance from TriviaQA.

3.2.3 TriviaQA
TriviaQA by Joshi et al. [17] is similar to QUASAR-T in that it consists of human-
written trivia questions on a wide number of topics gathered from the web. It consists
of 95 000 question-answer pairs, each is annotated with on average six different context
documents, making for a total of 650 000 question-answer-context triplets. While the
questions were written independently of any context, the dataset does include two
set of context documents for each question. The first set is based on a crawl of top
Bing web seach results for the question, excluding keywords like “trivia”, “question”
or “answer”. The second set consists of Wikipedia articles of any entities that were
automatically recognized in the question.
As a result, TriviaQA provides a very large amount of context for each question.

The authors also provide an unfiltered version (where context documents that do
not contain the answer string have not been filtered out), which contains 110 495
question-answer pairs and 740 000 context documents. Even the filtered version has a
considerably larger context for each question than SQuAD. The average context length
for TriviaQA is 2 895 words, making many approaches that may work on SQuAD
infeasible for this dataset.

3.2.4 MS-MARCO
The Microsoft MARCO (MAchine Reading COmprehension) dataset consists (in its
most recent version at time of writing) of 182 000 web queries and answers. The
questions are real queries given to the Bing search engine by users, collected and
anonimized by Microsoft. The answers are written by crowdworkers, who were
encouraged to write full-text answers. As context, they were given the top search
results from the given query. These same extracts are also included in the dataset as
context documents. Additionally, each question is annotated with the URLs of the
web pages that the context excerpts were extracted from as well as a classification tag
such as ENTITY or NUMERIC, describing what kind of answer is expected. This tag
is not intended for training, but for analysis of the models (e g whether the models
struggle with one category of question more than others).

21

3 Related Work

Query: will I qualify for osap if I’m new in canada
Context (excerpts):
[...] you must be a: 1. Canadian citizen; 2. Permanent resident or 3. Protected
person/convention refugee [...]
You will not be eligible for a Canada-Ontario Integrated Student Loan [...]
Answer: No. You won’t qualify.

Figure 3.5: Sample problem instance from MS-MARCO

Context excerpt: . . .Many people optimistically thought industry awards for better
equipment would stimulate the production of quieter appliances. It was even suggested
that noise from building sites could be alleviated. . .
Question: What was the author’s attitude towards the industry awards for quieter?
(sic)
Answers: A: suspicious, B: positive, C: enthusiastic, D: indifferent

Figure 3.6: Sample problem instance from RACE.

3.2.5 RACE
The Large-scale ReAding Comprehension dataset from Examinations (RACE) [22]
consists of 28 000 english passages and 100 000 questions written by english instructors
for chinese middle and high school english classes. As the examination questions target
an age range of 12 to 18-year-olds, there is a significant difference in difficulty between
the questions. Therefore, the authors propose a split of the dataset into RACE-M,
consisting of the questions for middle schoolers (12-15 years old) and RACE-H, with
the questions for high schoolers (15-18 years). The questions have four multiple-choice
answers each.

What sets this document apart from other QA datasets is a higher degree of reasoning
required, as well as many of the questions requiring multi-sentence reasoning. As a
result, at the time of writing, published systems are not close to surpassing human
performance.

3.2.6 Others
Other datasets not studied in detail here include WikiMovies [7], WikiHop [47],
CNN/DailyMail [13], NarrativeQA [21], MCTest [30], WikiQA [51] and TREC-8-
QA [41]. Some basic statistics about them can be seen in table 3.1 and a reasoning
for why they are not suitable for this work can be found in section 4.1.

22

4 Data
In the previous chapter, we examined a number of datasets for open- and closed-
domain question answering. However, not all of them are suitable for training the
kind of information retrieval model we are looking to study in this thesis. In this
chapter, we will discuss the selection of datasets for training and cross-evaluation as
well as the steps taken to prepare the data for this task.

The goal of our task is, given a question, to retrieve one paragraph that is sufficient
to answer the question from a large corpus of paragraphs common to all questions. No
large-scale dataset exists for this specific purpose, but one could be easily constructed
by using one of the existing question answering datasets and dicarding the context they
provide. The difficulty with this approach is judging whether a retrieved paragraph is
correct. For datasets where the answer is a substring of the context, a simple heuristic
exists: If the retrieved paragraph contains the answer string, it is judged correct. This
approach is still noisy, as a string identical to the answer string might occur, but is
used in a completely different context. For example, if the question asks in what year
an event occured, the paragraph might mention the correct year, but talk about a
different event. In that case, the paragraph should actually not be considered correct.

Another possibility, which can also be used for tasks which require freeform answers,
is to train a model using distant supervision: If a question answering system can,
given the question and retrieved paragraph, answer the question correctly, then the
paragraph must have been sufficient. This approach is also noisy, as there is currently
no question answering system that can always find the correct answer, even given the
correct paragraph.
Finally, if our new dataset contains all of the original dataset’s contexts, we can

apply the strictest metric: A retrieved paragraph is considered correct if and only if
it is the exact same one that was originally given as context for the question in the
original dataset.

The exact method or methods we can use to train an information retrieval system
depends heavily on the nature of the dataset. Therefore, we carefully consider all
available datasets with regard to their usability for this task.

4.1 Dataset Selection
The datasets in the bottom section of table 3.1 are all unsuitable for this task after
only a brief examination: WikiHop and WikiMovies consist of synthetic questions,
generated automatically from structured knowledge bases, they are not the kind of
realistic task we are interested in. CNN/Daily Mail is a cloze-style task. In these
tasks, the appropriate context section is likely to be very similar to the query, as

23

4 Data

the query is just a statement with the relevant entity blanked out. They are also
not a realistic application—humans do not ask for information in cloze-style queries.
NarrativeQA could be an interesting information retrieval task, but the information
required to answer the questions in that dataset is highly distributed and requires
advanced reasoning and interpretation of the text. It could be an interesting target
for future work, but for this thesis we will focus on a simpler task. MCTest, WikiQA
and TREC-8 are quite simply too small to train a neural network model and therefore
unsuitable.

RACE RACE could be a promising dataset to study information retrieval on;
General knowledge questions from middle and high school education should be possible
to answer using a readily available corpus (such as Wikipedia) and the dataset
provides a label of what the “correct” paragraph is—each question is provided with
one paragraph of context, if the system retrieves that same paragraph, it is the correct
one. However, the questions in RACE do not come from general education, but
rather language education. As a result, many questions (such as the example in
figure 3.6) ask questions relating to the specific wording and expressions in the given
paragraphs, without referencing any topic or entity that the paragraph talks about.
This is of course a direct result of the fact that the questions were written for the
context paragraphs, not independently of them. The question “What was the author’s
attitude towards the industry awards for quieter machinery?” both requires one
specific paragraph to answer it (no other paragraph talking about quieter machinery,
but written by someone else would be good enough) and gives insufficient information
to find this paragraph (it does not mention who the author is).

Furthermore, we do not have access to the corpus from which the context paragraphs
for RACE have been taken (if one such corpus exists). Constructing one from all
paragraphs included in RACE gives 20 000 paragraphs—large, but not comparable to
retrieving information from Wikipedia (the English Wikipedia has at time of writing
5 720 000 articles). Supplementing these paragraphs with ones not originally from the
dataset would require finding a source with text about similar topics, written in a
similar style.

Each of these problems individually would have been possible to work around, but
put together they lead us to conclude that RACE is not a suitable dataset for this
information retrieval task.

QUASAR and TriviaQA The two trivia datasets, QUASAR-T and TriviaQA
are similar in most regards and can be evaluated together: The main problem they
both have is that there is no label for what paragraph is sufficient to answer the
question. We could test whether the answer string is contained in the paragraph,
but as both datasets allow freeform answers, it is possible for a paragraph to have
all the information needed but not contain the exact answer string. The distant
supervision approach described above has its own drawbacks, such as the binary
feedback—either the question answering system answers the question correctly, or it
does not. The questions themselves are ideally suited for our task—they are written

24

4.2 Dataset Preparation

independently of the context, and must therefor explicitly state their domain . For
example, the question “In golf, what is an ‘eagle’?” must mention golf (the question
domain), because it is not provided alongside a context paragraph about golf. Without
explicitly introducing the domain, it would not be clear what kind of “eagle” the
question is referring to. This is important for information retrieval, as it provides us
with keywords that make it possible to find a matching paragraph.

Training the model on QUASAR or TriviaQA may be challenging, but they are
excellent candidates for evaluation of the system and judging how well it generalizes
to unseen data.

SQuAD Being the most widely studied of these datasets, there are a number of
question answering systems that are trained on SQuAD amd tailored to its specific
task (one paragraph of context, the answer is a substring of the context). As we are
looking to combine our information retrieval system with a state-of-the-art question
answering system, this is an advantage. The biggest advantage of SQuAD, however, is
that the authors provide detailed information on how they narrowed down a full dump
of Wikipedia to the about 23 000 paragraphs they used. As the source corpus for
these paragraphs is known, we can construct the information retrieval task by taking
a larger subset of Wikipedia than the authors of SQuAD did and use the paragraphs
provided in the dataset as labels for which ones are correct. In cases where multiple
paragraphs could answer the question, we can take advantage of the fact that SQuAD
requires that answers are substrings of the context and consider a paragraph correct
if it contains the correct answer.

SQuAD does have the disadvantage that the questions were not written indepently
of the context. Contrary to RACE, however, they ask for facts expressed in the
paragraphs (which could be equally answered from other paragraphs), rather than
about sentiment or wording of the particular paragraph. Some questions are still
worded in a way that gives too little information about the domain to make a retrieval
possible. Nevertheless, SQuAD remains the best option and so we used it as the basis
for the construction of an information retrieval dataset.

4.2 Dataset Preparation
The goal of this section is to create a dataset which encompasses all the paragraphs
used in SQuAD, as well as other, similar paragraphs, both on the same topics as well
as others. To this end, we will try to recreate the pool of paragraphs that the authors
of SQuAD drew from. The new dataset will then consist of the same questions as
SQuAD, each labeled with the index of the paragraph that the question was originally
written for. This gives us the option of using two different means of evaluation:
Considering a paragraph correct only when it is the exact same one given in SQuAD
(exact match) or accepting a paragraph if it contains the answer string for the question
(answer match).

We first take inventory of the dataset: It consists of 107 785 questions on 23 215
paragraphs from 536 articles. The training and development sets are available to the

25

4 Data

Article: Chinese Characters
September 26, 2018: In Old Chinese including Classical Chinese, most words [...]
SQuAD: In Old Chinese, (e.g. Classical Chinese) most words [...]
Revision March 9, 2016: In Old Chinese (e.g. Classical Chinese) most words [...]
Revision June 18, 2016: In Old Chinese (e.g. and hence in Classical Chinese) most words [...]
⇒ The article was taken between March 9, 2016 and June 18, 2016.

Figure 4.1: Determining the date of the paragraphs from SQuAD.

public, the testing set remains with the authors and a model can be tested against it
on request. Seeing as we will make changes to the dataset, we will work only on the
training and development sets, totaling 98 169 question from 20 963 paragraphs from
490 articles.

The authors have provided detailed information about how the dataset was compiled:
They started with a full dump of Wikipedia, selected 10 000 articles based on their
PageRank score [25], then selected the 536 articles from this pool uniformly at random.
All paragraphs shorter than 500 characters were discarded, as well as Wikipedia
content that isn’t plain text (such as tables, figures, images, links etc.).
For our dataset, we want to use the full pool of 10 000 articles that the 536 from

SQuAD were drawn from. The list of articles is available at Project Nayuki1, which
is based on a Wikipedia dump from 2014. However, the paragraphs from SQuAD
are not taken from that same dump. Neither were they from the most recent version
of Wikipedia at the time of research. It is important that the dataset contains the
paragraphs exactly as they appear in SQuAD, so that it is still guaranteed that
all answers are substrings of their respective paragraphs. In order to make sure
all paragraphs from SQuAD were in the dataset, we determined the date of their
Wikipedia dump (which they do not report) to around April 2016 based on the date
of changes using WikiBlame2. Figure 4.1 illustrates this process.
The April 2016 Wikipedia dump is still available on Archive.org3. The full dump

was reduced to 9 108 articles based on the PageRank list (due to title mismatches
between the list from 2014 and the more recent dump, not all 10 000 articles could
be retrieved). Wikiextractor4 was used to remove tables, markup, figures and other
non-plain-text features from the articles. In total, the dataset contains 1 060 558
paragraphs. Contrary to SQuAD, we did not filter out paragraphs shorter than 500
characters. It is up to the information retrieval system to determine which paragraphs
are relevant. Of the 98 169 questions from the SQuAD train and development set,
92 680 could be matched with their original paragraph, which were split according to
their original sets, 82 749 for the training set and 9 931 for the testing set.
This dataset now provides a new and more difficult challenge compared to the

original SQuAD, as it is not practical to feed all paragraphs into a question answering
system for each question, making an information retrieval component necessary.

1https://www.nayuki.io/page/computing-wikipedias-internal-pageranks
2http://wikipedia.ramselehof.de/wikiblame.php
3https://archive.org/details/enwiki-20160407
4https://github.com/attardi/wikiextractor

26

https://www.nayuki.io/page/computing-wikipedias-internal-pageranks
http://wikipedia.ramselehof.de/wikiblame.php
https://archive.org/details/enwiki-20160407
https://github.com/attardi/wikiextractor

4.3 Full Wikipedia

4.3 Full Wikipedia
The reduced dataset is much easier to work with and allows for more rapid iteration
when developing and testing models. However, the comparable publications [5, 44] use
all of Wikipedia as a basis for answering questions. For this reason, we also construct
a dataset from the same Wikipedia dump that is not restricted to the top 10 000
articles, but instead uses all articles.

Using the above Wikipedia dump and filtering out lists and disambiguation pages,
we arrive at 4 403 413 articles. To keep the number of paragraphs down, we discard
paragraphs shorter than 100 characters, as they are unlikely to contain meaningful
information. Afterwards, 24 949 529 paragraphs remain. We store them in an sqlite
database for easy indexing and retrieval without having to keep them all in memory.

27

5 Methods

The information retrieval system must find the most relevant paragraph from one
million paragraphs in the dataset. We explore two general approaches to this task:
First, a method that does not require a neural network classifier to process pairs of
questions and paragraph but instead only calculates an encoding for each question and
each paragraph seperately, then compares them using cosine similarity in order to find
the most similar one. Second, a method that does use a classifier, but uses another
information retrieval system to make a preliminary selection of 100 paragraphs which
is then refined to one top result using a classifier.

5.1 Models and Experimental Setup

Previously published models such as [44] and [15] train a classifier that given a question
and a paragraph decides whether the paragraph contains an answer to the question.
That means that for each question, all paragraphs must be passed through this
classifier. The selected paragraph is then the one with the highest confidence. Even
with a very efficient encoder, running one million paragraphs through a classifier is too
slow to be a practical system. One must also note that these one million paragraph
represent less than one percent of Wikipedia, rendering a “realistic” information
retrieval task using this method even more daunting. The systems above accomplish
this by either using the provided context documents of QUASAR-T or by using
traditional information retrieval techniques to retrieve in the order of 200 paragraphs,
then run the question answering system on all of them.

Instead, we will attempt to train an encoder of paragraphs and questions such that
the most relevant paragraph will also be the closest one to the question by cosine
similarity. For a nonlinear encoder function f that produces normalized results, the
problem of finding the best paragraph can be descibed as follows:

pbest = argmax
p∈P

f(q)>f(p) (5.1)

where P is the set of paragraphs and q is the question. Because the encoder can be
evaluated independently of the question, the paragraph encodings can be calculated
in advance. During evaluation, the above equation is relatively easy to evaluate,
requiring only a matrix multiplication and argmax. This promises to be much faster
than running a neural network classifier on a large number of paragraphs.

29

5 Methods

Note that the question and paragraphs share the same encoder. We also explore
the possibility of applying a nonlinear transformation t to the question encoding only,
attempting to predict the encoding of the paragraph from that of the question:

pbest = argmax
p∈P

t(f(q))>f(p) (5.2)

During training, the model is presented with positive and negative examples, i. e.
question-paragraph pairs where the paragraph either contains an answer to the
question (positive) or does not (negative). Instead of choosing the best paragraph,
as above, we simply calculate f(q)>f(p) and derive the loss from the resulting scalar
which indicates a similarity score between the question and paragraph.

In addition to the cosine similarity, we also explore other ranking schemes which do
not rely on classifiers: Square cosine difference (f(q)>f(p))2, to constrain the cosine
difference to the [0, 1] range and to encourage unrelated paragraphs and questions to
receive an orthogonal encoding. We also considered weighted dot product f(q)>Wf(p),
where W is a learned matrix as described in Bai et al. [3]. When W is the identity
matrix, this method is equivalent to cosine similarity. In all cases, the output from
the encoder is expected to be a normalized vector.

5.1.1 Loss function
The initial loss function considered was mean square error, with the target being 1 for
correct paragraphs and 0 for incorrect ones. However, the margin ranking loss [3] also
proved effective and we evaluate models on both. It is defined as follows:

k∑
i=1

max(0, 1− r(q, ppos) + r(q, pi
pos)) (5.3)

With ppos being a positive example paragraph, pi
neg for i ∈ {1, . . . k} a set of k

negative examples for the same question and r(·, ·) being the ranking function used.
he main advantage of this loss function is that is always considers several examples
together without biasing the classifier. At the same time, the system can be presented
with data more representative of the true distribution (when predicting, there are
hundreds of thousands of negative examples to one positive one). The classification
improves if one uses several negative examples for each positive one. The margin
rank function avoids biasing the classifier by considering the ranking for the positive
example multiple times and by ensuring that a set of considered examples must always
include a positive one. At the same time, it is a margin loss, i. e. it rewards not only
predicting the correct result with a higher probability than the incorrect one, but also
attempts to maximise the margin by which the correct result wins.

5.1.2 Transformations
As a rule, the encoder is shared between the question and paragraph, though we
experiment with training two encoders as well. The goal is to produce a question

30

5.1 Models and Experimental Setup

encoding that is similar to that of a paragraph which contains the requested information.
If we share an encoder between questions and paragraphs, it is possible that the
encoder will only encode information contained in the sentence into the encoding, or
otherwise produce encodings such that question and paragraph encodings are quite
different as a rule.
We therefore investigate the effect of applying a transformation to the question

encoding only, in an attempt to predict the correct paragraph encoding. It is not
necessary to exactly predict a paragraph encoding from only the question encoding
(after all, a paragraph may contain other information not required to answer the
question, which would be contained in its encoding but is impossible to predict form
the question encoding alone). The goal is only to produce an encoding that is closer
to the encoding of the correct paragraph by applying an additional transformation.
We evaluate two transformation models: a simple and a more advanced one.

The simple model consists of a ReLU (rectified linear unit) layer with 500 dimensions,
followed by a linear projection to the same dimensionality as the paragraph encoding
(which was 300 in most experiments).

h = ReLU(W1q + b1)
q′ = W2h+ b2

For the advanced transformation, we attempt to learn a vector containing informa-
tion independent of both questions and paragraphs, but useful for interpreting either.
We call this vector the knowledge vector. The knowledge vector should represent
information about how a question and associated paragraph might look. In order to
also have information about what kind of questions might belong to a paragraph, we
attempt to predict the question encoding from the paragraph as well as vice versa.
Using the knowledge vector as a common input, we apply the simple transformation
to both the paragraph encoding and the question encoding, attempting to predict
the other. The regular loss term for the network is the cosine difference between
the predicted question encoding and the true paragraph encoding. For the advanced
transformation, we introduce a second loss term: The cosine difference between the
predicted paragraph encoding and the true question encoding.

hq = ReLU(W1[q; k] + b1) hp = ReLU(W3[p; k] + b3)
q′ = W2hq + b2 p′ = W4hp + b4

As with the simple transformation, the hidden layer size for the classifier is 500,
the knowledge vector has 1000 dimensions.

5.1.3 Word Embeddings
Most experiments were performed using pre-trained 300-dimensional GloVe embed-
dings [27] trained on a 840 billion token common web crawl corpus. In some models,

31

5 Methods

we also try training an embedding based on byte-pair encoding [33], obtained by
the implementation of Github user Rico Sennrich1. The primary advantage of the
subword encodings is a drastically reduced vocabulary size (~360 000 used out of 2.2M
total for GloVe vs. ~41 000 for bpe). However, despite the lower vocabulary size, the
amount of data in the training set may not be sufficient to achieve better results than
using the pre-trained embeddings.

5.2 IR Baseline

In order to have a baseline model to compare our models against, we use traditional IR
methods to retrieve paragraphs. Specifically, we use elasticsearch2 and TF-IDF (see
section 2.2.1). Both have been used as baselines before [5, 44] and are well-established
information retrieval methods. We evaluate both methods on the testing set (derived
from the development set of SQuAD, see chapter 4), and our paragraph corpus.
For elasticsearch, we construct an index containing all paragraphs as documents,

then query it using the question as a simple query string. The “snowball” stemming
analyzer is used for both questions and paragraphs. We evaluate retrieval recall on
both the exact match (retrieved paragraph is equal to the label) and answer match
(retrieved paragraph contains a correct answer) metrics when retrieving between 1
and 1000 paragraphs.
For TF-IDF, the document frequencies are trained on the paragraphs, then all

paragraphs and all questions are encoded. Following Chen et al. [5], we use bigram
counts and the murmurhash hashing scheme [45] with 224 features. For prediction, the
paragraph with the highest dot product similarity to the question is chosen.

5.3 Random Baseline

To ascertain that models that don’t outperform TF-IDF are at least adapting to the
task at all, we also establish a baseline by randomly selecting a paragraph as best match
for each question. Outperforming this baseline is the lowest hurdle that a model must
pass to prove it has learned anything about this task. As for the information retrieval
baselines, we retrieve between 1 and 1000 paragraphs. In addition to revealing which
models have not adapted to the task, the random baseline can provide information on
the dataset itself: The odds of finding the exact paragraph specified in a question’s
label are approximately 1

1 000 000 . If we observe a higher accuracy for the answer match
metric, this would indicate that some questions have answers that occur in a large
number of paragraphs.

1https://github.com/rsennrich/subword-nmt
2https://www.elastic.co/

32

https://github.com/rsennrich/subword-nmt
https://www.elastic.co/

5.4 Encoders

5.4 Encoders
In each model, the same encoder function is trained to encode both paragraphs and
questions. The goal is that the encoder produces a similar result for questions and
paragraphs that are concerned with the same subject matter, allowing the system to
quickly select the most relevant paragraph.

5.4.1 SWEM
The most basic encoder is a Simple Word Embedding-based Model (SWEM) [35]. In
particular, swemhier proved effective. It works by average pooling word embeddings
within a sliding window along the time dimension, then max pooling the results. Or
more formally: Let vi be the word embedding at position i in the input sentence. It
is itself a vector, so let vi,j be the j-th position of that vector. Then the encoding is
calculated as follows:

avgi,j = 1
w

i+w∑
k=i

vk,j

swemj = max
i

avgi,j

(5.4)

Where w is the sliding window size, which was 5 for all experiments. While this is
a parameterless model, it can be used to train word embeddings. However, models
working with pre-trained GLoVe embeddings achieved better results.

While the authors reported impressive performance for sentence classification, it is
unclear how well this model will perform without a classifier (and therefore practically
no learnable parameters). For this reason, we also test a version of SWEM with
an additional linear projection layer on top. The projection does not change the
dimensionality of the output, it is simply there to perform an operation on the sentence
embedding.

5.4.2 LSTM
We apply a single-layer bidirectional LSTM (long-short-term-memory, [14]) network
to the word embeddings, using the final output as the sentence embedding. LSTMs
have been widely explored for use as encoders in question answering, for example in
Tay, Tuan, and Hui [37] and Chen et al. [5] and have shown good performance even
without further layers. We experiment with many different configurations on training
data and hyperparameters.

Because the encoder must be able to encode paragraphs and questions independently,
we cannot make use of an attention mechanism, which would require knowing both a
question and paragraph encoding. We therefore opt for the simpler method of using
the final output as the encoding.

33

5 Methods

Figure 5.1: Schematic showing the QANet encoder. From Yu et al. [52].

The models were implemented in Tensorflow3 using both the generic implementation
(LSTMBlockCell) and the CUDNN versions which are optimized for Nvidia GPUs. At
the time of implementation, there were concerns in the machine learning community
about RNN performance in Tensorflow, so we also tested a comparison implementation
in PyTorch4. The information on Tensorflow RNN performance appeared to be
outdated, as Tensorflow outperformed PyTorch in both execution speed and memory
efficiency, particularly when using the CUDNN-specific implementations of LSTM
provided by Tensorflow (which were not available through PyTorch).

5.4.2.1 QANet

As a question answering system, QANet must encode relevant information from both
the question and context into an internal representation. Normally, QANet would
go on to run a classifier to predict a substring of the paragraph that answers the

3https://www.tensorflow.org
4https://pytorch.org/

34

https://www.tensorflow.org
https://pytorch.org/

5.5 Classifier

question. We use only the encoder portion of QANet, which is a series of convolutional
operations and self-attention (see figure 5.1). As QANet encodes an input sequence
into another sequence of equal length, we must also experiment with aggregation
methods to reduce the dimensionality of the output and their effect on performance.
Additionally, we test the encoder portion of QANet, as pre-trained on its original

question answering task.

5.5 Classifier
As noted above, running a classifier on the full set of paragraphs for each question is
not feasible for a useful question answering system. However, a classifier could still be
run on a subset of paragraphs from the full set in order to refine the selection. Other
models [e. g. 44] use a somewhat similar approach, using an information retrieval
system to narrow the search space of paragraphs to 100-200 paragraphs, then running
the question answering system on all of them and finally aggregating the most likely
answer spans from across all paragraphs. Our system differs in that the question
answering system is only run on one paragraph, as predicted by the classifier. Using
this method, we are able to achieve state-of-the-art results on the SQuAD dataset.

The advantage of a classifier is that in addition to having the encoding of both the
paragraph and the question, it is able to perform more advanced computations on top
of both, extracting more meaningful information. In our model the best performance
was achieved when the first such computation was an attention mechanism, described
in section 2.1.3.2. In additon to both variants of the attention mechanism described
there, we compare the performance of this model against one with no attention
mechanism at all. We evaluate all the encoders of the classifier-free model, as well as
a simple sliding window average (like SWEM but without the final max-pooling step).
Omitting the max pooling allows the model to make use of an attention mechanism.

The classifier follows Htut, Bowman, and Cho [15]: One ReLU (size 500) layer and
one linear layer (size 1) to produce an unscaled output value for each paragraph. Since
one example consists of one correct and several incorrect paragraphs, we treat this as
a classification task, taking the softmax over all paragraph outputs which yields a
probability distribution over all considered paragraphs. We use the crossentropy loss
function for all experiments.

35

6 Results

In this chapter, we report the performance of the models described in chapter 5,
starting with an evaluation of the dataset itself.

6.1 Evaluating the Dataset

We evaluate models by two metrics: The exact match metric (EM) considers a
retrieved paragraph correct if and only if it matches the original context paragraph
from the labeled dataset. The answer match (AM) metric also considers paragraphs
that contain one or more of the answer strings as correct. There is only one correct
paragraph for the exact match metric, but there may be several for the answer match
metric. In order to quantify just how easy or difficult it is to find a paragraph to
satisfy the answer match metric, for each question, we test how many paragraphs
contain a correct answer.

Because this is a computationally expensive task that requires processing all pairs
of questions and paragraphs, we perform this test on a reduced dataset of only
50 000 paragraphs. These were selected by including the correct paragraph for each
question (1979 paragraphs for 9931 questions), then filling the remainder with random
paragraphs from the 1 million set.
Figure 6.1 shows that about 45% of questions have only a single paragraph that

contains an answer. For almost 70% of paragraphs, the answer can be found in only
10 or fewer paragraphs. It is also visible that there is some number of questions for
which almost any paragraph contains a correct answer. This is due to dataset noise in
SQuAD: For example, one question (“Why did the Shah of Iran give an interview?”)
erroneously has “.” (a single period) listed as one of its correct answers. A period is
found in 49 430 out of 50 000 paragraphs, meaning they are all recognized as correct
paragraphs. Questions whose answer is a year number are also prone to having the
answer appear in many unrelated paragraphs.
We conclude that the answer match metric is most likely appropriate for most

questions, but has some issues with noisiness. For this reason, we cannot use it as the
sole measure of performance of the information retrieval system. We will therefore
report all results in both this metric as well as the more difficult exact match metric.
For the cross-evaluation on QUASAR-T, we have no other option than to use answer
match, because the dataset is not labelled appropriately to use exact match.

37

6 Results

1 3 11 36 122 407 1357 4516 15026
0.0

0.2

0.4

0.6

0.8

1.0
(C

um
ul
at
iv
e)

fra
ct
io
n
of

qu
es
tio

ns

1 3 11 36 122 407 1357 4516 15026
0

0.2

0.4

Number of paragraphs

Fr
ac
tio

n
of

qu
es
tio

ns

Figure 6.1: Number of “correct” paragraphs per question visualized.

6.2 Baselines
We test two information retrieval baselines: TF-IDF and elasticsearch. Both are
tested on their retrieval performance for a different retrieval volumes in both exact
match and answer match. TF-IDF performs better than elasticsearch, providing a
very strong baseline, as well as satisfying the demand for a fast evaluation even on a
large paragraph set, making it feasible as a component in a hypothetical real-time
question answering system.
We additionally evaluate a random selection as an additional baseline. We do not

expect this method to outperform either of the information retrieval baselines, it
is here to provide an absolute worst-case performance indicator. Any system that
is suitable for this problem at all must outperform at least the random baseline.
Additionally, the random baseline is another way to measure dataset noise, such as
questions whose answer appears in many paragraphs.

In table 6.1 we report the performance for each metric and model when retrieving
1, 10, 100 or 500 paragraphs for the 9 931 questions of our testing set. As our TF-IDF
implementation follows Chen et al. [5], our results are consistent with theirs: TF-IDF

38

6.3 Individual Training and Mean Square Error

Encoder Exact Match Answer Match
top-1 10 100 500 top-1 10 100 500

TF-IDF 39.9 63.5 78.4 82.9 47.4 75.2 89.9 93.7
elasticsearch 9.7 24.7 42.9 58.3 12.1 31.3 54.8 71.3
random 0.0 0.0 0.0 0.1 0.3 2.2 6.8 19.7

Table 6.1: Baseline information retrieval results

outperforms elasticsearch by a large margin, and when selecting 100 paragraphs, the
TF-IDF model makes a very good pre-selection which we can later refine. As these
results are gathered on the reduced dataset of 10 000 articles, they are somewhat
better than those reported in Chen et al. [5], however, see section 6.6 for an application
of TF-IDF to the full Wikipedia dataset. At 47.4% answer match score for the top
result, TF-IDF provides a very strong baseline, outperforming all the non-classifier
models presented in the following sections, and the 89.9% score on the top 100 results
will provide a good basis for the classifier model, the results of which we present in
section 6.5.

The random baseline results are interesting: The exact match scores are consistent
with the expected value of retrieving one paragraph out of one million (expected
performance for 500 is 0.05%, which would be rounded up to 0.1%), but in the answer
match metric we see that there are a certain number of questions that are “easy” to
answer, typically because the answer is a common phrase occuring in many (unrelated)
paragraphs. Seeing this result is precisely why we performed the experiment with the
random baseline, as otherwise an answer match score of 2.2% on 10 paragraphs might
be considered a positive result for a model, when in fact this is merely equal to the
performance of random selection.

6.3 Individual Training and Mean Square Error
For the first set of experiments, we train an encoder on question-paragraph pairs.
The cosine difference of the question and paragraph encoding is the prediction of the
network (a result close to 1.0 indicating a high confidence that the paragraph can
answer the question). The training signal is 1.0 for the correct paragraph and 0.0
otherwise. The loss is mean square error, the models were trained in minibatches of 32
examples and optimized using the Adam Optimizer [20] with a learning rate of 0.001.

Besides testing two different encoders, the main revelation of this set of experiments
was the importance of the ratio of positive and negative training examples. At first,
we chose a 1:1 ratio (i. e. each question appears twice in the training set—once with
the correct paragraph and once with a random incorrect one). The lower section of
table 6.2 shows the performance of models trained with a ratio of 1:31 (31 incorrect
results to one positive one). Using this unbalanced distribution, we more closely
model the true data distribution of the testing set (which has hundreds of thousands
of incorrect paragragraphs to one correct one). However, this training scheme makes

39

6 Results

Encoder Exact Match Answer Match
top-1 10 100 top-1 10 100

TF-IDF 39.9 63.5 78.4 47.4 75.2 89.9
random 0.0 0.0 0.0 0.3 2.2 6.8
LSTM 0.0 0.0 0.0 0.5 2.7 11.0
SWEM-transform 0.4 3.4 14.1
LSTM 0.4 2.6 9.5 3.1 14.1 35.1
SWEM-transform 0.7 3.7 14.0 4.3 18.7 43.2

Table 6.2: Mean square error training results

no effort to avoid biasing the classifier towards rejecting a paragraph (because that
tends to be the correct choice more often).

We arrived at the ratio of 1:31 after first trying less unbalanced ratios like 1:5, which
yielded continuously better results as the ratio increased and extremely unbalanced
ratios like 1:100, which yielded no improvement whatsoever. It became clear that it
was important that each minibatch contains at least one positive example—otherwise
the encoders will converge on producing zero for all outputs. Therefore a ratio of 1 to
(batchsize−1) is the most extreme ratio that still has one positive example in each
minibatch. This is an expected value, not a guarantee, as the training set is shuffled
before training.
The two strongest models, which are reported here, were the single-layer bidirec-

tional LSTM and SWEM with an additional linear layer on top (we call this model
SWEM-transform). Additonal LSTM layers were not found to yield improvement.
With all encoders, the encodings for all paragraphs were pre-calculated during test-
ing. Retrieving the paragraph consists only of encoding the question and a matrix
multiplication of the question encoding with all pararaph encodings.

Another notable result is the discrepancy between the exact match and the answer
match metric. Both trained models have a much larger difference (both relative and
absolute) between the two metrics than TF-IDF. This may indicate that the improve-
ment we observe after introducing more negative training results affect primarily the
“easy” questions, i. e. ones where the answer appears in a large number of paragraphs.

6.4 Training with Margin Ranking Loss
After achieving positive results when training with several negative examples to each
positive one, the adoption of the margin ranking loss seemed like the next logical
step. A single training example now consists of a question, the correct paragraph
and some number of false ones, similar to the improved setup above. The difference
here is that there is guaranteed to be a correct example in each example and that the
loss function takes into account the results from all paragraphs that are paired with
the same question. Initially, a ratio of 1 to 5 of correct to incorrect paragraphs was
chosen. These examples were further processed in minibatches of size 5 (meaning 5
questions and 30 paragraphs were processed in each minibatch).

40

6.4 Training with Margin Ranking Loss

Encoder Exact Match Answer Match
top-1 10 100 top-1 10 100

TF-IDF 39.9 63.5 78.4 47.4 75.2 89.9
random 0.0 0.0 0.0 0.3 2.2 6.8
SWEM-transform 1.7 6.0 14.5 3.5 13.3 32.1
LSTM 0.6 1.9 6.1 2.7 12.0 31.5
QANet 0.2 0.9 4.8 1.9 10.4 28.5

Table 6.3: Best margin ranking loss results

The reported performances for each model are for the best parameter configuration
for each respective model. All models adapted to the task, i. e. they exceeded the
performance of the random baseline, but none outperformed TF-IDF or even the same
model trained with the mean square error. The model performance varies greatly
depending on the exact hyperparameters used, so we conducted experiments testing
verious different hyperparameter configurations.

6.4.1 Hyperparameter Searching
There are a number of potentially relevant hyperparameters for each model that
might affect its performance. The examined parameters include different similarity
functions (squared cosine similarity and weighted dot product), adding a non-linear
transformation to the encoder for the question only (attempting to predict the
paragraph encoding from the question encoding) and training byte-pair encoded
word embeddings instead of using pre-trained GloVe embeddings. Additionally, some
model-specific hyperparameters were tested.

6.4.1.1 LSTM

LSTM is the base system for many of these experiments, as it is reasonably simple
and relatively fast to train (the LSTM models presented here usually take about one
hour to train on an Nvidia Tesla K80). First, we establish what the basic model
should look like by determining whether to use the hidden state as sentence encoding,
the cell state or a concatenation of both.

Encoder Exact Match Answer Match
top-1 10 100 top-1 10 100

LSTM-c 0.2 1.1 4.4 1.9 10.9 28.7
LSTM-h 0.6 1.9 6.1 2.7 12.0 31.5
LSTM-both 0.1 0.3 2.3 1.6 8.7 25.8

Table 6.4: LSTM output type comparison

Using the hidden state proved best, so it will be used for all future experiments.
However, the margins are fairly small, so it is possible that the difference are due

41

6 Results

to random chance resulting from the shuffled samples in the training set. Using the
hidden state is reasonable, however, as it makes use of all the LSTM parameters.
Curiously, using both states does not yield an improvement over either single state.

Another hyperparameter to test is the number of units. TF-IDF has a considerably
larger number of features (224 as opposed to 300) compared to the previous LSTM
models, so it is possible that its greater accuracy comes from this increased represen-
tation capacity. We compare three different sizes of LSTM networks in order to reveal
a correlation between evaluation accuracy and encoding size.

Encoder Exact Match Answer Match
top-1 10 100 top-1 10 100

LSTM-160 0.3 1.0 4.9 2.1 10.4 29.8
LSTM-300 0.6 1.9 6.1 2.7 12.0 31.5
LSTM-600 0.3 1.4 6.0 2.5 11.8 30.8

Table 6.5: LSTM encoding size comparison

From the results in table 6.5, a clear benefit to a larger encoding cannot be
established. The differences in performance for these three sizes can be the result of
random variation resulting from the shuffled training set and random initialization.

6.4.1.2 QANet

Using a series of mostly convolutional operations, QANet produces a representation of
the input that still has a sequence length dimension. In order to obtain a fixed-length
representation, we must compare different methods of accumulating the results into a
single vector. We compare taking the maximum and the mean along the sequence
dimension, as well as using SWEM on the QANet output.

Encoder Exact Match Answer Match
top-1 10 100 top-1 10 100

QANet-max 0.1 0.5 2.1 1.8 9.2 25.6
QANet-mean 0.1 0.8 3.2 1.6 9.1 26.6
QANet-swem 0.0 0.0 0.2 1.0 6.6 19.9

Table 6.6: QANet aggregation methods

Similar to the LSTM above, we investigate the effect of encoding size. By default,
QANet usses a fairly small encoding size of 96, following Yu et al. [52]. This is
sufficient, as the original purpose of QANet is a classification task making use of an
attention mechanism. QANet preserves the original sequence length with an encoding
size of 96 per sequence step, effectively increasing the number of features drastically.

As this model does not use an attention mechanism, the encoding size is effectively
much smaller than that of LSTM. Increasing this paramater may allow the model to
differentiate encodings more effectively.

42

6.5 Classifier

Encoder Exact Match Answer Match
top-1 10 100 top-1 10 100

QANet-96 0.1 0.8 3.2 1.6 9.1 26.6
QANet-192 0.2 0.9 4.8 1.9 10.4 28.5
QANet-288 0.0 0.2 1.5 1.5 8.6 24.3

Table 6.7: QANet encoding size comparison

6.4.1.3 Transformations

By applying a transformation to the question encoding only, we hope to predict the
matching paragraph encoding more accurately. We compare models with no transfor-
mation, the simple (one ReLU and one linear layer) and the advanced transformation.

Encoder Exact Match Answer Match
top-1 10 100 top-1 10 100

LSTM-None 0.6 1.9 6.1 2.7 12.0 31.5
LSTM-Simple 0.0 0.1 1.0 1.5 7.6 23.1
LSTM-Advanced 0.0 0.0 0.1 1.0 5.9 19.0

Table 6.8: Effect of transformations

Not only do the transformations not help, but they actively degrade the performance
of the model. Consequently, the other tests do not use the transformations.

6.5 Classifier
The results of only training and comparing an encoding for questions and paragraphs
without the use of a classifier were unsatisfactory. At the same time, using a classifier
on the same task as the above models is infeasible due to the high number of
paragraphs. Therefore, as the final model, we retrieve a sample of paragraphs for
each question using TF-IDF and then apply a classifier on this drastically reduced
subset of paragraphs. Using a classifier further opens up the possibility of using an
attention mechanism, making better use of the input encodings. The use of a classifier
dramatically improved retrieval accuracy and the models were able to exceed the
performance of single-result TF-IDF.
For testing, the model is presented with the top 100 paragraphs as retrieved by

TF-IDF. If the correct paragraph is not part of the top results of TF-IDF, it is added
to the testing set as well, replacing the lowest rated one. The model then ranks the
paragraphs independently and returns the highest rated one. We report a single and
a compound score: The single score is simply the model’s performance on this testing
set. The compound score takes into account the accuracy of TF-IDF and counts only
positive results on samples where TF-IDF also returned a correct result. Effectively,
the compound score is bounded by the score of TF-IDF (78% exact match or 90%

43

6 Results

Encoder Exact Match Answer Match
single compound single compound

SWEM 9.2 8.6 15.3 14.9
Pooling 38.2 35.8 44.8 43.1
LSTM 68.3 63.2 73.6 69.6
QANet 23.2 22.1 29.6 28.9

Table 6.9: Best classifier results

answer match for 100 results). Samples where TF-IDF did not return a correct result
are counted as an automatic failure.
The results are much better than before, not only exceeding the performance of

TF-IDF on one result (which was 47.4% answer match), but also promising a solid
pre-selection for a question answering system based on the results.
One of the main advantages of the classifier model is the ability to make use of

an attention mechanism. In addition to the trilinear attention, we evaluate DCN
attention, as well as no attention, to quantify just how much the attention mechanism
adds to the model’s performance. We examine the effect of an attention mechanism
primarily on the LSTM encoder, but also on the simple word embedding based models,
Pooling and SWEM, which differ only in that Pooling uses trilinear attention whereas
SWEM uses a max operation to obtain a fixed-length encoding.

Encoder Exact Match Answer Match
single compound single compound

LSTM-trilinear 58.3 54.7 65.6 63.0
LSTM-DCN 56.7 53.5 64.1 61.7
LSTM-no-attention 0.9 0.8 4.7 4.6
Pooling 29.9 28.2 36.1 34.8
SWEM 9.2 8.6 15.3 14.9

Table 6.10: Comparing attention mechanisms
All models were trained on a ratio of 10:1

From table 6.10, it is clear that the attention mechanism is crucially important to
the task, with the attention-free model barely exceeding random performance. On the
tested ratio of 10:1 negative to positive results, trilinear attention performed best, so
it is the default for the following experiments. In addition, the next experiment shows
little to no performance improvement of the DNC attention model when trained with
higher ratios, whereas trilinear improves significantly.

Another factor we found to be important for the model’s performance was the ratio
of correct to incorrect training examples, as well as whether the training examples
were random, or the top results of TF-IDF. We found that all models improve when
trained on a higher ratio of incorrect examples to correct ones and further improve by
using TF-IDF-selected training examples.

44

6.5 Classifier

Encoder Ratio Exact Match Answer Match
single compound single compound

LSTM 5 56.3 53.0 62.9 60.5
LSTM 10 58.3 54.7 65.6 63.0
LSTM t10 55.1 51.7 62.4 59.8
LSTM 20 57.9 54.4 64.6 62.1
LSTM 50 59.2 55.5 66.3 63.6
LSTM 100 60.2 56.6 67.2 64.5
LSTM t100 68.3 63.2 73.6 69.6
LSTM-DCN 10 56.6 53.3 64.1 61.7
LSTM-DCN 20 56.7 53.5 64.1 61.7
Pooling 10 29.9 28.2 36.1 34.8
Pooling t100 38.2 35.8 44.8 43.1

Table 6.11: Comparing attention mechanisms
When the ratio is marked with t, the model was trained on TF-IDF results.

The total performance of the model is a compound of the performance of TF-IDF
and its own. If we retrieve fewer results with TF-IDF, the task for the neural model
becomes easier (choosing the correct paragraph from 10 is easier than from 100),
but the upper bound for the performance is lower. We therefore investigate the
relationship between TF-IDF performance and the neural network performance on
different retrieval sizes, attempting to find the one that maximises the compound
score.

Results 5 10 20
Encoder single compound single compound single compound
TF-IDF 68.5 75.3 80.9
SWEM 43.4 33.8 32.5 27.5 25.5 23.1
Pooling 65.0 51.4 58.7 50.5 53.5 48.6
LSTM 84.0 62.1 80.8 65.3 78.2 67.8
QANet 54.2 44.3 46.0 40.2 39.6 36.6

Results 50 100 200
Encoder single compound single compound single compound
TF-IDF 86.4 89.9 92.0
SWEM 18.7 17.7 15.3 14.9 13.0 12.7
Pooling 48.1 45.4 44.8 43.1 42.4 41.0
LSTM 75.3 69.0 73.6 69.6 72.5 69.4
QANet 33.7 32.3 29.6 28.9 26.7 26.2

Table 6.12: Different retrieval size results (answer match only)

45

6 Results

1 5 10 20 50 100 200 500
0

20

40

60

80

100

Number of TF-IDF results

A
ns
we

r
M
at
ch

(in
pe

rc
en
t)

TF-IDF
LSTM
Combined

Figure 6.2: Answer match accuracy for different retrieval sizes

After testing six different retrieval sizes, we have determined the optimal number
of results to be 100, with the compound model achieving an answer match score of
69.6%

6.6 Full Stack
For the final set of experiments, we combine the TF-IDF pre-selection, the LSTM
classifier selection and QANet question answering into one open-domain question
answering system. This system is now capable of answering open-domain questions
as defined in section 3.1.1.2. Given only a question, the TF-IDF system retrieves
the top 100 paragraphs from the database, then passes them to the classifier, which
selects one paragraph to use as context for QANet. The components for this model
are trained independently—for the classifier, we use the best-performing model from
above, for QANet, we use the implementation of Github user NLPLearn1, pre-trained
on SQuAD. On the regular SQuAD dataset, QANet achieves a performance of 70.4%
exact match and 79.6% F1, though we expect the performance on our dataset to be
significantly worse, as the task is more difficult.
Each step of the process imposes an upper bound on the performance of the next,

so we report both the cumulative performance at each step, as well as estimating the
performance of each step individually (obtained by simply dividing the performances
after and before the step). For TF-IDF and the LSTM classifier, we use the exact
match and answer match metrics from above. For QANet, we use the metrics used
for evaluating SQuAD: Exact match is true only if the predicted answer exactly
matches the label, F1 calculates the precision and recall of words in the answer and

1https://github.com/NLPLearn/QANet

46

https://github.com/NLPLearn/QANet

6.6 Full Stack

calculates the F1 score from these, so it can take into account partial answers or
answers containing additional words.

Step Answer
Match

Exact
Match F1 Relative

(approx.)
TF-IDF 89.9 78.2
LSTM 65.4 56.2 72.0
QANet 44.6 52.6 79.7
Logistic Regresstion[29] 40.0 51.0

Table 6.13: Full stack results on SQuAD using a part of Wikipedia

Even though we use our reduced Wikipedia corpus as a knowledge source rather than
using the provided contexts from SQuAD, we exceed the performance of the logistic
regression baseline from the original SQuAD paper, which does use the provided
context.
In order to be able to compare our results to other literature, we also conduct

the experiment using all of Wikipedia as a knowledge source. This makes the task
considerably harder both for TF-IDF as well as for our classifier, as we are able to
retrieve much more highly topical candidates for a question, making the decision of
which one answers the question more difficult.

Step Answer
Match

Exact
Match F1 Relative

(approx.)
TF-IDF 79.6 58.9
LSTM 50.0 37.0 62.5
QANet 34.3 41.5 86.5

Table 6.14: Full stack results on SQuAD using all of Wikipedia

Finally, we compare our results to other literature, in particular Chen et al. [5] and
Wang et al. [44]. In order to have a more complete comparison, we also evaluate on
QUASAR-T [6], TriviaQA [17], WikiMovies [7], WebQuestions2 and CuratedTREC3.
On SQuAD and TriviaQA, the tests were performed on the development set, as
the testing sets are not publically available. On all other datasets, we report the
performance on the testing set.
We only compare to YodaQA and DrQA-MTL indirectly, as they make use of

additional data—YodaQA uses an additional knowledge base and DrQA-MTL is
trained on multiple datasets. While our model performs best on SQuAD, DrQA
and R3 show better generalization to other datasets. On the evaluation machine,
which is a CPU-only system using 10 1.4GHz CPUs, each question took about 1.6s
to answer. This figure could likely be improved significantly by using a GPU and
grouping questions together into minibatches, but it is still acceptable.

2https://nlp.stanford.edu/software/sempre/
3https://github.com/brmson/dataset-factoid-curated/tree/master/trec

47

https://nlp.stanford.edu/software/sempre/
https://github.com/brmson/dataset-factoid-curated/tree/master/trec

6 Results

Model SQuAD WikiMovies WebQuestions CuratedTREC
EM F1 EM F1 EM F1 EM F1

DrQA[5] 28.4 — 34.3 — 19.5 — 25.7 —
R3[44] 29.1 37.5 38.8 39.9 17.1 24.6 28.4 34.3
Ours 34.3 41.5 6.4 10.1 10.4 13.1 10.2 16.4
YodaQA[4] — — — — 39.8 — 31.3 —
DrQA-MTL[5] 29.8 — 36.5 — 20.7 — 25.4 —

Table 6.15: Comparison on different datasets and different models
All datasets use the same model trained on SQuAD.

We consider the two trivia datasets, QUASAR-T and TriviaQA particularly interest-
ing benchmarks because they consist of questions written by humans both independent
of a context and with the intention to be challenging questions. Surprisingly, even
though the datasets are superficially similar, the results vary drastically on the two
datasets.

Step No contexts Short Contexts
Answer
Match

Exact
Match F1 Answer

Match
Exact
Match F1

TF-IDF/Contexts 60.7 n/a 67.1 n/a
LSTM 24.4 n/a 27.3 n/a
QANet 10.4 14.6 11.5 18.3
R3 34.2 40.9

Table 6.16: Full stack results on QUASAR-T

QUASAR-T poses a number of difficult problems for the model: It contains some
cloze-style questions (“The female marine catfish hatches eggs in her ”), which
the model has not been trained to handle. Even the provided contexts do not always
contain the exact answer string, as QUASAR-T expects answers in free-form. The
biggest bottleneck in this setting is the LSTM classifier which is particularly struggling
on this task.

Step TriviaQA TriviaQA verified
Answer
Match

Exact
Match F1 Answer

Match
Exact
Match F1

TF-IDF 82.7 n/a 94.3 n/a
LSTM 42.9 n/a 57.9 n/a
QANet 26.1 33.8 26.4 35.4

Table 6.17: Full stack results on TriviaQA

TriviaQA on the other hand is much more lenient in what it allows for each answer,
providing synonyms and multiple alternatives, so that TF-IDF can usually find

48

6.6 Full Stack

relevant contexts. Nevertheless, the fact that the questions are worded indepently
of the context and therefore different from SQuAD shows in the LSTM classifier
performance, which is worse here than on SQuAD. The model still generalizes well to
TriviaQA, showing its ability to answer realistic questions in an open-domain setting.
To the best of the author’s knowledge, no comparable results have been published for
TriviaQA, so our system will stand as a baseline.

6.6.1 Retrieval Evaluation
In addition to the automatic results above, we would like to show examples where our
classifier model has used its understanding of the question to produce better results
than TF-IDF, as well as examples where it failed. In the below examples, we show
the top result retrieved by TF-IDF and the result (picked from the top 100 TF-IDF
results) that was chosen by the classifier, highlighting the answer given in bold.

Question: How did Alan Turing die?
TF-IDF
The film starts in October 1952 after Alan Turing (Ed Stoppard) has
been convicted. He is talking to his psychiatrist, Dr. Franz Greenbaum
(Henry Goodman). Dr. Greenbaum and Alan continue to discuss; Alan
informs Dr. Greenbaum that he cannot talk about his war time activities.
Dr. Greenbaum informs him that he can talk about anything he wants.
Sir Dermot Turing, nephew of Alan, is shown and he goes on to explain
how life was for John Turing (Alan’s brother) and Alan Turing during
their childhood. David Leavitt appears next and talks about Turing’s
school time activities. David further explains that Turing was good at
mathematics and athletics. His favourite sport was running.
LSTM
Lobban spoke of his regret over the treatment of cryptographer Alan
Turing in October 2012. Turing, who committed suicide after being
convicted of homosexuality, was described by Lobban as a “national asset”
and said that more people like Turing were needed to face contemporary
information security threats.

This is a typical example for how the classifier improves upon the TF-IDF algorithm:
The first paragraph frequently contains both “Turing” and “Alan Turing”, both
comparatively rare phrases and therefore rated highly by TF-IDF. As a result, the top
paragraph (with the highest similarity according to TF-IDF) is one containing these
phrases multiple times but with otherwise no bearing on the question. The classifier,
which is able to extract more semantic information from the question is able to select
a more relevant paragraph, even though the second paragraph does not contain the
word “die” or similar words.

Nevertheless, the system is still sensitive to the wording of the question, as illustrated
in the following example: The tokenizer splits “sun’s” into two tokens and TF-IDF
only takes into account bigrams, so it does not correlate “sun” and “core” and
instead searches for them independently. While TF-IDF does retrieve at least some

49

6 Results

paragraphs about the sun for this query, the classifier looks for paragraphs that
contain temperatures and thus ends up with a paragraph that is not about the sun at
all. Changing the wording of the question causes the retrieved paragraphs to become
more relevant, though it still takes the classifier refinement to retrieve the correct
paragraph.

Question: What is the temperature at the sun’s core?
Context
The annual range of monthly mean temperatures—that is to say, the
difference between the warmest and coldest months—at Andagoya is mere
0.7 °C (approximately 1.3 °F) as April, the warmest month, has an average
temperature of 27.7 °C (81.9 °F) while November, the “coldest” month,
averages 27.0 °C (80.6 °F); the average annual temperature is 27.4 °C
(81.3 °F). This near complete uniformity of temperature is caused by the
fact that Andagoya, at a latitude of 5°5’ North, lies extremely close to
the thermal equator, [...]
Question What is the core temperature of the sun?
Context
Stars actually have a temperature gradient, going from their central core up
to the atmosphere. The “core temperature” of the sun—the temperature
at the centre of the sun where nuclear reactions take place—is estimated
to be 15 000 000 K.

In the final example, TF-IDF once again selected a paragraph with the (uncommon)
phrase “Eiffel Tower” occuring multiple times. The classifier was at least able to
choose a paragraph that includes height information, but has as little information as
TF-IDF does about what Eiffel Tower is being referred to.

Question: How high is the Eiffel Tower?
TF-IDF
A semantic difficulty may arise when considering reference in representa-
tionalism. If a person says “I see the Eiffel Tower” at a time when they are
indeed looking at the Eiffel Tower, to what does the term “Eiffel Tower”
refer? The direct realist might say that in the representational account
people do not really see the tower but rather ‘see’ the representation.
However, this is a distortion of the meaning of the word see which the
representationalist does not imply. [...]
LSTM
The fair celebrated that country and the South Seas. Exhibitions included
“New Zealand’s Eiffel Tower”, a 40 metre high wooden structure based
on the Eiffel Tower built by the Austral Otis Elevator Company and used
to display their products. The tower was estimated to cost £1200 and
included an elevator that travelled about 30 m. A smaller Eiffel Tower,
without an elevator, was situated in an adjacent garden area, near the
internal courtyard of the exhibition.

50

7 Conclusion

7.1 Review
The goal of this work was to create a neural information retrieval system that could
allow a traditional question answering system to work in an open-domain setting.
Given only a question and a large text corpus, the system would find a single paragraph
that is the most relevant to the question, creating a problem instance suitable for
the question answering system. We outline the problem in section 3.1, describe our
approaches in chapter 5 and show our results in chapter 6.

The first tested model refrained from using a neural classifier, instead only calculating
an encoding for each paragraph and each question, then determining the most similar
paragraphs by cosine similarity. Sections 6.3 and 6.4 show that the performance of this
model did not exceed even that of the baseline. We speculate on the reason for this
below. We did, however, identify a key aspect that led to a significant improvement in
performance: Training the model with more incorrect than correct training examples.
In section 6.4.1, we tested a large number of hyperparameter options in order to
identify other key performance factors.
We evaluate the retrieval accuracy of our second model in section 6.5, identifying

the attention mechanism as a second major improvement. Introducing the attention
mechanism allowed the model to select an appropriate paragraph from a pre-selection
made using TF-IDF reliably. Refining the pre-selection this way, our model improved
on the performance of TF-IDF alone, making it a promising candidate for open-domain
question answering, even though it makes use of a non-machine-learning component
(TF-IDF), making it not “end-to-end” (i. e. fully differentiable and therefore trainable
with backpropagation).

Finally, we applied our model within the proposed open-domain question answering
pipeline in section 6.6, achieving state-of-the-art performance on the SQuAD dataset.
We also applied our model to several other question answering datasets in the same
open-domain context (that is, dicarding the datasets’ provided contexts). On these
datasets, we did not match the state of the art in performance.

Despite that, the model fulfills our original goal—answering open-domain questions
using QANet as a traditional question answering system, fulfilling our requirements for
good evaluation speed, scaling to a large corpus and question answering performance.

7.2 Discussion
The encoder-only model was our first attempt at a contribution to the open-domain
question answering problem. This approach promised to be fast—at least capable

51

7 Conclusion

of handling millions of candidate paragraphs with acceptable performance. It also
represented a completely novel approach that had not been attempted in this way in
published literature. All variations of this paradigm failed to live up to the expectations
of accuracy (or, more specifically, recall). Having tested a variety of hyperparameters,
we can rule out some causes for this lack of performance but we can ultimately not say
with certainty why it did not perform (after all, if we could, we would have improved
the model accordingly). The two most telling data points for trying to find the cause
are the performance improvements after training with an uneven ratio of correct to
incorrect training examples and after adding an attention mechanism in the classifier
model.
The first of those is easy to understand: Training with more incorrect examples

than correct ones allows us to make use of more of our data (the model sees more
paragraphs than it would if it trained with fewer incorrect examples) and more
accurately resembles the true data distribution in the testing set. It is easy to see why
both of these factors would improve a machine learning system. While training with
the classifier, we also determined that an additional improvement can be gained by
training with samples retrieved by TF-IDF rather than random ones, again mimicking
the data during testing.

The improvement yielded by the attention mechanism is likely due to a combination
of two factors: Without it, the model can only compare the final encoding of the
complete sentence, whereas with the attention mechanism, it can perform a pair-wise
comparison of each word in the sentence and question. However, contrary to TF-
IDF it does not need to rely on an exact match of the question and context words.
It can recognize similar words and through the bidirectional LSTM also make use
of contextual features (such as recognizing acronyms or synonyms). The sentence
embedding cannot encode the specifics of each word due to its restriced dimensionality.
Effectively, using the attention mechanism greatly increases the dimensionality of the
sentence embedding, without requiring that the system learns many new features.
With the sentence encoding, we hoped to arrive at an encoding that captures the

semantic information contained in the sentence and similarly the semantic information
requested in the question. The best paragraph for the question would then be the
one where the encodings have the greatest similarity. Our model did not achieve this.
Perhaps the encoder was too simple and unable to capture relevant information. On
the other hand, even the QANet encoder, which is intended to capture information
sufficient for answering the question, did not perform better at this task. This points
towards the problem being the training methodology: The encoders were trained
without a connected question answering system that may have provided additional
feedback about the quality of the encoding. Training a question answering model at
the same time as the encoders may have yielded additional distant supervision data
which may have led to an improvement in performance. Finally, it is possible that
the encoding size, be it 300 or 1000 (the largest we tested), was simply insufficient to
capture enough information to differentiate similar and dissimilar paragraphs.
With the classifier model, we investigated a more reliable, but less innovative

approach. It is admittedly similar to previous work done in the field, and the
differences are subtle at times (R3 samples the top paragraph randomly based on

52

7.3 Future Work

the softmax output of the classifier, DrQA uses only TF-IDF, [23] uses no attention
mechanism in the selector, [15] retrieves 5 paragraphs and computes answers on all of
them, etc.), so it is no surprise that its performance does not greatly exceed that of
the other models on SQuAD. If there had been more time, we could have properly
trained the model on the other datasets and likely brought the performance on them
closer in line with that on SQuAD.

Achieving state-of-the-art performance on the SQuAD dataset is in part because the
full pipeline model benefitted from the already excellent performance of the pre-trained
QANet model. That was one of the goals of this work: To allow the use of a question
answering model trained on the abundant traditional question answering data and
apply it to an open-domain context. Our model makes no specific assumptions about
QANet in particuar—when a better question answering model is developed, we can
substitute it instead, probably to the benefit the total system performance.

7.3 Future Work
It is the belief of the author that the the encoder-only system has not yet been brought
to its true potential. Lin et al. [23], published in July 2018 (after this work has
started) uses a somewhat similar approach to retrieve a paragraph from a smaller
set. The authors, like those of [3, 15, 44], trained their retrieval model together with
a question answering model (most adopt the terminology of ranker and reader for
the retrieval and question answering part, respectively). We believe that the key to
improving the model is not necessarily the structure of the encoder, but how the model
is trained. One possible approach is to train it using a question answering system as
distant supervision. Reinforcement learning, as used by R3, is also a possible avenue
of research (as the evaluation of a prediction is always binary—the selected paragraph
either contains the answer or it does not).
The classifier model has shown good performance on the SQuAD dataset. When

improving it, care must be taken not to add to its complexity so much that it fails
one of the requirements that were set for it—being faster than running the question
answering system on all the pre-selected paragraphs. Bi-LSTMs showed the best
performance, even exceeding that of the much more complex QANet encoder. But
it is hard to believe that they could not be improved. Possible approaches might be
adding a self-attention mechanism [39] or adding traditional NLP features such as
named entity recognition, or part-of-speech tags [5].
Additionally, simply training the classifier on the other datasets should improve

retrieval accuracy, rather then using the model pre-trained on SQuAD. Unfortunately,
there was no more time to fully realize such a system.
A major improvement to the system as a whole would be the ability to attend to

multiple paragraphs at once, cross-referencing multiple sources to disambiguate a
query. For example, to TF-IDF (and the classifier model), “Eiffel Tower” refers just
as much to the building in Las Vegas as it does to the one in Paris. By taking into
account multiple paragraphs, the system would be able to determine that the one in
Paris is the one more likely to be referred to.

53

7 Conclusion

Such an improvement could also lead to the use of the model as a dialog system,
using previous statements and questions as additional information for clarification,
which leads to a more natural communication with the computer.

Overall, our results show that open-domain question answering is a rapidly advancing
area of research. The ability of machine learning systems to comprehend and use
natural language is improving continuously. As a result of this work, the advances
of traditional question answering systems can be made available to the open domain
problem, pushing the boundaries of what questions computers can answer.

54

Bibliography
[1] Ossama Abdel-Hamid et al. “Applying convolutional neural networks concepts

to hybrid NN-HMM model for speech recognition”. In: Acoustics, Speech and
Signal Processing (ICASSP), 2012 IEEE International Conference on. IEEE.
2012, pp. 4277–4280.

[2] Lyle F Bachman. “The trait structure of cloze test scores”. In: Tesol Quarterly
16.1 (1982), pp. 61–70.

[3] Bing Bai et al. “Learning to rank with (a lot of) word features”. In: Information
Retrieval 13.3 (June 2010), pp. 291–314. issn: 1573-7659. doi: 10.1007/s10791-
009-9117-9.

[4] Petr Baudiš and Jan Šedivỳ. “Modeling of the question answering task in the
yodaqa system”. In: International Conference of the Cross-Language Evaluation
Forum for European Languages. Springer. 2015, pp. 222–228.

[5] Danqi Chen et al. “Reading Wikipedia to Answer Open-Domain Questions”. In:
CoRR abs/1704.00051 (2017).

[6] Bhuwan Dhingra, Kathryn Mazaitis, and William W. Cohen. “Quasar: Datasets
for Question Answering by Search and Reading”. In: CoRR abs/1707.03904
(2017).

[7] Jesse Dodge et al. “Evaluating Prerequisite Qualities for Learning End-to-End
Dialog Systems”. In: CoRR abs/1511.06931 (2015).

[8] Jun Du. “The USTC-iFlytek system for CHiME-4 challenge”. In: ().
[9] Jeffrey L Elman. “Finding structure in time”. In: Cognitive science 14.2 (1990),

pp. 179–211.
[10] Kunihiko Fukushima and Sei Miyake. “Neocognitron: A self-organizing neural

network model for a mechanism of visual pattern recognition”. In: Competition
and cooperation in neural nets. Springer, 1982, pp. 267–285.

[11] Samanwoy Ghosh-Dastidar and Hojjat Adeli. “Spiking neural networks”. In:
International journal of neural systems 19.04 (2009), pp. 295–308.

[12] Bert F Green Jr et al. “Baseball: an automatic question-answerer”. In: Papers
presented at the May 9-11, 1961, western joint IRE-AIEE-ACM computer
conference. ACM. 1961, pp. 219–224.

[13] Karl Moritz Hermann et al. “Teaching Machines to Read and Comprehend”. In:
Advances in Neural Information Processing Systems 28. Ed. by C. Cortes et al.
Curran Associates, Inc., 2015, pp. 1693–1701.

55

http://dx.doi.org/10.1007/s10791-009-9117-9
http://dx.doi.org/10.1007/s10791-009-9117-9

Bibliography

[14] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In:
Neural computation 9.8 (1997), pp. 1735–1780.

[15] Phu Mon Htut, Samuel R. Bowman, and Kyunghyun Cho. “Training a Ranking
Function for Open-Domain Question Answering”. In: CoRR abs/1804.04264
(2018).

[16] Minghao Hu, Yuxing Peng, and Xipeng Qiu. “Mnemonic Reader for Machine
Comprehension”. In: CoRR abs/1705.02798 (2017).

[17] Mandar Joshi et al. “TriviaQA: A Large Scale Distantly Supervised Challenge
Dataset for Reading Comprehension”. In: CoRR abs/1705.03551 (2017).

[18] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. “A Convolutional
Neural Network for Modelling Sentences”. In: CoRR abs/1404.2188 (2014).

[19] Seonhoon Kim et al. “Semantic Sentence Matching with Densely-connected
Recurrent and Co-attentive Information”. In: CoRR abs/1805.11360 (2018).

[20] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimiza-
tion”. In: CoRR abs/1412.6980 (2014).

[21] Tomáš Kočiský et al. “The NarrativeQA Reading Comprehension Challenge”.
In: CoRR abs/1712.07040 (2017).

[22] Guokun Lai et al. “RACE: Large-scale ReAding Comprehension Dataset From
Examinations”. In: CoRR abs/1704.04683 (2017).

[23] Yankai Lin et al. “Denoising distantly supervised open-domain question an-
swering”. In: Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Vol. 1. 2018, pp. 1736–1745.

[24] Calvin N Mooers. Making information retrieval pay. 55. Zator Company, 1951.
[25] Lawrence Page et al. The PageRank Citation Ranking: Bringing Order to

the Web. Technical Report 1999-66. Previous number = SIDL-WP-1999-0120.
Stanford InfoLab, Nov. 1999.

[26] Karalyn Patterson, Peter J Nestor, and Timothy T Rogers. “Where do you
know what you know? The representation of semantic knowledge in the human
brain”. In: Nature Reviews Neuroscience 8.12 (2007), p. 976.

[27] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. “GloVe:
Global Vectors for Word Representation”. In: Empirical Methods in Natural
Language Processing (EMNLP). 2014, pp. 1532–1543.

[28] Pranav Rajpurkar, Robin Jia, and Percy Liang. “Know What You Don’t Know:
Unanswerable Questions for SQuAD”. In: arXiv preprint arXiv:1806.03822
(2018).

[29] Pranav Rajpurkar et al. “SQuAD: 100, 000+ Questions for Machine Compre-
hension of Text”. In: CoRR abs/1606.05250 (2016).

56

Bibliography

[30] Matthew Richardson, Christopher JC Burges, and Erin Renshaw. “Mctest: A
challenge dataset for the open-domain machine comprehension of text”. In:
Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing. 2013, pp. 193–203.

[31] Pum-Mo Ryu, Myung-Gil Jang, and Hyun-Ki Kim. “Open domain question
answering using Wikipedia-based knowledge model”. In: Information Processing
& Management 50.5 (2014), pp. 683–692.

[32] Gerard Salton and J Michael. “McGill. 1983”. In: Introduction to modern
information retrieval (1983).

[33] Rico Sennrich, Barry Haddow, and Alexandra Birch. “Neural Machine Transla-
tion of Rare Words with Subword Units”. In: CoRR abs/1508.07909 (2015).

[34] Min Joon Seo et al. “Bidirectional Attention Flow for Machine Comprehension”.
In: CoRR abs/1611.01603 (2016).

[35] Dinghan Shen et al. “Baseline Needs More Love: On Simple Word-Embedding-
Based Models and Associated Pooling Mechanisms”. In: CoRR abs/1805.09843
(2018).

[36] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to Sequence Learning
with Neural Networks”. In: Advances in Neural Information Processing Systems
27. Ed. by Z. Ghahramani et al. Curran Associates, Inc., 2014, pp. 3104–3112.

[37] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. “Multi-range Reasoning for
Machine Comprehension”. In: CoRR abs/1803.09074 (2018).

[38] Matus Telgarsky. “Benefits of depth in neural networks”. In: CoRR abs/1602.04485
(2016).

[39] Ashish Vaswani et al. “Attention is all you need”. In: Advances in Neural
Information Processing Systems. 2017, pp. 5998–6008.

[40] Ellen M Voorhees et al. “The TREC-8 Question Answering Track Report.” In:
Trec. Vol. 99. 1999, pp. 77–82.

[41] Ellen M Voorhees and Dawn M Tice. “Building a question answering test collec-
tion”. In: Proceedings of the 23rd annual international ACM SIGIR conference
on Research and development in information retrieval. ACM. 2000, pp. 200–207.

[42] Alexander Waibel et al. “Phoneme recognition using time-delay neural networks”.
In: Readings in speech recognition. Elsevier, 1990, pp. 393–404.

[43] Shuohang Wang et al. “Evidence Aggregation for Answer Re-Ranking in Open-
Domain Question Answering”. In: CoRR abs/1711.05116 (2017).

[44] Shuohang Wang et al. “R3: Reinforced Reader-Ranker for Open-Domain Ques-
tion Answering”. In: CoRR abs/1709.00023 (2017).

[45] Kilian Weinberger et al. “Feature Hashing for Large Scale Multitask Learning”.
In: Proceedings of the 26th Annual International Conference on Machine Learn-
ing. ICML ’09. Montreal, Quebec, Canada: ACM, 2009, pp. 1113–1120. isbn:
978-1-60558-516-1. doi: 10.1145/1553374.1553516.

57

http://dx.doi.org/10.1145/1553374.1553516

Bibliography

[46] Joseph Weizenbaum. “ELIZA—a computer program for the study of natural
language communication between man and machine”. In: Communications of
the ACM 9.1 (1966), pp. 36–45.

[47] Johannes Welbl, Pontus Stenetorp, and Sebastian Riedel. “Constructing Datasets
for Multi-hop Reading Comprehension Across Documents”. In: CoRR abs/1710.06481
(2017).

[48] Paul John Werbos. “Beyond Regression: New Tools for Prediction and Analysis
in the Behavioral Sciences”. PhD thesis. Harvard University, 1974.

[49] Adina Williams, Nikita Nangia, and Samuel Bowman. “A Broad-Coverage
Challenge Corpus for Sentence Understanding through Inference”. In: Proceedings
of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers). New Orleans, Louisiana: Association for Computational Linguistics,
2018, pp. 1112–1122.

[50] Caiming Xiong, Victor Zhong, and Richard Socher. “Dynamic Coattention
Networks For Question Answering”. In: CoRR abs/1611.01604 (2016).

[51] Yi Yang, Wen-tau Yih, and Christopher Meek. “Wikiqa: A challenge dataset
for open-domain question answering”. In: Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing. 2015, pp. 2013–2018.

[52] Adams Wei Yu et al. “QANet: Combining Local Convolution with Global
Self-Attention for Reading Comprehension”. In: CoRR abs/1804.09541 (2018).

58

List of Figures
3.1 A sample problem instance from SQuAD. 19
3.2 Sample problem instance from QUASAR-S. 20
3.3 Sample problem instance from QUASAR-T. 20
3.4 Sample problem instance from TriviaQA. 21
3.5 Sample problem instance from MS-MARCO 22
3.6 Sample problem instance from RACE. 22

4.1 Determining the date of the paragraphs from SQuAD. 26

5.1 Schematic showing the QANet encoder. From Yu et al. [52]. 34

6.1 Number of “correct” paragraphs per question visualized. 38
6.2 Answer match accuracy for different retrieval sizes 46

59

List of Tables
3.1 Overview of various question answering datasets. 18

6.1 Baseline information retrieval results 39
6.2 Mean square error training results . 40
6.3 Best margin ranking loss results . 41
6.4 LSTM output type comparison . 41
6.5 LSTM encoding size comparison . 42
6.6 QANet aggregation methods . 42
6.7 QANet encoding size comparison . 43
6.8 Effect of transformations . 43
6.9 Best classifier results . 44
6.10 Comparing attention mechanisms . 44
6.11 Comparing attention mechanisms . 45
6.12 Different retrieval size results (answer match only) 45
6.13 Full stack results on SQuAD using a part of Wikipedia 47
6.14 Full stack results on SQuAD using all of Wikipedia 47
6.15 Comparison on different datasets and different models 48
6.16 Full stack results on QUASAR-T . 48
6.17 Full stack results on TriviaQA . 48

61

	Abstract
	Zusammenfassung
	Introduction
	Goals
	Outline

	Theory
	Neural Networks
	Recurrent Neural Networks
	Long Short-Term Memory
	Encoder-Decoder Models

	Information Retrieval
	TF-IDF

	Related Work
	Question Answering
	State of the Art

	Datasets
	Stanford Question Answering Dataset (SQuAD)
	QUASAR
	TriviaQA
	MS-MARCO
	RACE
	Others

	Data
	Dataset Selection
	Dataset Preparation
	Full Wikipedia

	Methods
	Models and Experimental Setup
	Loss function
	Transformations
	Word Embeddings

	IR Baseline
	Random Baseline
	Encoders
	SWEM
	LSTM

	Classifier

	Results
	Evaluating the Dataset
	Baselines
	Individual Training and Mean Square Error
	Training with Margin Ranking Loss
	Hyperparameter Searching

	Classifier
	Full Stack
	Retrieval Evaluation

	Conclusion
	Review
	Discussion
	Future Work

