
Easily Bootstrappable Statistical
Spoken Dialogue System

Diploma Thesis of

Krassimir Valev

Interactive Systems Laboratories
Carnegie Mellon University, Pittsburgh, USA
Karlsruhe Institute of Technology, Germany

Reviewer: Prof. Alexander Waibel
Second reviewer: Prof. Florian Metze
Advisor: Prof. Alexander Waibel
Second advisor: Dr. Liang-Guo Zhang

Duration:: 21. July 2014 – 20. January 2015

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, January 20th, 2015

. .
(Krassimir Valev)

Zusammenfassung

Klassische, regelbasierte Dialogsysteme benötigen viele Gestaltungs- und Neugestaltungs-
Schritte, um leistungsoptimierte Strategien zu erlernen. Des Weiteren, solche fest pro-
grammierte Ansätze verweigern die System-Wiederverwendung für andere Szenarien, sind
nicht skalierbar und erfordern wesentliche manuelle Arbeit und technische Kompetenz.
Statistische Lernmethoden bieten hingegen deutliche Vorteile. Allerdings in Fällen, wo
ein System von Grund auf aufgebaut ist, existieren keine geeigneten Domaindaten, welche
ein solches Design ermöglichen. Weiterhin, das Sammeln von Dialog-Daten ohne einen
lauffähigen Prototyp ist problematisch.

In dieser Arbeit wurde einen statistischen, nicht datenbetriebenen Prototyp für ein Di-
alogsystem implementiert und in dem Kontext eines Restaurant-Domaines ausgewertet.
Das System nutzt das HIS-Modell, in dem der Systemzustand durch das Benutzerziel,
Dialog-Historie und Benutzeraktionen beschrieben wird. Die Grundidee dieses Modells ist
ähnliche Benutzerziele in einer Gruppe zusammenzufassen, um die Dimensionen des Zu-
standraumes zu reduzieren und damit das Erlernen von Dialogstrategien zu ermöglichen.
Die Ergebnisse deuten darauf hin, dass ein statistisches, nicht datenbetriebenes Ansatz
sowohl handhabbar als auch mächtig ist und kann als Grundbaustein für das Entwickeln
von dialogbasierten Sprachsystemen dienen.

Um die Leistung des Systems in einer geräuschvollen Umgebung zu verbessern, wird ein
realistisches Konfusionsmodell vorgestellt. Mittels natürlicher Sprache werden von Be-
nutzeräußerungen Sätze erzeugt und anschließend durch ein Ausprachewörterbuch und
eine Phonemähnlichkeitszuordnung zu einem Phonem-Graph umgewandelt. Der ergebende
Graph wird durch einen Sprachverstehen-Modul verarbeitet, welcher schließlich eine Liste
von Konfusionen erzeugt. Eine Vielfalt von Techniken wurden verwendet, um die Spracherken-
nung und Spracherzeugung bei dem Konfusionsmodell automatisch zu initializieren. Dieses
Modell ist konform mit dem Ziel dieser Arbeit und ist szenariounabhängig. Die Experi-
mente zeigen, dass das vorgestellte Modell das Benehmen des Systems in geräuschvoller
Umgebung im Vergleich zu anderen, nicht datenbetriebenen Ansätze verbessert. Die
Schwäche ist die lange Rechenzeit für längere Sätze; weitere Optimierungen sind für eine
Online-Anwendung notwendig.

iii

Abstract

Conventional, rule-based, dialogue managers require many expensive iterations of manual
design and re-design in order to produce good strategies. In addition, such hand-coded
strategies are not reusable from task to task, are not scalable, and require a substantial
amount of human labour and expertise. Statistical learning approaches offer significant
advantages over the standard rule-based hand-coding approach to dialogue systems de-
velopment. However, in cases where a system is designed from scratch, there is often no
suitable in-domain data to enable such a design and collecting dialogue data without a
working prototype is problematic.

In this work, a statistical, virtual-data driven dialogue system prototype for a restaurant
information domain has been built and evaluated. The system is based on the HIS model,
where the state consists of the user goal, the dialogue history and the user action. The main
aspects of the model are that similar user goals are grouped into partitions, thus allowing
for a single belief to be maintained for each partition, and reducing the full state space
into a summary space to enable policy learning. The results prove that the statistical,
virtual-data driven approach is both tractable and powerful and that it provides a solid
foundation for developing spoken dialogue systems.

To improve the system’s success rate in a noisy environment, in this work, a realistic
confusion model has been proposed. It uses natural language generation to materialize
the user’s utterance and the sentence in turn is converted into a phoneme graph using
a pronunciation dictionary and a phoneme similarity mapping. The resulting graph is
then processed by a language understanding component that produces a list of confusions.
Various techniques are applied to automatically bootstrap the language understanding and
language generation components used in the confusion model. The model is compliant
with the overall goal of this work and is scenario independent. The numerous conducted
experiments show that the proposed confusion model improves the system’s behaviour
in noisy environments compared to other non-data driven approaches. The weakness of
the proposed confusion model is that it can be computationally expensive in case of long
sentences and further optimizations are required for the method to be feasible for online
use.

v

Acknowledgements

I would like to express my sincere gratitude to Prof. Alexander Waibel for reaching out
to me, for providing me with the opportunity to participate in the interACT exchange
program, and for his constant encouragement and valuable feedback on many aspects of
this work. A special thanks to Dr. Liang-Guo Zhang for his competent guidance and
continuous support, for his meaningful comments and suggestions which steered me all
way through; his dedication to my work is very much appreciated. In a similar vein, I
would like to recognize Prof. Florian Metze at Carnegie Mellon University for his helpful
hand in arranging for my scholarship at CMU and for his precious advice, which made it a
thoughtful and rewarding journey. I would be remiss, if I did not acknowledge my mother,
Lubomira Kraleva, for proof-reading the English text.

Last, but not least, I would like to thank my family for their endless love and unwavering
support over the years.

vii

Contents

1. Introduction 1
1.1. Spoken dialogue systems . 1
1.2. Goals . 4
1.3. Related work . 4
1.4. Thesis structure . 6

2. Background 7
2.1. Reinforcement learning . 7

2.1.1. Markov decision process . 8
2.1.2. Partially observable MDP . 8

2.2. Hidden Information State Model . 9
2.2.1. HIS POMDP . 9
2.2.2. Domain ontology . 10
2.2.3. Dialogue acts . 10
2.2.4. Partitioning . 11
2.2.5. Probability models . 11
2.2.6. Policy representation . 12
2.2.7. Pruning . 14

2.3. User simulator . 14
2.3.1. Agenda-Based Simulation . 15
2.3.2. Agenda update model . 16
2.3.3. Goal update model . 16

2.4. Error simulator . 16

3. Phoneme-based error channel confusion model 21
3.1. Introduction . 21

3.1.1. Natural language generation . 22
3.1.2. Natural language understanding . 23

3.2. Confusion model . 24

4. Implementation 27
4.1. Matching . 28
4.2. Partitioning . 28

4.2.1. User goal state representation . 29
4.2.2. Partitioning . 29

4.3. Partition pruning . 31
4.4. Dialogue history . 31
4.5. Policy . 33

4.5.1. Handcrafted policy . 33
4.5.2. Summary space . 34
4.5.3. Monte Carlo policy . 35
4.5.4. k -nn Monte Carlo policy . 36

ix

x Contents

4.6. Policy training . 36
4.6.1. Monte Carlo policy training . 36
4.6.2. k -nn Monte Carlo policy training . 37

4.7. Knowledge base . 37
4.8. Dialogue manager . 38
4.9. User simulator . 39
4.10. Error channel . 40

5. Evaluation 43
5.1. Experimental setup . 43
5.2. Evaluation . 43

5.2.1. Dialogue manager training . 43
5.2.2. Confusion models . 47

5.3. Summary . 49

6. Conclusion 51
6.1. Summary . 51
6.2. Outlook . 52

Bibliography 53

Appendix 59
A. Domain Ontology . 59
B. Sample user simulator dialogue . 60
C. ARPAbet phonemes . 61
D. ARPAbet phoneme neighbours . 62

x

1. Introduction

1.1. Spoken dialogue systems

Spoken dialogue systems (SDS) help people accomplish a task using spoken language. For
example, a person might use an SDS to buy a train ticket over the phone, to direct a robot
to clean a room, or to control a music player in a car. Building an SDS is a challenging
task in large part because automatic speech recognition (ASR) and language understand-
ing are error-prone. Speech recognition accuracy is relatively good for a constrained speech
domain, for example recognition of digits, names of places, or short commands, but accu-
racy degrades as the domain language becomes less constrained. Furthermore, as spoken
dialogue systems become more complex, not only do the demands on speech recognition
and understanding components increase, but also user behaviour becomes less predictable.
Thus, as task complexity increases, on the overall, there is a rapid increase in uncertainty,
and principle methods of dealing with this uncertainty are needed in order to make progress
in this research area.

One straightforward and well-known approach to dialogue system architecture is to build
it as a pipeline of processes, where the system takes a user’s utterance as input and gener-
ates a system utterance as output. Such a processing chain is shown in Figure 1.1. In this
chain, the automatic speech recognizer (ASR) takes a user’s utterance and transforms it
into a textual hypothesis. The natural language understanding (NLU) component parses
the hypothesis and generates a semantic representation of the utterance. This representa-
tion is then handled by the dialogue manager (DM), which looks at the dialogue context
and generates a response on a semantic level. The natural language generation (NLG)
component then generates a textual representation of the utterance, and passes it to a
text-to-speech synthesizer (TTS) which generates the audio output to the user.

Automatic speech recognition

The task of the automatic speech recognizer (ASR) is to take an acoustic speech signal
and decode it into a sequence of words. The speech signal must first be segmented into
utterances that may be decoded. This segmentation is most often done based on the
discrimination between speech and silence. When a certain amount of speech, followed by
a certain amount of silence is detected, this segment is considered to be an utterance.

Once the speech signal has been segmented, the decoding task takes the acoustic input,
treats it as a noisy version of the source sentence, considers all possible word sequences,

1

2 1. Introduction

User

Automatic Speech
Recognition

Natural Language
Understanding

Dialogue
Manager

Natural Lan-
guage Generation

Speech Synthesis

Figure 1.1.: Traditional spoken dialogue system architecture

computes the probability of the sequences generating the noisy input, and chooses the
sequences with the maximum probability.

The output from the ASR may consist of a single hypothesis, but an ASR may also return
multiple hypotheses, in the form of an n-best list or a word lattice. The hypotheses may
also be annotated with confidence scores that contain information about how well the data
fit the models.

Natural language understanding

The task of the natural language understanding (NLU) component is to parse the speech
recognition result and generate a semantic representation. Such components may be clas-
sified according to the parsing technique used and the semantic representations that are
generated.

A classic parsing approach is to use a CFG-based grammar which is enriched with semantic
information. A more robust approach is to use keyword or keyphrase spotting, where each
word or phrase is associated with some semantic construct. The problem with this method
is that more complex syntactic constructs (such as negations) are easily lost. Another
approach to parse less predictable input is to use a CFG, but extend the parsing algorithm
with robustness techniques. The main potential drawbacks with this method are that it
may be inefficient, and that it may over-generate solutions that are hard to choose among.

Dialogue management

The dialogue manager is the component that holds the current state of the dialogue and
makes decisions about the system’s behaviour.

The most common tasks of the dialogue manager can be divided into three groups:

• Input interpretation

• Domain knowledge management

• Action selection

The result of the NLU component is a semantic representation of the user’s utterance.
However, the NLU component does not have access to the dialogue history, and thus can
only make a limited interpretation. For example, in a air travel information scenario when
the system queries for a destination and receives a city name as a response from the user,
the NLU component can only generate a semantic description which represents the city.
Whether the user wants to depart from the city or travel to it has to be inferred by the
dialogue manager.

The different knowledge sources needed by a dialogue manager can be separated into
dialogue and discourse knowledge, task knowledge, user knowledge and domain knowledge.

2

1.1. Spoken dialogue systems 3

The first two are needed for contextual interpretation and action selection. User knowledge
can be used to adapt the system’s behaviour to the user’s experience and preferences.
Domain knowledge management includes models (semantic representation of the world)
and mechanisms for reasoning about the domain and for accessing external information
sources. More complex descriptions of how concepts in the domain model are related are
often referred to as ontologies.

The third main task of the dialogue manager is to decide on what the dialogue system
should do next, which is often a semantic act that is to be generated and synthesized by
the output components. The general idea is to separate an ”engine” from a declarative
model, in order to make the transition between applications and domains easier.

Central to action selection is that it should somehow be based on the dialogue state. A
fairly simple method is to model the dialogue as a set of pre-defined dialogue states in a
finite state machine (FSM). The FSM approach is appropriate when the semantics of the
dialogue can be simply represented by the current state in the machine. Depending on the
number of slots to fill, the FSM can grow to be very large and become incomprehensible
for the dialogue designer. To solve this problem, the dialogue state is instead modelled as
a store containing variables. Depending on the current state of the store, different actions
will be taken. The store does not need to represent the complete dialogue history, but
only the parts that are determined to be needed for the application.

An example of a more complex model is the information state approach, where the store
is a deep feature structure with variables. The store’s control algorithm consists of a set of
update rules which have preconditions (on the information state) and effects. Effects may
be semantic acts, but also changes to the information state itself, triggering other rules to
apply. The structure of the information state, the update rules and the update algorithm
may all be customized for the specific application.

In grammar-based approaches to dialogue management, a grammar is used to describe
how speech acts can be sequenced and structured. The grammar is used for both input
interpretation and action selection. As the dialogue is parsed using the grammar, the
resulting tree structure becomes a model of the dialogue history.

Recently, there have been many efforts at making dialogue management (especially action
selection) data-driven, by using statistical methods and machine learning approaches. The
reasoning behind this effort is that other language technologies have moved in this direction
with great success.

Natural language generation

The NLG component takes the semantic representation of the system’s utterance and gen-
erates a textual representation to be synthesised by a speech synthesizer. The simplest
approach to this is so-called canned answers, that is, a simple mapping between a dis-
crete set of semantic acts and their implementations. To make the answers more flexible,
templates may be used that contain slots for values.

Research into more advanced and flexible models for NLG has mainly been concerned with
the production of written language or coherent texts to be read, dealing with issues such
as aggregation and rhetorical structure.

Text-to-speech synthesis

Text-to-speech synthesis (TTS) can generally be divided into two separate problems –
the mapping from an orthographic text to a phonetic string with prosodic markup, and
the generation of an audio signal from this string. The first problem has been addressed

3

4 1. Introduction

with both knowledge-driven and data-driven approaches. To the second problem, there
are three common approaches: formant synthesis, diphone synthesis and unit selection. A
formant synthesiser models the characteristics of the acoustic signal, which results in a very
flexible model. However, the speech produced is not generally considered very natural-
sounding. In diphone synthesis, a limited database of phoneme transitions is recorded, the
synthesised speech is concatenated directly from this database and prosodic features are
added in a post-processing of the signal. Unit selection is also based on concatenation;
however, the chunks are not limited to phoneme transitions. Instead, a large database is
collected, and the largest chunks that can be found in the database are concatenated.

1.2. Goals

The biggest disadvantage of the statistical dialogue frameworks is the fact, that they
require a large amount of training data in order to learn the optimal policy. Usually data
collected for a particular domain is not transferable to another domain and thus cannot
be reused. For example training dialogues for an air travel information system cannot
be reused in the context of a tourist information application. The goal of this thesis is
the implementation of a dialogue framework which is easily bootstrappable and requires
absolutely no training data to learn a well-performing policy. The implemented framework
will be used as a basis for future research and evaluation in the context of a statistical
dialogue manager and thus needs to be properly designed from architectural viewpoint.
This can be achieved by specifying clear interfaces and boundaries between the different
modules used throughout the system and it will allow for the dialogue manager to be
easily extended or configured as part of a future research. Due to the statistical nature
of the SDS, additional systems for training the framework need to be implemented and
evaluated.

Furthermore a new approach for simulating noise during the training phase has been
proposed, that has the advantage over conventional approaches, that it requires no training
data and can be used to easily bootstrap the dialogue manager and improve the overall
performance of the system by making it more robust to noise.

1.3. Related work

Commercial dialogue systems are typically implemented by charting system prompts along
with possible user responses ([PH05]). The system is represented as a graph, sometimes
called call flow, where nodes represent prompts or actions to be taken by the system
and the edges provide the possible responses. This approach has been the most effective
commercially because prompts can be designed to elicit highly restricted user responses.
However, the resulting dialogues can become frustrating for users as their choice is severely
limited. Further problems arise when speech recognition and understanding errors occur.
In some cases, the system might accept information that is in fact incorrect and elaborate
error detection and correction schemes are required to deal with this. As a result, commer-
cial spoken dialogue systems are seldom robust to high noise levels and require significant
effort and cost to develop and maintain.

Researchers have attempted to overcome these issues in various ways, many of which fall
into two categories. The first is to model dialogue as a conversational game with rewards
for successful performance. Optimal action choices may then be calculated automatically,
reducing maintenance and design costs as well as increasing performance. These models
have largely been based on the Markov decision process (MDP), as for example in [LPE00],
[Wal00], [SY02], [Pie04] and [LGHS06]. The choice of actions for a given internal system
state is known as the policy and it is this policy which MDP models attempt to optimize.

4

1.3. Related work 5

The second research avenue has been to use a statistical approach to model uncertainty in
the dialogue. This allows for simpler and more effective methods of dealing with errors.
[P+96], [HP99] and [MWP03] all suggest early forms of this approach. These statistical
systems view the internal system state as its beliefs about the state of the environment.
The true state of the environment is hidden and must be inferred from observations,
often using Bayesian networks (BN). The state of the environment is often separated into
different components, called concepts, each of which has a set of possible concept values.
Sometimes these oncepts are called slots.

More recently, there have been several attempts to use statistical policy learning and
statistical models of uncertainty simultaneously. The resulting framework is called the
Partially Observable Markov Decision Process (POMDP) ([RPT00], [WY07a], [BPNZ06]).

The use of POMDPs for any practical system is, however, far from straightforward. As
with MDPs, dialogue states are complex and hence the full state space of a practical
SDS would be intractably large. Thus, the POMDP policy is mapping from regions in
n-dimensional belief space to actions. Not surprisingly, these are extremely difficult to
construct and whilst exact solution algorithms do exist, they do not scale to problems
with more than a few states/actions.

There are two broad approaches to achieving a practical and tractable implementation of a
POMDP-based dialogue system. Firstly, the state can be factored into a number of simple
discrete components. It then becomes feasible to represent probability distributions over
each individual factor. The most obvious examples of these are the so-called slot filling
applications where the complete dialogue state is reduced to the state of a small number
of slots that require to be filled ([WY07a], [WY07b]). For more complex applications, the
assumption of independence between slots can be broadened somewhat by using Bayesian
Networks ([P+96], [HP99], [MWP03], [BPNZ06], [TSY08], [TGK+08]). Provided that each
slot or network node has only a few dependencies, by using approximate inference, tractable
systems can be built and belief estimates with acceptable accuracy can be maintained
([B+06]).

A second approach to approximating a POMDP-based dialogue system is to retain a
full and rich state representation but maintain probability estimates only over the most
likely states. Conceptually, this approach can be viewed as maintaining a set of dialogue
managers executing in parallel where each dialogue manager follows a distinct path. At
each dialogue turn, the probability of each dialogue manager representing the true state
of the dialogue is computed and the system response is then based on the probability
distribution across all dialogue managers. This viewpoint is interesting because it provides
a migration path for current dialogue system architectures to evolve into POMDP-based
architectures ([HL08]).

The Hidden Information State (HIS) model advocated in [YSWY07] describes a specific
implementation of the second approach. The HIS system uses a full state representation
in which similar states are grouped into partitions and a single belief is maintained for
each partition. The system typically maintains a distribution of up to several hundred
partitions corresponding to many thousands of dialogue states.

Independent of the approach, a key issue in a real POMDP-based dialogue system is its
ability to be robust to noise. This issue has been addressed by multiple research groups
([LPE00], [SY02], [GHL05], [PD06], [RL06], [SWSY06], [STW+07], [STY07b], [TSW+07],
[LL07], [GKM+08]) by the inclusion of a user simulator to bootstrap the POMDP dia-
logue system. Example approaches include n-gram models ([LPE00]), goal based models
([Pie06]), and conditional random fields ([JLK+09]).

While the development of user simulation tools is an active research area, the error channel

5

6 1. Introduction

is often either excluded altogether ([LPE00], [RL06], [STY07b]) or simulated by generating
random errors at a fixed error rate ([HB95], [AWD97], [WAD98]). There are however some
more advanced approaches than just converting the semantic representation obtained from
the user simulator into text and then generating confusions at a word level. One can then
generate confusions according to the past confusions observed for each word ([PR02]), or
from fragment-to-fragment confusions ([STY07a]). Further examples include probabilistic
phoneme conversion rules ([DMA03]), weighted finite state transducers ([FLAK02]) and
linguistically motivated phone confusion models ([PD06], [JLK+09]).

1.4. Thesis structure

The next chapter provides the theoretical background for the main contributions of this
work and introduces the relevant concepts of Markov processes, dialogue management,
user and error simulation. Chapter 3 describes the proposed phoneme-based confusion
model and the issues that it addresses. Chapter 4 documents the implementation details
and architecture of the dialogue manager implemented from scratch for this work. The
experiments done during the course of this thesis and the evaluation of the techniques
introduced previously are described in Chapter 5. The results and findings are then sum-
marized and discussed in Chapter 6, followed by an outlook suggesting possible future
research.

6

2. Background

This chapter provides an introduction to background knowledge and concepts that are
relevant to this thesis. First, core concepts such as reinforcement learning and Markov
decision processes are explained. The HIS section provides an overview of the dialogue
manager architecture, the internal state representation used and a multitude of different
concepts and probability models which make up the core of the system. The user simulator
section introduces the framework and simulation model used to train the dialogue manager.
The chapter concludes by an overview of the error channel framework and its components.

2.1. Reinforcement learning

Reinforcement Learning (RL) is learning through direct experimentation. It does not
assume the existence of a teacher that provides training examples. Instead, the learner
receives signals (reinforcements) from the learning process, indications about how well it
is performing the required task. These signals are usually associated to some condition —
e.g., accomplishment of a subtask or complete failure, and the learner’s goal is to optimize
its behaviour based on some performance metric (usually minimization of a cost function).
In order to do this, the learning agent must learn the conditions (associations between
observed domain states and chosen actions) that lead to rewards or punishments. In
other words, it must learn how to assign rewards to past actions and states by correctly
estimating the costs associated to these events. This is different from supervized learning
where the rewards are implicitly given beforehand as part of the training procedure.

The accumulation of experience that controls the behaviour (action policy) is represented
by a cost function whose parameters are learned as new information is presented to the
agent. The agent is also equipped with sensors that define how observations about the
external process are made. These observations may be — if necessary — combined with
past observations or input to a state estimator, defining an information vector or internal
state which represents the agent’s belief about the real state of the process. Given the
experience obtained so far, the cost function then maps these internal states and presented
reinforcements to associated costs. Finally, these costs guide the action policy. The built-in
knowledge may affect the behaviour of the agent either directly, altering the action policy
or indirectly, influencing the cost estimator or sensors.

The experience accumulation and action taking process is represented by the following
sequence. At a certain moment of time, the agent:

7

8 2. Background

1. Makes an observation and perceives any reinforcement signal provided by the process.

2. Takes an action based on the former experience associated with the current obser-
vation and reinforcement.

3. Makes a new observation and updates its accumulated experience.

Nearly all RL methods are based on the Temporal Differences (TD) algorithm ([SB98]).
The fundamental idea behind it is prediction learning: when the agent receives a rein-
forcement, it must somehow propagate it backwards in time so that states leading to that
condition and formerly visited may be associated with a prediction of future consequences.
This is based on an important assumption on the process’ dynamics, called Markov condi-
tion: the present observation must be conditioned on the immediate past observation and
input action. In practical terms, this means that the agent’s sensors must be good enough
to produce correct and unambiguous observations of the process states.

2.1.1. Markov decision process

Statistical approaches to dialogue management enable extensible dialogue managers to be
built based on data rather than hand-coded rules. In particular, the reinforcement learning
approach enables a dialogue policy to be learnt in such way as to optimize overall dialogue
success. In order to deploy reinforcement learning for policy optimization, dialogue is
modelled as a Markov Decision Process (MDP).

An MDP is a more specialized version of a stochastic environment which accounts for the
temporal nature of dialogue actions: by taking an action the agent actively changes the
environment and influences the states and actions that are available in the consequent
dialogue. The Markov Property requires that the state and reward at time t + 1 depend
only on the state and action at time t, as expressed in Equation 2.1.

P (st+1, rt+1|st, at, st−1, at−1, rt−1, . . . , s0, a0) ≈ P (st+1, rt+1|st, at) (2.1)

An MDP is defined by the tuple 〈S,A, T,R〉. The state space S refers to the set of reachable
states for the agent within the MDP. The action set A contains all actions available to
the agent and is often limited to a small number of actions. The state transition function
T describes the dynamics of the environment, which next state s′ ∈ S is likely to follow
when taking action a ∈ A in state s ∈ S. Similarly, given a current state st and an action
at, the expected reward value of the next state st+1 is represented by the reward function
R.

2.1.2. Partially observable MDP

Formally, a POMDP is defined as a tuple Sm, Am, T,R,O,Z, λ, b0 where Sm is a set of
machine states; Am is a set of actions that the machine may take; T defines a transition
probability P (s′m|sm, am); R defines the expected immediate reward r(sm, am); O is a
set of observations; Z defines an observation probability P (o′|s′m, am); λ is a geometric
discount factor 0 ≤ λ ≤ 1; and b0 is an initial belief state.

At each time step, the machine is in some unobserved state sm ∈ Sm. Since sm is not
known exactly, a distribution over states is maintained called a belief state such that
the probability of being in state sm given belief state b is b(sm). Based on the current
belief state b, the machine selects an action am ∈ Am, receives a reward r(sm, am), and
transitions to a new (unobserved) state s′m, where s′m depends only on sm and am. The
machine then receives an observation o′ ∈ O which is dependent on s′m and am. Finally,
the belief distribution b is updated based on o′ and am as follows

8

2.2. Hidden Information State Model 9

b′(s′m) = P (s′m|o′, am, b) =
P (o′|s′m, am, b)P (s′m|am, b)

P (o′|am, b)

=
P (o′|s′m, am)

∑
sm∈Sm

P (s′m|am, b, sm)P (sm|am, b)
P (o′|am, b)

= k · P (o′|s′m, am)
∑

sm∈Sm

P (s′m|am, sm)b(sm) (2.2)

where k = 1
P (o′|am,b) is a normalization constant ([KLC98]). Maintaining this belief state

as the dialogue evolves is called belief monitoring.

At each time step t, the machine receives a reward r(bt, am,t) based on the current belief
state bt and the selected action am,t. The cumulative, infinite horizon, discounted reward
is called return and it is given by

R =
∞∑
t=0

λtr(bt, am,t) =
∞∑
t=0

λt
∑

sm∈Sm

bt(sm)r(sm, am,t) (2.3)

Each action am,t is determined by a policy π(bt) and building a POMDP system involves
finding the policy π∗ which maximizes the return. Unlike the case of MDPs, the policy
is a function of a continuous multi-dimensional variable and hence it can be represented
by a set of policy vectors where each vector vi is associated with an action a(i) ∈ Am and
vi(s) equals the expected value of taking action a(i) in state s.

The optimal exact value function can be found by working backwards from the terminal
state using a process called value iteration. At each iteration t, policy vectors are generated
for all possible action/observation pairs and their corresponding values are computed in
terms of the policy vectors at step t − 1. As t increases, the estimated value function
converges to the optimal value function from which the optimal policy can be derived.
Many superfluous policy vectors are generated during this process, and these can be pruned
to limit the total number of vectors. Unfortunately, the pruning itself is computationally
expensive, however, approximate solutions can still provide useful policies. The simplest
approach is to discretize belief space and then use standard MDP optimization methods
([BS98]). Since belief space is potentially very large, grid points are concentrated in those
regions which are likely to be visited ([Bra97], [Bon02]). Each belief point represents the
value function at that point and the corresponding optimal action to take is associated
with it. When an action is required for an arbitrary belief point b, the nearest belief point
is found and its action is used. However, this can lead to errors; hence the distribution of
grid points in belief space is very important.

One drawback of grid-based methods is that they do not scale well to large state spaces.
The HIS model described below avoids the scaling problem by mapping the full belief
space into a reduced summary space where grid-based approximations appear to work
reasonably well.

2.2. Hidden Information State Model

2.2.1. HIS POMDP

In the HIS model ([YGK+10]), the dialogue state is represented as a combination of the
user goal, the last user act and the dialogue history. This combination can result in a vast
number of dialogue states and it would not be computationally tractable to maintain a

9

10 2. Background

probability distribution over such a large state space. Therefore, user goals are grouped
together into partitions with the assumption that all goals from the same partition are
equally probable. Partitions are built using the attribute-value pairs from the N-best list
of the user input and the previous system output. They are combined together using
the dependencies defined by the domain ontology. The dialogue history is represented by
a finite state machine that keeps track of the dialogue progress. The combination of a
partition, the associated user act and dialogue history forms a hypothesis, a single point
of the partitioned state space. A probability distribution over the most likely hypotheses
is maintained during the dialogue and this distribution constitutes the POMDP’s belief
state.

2.2.2. Domain ontology

As far as dialogue manager is concerned, the dialogue between the system and the user
takes place at semantic level, using dialogue acts where each dialogue act comprises a type
and a list of attribute-value pairs. For example, inform(type=restaurant, food=Chinese)
would be the representation at the dialogue act level corresponding to the user saying ”I
would like a Chinese restaurant”. A domain ontology then defines all of the attributes and
their possible values, as well as the structural relationship between different attributes.

The ontology has a tree structure. The tree nodes are classified in three groups: class
nodes, lexical nodes and atomic nodes. The tree root is a class node and it defines the user
goal in the most general way. Other class nodes define the user query more specifically.
Class nodes can have many child nodes, the first is always atomic and defines a specific
instance of the class, the remainder consist of an optional class node and one or more
lexical nodes. Lexical nodes can have only a single atomic child node.

The HIS model makes use of the hierarchical relationship between the attributes to model
the dependencies in each user input. For example, in the tourist information domain,
if the user specified food=Italian this implies that the user wants type=restaurant and
entity=venue.

As previously explained, class and lexical nodes take unique values, for example type, area
or food. Atomic nodes, on the other hand, are represented as a set of Boolean indicators for
each plausible value from the ontology. Alternatively, an atomic node can be represented
as a disjunction of the values which are true or a conjunction of the negation of the values
which are false.

2.2.3. Dialogue acts

Dialogue acts in the HIS system take the form actt(a1 = v1, a2 = v2, . . .) where actt denotes
the type of dialogue act and the arguments are act items consisting of attribute–value
pairs. Attributes refer to nodes in the user goal state tree described below and values
are the atomic values that can be assigned to those nodes. In some cases, the value can
be omitted, for example, where the intention is to query the value of an attribute. The
same representation is used for both user inputs and the dialogue manager outputs. A full
description of the dialogue act set used by the HIS system is given in [You07].

In the HIS system every utterance translates into a single dialogue act. When the speech
understanding system is uncertain, the input to the dialogue manager is typically a list
of dialogue acts. For example, the utterance ”I want an Italian place near the cinema”
spoken in a noisy background might yield

inform(type=restaurant,food=Italian, near=cinema) {0.6}
inform(type=restaurant,food=Indian, near=cinema) {0.3}
inform(type=bar,near=cinema) {0.1}
where the number in braces is the probability of each dialogue act hypothesis.

10

2.2. Hidden Information State Model 11

2.2.4. Partitioning

Partitioning is applying a slot value pair s = v to a partition p that contains node s and
creating its child partition c. In the ontology, s is either a class or a lexical node and v is
an atomic node. In the partition p, node s has a child atomic node that has all possible
values that slot s can take. During the partitioning process, the value v in that atomic
node of the partition p is set to false. The partition c is a copy of the partition p where v
is set to true. In order to apply slot-value pair s = v for partitioning, it has to be ensured
that there is a partition that contains node s. For slot s, the list of superiors is defined
as all slot-value pairs si = vi where si are class nodes on the path from the node s to the
root of the ontology tree, and vi are the values of their child atomic nodes that enable the
attribute expansion leading to the occurrence of s in the tree. The ontology automatically
generates this list for each slot s, so that they can be applied prior to applying s = v. In
this way, it is ensured that there exists a partition with node s before s = v is applied.

The partitioning process starts by applying the list of slot-value pairs form the N -best
user input to the initial partition, which is just the root of the ontology tree. The process
is then recursively repeated. In such a way, an ordered tree of partitions is created, where
the order indicates when each partition was created. Slot-value pairs from the system act
are also used for partitioning. It is important to note that this process guarantees that
each partition that is created is unique. This is achieved by checking if a partition contains
v set to false before s = v is applied to that partition. If it does contain it this means
that s = v has already been used and cannot be applied again to that partition.

2.2.5. Probability models

The HIS model uses several probability models to compute the belief of the dialogue
hypotheses.

Observation model

The observation model probabilities are derived directly from the N -best list of hypotheses
generated by the speech understanding component by assuming that the probability is
equal to the posterior probability of the N -best list element corresponding to au.

User action model

The HIS user action model is a hybrid model, consisting of a dialogue act type bigram
model and an item matching model

The bigram model reflects the dialogue phenomenon of adjacency pairs ([SS73]). For exam-
ple, a question is typically followed by an answer, an apology - by an apology-downplayer,
and a confirmation (”You want Chinese food?”) - by an affirmation (”Yes please.”), or
negation (”No, I want Indian.”).

The item matching model is deterministic, assigning either a full match probability or a no
match probability, depending on the outcome of matching the user act with the given user
goal partition. For example, the user is not likely to ask about Indian food when the user
goal actually indicates that he wants a Chinese restaurant. Therefore, the item arguments
of an inform act should match the partition. On the other hand, a negation is not likely
if the content of the last system act matches the partition. The matching probabilities
themselves are optimized empirically.

11

12 2. Background

Dialogue history model

The purpose of the dialogue history model is to track the status of the attributes and values
which comprise the user goal, using a grounding-model ([Tra99]). Each terminal node in
the associated partition is assigned a grounding state, where these states are updated
according to a simple set of transition rules as the dialogue progresses.

The grounding states of nodes in user goal trees are not deterministic, as any node may have
multiple possible states depending on the possible dialogue histories that led to the current
state. The actual probability returned by the dialogue history model is deterministic. If
after updating the history, a resulting hypothesis is inconsistent, for example the user has
denied a goal in the partition, then the probability is ≈ 0, otherwise ≈ 1.

2.2.6. Policy representation

As mentioned in Section 2.2, the HIS system represents policies by a set of grid points in
summary belief space and an associated set of summary actions. Beliefs in master space are
first mapped into summary space and then mapped into a summary action via a dialogue
policy. The resulting summary action is then mapped back into master space and output
to the user. This mapping is necessary because accurate belief monitoring requires that
the full content of user goals and dialogue acts be maintained, whereas policy optimization
requires a more compact space which can be covered by a reasonable number of grid points.

Summary space

In the HIS system, each summary belief point is a vector consisting of the probabilities
of the top two hypotheses in master space; two discrete status variables, h-status and p-
status, describing the state of the top hypothesis and its associated partition; and the type
of the last user dialogue act. The set of possible machine dialogue acts is also compressed
in summary space. This is achieved by removing all act items leaving only a reduced set of
dialogue act types. When mapping back into master space, the necessary items are inferred
by inspecting the top dialogue hypotheses. A dialogue policy can then be represented as
a set of belief points in summary space along with the action to take at each point. In
order to use such a policy, a distance metric in belief space is required to find the closest
grid point to a given arbitrary belief state.

Master–summary space mapping

The process of mapping between master and summary space is illustrated in greater detail
in Figure 2.1. The master space is on the left and consists of a set of dialogue hypotheses.
On the right of the figure is the summary space represented by a single vector or belief
point.

The policy is shown as an irregular grid of these belief points and the figure shows how
a system response is generated by mapping the current belief state b into a summary
belief state b̂, then finding the nearest stored point in the policy b̂i which in turn yields
a summary action âim. This is then mapped back into master space by a heuristic which
assumes that the selected summary action refers to the top hypothesis and constructs the
full machine action am taking into account the grounding state of all the nodes in the
associated partition.

Policy optimization

As explained in Section 2.1.2, representing a POMDP policy by a grid of belief points yields
an MDP optimization problem for which many tractable solutions exist. In the HIS model,

12

2.2. Hidden Information State Model 13

Figure 2.1.: Master-summary state mapping. ([YGK+10])

a simple Monte Carlo Control algorithm is used ([BS98]). Associated with each belief point
is a function Q(b̂, âm) which records the expected reward of taking summary action âm
when in belief state b̂. Q is estimated by repeatedly executing dialogues and recording the
sequence of 〈b̂t, âm,t〉 belief point–action pairs. At the end of each dialogue, each Q(b̂t, âm,t)
estimate is updated with the actual discounted reward. Dialogues are conducted using the
current policy π but to allow previously unvisited regions of the state-action space to be
explored, actions are occasionally taken at random with some small probability ε.

Belief points are therefore generated on demand during the policy optimization process.
Then, every time a belief point is encountered which is sufficiently far from any existing
point in the policy grid, it is added to the grid as a new point.

The complete policy optimization algorithm is shown in Figure 1.

k-nn Monte-Carlo Policy Optimization

Alternatively the k nearest neighbour method can be used to obtain a better estimate
of the value function, represented by the belief points’ Q values. Similarly to the Monte
Carlo algorithm, it maintains a set of sample vectors b̂ along with their Q value vector
Q(b̂, a). When a new belief state b̂′ is encountered, its Q values are obtained by looking
up its k-nearest neighbours in the state space, then averaging their Q-values.

The complete k-nn version policy optimization algorithm is described in Algorithm 2.

13

14 2. Background

2.2.7. Pruning

Due to the nature of the partitioning process, the number of partitions grows exponentially
as the dialogue progresses, which can lead to computational limitations. The complexity
issue becomes more apparent if the length of the N -best input is large. Constraining the
N -best list to be small and setting a maximum number of dialogue turns can be very
limiting for real-world dialogues. Therefore, a pruning technique is needed to deal with
the growing number of partitions.

The number of partitions can be reduced simply by removing the low probability partitions.
As each partition has a number of associated hypotheses, the probability of a partition
is a sum of the probabilities of each of its associated hypotheses. This allows for the low
probability partitions to be removed. However, since the partitions represent the groups
of user goals, completely removing a user goal makes it impossible to recreate it, which is
not desirable.

Partition Recombination

Rather than removing the partitions, the method proposed in [Wil10] reduces the number
of partitions by recombining the low probability leaf partitions with their parent partitions.
The recombination is performed by removing the complementary value from the parent
partition, updating its probability with the probability of its child partition and removing
the child partition. An outline of the belief update algorithm that utilizes the partition
recombination is given in Figure 3.

This method is shown to be effective in the domains that do not have many slots ([Wil10]).
However, there are some considerations in more complex domains. Firstly, it may be
limiting to allow a partition to be recombined only with its parent, since there may be
other partitions it is complementary to. Secondly, allowing only leaf partitions to be
removed might not be desirable in long dialogues, as leaf partitions are usually the last
to be created. In dialogues where the user goal evolves with time, the partitions that
are created early on become less probable as the dialogue progresses, whereas the leaf
partitions are more useful.

Pruning of applied slot-value list

Rather than recombining the partitions, the number of partitions can be reduced by re-
moving some of the applied slot-value pairs ([GY11]). The probability of slot-value pair
s = v is the sum of probabilities of all partitions that have v set to true. In this way, a
sorted list of the applied slot-value pairs can be obtained. The lowest probability slot-value
pairs probably have the least impact on the user goal and can be removed.

The partitioning exponentially increases the number of partitions, however, this pruning
technique exponentially decreases it, so there is no danger that the number of partition
grows faster then being reduced. This allows dialogues of arbitrary length. Furthermore,
it also enables large N-best inputs to be applied.

An outline of the belief update algorithm which is used by the pruning method is given in
Figure 4. In contrast to the algorithm in Figure 3, the pruning is applied before processing
the input, so that no information from the current N-best list is lost before the next system
action is chosen.

2.3. User simulator

Online methods for training statistical dialogue managers allow the dialogue policy to
be adapted and improved at runtime, i.e. through interaction with real users. During

14

2.3. User simulator 15

the initial development phase however, many thousand training dialogues are needed to
bootstrap the policy, and this is generally too time-consuming and expensive to be done
with real users.

The simulation-based approach typically involves two steps. First, a statistical user model
(such as an n-gram model) is trained on a limited amount of dialogue data. The model is
then used to simulate dialogues with the interactively learning dialogue manager. Simula-
tion is usually done at semantic dialogue act level to avoid having to reproduce the variety
of user utterances at word or acoustic level. The simulation-based approach assumes the
presence of a corpus of annotated domain dialogues. One of the goals of the user simu-
lator presented here was to be easily bootstrappable without need of any dialogue data
for training the user model. Hence, it was necessary to develop a model which was simple
enough for the model parameters to be handcrafted and yet capable of producing user
behaviour realistic enough for training a prototype system. A similar approach has been
previously taken by [LPE00] and [PD06].

2.3.1. Agenda-Based Simulation

Inspired by agenda-based methods to dialogue management, an approach was proposed
by [STW+07] that factors the user state into an agenda A and a goal G.

During the course of the dialogue, the goal G ensures that the user behaves in a consistent,
goal-oriented manner. G consists of a constraints set C which describe the desired venue,
e.g. a centrally located bar serving beer, and a requests set R which contains the desired
pieces of information, e.g. the name, address and phone number of the venue.

The user agenda A is a stack structure containing the pending user dialogue acts that are
needed to elicit the information specified in the goal. At the start of the dialogue a new
goal is randomly generated using the database and the agenda is populated by converting
all goal constraints into inform acts and all goal requests into request acts. A bye act is
added at the bottom of the agenda to close the dialogue.

As the dialogue progresses the agenda is dynamically updated and acts are selected from
the top of the agenda to form a user act. In response to incoming machine acts, new user
acts are pushed onto the agenda and relevant ones are no longer removed. The agenda
serves as a convenient way of tracking the progress of the dialogue as well as encoding the
relevant dialogue history. User acts can also be temporarily stored when actions of higher
priority need to be issued first, hence providing the simulator with a simple model of user
memory.

Additionally the user simulator has an initiative model that determines the number of items
n that the simulator selects from the agenda stack. In a statistical model the probability
distribution over integer values for n should be conditioned on A and learned from dialogue
data. For the purposes of bootstrapping the system, n can be assumed independent of A
and any distribution P (n) that places the majority of its probability mass on small values
of n can be used.

When no restrictions are placed on A and G, the space of possible state transitions is vast.
The model parameter set is too large to be handcrafted and even substantial amounts of
training data would be insufficient to obtain reliable estimates. It can be assumed that
A′ is derived from A and that G′ is derived from G and that in each case the transition
entails only a limited number of well-defined atomic operations. The state transitions can
then be decomposed into independent goal update and agenda update models.

15

16 2. Background

2.3.2. Agenda update model

The agenda transition from A to A′ can be viewed as a sequence of push-operations in
which dialogue acts are added to the top of the agenda. The agenda update model can be
further simplified by assuming that every dialogue act item triggers one push operation.
This assumption can be made because it is possible to push a null() act (which is later
removed) or to push an act with more than one item. In a second ”clean-up”step, duplicate
dialogue acts, null() acts, and unnecessary request() acts for already filled goal request
slots must be removed.

This model is now simple enough to be handcrafted using heuristics. For example, the
model parameters can be set so that when the item x = y in a machine act violates
the constraints in G, one of the following is pushed onto A: negate(), inform(x = z),
deny(x = y, x = z), etc.

2.3.3. Goal update model

The goal update model describes how the user constraints C and requests R change with
a given machine action am. To restrict the space of transitions from R to R′ it can be
assumed that each request slot (e.g. address, phone) is either filled using information in
am or left unchanged. One can further assume that the value of any slot depends on its
value at the previous time step, the value provided by am and that the transition needs
to be conditioned on whether the information given in am matches the goal constraints.

To further simplify the model it can be assumed that C ′ is derived from C by either adding
a new constraint, setting an existing constraint slot to a different value (e.g. food = Thai),
or by simply changing nothing. The transition can be conditioned on simple Boolean flags
such as ”Does am ask for a slot in the constraint set?”, ”Does am signal that no item in the
database matches the given constraints?”. The model parameter set is then sufficiently
small for handcrafted values to be assigned to the model probabilities.

2.4. Error simulator

The error channel can be viewed as a probabilistic model P (c, ãu|au), where au is the
true incoming user dialogue act and ãu is the recognized hypothesis with its associated
confidence score c. For the purposes of error simulation, it is convenient to separate the
confidence score generation from the error model, as has been previously suggested by
[Pie04] and [WY07a].

One promising framework for building spoken dialogue systems is the use of reinforcement
learning to learn the optimal decisions to be made. Reinforcement learning algorithms
formalize the design criteria of the system as objective reward functions and then optimize
the system’s decisions to maximize the expected rewards.

When optimizing the rewards, most reinforcement learning algorithms require many more
dialogues than are available in the training corpora. An even more significant issue is that
most algorithms learn online by interacting with the environment. The standard solution
to this is to build a simulation environment, which is used to train the dialogue system
([BS98]). The simulation environment can then be used to generate as many dialogues as
necessary.

The simulation environment consists of two main parts. First is the user simulator which,
as previously explained, simulates how a user would respond in a given situation. The
second component is the error simulator which simulates how the user’s response is cor-
rupted. Building systems that are robust to errors is particularly important because both

16

2.4. Error simulator 17

speech recognition and spoken language understanding are prone to mistakes. Previous
research has shown that error simulations do have an effect on simulated dialogue perfor-
mance ([LL07]). Speech recognizers typically output an N-best list of hypotheses along
with confidence scores, and so the error simulator should ideally be able to generate similar
outputs.

The core component of the error simulator, the confusion model, decides what output ut-
terance a given utterance should be confused to. The alternative to generating confusions
at the word level is to generate confusions directly at a semantic level. For simplicity,
some systems have used a framework where semantic items are either dropped, added, or
confused into other items with handcrafted probabilities ([YGK+10]). This is quicker to
compute than many word-level approaches but the resulting confusions are unlikely to be-
have similarly to the real environment. If the number of possible user utterances is limited
it is also possible to estimate the confusions using maximum likelihood estimates from a
corpus ([WY07a]). This approach becomes difficult when there are many combinations for
what the user might say. Once a confused word string is generated, the result can simply
be passed through a natural language understanding module to obtain the semantics that
the system would have received.

The other component of the error simulator, the confidence score generator, determines
the length of the N-best list, what the confidence scores are, as well as where in the list
the correct hypothesis should occur (if at all). Early dialogue systems were only able to
make use of one hypothesis and so there was not much focus on generating full lists of
confusions. The focus instead was simply on choosing the confidence score for a single
generated confusion. More recently there has been growing interest in partially observable
Markov decision processes, which are able to improve performance by using N-best lists of
hypotheses ([WY07a], [TYK+10]). These systems directly exploit the extra information
in the N-best list in order to provide more robust interaction. For these systems it is
particularly important to have good simulations of the N-best list.

When looking into a single confusion, the standard approach is to start by deciding whether
the hypothesis should be correct or not, based on a given probability ([WY07a]). The
confidence scores are then sampled from two different distributions, one for the correct
hypotheses and one for the incorrect. These distributions can be learned from data in
various ways, including binning ([STY07a]) and approximation as a sum of exponentials
([PD06]). When taking multiple confusions into consideration, one simple method is to
repeatedly generate confusions as for the 1-best case, and then simply assign each confusion
a probability proportional to the number of times it appears ([Bli02]). Another option is
to generate confidence scores from a parameterized Dirichlet distribution ([TYK+10]).

The input to the error simulator is a user act which is obtained from the user simulator and
is a high level semantical representation of the utterance. The system uses the dialogue
act set explained prevously, where user acts consist of a dialogue act type followed by a
sequence of attribute value pairs.

Given such a user act, the task of the error simulator is to compute a sequence of output
acts with associated confidence scores. The number of output acts must also be decided
by the error simulator. In order to simplify the process, this generation will be split into
several steps. First, the number of output acts is decided with the help of a confidence
score generator. Given this, a distribution of confidence scores is chosen along with a set
of probabilities. Depending on the drawn probability, the correct hypothesis is then either
placed at a random position in the list or completely discarded. All other positions are
provided with a confused hypothesis along with the confidence score for that position.
Confusions are generated by a separate confusion model.

17

18 2. Background

Algorithm 1 Monte Carlo policy optimization algorithm.

1: procedure Train(reward)
2: Let Q(b̂, âm) ← expected reward on taking action âm from belief point b̂
3: Let N(b̂, âm) ← number of times action âm is taken from belief point b̂
4: Let B be a set of grid points in belief space
5: Let π : b̂→ âm;∀b̂ ∈ B
6: repeat
7: t← 0
8: âm,0 ← initial greet action
9: b = b0

Generate dialogue using ε-greedy policy
10: repeat
11: t← t+ 1
12: Get user turn au,t and update belief state b

13: b̂t ← SummaryState(b)

14: âm,t =

{
RandomAction() with probabilityε

π(Nearest(b̂,B)) otherwise

15: record 〈b̂t, âm,t〉, T ← t
16: until dialogue terminates with reward R from user simulator
17: until converged

Scan dialogue and update B, Q and N
18: for t← T, 0 do
19: if ∃bk ∈ B, |b̂t − b̂k| < δ then . update the nearest point in B

20: Q(b̂k, âm)← Q(b̂k,âm)∗N(b̂k,âm)+R

N(b̂k,âm)+1

21: N(b̂k, âm)← N(b̂k, âm) + 1
22: else . create new grid point
23: add b̂ to B
24: Q(b̂, âm)← R
25: N(b̂, âm)← 1
26: end if
27: R← γR . discount the reward
28: end for
29: end procedure

18

2.4. Error simulator 19

Algorithm 2 k nearest neighbour Monte Carlo Control algorithm

1: procedure Train(reward)
2: Let Q(b̂, âm) ← expected reward on taking action âm from belief point b̂
3: Let N(b̂, âm) ← number of times action âm is taken from belief point b̂
4: Let B be a set of grid points in belief space
5: Let {b̂k}knn be a list with the k nearest neighbours of b̂t in B
6: Let t be number of steps it took for the dialog to complete
7: for t← T, 0 do
8: if ∃bk ∈ B, |b̂t − b̂k| < δ then . update the nearest point in B
9: for each b̂k in {b̂k}knn do

10: w ← Φ(b̂t, b̂k) . Φ weighting function

11: Q(b̂k, âm)← Q(b̂k,âm)∗N(b̂k,âm)+R∗w
N(b̂k,âm)+w

12: N(b̂k, âm)← N(b̂k, âm) + w
13: end for
14: else . create new grid point
15: add b̂ to B
16: Q(b̂, âm)← R
17: N(b̂, âm)← 1
18: end if
19: R← γR . discount the reward
20: end for
21: end procedure

Algorithm 3 Belief Update with Recombination

1: procedure Prune(reward)
2: Let o′ be an observation from the N -best input
3: Let p be a partition and its belief b(p)
4: Let h be a hypothesis and its belief b(h)
5: repeat for each dialogue turn

Belief Update
6: Partition each p using slot-value pairs from the last system action am
7: Initialise b′(p) = 0 for all partitions p in the current set of partitions
8: for each o′ in the N -best list do
9: Partition each p using slot-value pairs from o′

10: for each partition p′ in the current set of partitions do
11: for create new hypothesis h′ from previous hypothesis h and o′ do
12: b′(h′) = P (o′|a′u)P (a′u|p′, am)P (h′|h, p′, au, am)P (p′|p)b(h)
13: b′(p′) = b′(p′) + b′(h′)
14: end for
15: end for

Partition Recombination
16: Recombine partitions w.r.t the current updated belief b′(p′)
17: end for

Action Selection
18: Choose the next system action a′m according to b′(h′)
19: until dialogue ended
20: end procedure

19

20 2. Background

Algorithm 4 Belief Update with Pruning

1: procedure Prune(reward)
2: Let o′ be an observation from the N -best input
3: Let p be a partition and its belief b(p)
4: Let h be a hypothesis and its belief b(h)
5: Let d be a slot-value pair and p(d) its marginal probability
6: repeat for each dialogue turn

Pruning
7: for each applied slot-value pair d do
8: p(d) =

∑
p:d∈p

∑
h∈p b(h)

9: end for
10: Prune the list of the applied slot-value pairs w.r.t. p(d)

Belief Update
11: Partition each p using slot-value pairs from the last system action am
12: for each o′ in the N -best list do
13: Partition each p using slot-value pairs from o′

14: for each partition p′ in the current set of partitions do
15: for create new hypothesis h′ from previous hypothesis h and o′ do
16: b′(h′) = P (o′|a′u)P (a′u|p′, am)P (h′|h, p′, au, am)P (p′|p)b(h)
17: b′(p′) = b′(p′) + b′(h′)
18: end for
19: end for
20: end for

Action Selection
21: Choose the next system action a′m according to b′(h′)
22: until dialogue ended
23: end procedure

20

3. Phoneme-based error channel
confusion model

First, some background information on confusion models and the related work on phoneme-
level approaches, as well as on language understanding and language generation, needed for
the respective models used during confusion generation, is introduced. Then, the proposed
approach to the phoneme based confusion model is presented.

3.1. Introduction

The strength of the stochastic approach when developing a dialogue manager lies in the
fact that it naturally takes advantage of large amounts of data. Data is used to estimate
model parameters in order to optimize the performance of the system. Usually the more
data the system is trained with, the higher the resulting performance on new data is.
Moreover, since the training is done automatically and requires little or no supervision,
new applications can be developed at the cost of collecting new data, if needed at all. This
is both an advantage and a disadvantage of the data driven approach - data collection
itself is very expensive and can be really hard to set up. One of the biggest issues when
working on a new domain, even with an already implemented dialogue manager is the
necessity for training data to bootstrap the dialogue manager. A lot of effort needs to
be invested for both handcrafted and statistical dialogue managers in order to train the
framework for the new domain. In the case of a handcrafted dialogue system a domain
expert needs to model the dialogue flow, all possible user requests and system responses,
which involves a lot of manual work. In the case of a statistical spoken dialogue system,
as the one described in the previous chapter the effort for training the system is somewhat
automated with the user simulator described in Section 2.3, but one still needs to collect
training data for the error channel simulator.

Most error simulation approaches do not take into account the acoustic confusability of
individual words and utterances. This limitation might be overcome by error simulation
based on phonetic confusions ([DMA03], [Pie04], [FLAK02], [SWY04]) where word se-
quences are first mapped to phoneme sequences using a pronunciation dictionary and then,
confusions are generated using a set of probabilistic phoneme conversion rules ([DMA03]),
or a handcrafted phone confusion matrix ([Pie04]), or weighted finite state transducers
([FLAK02], [SWY04]). Finally, the confused sequence is mapped back to a word sequence
using a dictionary and then may be optionally weighted using a language model.

21

22 3. Phoneme-based error channel confusion model

Although phoneme-level confusion models have been proven to produce promising results,
they often need a large amount of training data to model context-dependent phoneme
confusions which is not in line with the goal of this work.

In the next section a similar, simple approach is presented which would allow for a com-
pletely automated bootstrapping of a spoken dialogue system that is more robust to noise
and requires no training data. The only prerequisite is an existing domain ontology (see
Section 2.2.2). The algorithm is shown in Figure 6 and the subsequent sections describe
the different models used throughout.

3.1.1. Natural language generation

There are many application programs in everyday use that automatically generate texts
but only few of these programs use linguistic and knowledge-based techniques. Almost all
other systems use programs that simply manipulate character strings, in a way that uses
little, if any, linguistic knowledge. The approach is also known as the ’template’ approach.

One reason for using natural language generation (NLG) is maintainability; template-
based generators can be difficult to modify according to changing user needs ([GDK94]).
Making even a slight change to the output of a template-based generator may require a
large amount of template rewriting; in contrast, such a change may be straightforward to
make in a linguistically-based system.

Another advantage of NLG-based systems is that they can produce higher-quality output.
Most applied NLG systems have a sentence planning module that handles aggregation,
referring-expression generation, sentence formation, and lexicalization ([RML95]). Per-
forming these tasks well can greatly enhance the readability of a text. Sentences that
are comprehensible but ungrammatical can be annoying to the user, and it may be ex-
pensive (in terms of programming effort) to set up a template system to correctly handle
agreement, morphology, punctuation reduction, and other ’low-level’ lexical features. It is
straightforward, in contrast, for an NLG system to handle such phenomena.

Another advantage of NLG that might be important in some cases is multilingual output.
Support for multiple languages can also be achieved with templates to a certain degree;
many systems are localized to other languages simply by inserting a new set of format
strings. The quality of texts generated by this approach is not high, but this may be
acceptable in some circumstances. At the other extreme, multilingual output could also
be achieved by building several separate systems, one for each target language. Such a
system would be more expensive to build and might prove difficult to maintain.

The job of the NLG module is to translate the DM intended actions a in a sequence of words
t. Several methods are generally used, ranging from using recorded spoken utterances or
handwritten prompts to automatically generated sentences. Although most systems use
recorded prompts or more generally human authored prompts, the possibility of generating
more natural sentences thanks to an NLG system is a novel research area in the framework
of SDSs ([WRR02]). For this work an already existing framework for natural language
generation was used - SimpleNLG ([GR09], [Rei95], [VR08])

SimpleNLG is a Java library that provides interfaces offering direct control over the sen-
tence realization process, that is, over the way phrases are built and combined, inflectional
morphological operations, and linearization. It defines a set of lexical and phrasal types
corresponding to the major grammatical categories, as well as ways of combining these
and setting various feature values.

Constituents in SimpleNLG can be a mixture of canned and non-canned representations.
This is useful in applications where certain inputs can be mapped to an output string in a

22

3.1. Introduction 23

deterministic fashion, while others require a more flexible mapping to outputs depending,
for example, on semantic features and context. SimpleNLG tries to meet these needs
by providing significant syntactic coverage with the added option of combining canned
and non-canned strings. Another aim of the engine is robustness: structures which are
incomplete or not well-formed will not result in a crash, but typically will yield infelicitous,
though comprehensible, output. A third design criterion was to achieve a clear separation
between morphological and syntactic operations. The lexical component of the library,
which includes a wide-coverage morphological generator, is distinct from the syntactic
component. This makes it useful for applications which do not require complex syntactic
operations, but which need output strings to be correctly inflected.

3.1.2. Natural language understanding

The Phoenix parser is designed for development of simple, robust Natural Language inter-
faces to applications, especially spoken language applications. Because spontaneous speech
is often ill formed and because the recognizer will make recognition errors, it is necessary
that the parser be robust to errors in recognition and grammar.

The Phoenix parser maps input word strings onto a sequence of semantic frames. A
Phoenix frame is a named set of slots, where the slots represent related pieces of infor-
mation. Each slot has an associated Context-Free Grammar that specifies word string
patterns that match the slot. The grammars are compiled into Recursive Transition Net-
works (RTNs). When filled in by the parser, each slot contains a semantic parse tree for
the string of words it spans. The root of the parse tree is the slot name. In a search
algorithm very similar to the acoustic match producing a word graph, grammars for slots
are matched against a word string to produce a slot graph. The set of active frames defines
a set of active slots. Each slot points to the root of an associated Recursive Transition
Network. These networks are matched against the input word sequence by a top-down
Recursive Transition Network chart parsing algorithm. The parser proceeds left-to-right
attempting to match each slot network starting with each word of the input, as shown in
Algorithm 5.

Algorithm 5 Net matching algorithm

1: procedure Match(input)
2: for each word in input do
3: for each slot in active slots do
4: MatchNet(slot, word)
5: end for
6: end for
7: end procedure

The function MatchNet is a recursive function that matches an RTN against a word
string beginning at the specified word position. The function produces all matches for
the network starting at the word position, and may have several different endpoints. The
networks are not designed to parse full sentences, just sequences of words. The Recursive
Transition Networks for the slots call other nets in the matching process. Each time a
net match is attempted (all nets, not just slots), this is noted in the chart. All matched
networks are added to the chart as they are found. Any time a net match is attempted,
the chart is first checked to see if the match has been attempted before. When a slot
match is found, it is added to the slot graph. Each sequence of slots in the slot graph
is a path. The score for the path is the number of words accounted for by the sequence.
Words are not skipped in matching a slot, but words can be skipped between the matched
slots. The graph growing process prunes poor scoring paths, just as the acoustic search

23

24 3. Phoneme-based error channel confusion model

does. The pruning criteria are first, number of words accounted for and second, the degree
of fragmentation of the sequence. If two paths cover the same portion of the input and
one accounts for more words than the other, the less complete is pruned. If the two paths
account for the same number of words, and one uses fewer slots than the other, the one
with more slots is pruned. The resulting graph represents all of the sequences found that
have a score equal to the best. The sequences of slots represented by the graph are then
grouped into frames. This is done simply by assigning frame labels to the slots. Again
in this grouping, less fragmented parses are preferred. This means that if two parses
each have five slots, and one uses two frames and the other uses three, then the parse
using two frames is preferred. The result is a graph of slots, each labelled with one or
more frame labels. Each path through the graph, all scoring equally, is a parse. This
mechanism naturally produces partial or fragmented parses. The dynamic programming
search produces the most complete, least fragmented parse possible, given the grammar
and the input.

3.2. Confusion model

The natural generation library used for this approach allows for a relatively easy generation
of sentences out of dialogue acts. Each dialogue act type is mapped to a certain sentence
feature. For example request(address, name=Edeka) acts generate the sentence What is the
address of Edeka?. Another example is dialogue acts that require the generated sentence
to be a question, e.g. reqmore() is materialized as Are there any more?. This allows for a
generic handling of a multitude of spoken dialogue system domains, without any specific
hardcoded domain knowledge.

One weakness of this approach is that some more complicated sentences may sound some-
what ungrammatical to the user, as those require very special case handling, depending
on the information that is conveyed. For example some request() acts may sound more
natural, if the determiner where was used instead of what. Another example would be
the handling of sentences that convey a specific type of information - such as temporal.
Thus, the existing system can be improved by introducing a grammatical tagging at the
ontology level, supplying more information about the domain keywords. Usually such a
task can be automated with a part-of-speech tagger (POS tagger), which is marking up
a word in a text (corpus) as corresponding to a particular part of speech (such as noun,
verb, adjective), based on both its definition, as well as its context — e.g. relationship
with adjacent and related words in a phrase, sentence, or paragraph. Unfortunately none
of the POS taggers that were evaluated for this task offer the level of granularity that is
required - while all of them correctly identify the word central as an adjective, none of
them provide more information regarding the type of adjective - locational in this case.

For the task of phoneme generation the CMU pronunciation dictionary was used. Besides
the word coverage (125000 North American English words), another big advantage is that
it is machine readable and allows for automated offline processing. The current phoneme
set has 39 phonemes, not counting variations due to lexical stress. This phoneme set is
based on the ARPAbet symbol set developed for speech recognition uses and it is shown
on Table C.1.

During application startup the dictionary is read and the data is put into a radix tree data
structure. The edges of the tree are labelled with the phonemes from the pronunciation
alphabet and the nodes contain the words from the dictionary. By looking up the path
from a given node to the root of the tree one will get the pronunciation for the given word.
The data structure used allows for fast lookup during runtime and reduces the memory
footprint of the application. For example, the phoneme representation of the sentence I

24

3.2. Confusion model 25

am looking for a Chinese restaurant. would look as follows AY AE M L UH K IH NG F
AO R AH CH AY N IY Z R EH S T ER AA N T.

The next step in the confusion generation model is to create a phoneme graph out of the
phoneme sequence. In order to be able to represent all possible mispronunciations within
a sentence a similarity mapping between phonemes is needed. The mapping in Table D.2
has been derived from the WorldBet phonetic alphabet and adapted for ARPAbet. Each
phoneme in the previously generated phoneme sequence is expanded to a graph layer,
based on the similarity mapping. The phoneme graph for the sentence I am looking for a
Chinese restaurant. would then be represented by the following graph, which is the input
model for the next processing stage.

AY

AA

IY

OY

EY

AE

EH

ER

AH

M

N

L

R

W

UH

AO

AX

UW

UW

K

G

T

HH

...

AA

AH

ER

AO

N

M

NG

T

CH

K

D

P

HH

Figure 3.1.: Example phoneme graph

The robustness of the language understanding system depends on how the frames and
grammars are structured. Using one frame with one slot will produce a standard CFG
parser. This is efficient, but not very robust to unexpected input. At the other extreme,
making each content word a separate slot will produce a keyword parser.

In our model we use the latter approach: each content word found in the ontology repre-
sents a separate slot. This requires no domain knowledge and provides for easy automation.
Once the domain ontology is ready (or at least a release candidate thereof) the system can
automatically generate configuration files for the Phoenix parser. These not only contain
the aforementioned keywords, but also key-value pairs for all atomic nodes in the ontology.
This provides a very easy way to bootstrap the NLU component without any manual work.

One disadvantage of this approach is that while language understanding works quite reli-
ably, the generation of incorrect NLU hypothesis is somewhat limited. This is due to the
fact, that the domain ontology usually consist only of few hundred words and within this
dictionary there are not many similarly-sounding words. This is why during the grammar
generation for the Phoenix parser the domain dictionary has been artificially extended by
added synonyms for each word from the WordNet database.

Before feeding the phoneme graph model to the language understanding component all
possible graph paths need to be enumerated. Different algorithms for the traversal of
the graph were evaluated and the depth-first-search algorithms proved to have the best
performance with the data structures currently used throughout the model. Once all
confusion candidates are determined they are passed to the language understanding model.
The NLU parser then determines if the candidate is a valid sentence by consulting the
grammar described previously and returns a semantic representation (see Section 2.2.3) of
the sentence. The resulting dialogue acts then represent the confusion model that is used
in the error channel framework presented is Section 2.4.

25

26 3. Phoneme-based error channel confusion model

Algorithm 6 Phoneme-based confusion model.

1: procedure Confuse(useracts)
2: Let am ← machine dialogue act
3: Let confusion list be empty
4: sentence← GenerateSentence(am)
5: words← Tokenize(sentence)
6: phonemes← Transcribe(words)
7: graph← BuildGraph(phonemes)
8: list of confusion candidates ← TraverseGraph(graph)
9: for each candidate in list of confusion candidates do

10: confusion← NLUParse(candidate)
11: put confusion in confusion list
12: end for
13: return confusion list
14: end procedure

26

4. Implementation

One of the most common issues with research frameworks is that they are not very well
designed from architectural point of view. Most of them are a collection of scripts, which
makes it really hard to incorporate changes in them. The lack of architecture and proper
extensibility points were some of the main issues that were addressed in this dialogue man-
ager. The leading design principles were that the framework should be easily extendable,
the core objects should be immutable and no domain information should be hardcoded.
This is achieved by using two common design principles from software engineering - de-
pendency injection and inversion of control (IoC).

In traditional programming, the flow of the business logic is determined by objects that
are statically bound to one another. With inversion of control, the flow depends on the
object graph that is built up during program execution. Such a dynamic flow is made
possible by object interactions being defined through abstractions. This run-time binding
is achieved by mechanisms such as dependency injection or a service locator. In IoC, the
code could also be linked statically during compilation, but finding the code to execute by
reading its description from external configuration instead of direct reference in the code
itself.

Inversion of control carries the strong connotation that the reusable code and the problem-
specific code are developed independently even though they operate together in an appli-
cation. Software frameworks, callbacks, schedulers, event loops and dependency injection
are examples of design patterns that follow the inversion of control principle, although the
term is most commonly used in the context of object-oriented programming.

Inversion of control serves the following design purposes:

• To decouple the execution of a task from implementation.

• To focus a module on the task it is designed for.

• To free modules from assumptions about how other systems do what they do and
instead rely on contracts.

• To prevent side effects when replacing a module.

In dependency injection, a dependent object or module is coupled to the object it needs at
run time. Which particular object will satisfy the dependency during program execution
typically cannot be known at compile time using static analysis.

27

28 4. Implementation

In order for the running program to bind objects to one another, the objects must possess
compatible interfaces. For example, class A may delegate behaviour to interface I which
is implemented by class B; the program instantiates A and B, and then injects B to A.

4.1. Matching

Matching is used during both the partitioning and the belief update processes and is a
crucial part of the dialogue manager. The core functionality of the matcher is contained
within the Partition class (see Figure 4.2). Each dialogue act from the N -best input list is
matched against the partition tree. The first step of the matching process is to augment
the dialogue act items from the current user act with the act items from the last system
act. In case of a hello(), inform(), reqalts() or request() only the act items from the user act
are considered. In case of an affirm() the list with augmented dialogue act items contains
all act items from the user act and all act items from the system act, but only if the system
act was a confirm().

sys: confirm(a=x)
user: affirm(b=y)
augmented items are a=x and b=y

If the user negated (negate()) the last system act, then in addition to all user act items,
negations of all system act items that were not explicitly corrected by the user are consid-
ered.

sys: confirm(a=x)
user: negate(a=y)
augmented items are a=y

sys: confirm(a=x)
user: negate(b=y)
augmented items are b=y and a!=x

In case of a deny() user act, a negation of the first user act item and all other act items
are added to the augmentation list.

sys: confirm(a=x)
user: deny(a=y)
augmented items are a!=y

sys: confirm(a=x,b=z)
user: deny(a=y,c=w)
augmented items are a!=y and c=w

4.2. Partitioning

The implementation of the dialogue manager follows a couple of design principles one
of them being the immutability principle. One notable exception is the Partition class,
which acts as an interface for several different components and thus allows for setting
certain properties, such as belief, prior probabilities, partition values and child partitions.

28

4.2. Partitioning 29

User act System act Augmented items

hello(a=x,b=y) - a=x, b=y
inform(a=x,b=y) - a=x, b=y
reqalts(a=x,b=y) - a=x, b=y
request(a,b=x) - a, b=x
affirm() confirm(a=x) a=x
affirm(b=y) confirm(a=x) a=x, b=y
negate() confirm(a=x) a!=x
negate(b=y) confirm(a=x) a!=x, b=y
deny(a=x,b=y) - a!=x, b=y

Table 4.1.: Summary of user and system dialogue act augmentation

Partition

- rootNode : ClassNode
- belief : double = 1
- matchingUserActs : List<DialogueAct>
- history : DialogueHistory
- parent : Partition
- children : List<Partition>

+ match(userAct : DialogueAct, sysAct : DialogueAct) : boolean
+ attach(userAct : DialogueAct) : void

Figure 4.1.: UML model of the Partition class

4.2.1. User goal state representation

At low level the extended user goal node representation is implemented as a HashMap
of String and Boolean. The initial value of the node is empty and the hashmap is filled
with values in course of the dialogue. The state representation does not check whether the
values for the given lexical in the hashmap are defined in the ontology and no validation
is performed. As shown in previous research ([GY11]) incorporating logical expressions as
part of the goal state representation has several advantages. This incorporation is achieved
with the Boolean parameter of the hashmap, which allows for representing multiple values
with different signs within a single goal node, e.g. ¬Chinese ∧ Italian ∧ French ∧ Thai.

4.2.2. Partitioning

The first step of the partitioning process is to determine whether a partition splitting is
even necessary. In case there is already a partition that represents the user’s intention,
the partitioning step is skipped for the given user act. If the user act cannot be matched
against the partition tree, the tree is expanded using the domain ontology rules. First,
the dialogue act items from both the user and the last system acts are augmented. Then,
for each act item, a superior list is generated by the ontology, which contains all possible
paths from the given act item to the ontology root. Given the ontology in Figure A.1, the
superior list of the lexical node name would contain only one entry (as the node is directly
connected to the root ontology node). The list of superiors for name would be:

name=null → entity=value

A more complicated example would be to query the superiors list of a node, that is con-
nected to the root ontology node via multiple paths. The list of superiors for hasinternet
would be:

29

30 4. Implementation

hasinternet=null → type=placetostay → entity=venue
hasinternet=null → drinktype=bar → type=placetodrink → entity=venue
hasinternet=null → drinktype=pub → type=placetodrink → entity=venue

Algorithm 7 Ensure partition algorithm

1: procedure Ensure Path(path)
2: current← rootpartition
3: for each segment in path do
4: for each child partitions in current do
5: if child matches segment then
6: current← child
7: break
8: end if
9: end for

10: current← Partition(current, path) . returns the newly created partition
11: end for
12: end procedure

The next step of the partitioning process is to ensure that for every segment of every
superior path there is a matching partition in the partition tree. Starting from the root
segment in the superior list, the partitioner ensures that a partition containing the given
key-value pair exists; if not, the parent partition is split and the required partition is
instantiated. The recursive search starts from the root partition and from the root path
segment by selecting the root partition as the current partition and the root segment as
the current key-value pair. At each step, each child partition of the current partition
is queried whether it contains the current key-value pair, and if there is such a child
partition, then it is set as the current partition and the process is repeated for the next
path segment. If no child partition matches the current path segment, the current partition
is split. During the splitting process, the current partition is cloned and the partition slot
in the cloned partition is initialized to match the key-value pair (e.g. entity=venue). The
partition slot is also initialized for the current partition, but the key-value pair is negated
(e.g. entity!=venue). The newly created partition is then set as the current partition and
process is repeated iteratively for every path segment.

Assuming that the user’s intent is to find a place with internet connection (expressed with
the inform(hasinternet=true) dialogue act) and an initial partition tree (with only one
node which in turn contains only the root ontology node - entity()), the partitioner first
has to ensure that there is a partition where entity=venue (the root path segment in the
superior list). The root node of the partition tree is split so that a new partition is created
(venue()) and the root partition is modified to include the complement of the current
key-value pair (!venue()).

When a partition is split the belief for both old and new partition is updated. For the
case of a non-terminal node, the partition split probability P (p′|p) is specified as a prior
in the domain ontology rules (e.g. entity -> venue(type, area, name, addr, near, phone,
comment) 1.0). This prior can be estimated by counting the occurrences of each class
type in a training corpus. However, for the case where an atomic value a is assigned
to a terminal node x, using a simple prior for P (p′|p) = P (a|x) would severely under-
estimate the probability since in practice it will be heavily conditioned by the values of
the other terminal nodes in the goal tree. Hence, in this case, P (p′|p) is estimated as
ne(x, a, su)/ne(x, su) where the numerator is the number of database entities consistent
with the current goal hypothesis su when x = a and the denominator is the number of
database entities consistent with su when x is unspecified.

30

4.3. Partition pruning 31

After calculating the partition priors, the belief for both the old and the new partitions
can be determined. To do so first we need to calculate the belief fraction coefficient bfp′,p,
which is based on the partition priors.

bfp′,p =

P (p′)

(P (p′) + P (p))
P (p′) 6= 0 ∨ P (p) 6= 0

0 otherwise
(4.1)

Based on the belief fraction coefficient, the belief probability for the newly split partition
is b(p′) = b(p)bfp′,p. The belief for the old one is updated to b(p) = b(p)− b(p′). The belief
fraction is then used to update the belief of the dialogue history hypotheses associated
with both partitions. For more information please see Section 4.4.

4.3. Partition pruning

As the dialogue progresses, the number of partitions grows, especially if the environment
is noisy and the length of N-best input list of dialogue acts is large, which can cause
computational and memory issues. Reducing the number of input items is not a feasible
solution, because it can be very limiting for the dialogue manager. The pruning techniques
previously described in Section 2.2.7 are made available to the dialogue manager via the
interface IPruningStrategy.

<<interface>>
IPruningStrategy

+ prune(p : Partition) :
void

AppliedSlotValuePruning RecombinationPruning

Figure 4.2.: UML model of the pruning package

Partition pruning is done at the beginning of the dialogue turn, before processing the
incoming N-best list of dialogue acts. The reasoning behind this is to prevent information
loss coming from the new dialogue acts. There are few conditions that trigger the pruning
process. The first one is that a pruning strategy must have been configured beforehand.
This is due to the fact that the IPruningStrategy interface (see Figure 4.3) is optional
from a dependency injection point of view, so the dialogue manager will boot up and will
not complain that some of the required dependencies are missing. The second constraint is
that pruning as previously described is only triggered when the number of partitions grows
above a certain threshold. This threshold is currently configurable with the configuration
property partitioning.maxNumberOfPartitions. If both prerequisites are evaluated as true,
then the root partition from the partition tree is supplied as an argument to the pruning
strategy interface.

4.4. Dialogue history

The dialogue history package can be broken down to three classes. Starting from the
lowest level, the SlotHistory class contains the finite state machine for one user goal node.
The state machine itself is represented by a Stack structure containing all visited states,
transitioning to a new state means pushing the state into the stack. State transitions

31

32 4. Implementation

DialogHistory

+ update(userActs : DialogueAct[], sysAct : DialogueAct) : void

DialogHistoryHypothesis

- belief : double

+ update(userAct : DialogueAct, sysAct : DialogueAct) : void

SlotHistory

+ transition(userAct : DialogueAct, sysAct : DialogueAct) : void

hypos

0..*

slots

0..*

Figure 4.3.: UML model of the classes within the history package

themselves are basically independent on the current state (with the exception of the final
states) so when a state transition takes place, only the type of the input dialogue act is
considered.

State Description

Init Initial state
UReq Item requested by user with expectation of an immediate answer
UInf Item supplied by user during formation of a query
SInf Item supplied by system
SQry Item queried for confirmation by system
Deny Item denied
Grnd Item grounded

Table 4.2.: List of slot states

The transition method assumes the user dialogue act and the last system act as method
parameters and then handles the system act transition, user act transition and an optional
special case transition in succession. First, the SlotHistory checks whether the finite state
machine is in a final state (Deny or Grnd) and if it is, no further transition takes place.
Next, the system dialogue act from last turn is handled. If the last system act was a
hellosystem or informsystem, the state machine transitions to the SInf state. Due to a
design decision that only the user can ground nodes a transition to the SInf state also
takes place when encountering a confirmsystem or affirmsystem system act. requestsystem
and selectsystem cause the state machine to transition to the SQry state. Depending on
whether the confreqsystem act has a value for the user goal node (confirming the value to
the user) or not (requesting a value from the user), the state machine transitions to SInf
or SQry respectively. The byesystem act does not change the grounding state of the node.
An exception is thrown, if an unknown dialogue act type is encountered.

Once the system act is handled, the user act is processed in the same way. hellouser,
informuser and negateuser transition to UInf and requestuser to UReq. The only way
that the state machine can enter one of the final states Grnd or Deny is when the user
confirms/affirms or denies the user goal node respectively (confirmuser, affirmuser or
denyuser). No transition takes place when the user closes the dialogue or requests an

32

4.5. Policy 33

alternative solution (byeuser and reqaltsuser). An exception is thrown, if an unknown
dialogue act type is encountered.

The above mentioned special case occurs when the slot name is present in the last system
act, but is not explicitly mentioned by the user. In this case, the finite state machine
transitions to one of the final states depending on the user act type. The user goal node
gets grounded in case of one of the following acts - hellouser, informuser, confirmuser,
affirmuser, requestuser. If the user does not explicitly mention a slot mentioned by the
system, the dialogue manager construes this as an implicit confirmation.

In addition to the transition method, the SlotHistory offers several public state query-
related methods. One can also query the state history using the getHistory method.

The dialogue history hypothesis is represented by the DialogHistoryHypothesis class which
is basically a wrapper around multiple SlotHistory objects. The update method provides
an entry point for updating the dialogue history hypothesis by supplying an user act and
the last system act. The method goes on to ensure that there are SlotHistory objects for
all user goal nodes mentioned in both dialogue acts and then updates them one by one.
At the end of the update process, the identical dialogue hypotheses are merged and the
belief of the identical hypotheses are aggregated. Two dialogue hypotheses are considered
equal, if they apply to the same slots (the slots array for both objects contains the same
objects) and if the grounding states for all slots are equal. When looking at the grounding
states, only the one at the top of the stack is considered and not the whole history for a
given slot. The DialogHistoryHypothesis exposes further convenience methods for getting
all initialized user goal node names, getting ungrounded slot names, etc.

As previously mentioned, the grounding states of nodes in the user goal trees are not
deterministic. Any node may have multiple states depending on the dialogue history that
led to the current state. All possible dialogue history hypotheses are encapsulated in the
DialogHistory class. Within the update method, the class takes the n-best list of user
acts and the last system act and updates the current hypotheses (and creates new ones,
if necessary). If the n-best input list contains multiple dialogue acts, then a snapshot of
the current history hypotheses is created and the history itself is deleted. Next, for each
dialog act from the n-best list, the snapshot is cloned, each hypothesis in the cloned list is
updated and added to the hypotheses list.

The belief probability associated with each DialogHistoryHypothesis (see Figure 4.4) is
calculated during the partitioning process (see Section 4.2). Using belief fraction coefficient
4.1, the belief for the new and old dialogue history hypothesis is b(h′) = b(h′)bfp′,p and
b(h) = b(h)(1− bfp′,p), respectively.

4.5. Policy

4.5.1. Handcrafted policy

The handcrafted policy consists of several simple heuristics which determine the summary
act to be selected. If the partition is still in its initial state (no partitioning took place),
the greet action is selected. In case the partition represents a small number of entities (or
maybe event uniquely identifies an entity), then the offer action is selected. If the top
hypothesis is rejected or the user explicitly requested an alternative, the findalt action is
selected. If the user has requested more information about the selected entity, then inform
is selected. Finally, if there is an ungrounded user goal node in the top hypothesis, either
confreq (if the belief is above 0.5) or confirm (if the belief is 0.5 or below) is selected;
otherwise, a request action is selected with the goal of expanding one of the partition’s leaf
nodes.

33

34 4. Implementation

Algorithm 8 Update dialogue history

1: procedure UpdateHistory(userActs, sysAct)
2: if Length(userActs) ≥ 2 then
3: UpdateMultiple(userActs, sysAct)
4: else
5: UpdateSingle(First(userActs), sysAct)
6: end if
7: Cleanup(historyhypotheses)
8: end procedure

9: procedure UpdateSingle(userAct, sysAct)
10: for each hypo in historyhypotheses do
11: Update(hypo, userAct, sysAct)
12: end for
13: end procedure

14: procedure UpdateMultiple(userActs, sysAct)
15: snapshot← HypothesesSnapshot()
16: ClearHypotheses()
17: for each userAct in userActs do
18: clonedhypotheses← Clone(snapshot)
19: for each hypo in clonedhypotheses do
20: Update(hypo, userAct, sysAct)
21: end for
22: end for
23: AddToHypotheses(clonedhypotheses)
24: end procedure

4.5.2. Summary space

Each summary belief point is a vector consisting of the probabilities of the top two hy-
potheses in master space; two discrete status variables, h-status and p-status, summarizing
the state of the top hypothesis and its associated partition; and the type of the last user
act.

In case the hypothesis is not yet initialized (this only happens at the start of the dialogue
when the partition is still in its initial state and there is no dialogue history) or the
partition is still in its initial state, the p-status of the summary belief point is set to initial.
Otherwise, depending on the number of database entities associated with the partition the
p-status is set to unknown (no entities), unique (one entity), smallgroup (three entities or
less are associated with the partition) or hugegroup (more than three entities).

In case the hypothesis is not yet initialized, the h-status of the summary belief point is set
to initial. If there are no database entities consistent with the given user goal, the h-status
is set to notfound. If the user has already accepted an entity that is consistent with the user
goal, the h-status is set to accepted. If the system has offered an entity that is consistent
with the user goal, the h-status is set to offered. If the dialogue history associated with
the dialogue hypothesis has grounded nodes, the h-status is set to supported. Otherwise
the h-status is set to initial.

Belief points are generated on demand during the policy optimization process. Starting
from a single belief point, every time a belief point is encountered which is sufficiently
far from any existing point in the policy grid, it is added to the grid. The inventory of

34

4.5. Policy 35

<<interface>>
IPolicy

+ pickAct(b : SummaryBeliefPoint) : SummaryAct
+ pickActNBest(b : SummaryBeliefPoint, n: int) : SummaryAct[]

EasyPolicy <<interface>>
ITrainablePolicy

+ feedback() : void

<<abstract>>
EpsionGreedyPolicy

summarySpace : SummarySpace

SummaryStatePolicy SummaryStateKnnPolicy

Figure 4.4.: Class hierarchy of the policy package.

grid points is thus growing over time until a predefined maximum number of stored belief
vectors is reached. The number of maximum belief vectors is currently set to 1000 and
can be configured with the training.maxNumberOfBeliefVectors property.

4.5.3. Monte Carlo policy

During each dialogue turn, a random number 0 < β < 1 is generated and if ε > β, a
random summary act is chosen. Otherwise, the policy searches for the nearest belief point
to b̂ in summary space B and returns the summary action âm that is associated with the
highest expected reward. In the edge case that the summary space B is empty the default
greet action is selected.

π(b̂) = arg max
âm

Q(b̂, âm), ∀b̂ ∈ B (4.2)

Additionally, an ε value decay is implemented. At the end of each dialogue, the ε value
is decreased until it reaches a given threshold. The reasoning behind this is to favour
exploration of the new states at the beginning of the training epoch and then handle the
initiative to the policy as the training progresses. ε is set to decrease linearly from 1
to 0.1 within 10000 dialogues, but can be configured with the policy.epsilonInitial, pol-
icy.epsilonTreshold and policy.epsilonDecreaseRate properties, respectively.

Algorithm 9 Generate dialog using ε-greedy policy

1: b̂t ← SummaryState(b) . summary belief point b

2: âm,t =

{
RandomAction() with probabilityε

π(Nearest(b̂,B)) otherwise

3: record 〈b̂t, âm,t〉

35

36 4. Implementation

4.5.4. k-nn Monte Carlo policy

An improvement of the Monte Carlo algorithm (presented in [LGJ+09]) which uses the k
nearest neighbour method to obtain a better estimate of the value function, represented
by the belief points’ Q values, was also implemented. To obtain good estimates of the
value function interpolation, the k -nn Monte Carlo policy uses a simple weighting scheme
based on a nearly Euclidean distance (4.3).

|b̂i − b̂j | =
2∑

d=1

αd ·
√

(b̂i(d)− b̂j(d)) +
5∑

d=3

αd · (1− δ(b̂i(d), b̂j(d))) (4.3)

πknn(b̂) = arg max
âm

∑
{b̂k}knn

Q(b̂k, âm)× Φ(b̂k, b̂) (4.4)

The following kernel function is used for the weighting:

Φ(b̂1, b̂2) = e−|b̂1−b̂2|
2

(4.5)

4.6. Policy training

<<interface>>
IPolicyTrainer

+ record(bt : SummaryBeliefPoint, amt : SummaryAct) : void
+ train(reward : int) : void

<<abstract>>
BaseMonteCarloTrainer

MonteCarloTrainer KnnMonteCarloTrainer

Figure 4.5.: UML model of the major policy training classes

4.6.1. Monte Carlo policy training

The IPolicyTrainer interface provides two methods - record to record the current belief
point b̂ and train to run the policy training after the dialogue is completed.

During the dialogue the trainer records all belief points b̂t that were encountered and
the summary act âm,t that was chosen by the policy. After the dialogue terminates with

reward r from the user simulator for each recorded 〈b̂t, âm,t〉 pair, starting from the last

one, the algorithm finds the nearest belief point b̂k to b̂t and if the distance between b̂k
and b̂t is smaller than the threshold δ, the Q and N values of b̂k are updated (4.6 and 4.7).
If the distance exceeds the threshold, the belief point b̂t is added to the belief grid space
B and the Q and N values are initialized to r and 1, respectively. Finally the reward
r is discounted using the discount factor γ (currently set to 0.95 and configurable via
training.discountFactor).

Q(b̂k, âm) =
Q(b̂k, âm) ∗N(b̂k, âm) +R

N(b̂k, âm) + 1
(4.6)

N(b̂k, âm) = N(b̂k, âm) + 1 (4.7)

36

4.7. Knowledge base 37

Algorithm 10 Monte Carlo Control algorithm

1: procedure Train(reward)
2: Let Q(b̂, âm) ← expected reward on taking action âm from belief point b̂
3: Let N(b̂, âm) ← number of times action âm is taken from belief point b̂
4: Let B be a set of grid points in belief space
5: Let t be number of steps it took for the dialog to complete
6: for t← T, 0 do
7: if ∃bk ∈ B, |b̂t − b̂k| < δ then . update the nearest point in B

8: Q(b̂k, âm)← Q(b̂k,âm)∗N(b̂k,âm)+R

N(b̂k,âm)+1

9: N(b̂k, âm)← N(b̂k, âm) + 1
10: else . create new grid point
11: add b̂ to B
12: Q(b̂, âm)← R
13: N(b̂, âm)← 1
14: end if
15: R← γR . discount the reward
16: end for
17: end procedure

4.6.2. k-nn Monte Carlo policy training

The k nearest neighbour method can be used to obtain a better estimate of the value
function represented by the belief points’ Q values. It is very similar to the Monte Carlo
Control algorithm but for two minor changes. During the record phase, in addition to the
belief point b̂t and summary act âm,t a list of the k nearest neighbours {b̂k}knn for belief

point b̂t is recorded. During the training phase, if there is a belief grid point b̂i within
the distance threshold from b̂t, the Q value is updated by averaging the Q-values of the
k-nn nearest neighbours. To obtain good estimates for the value function, local weights
are used based on the belief point distance (eq. 4.5).

Q(b̂k, âm) =
Q(b̂k, âm) ∗N(b̂k, âm) +R ∗ w

N(b̂k, âm) + w
(4.8)

N(b̂k, âm) = N(b̂k, âm) + w (4.9)

4.7. Knowledge base

The IKnowledgeRepository interface serves as a repository interface to the entity database.
It offers methods to fetch a random entity given some required attribute values (used dur-
ing the training phase) and queries the system for entities based on some search criteria
(used during the interaction between the dialogue manager and the user - either real or
simulated).

The entity database to be used for the tourist information scenario can be generated
automatically with the provided openstreetmap tool. The starting point is an OSM export
(in XML format) containing all desired entities. The XML file can be obtained by visiting
http://www.openstreetmap.org/ and lookup the desired city, click on the export button,
and write down the bounding box coordinates. Then use the Overpass XAPI to get all
amenities (including the metadata) within this bounding box. The order of the bbox
coordinates is as follows: west, north, east, south (clockwise starting from west). The
openstreetmap tool then reads the exported amenities file and generates a database with

37

38 4. Implementation

<<interface>>
IKnowledgeRepository

+ random() : Entity
+ random(values : Collection) : Entity
+ query(values : Collection) : Entity[]
+ count() : int
+ count(values : Collection) : int

Entity

- properties : Map

+ hasProperty(property : String) : boolean
+ getValue(property : String) : String
+ match(properties : Collection) : boolean

Figure 4.6.: Class hierarchy of the data package.

all valid entities by automatically filling some additional properties, such as nearby city
squares or plazas. Entities are considered invalid if the address information is missing and
cannot be retrieved via reverse geocoding.

4.8. Dialogue manager

<<interface>>
IDialogManager

+ turn(userActs : DialogueActWithProbability[]) : DialogAct

DialogManager

- partitionTree : PartitionTree
- policy : IPolicy
- trainer : IPolicyTrainer
- database : IKnowledgeRepository
- belief : IBeliefFunction
- ontology : Ontology
- identifiers : String[]
- sysActs : Stack<DialogueAct>
- offeredEntities : List<Entity>
- acceptedEntity : Entity

Figure 4.7.: UML model of the dialogue manager class

The DialogManager class is the entry point of the dialogue manager and it binds all of
the services explained in this section (see 4.8). The user calls the turn() method repeat-
edly until the dialogue terminates. The pseudocode of the turn method is presented in
Figure 11.

38

4.9. User simulator 39

Algorithm 11 Dialogue manager turn

1: procedure Turn(useracts)
2: Prune(partitiontree)
3: DetachAll(partitiontree) . detach all previously attached user acts
4: for each useract in useracts do
5: if notMatch(partitiontree, useract) then
6: Partition(partitiontree, useract, lastsystemact)
7: end if
8: end for
9: for each useract in useracts do

10: MatchAndAttach(partitiontree, useract, lastsystemact)
11: end for
12: UpdateHistory(partitiontree, lastsystemact) . user acts are already attached
13: hypotheses← CreateHypotheses()
14: for each hypo in hypotheses do
15: UpdateBelief(hypo)
16: end for
17: sbp← GetSummaryBeliefPointFromHypotheses(hypotheses)
18: HandleOfferedEntities()
19: summaryact← PickAct(policy, sbp)
20: if policytrainerispresent then
21: Record(trainer, sbp, summaryact) . record the summary belief point and

the summary act
22: end if
23: systemact← Expand(summaryact, hypotheses) . use heuristics to expand the

summary
24: return systemact
25: end procedure

Something that has not been addressed previously is the fact that the dialogue manager
keeps track of the entities that were offered to the user and whether or not the user has
accepted one of them. If they have, then this entity is used for the summary act expansion.

4.9. User simulator

Statistical data driven dialogue managers always require training to learn the optimal pol-
icy for interacting with the user. In the case of a reinforcement learning based system, the
training process cannot be done manually, due to the sheer number of training dialogues
required. For the purpose of automated training, a user simulator has been implemented
to interact with the dialogue manager and emulate the user’s behaviour. The user simu-
lator is based on the research of Schatzmann et al. [STW+07]. The UserSimulator class
uses the same design and architectural principles as the dialogue manager. Figure 4.9
provides a better overview of the interface methods and component dependencies of the
user simulator.

The first task when starting the user simulator is to initialize it by generating a random
goal to be used during the dialogue manager simulation. The goal is setup by fetching a
random entity from the entity database based on which the goal constraints and requests
are derived. In order to better mimic a real user, the emulated user also has a patience
model and an initiative model, that are also initialized in the UserSimulator’s init method
(see Figure 12).

39

40 4. Implementation

UserSimulator

- database : IKnowledgeRepository
- dialogueManager : IDialogueManager
- reward : IRewardFunction
- trainer : IPolicyTrainer
- errorChannel : IErrorSimulator
- agenda : Stack<DialogueAct>
- patienceModel : PatienceModel
- initiativeModel : double

+ init() : void
+ simulate() : SimulationResult

Figure 4.8.: UML model of the user simulator class

Algorithm 12 User simulator initialization

1: procedure Init
2: goal← RandomGoal()
3: InitGoalRequests(goal)
4: InitGoalConstraints(goal)
5: InitPatienceModel()
6: InitInitiativeModel()
7: end procedure

After the user simulator has been set up, the actual simulation takes place. Following
the initial response from the dialogue manager, the simulation loop described below is
executed. Depending on the response of the dialogue manager, a series of responses is
pushed to the top of the agenda. The agenda uses a stack data structure, which allows
for natural sorting of the dialogue acts to be communicated to the dialogue manager. The
next step in the user simulation process is to clean up the agenda by removing unnecessary
dialogue acts, as well as duplicate and null() acts. The initiative model initialized during
the init method determines the number of dialogue acts to pop from the agenda which
are augmented into a single dialogue act, if possible (only semantic acts with the same act
type can be augmented). The ones that cannot be melted together are returned to the top
of the agenda. The resulting dialogue item is then fed to the error channel implementation
and the resulting noisy N-best list would be the input for the dialogue manager in the next
simulation step. The dialogue terminates when the emulated user receives a bye() act or
it runs out of patience (based on the aforementioned patience model). Afterwards, the
policy trainer is notified that the dialogue has ended and that the policy can be trained (if
needed). The key facts for the simulation - the reward, the number of turns and whether
or not the dialogue was successful are summarized as the simulation result.

4.10. Error channel

As previous research shows [STY07a], artificially introducing noise during the training
process can lead to a more robust and better online performing policy. This can be achieved
by introducing an error channel as part of the user simulation. A general overview of the
semantic level error channel is shown in Figure 4.10.

The first step in the error channel simulator is to determine the maximum length of the N-
best list, which is done using the configuration parameter simulator.errorChannel.numberOfConfusions.
For every item on the list, a probability score is generated by the confidence score generator

40

4.10. Error channel 41

IErrorSimulator

+ noisify(act : DialogueAct) : DialogueActWithProbability[]

ErrorSimulator

IConfusionModel

+ confuse(act : DialogueAct) : DialogueAct[]

IConfidenceScoreGenerator

+ score(n : int) : double[]
+ probabilities(n : int) : double[]

model

1

scorer

1

Figure 4.9.: UML model of the classes within the error package

(see Section 2.4). Another probability is drawn that determines the position of the original
dialogue act within the N-best list. Each of the other slots in the list can be either the origi-
nal dialogue act (with the configurable probability simulator.errorChannel.handcrafted.confusionRate)
or a dialogue act from the confusion model. As this can lead to dialogue item duplicates
within the noise list, duplicate items (together with their probabilities) are aggregated
before returning the list to the user simulator.

41

5. Evaluation

The first part of the evaluation will focus on evaluating different system parameters and
their influence on the dialogue reward and the number of successfully completed dialogues
during training. Later on, the performance of the system will be evaluated and the impact
of different confusion models will be compared.

5.1. Experimental setup

The domain for testing the dialogue manager is a restaurant information system with about
35 entries. The goal of the user is to successfully retrieve the telephone number, address
and name of a restaurant based on his search criteria - type of cuisine and neighbourhood
or nearby place. As previously explained, the dialogue manager requires a large amount
of training dialogue data; this has been automated by using a user simulator. Due to the
nature of reinforcement learning, around 10 to 15 thousand simulations are required for the
dialogue manager to learn a well-performing policy. The training process is not triggered
after every simulation, but after a batch of 1000 dialogues; the simulation data is then
replayed and the training algorithm updates the values in the Q and N matrices. Both
the patience model and the initiative model for the user simulator are enabled per default.
The maximum number of partitions has been restricted to 300 and the applied value slot
partition pruning algorithm described in Section 2.2.7 is used to reduce the number of
partitions, once the configured threshold has been exceeded. The default learning algo-
rithm used for training is the Monte Carlo policy optimization explained in Section 2.2.6
(without the knn term). Furthermore, the following weighting coefficients (α vector) are
used for the Euclidean distance function between two summary belief points: the distance
between the probabilities of the best hypotheses is weighted by 1, as well as the distance
between the probabilities of the second best hypotheses. The distance between the h and
p status is weighted by 1.5 and the distance between the last user acts - by 1.25.

5.2. Evaluation

5.2.1. Dialogue manager training

One of the system parameters that has direct influence on the performance of the training
policy is the maximum number of vectors in the belief space. The minimum number of
belief vectors can be derived from the cardinality of all vector components. Given that the
h-status, p-status and dialogue act type space is finite, the minimum number of vectors

43

44 5. Evaluation

with respect to those vector elements; there are 6 possible h states as well as p states and
12 dialogue act type resulting in 432 combinations. Furthermore, the two probabilities
in the summary space vector can be classified into one of three bins depending on their
corresponding values: (1.0, 0.0) - the top hypothesis is certain; (0.5, 0.5) - the top two
hypotheses are equally likely; and (0.0, 0.0) - all hypotheses are equally unlikely. Taking
this factorization into account when determining the baseline for the maximum number
of vectors in the belief space, it was deemed that 1000 vectors should be an appropriate
baseline.

Several different values were evaluated and the conclusion is that 750-1000 vectors is the
recommended number of belief vectors. As seen from Figures 5.1 and 5.2, selecting only
500 vectors as the upper bound of policy states is quite limiting to the policy’s flexibility
and has a visible influence on the system’s training. Selecting more than 1000 belief states
does not bring any advantage in respect to policy performance.

Additionally, the grid-based training can be changed by replacing the Euclidean metric in
Eq. 4.3 by a quantizer in which the probabilities of the top two hypotheses are placed in
one of aforementioned bins.

0 2 4 6 8 10 12 14

0

20

40

60

80

100

Number of dialogues (x1000)

re
w

ar
d

500
750

1000
1250
1500

Figure 5.1.: Influence of the number of belief vectors on the dialogue reward.

The next system parameter that was evaluated was the reward for successfully completing
a dialogue. Results show that if the positive reward was too small, the training process
gets stuck in a local maximum and the training process fails. The selected values that were
tested showed that while 20 is insufficient for the dialogue manager to be trained, if a very
large value for the reward function is selected, it can also deteriorate the training process.
Simulations showed that a value in the 50 to 100 range is optimal (see Figure 5.3).

The goal of the next experiments was to determine the influence of the distance threshold
parameter which determines whether a summary belief point will be added to the belief
space or a neighbour point will be updated with the reward data from the training. The
α weights for the Euclidean function that are described in section 5.1 were not changed
during the experiments.

Experiments show that a threshold value of 1 or 1.25 is optimal for the system’s perfor-
mance (see Figures 5.4 and 5.5). A threshold value above 1.5 leads to too great distances
between the points in the summary belief space and this reduces the system’s precision.
The way the distance function and the α weights are setup means that a larger threshold

44

5.2. Evaluation 45

0 2 4 6 8 10 12 14

0

20

40

60

80

100

Number of dialogues (x1000)

co
m

p
le

te
d

(%
)

500
750

1000
1250
1500

Figure 5.2.: Influence of the number of belief vectors on the number of successfully com-
pleted dialogues.

0 2 4 6 8 10 12 14

0

20

40

60

80

100

Number of dialogues (x1000)

co
m

p
le

te
d

(%
)

20
50

100

Figure 5.3.: Influence of the reward on the number of successfully completed dialogues.

requires multiple vector point components to be different for the belief point to be added
to the belief space.

As previously mentioned, the distance threshold and the weights (α parameter) for the
Euclidean distance function are tightly coupled in determining the new summary belief
space vectors. The impact of the different weight components will be evaluated next. The
experiments were setup as follows - both the distance threshold and the elements of the
weights vector were reset to 1; for each experiment the weight for a different component
was increased to 1.5 in order to determine the importance of the component for the training
process.

Experiments (see Figures 5.6 and 5.7) have shown that the type of the last user dialogue
act bears the greatest significance for the policy. Furthermore, the probability of the top
hypothesis, as well as the h and p-status of the top dialogue hypothesis prove to influence
the performance of the training process. Results show that the learned policy can be quite
unstable, if it relies only on the weight of the probability of the second best hypothesis.

45

46 5. Evaluation

0 2 4 6 8 10 12 14

0

20

40

60

80

100

Number of dialogues (x1000)

re
w

ar
d

1
1.25
1.5

2
2.5
3.5

Figure 5.4.: Influence of the euclidean distance threshold on the dialogue reward.

0 2 4 6 8 10 12 14

0

20

40

60

80

100

Number of dialogues (x1000)

co
m

p
le

te
d

(%
)

1
1.25
1.5

2
2.5
3.5

Figure 5.5.: Influence of the Euclidean distance threshold on the number of successfully
completed dialogues.

So far, the training setup has used the Monte Carlo training algorithm for the policy
training. The next evaluation will compare the performance of the baseline (Monte Carlo
with all other parameters set to their default values) with different configurations of the
knn-Monte Carlo algorithm. Several k values were evaluated to determine their impact on
the dialogue manager performance.

The performance of the baseline Monte Carlo algorithm proves to be very comparable to
the performance of the knn Monte Carlo, with the knn parameter set to 3. It appears that
there is a linear dependency between the selected knn value and the system’s performance.
The smoothing applied by the knn Monte Carlo approach seems to be deteriorating by
increasing the knn value (as shown in Figure 5.10) and 1 proves to be insufficient for
learning a well-performing policy.

46

5.2. Evaluation 47

0 2 4 6 8 10 12 14

−20

0

20

40

60

80

100

Number of dialogues (x1000)

re
w

ar
d

top hypothesis

2nd best hypothesis

h-status

p-status

last user dialogue act

Figure 5.6.: Influence of the Euclidean distance weights on the dialogue reward.

0 2 4 6 8 10 12 14

0

20

40

60

80

100

Number of dialogues (x1000)

co
m

p
le

te
d

(%
)

top hypothesis

2nd best hypothesis

h-status

p-status

last user dialogue act

Figure 5.7.: Influence of the Euclidean distance weights on the number of successfully
completed dialogues.

5.2.2. Confusion models

After determining the optimal dialogue manager parameters, the next step is to evaluate
the impact of the error channel confusion model proposed in Chapter 3 on the system’s
performance. This approach generates confusions on a phoneme level, initially passing
the semantic dialogue act representation through a language understanding, building a
phoneme graph, based on similar sounding phonemes and subsequently feeding the graph
to language understanding component to determine the valid confusions. In the later
experiments it is labelled the Phoneme model.

Another simple approach is to iterate through the slot-value pairs of the given dialogue act
and confuse each one with a predetermined probability. This approach is used in various
past frameworks ([YSWY07], [TYK+10]). When a slot-value pair is confused there is
a fixed probability that it will be deleted completely; otherwise, the value is confused
uniformly to one of the other values of the slot. There is also a fixed probability that extra
items are added or the act type is confused. It will be used here as the baseline approach

47

48 5. Evaluation

0 2 4 6 8 10 12 14

0

20

40

60

80

100

Number of dialogues (x1000)

re
w

ar
d

Monte Carlo

knn-Monte Carlo (k = 1)

knn-Monte Carlo (k = 3)

knn-Monte Carlo (k = 5)

knn-Monte Carlo (k = 7)

Figure 5.8.: Influence of the training algorithm on the dialogue reward.

0 2 4 6 8 10 12 14

0

20

40

60

80

100

Number of dialogues (x1000)

co
m

p
le

te
d

(%
)

Monte Carlo

knn-Monte Carlo (k = 1)

knn-Monte Carlo (k = 3)

knn-Monte Carlo (k = 5)

knn-Monte Carlo (k = 7)

Figure 5.9.: Influence of the training algorithm on the number of successfully completed
dialogues.

and is labelled the Handcrafted confusion model.

Multiple experiments were conducted with an increasing error rate to determine the sys-
tem’s robustness to different noise levels. Although the resulting confusions from the
Handcrafted approach are unlikely to match the type of confusions obtained in live situa-
tions, using this method has in fact resulted in relatively effective trained dialogue systems
([TY10]). As can be expected, the system’s performance gradually deteriorates when in-
creasing the confusion rate (see Figure 5.11), however using the Phoneme approach during
training shows a slight improvement of the system’s online performance, compared to the
Handcrafted method. On average it shows an improvement of around 2-3% in successfully
completed dialogues and interestingly enough, the benefits of the proposed error channel
confusion model scale with the confusion error.

48

5.3. Summary 49

1 2 3 4 5 6 7

70

80

90

100

knn parameter value

co
m

p
le

te
d

(%
)

Figure 5.10.: Comparison of different knn values for the Monte Carlo training algorithm.

0 10 20 30 40 50
60

70

80

90

100

error rate (%)

co
m

p
le

te
d

(%
)

Handcrafted

Phoneme

Figure 5.11.: Influence of the confusion model on the number of successfully completed
dialogues.

5.3. Summary

From these experiments it can be concluded that the implemented statistical dialogue
manager offers a solid foundation for a multitude of spoken dialogue system tasks. The
system benefits from being easily configurable and trainable with the only requirement
being a valid domain ontology. Furthermore, the non-data driven approach that was
employed allows to easily bootstrap dialogue managers (and implicitly spoken dialogue
systems) for a multitude of domains with next to no manual work. The success rate of
the system in a low-noise environment is around 95% and comparable to similar statistical
dialogue managers ([YGK+10]).

An increase in the semantic error rate naturally leads to degradation of the system’s per-
formance, however even with 50% error rate the dialogue manager manages to successfully
conclude more than 60% of the user tasks. The improvement of noise robustness can be at-
tributed to the error simulation framework used during training, that allows for simulating
noisy conditions, thus making the system more flexible in uncertain conditions.

49

6. Conclusion

6.1. Summary

In this work, a statistical dialogue manager has been developed from scratch with several
goals in mind: it should be easily configurable for new SDS tasks, hence no domain infor-
mation should be hardcoded; it should allow for every component of the dialogue manager
to be easily extended or changed by providing a set of interfaces; however, one of the most
important goals was to develop a virtual-data driven dialogue manager, thus enabling to
bootstrap the system without the need of any real training data.

The dialogue manager uses reinforcement learning (more specifically, the Monte Carlo
Control algorithm) to bootstrap the policy that determines the system’s responses. Due to
the nature of reinforcement learning, several thousand domain specific annotated dialogues
are required in order for the system to learn a well performing policy. Manually training
the dialogue manager for every scenario will be extremely expensive, even without changes
to the core of the framework, which would usually require for the DM to be trained anew.
Thus, in order for reinforcement learning to be a viable solution for a statistical dialogue
manager, a user simulator component was introduced, which provides automated learning
of the policy.

The core of the user simulator is a policy which determines how to interact with the
dialogue manager. The policy has been carefully crafted and is driven by several statistical
models in order to emulate different types of people interacting with the system.

In order to make the dialogue manager more robust to noise, an error channel has been
developed which confuses the input to the dialogue manager during the training process.
The error channel uses a confusion model to determine how an incoming semantic repre-
sentation of a (simulated) user utterance should be distorted. Several different models have
already been developed, but they all share the same disadvantage: they require annotated
dialogue corpora in order to learn the given confusion model.

In this work, a realistic confusion model has been proposed which does not require any
training data. It uses natural language generation to materialize the user utterance, and
the sentence in turn is converted into a phoneme graph using a pronunciation dictionary
and a phoneme similarity mapping. The resulting graph is then processed by a language
understanding component that produces a list of confusions. Various techniques were used
to automatically bootstrap the language understanding and language generation compo-

51

52 6. Conclusion

nents used for the confusion model. The model is also compliant with the overall goal of
this work and is scenario agnostic.

The evaluation of the dialogue manager showed a success rate of 95% without any noise
and an average of 7 turns for finding a restaurant in a tourist information scenario. The
performance of the system is very similar to the HIS model presented in [YGK+10]. In-
creasing the noise in the environment inevitably decreases the success rate of the system,
but even with an error rate of 50% the system manages to complete more than 60% of the
dialogues successfully. Additionally, the confusion model proposed in this work, boosts
the system’s success rate by further 2% compared to the handcrafted model.

6.2. Outlook

While the dialogue manager presented here has been proven to be well performing even
without training data, the online performance of the system is also highly dependable
on the other components in the SDS pipeline, especially the speech recognizer and the
language understanding component. Choosing a suboptimal implementation can greatly
reduce the success rate of the system. The language understanding component developed
for the phoneme based confusion model can also be used within the SDS pipeline, due to
the more conservative setup of the system (keyword, opposing to a CFG parser). However,
the language generation component, while sufficient for the confusion model due to the
nature of the setup, might not be mature enough for interacting with real users.

Although the dialogue manager can be bootstrapped without any training data, there
are certain scenarios that can benefit from training on the system with domain specific
annotated dialogue corpora. The dialogue manager implemented as part of this work
provides several interfaces for interacting with the training process and thus provides for
easy implementation and integration of new training algorithms, including data driven
ones. The dialogue state representation can be additionally extended to include more
metadata about the system state, which could influence the training process and the
performance of the system.

Training data can also be benefitial for the user simulator. While highly configurable, most
of the simulator properties are currently manually set by a domain expert, depending on the
dialogue manager requirements (e.g. noise levels). Parameters such as user initiative and
user patience can be learned from annotated dialogue training data, which can also be from
a different domain. Given sufficient training data, the handcrafted user simulator policy
can be replaced completely by a learned one. The dialogue manager machine learning
algorithms can be reused for learning a user simulator policy.

While the error channel model proposed in this work performs consistently and does not
require any training data the performance for large sentences may be very slow. The cause
for the performance degradation is the graph size and the subsequent traversal of all nodes.
One way to reduce the computational overhead would be to reduce the graph size by not
taking into account all neighbour phonemes (see Section 3.2), but only a given subset.
An obvious disadvantage of this approach is that it will reduce the number of confusions
generated by the model, but performance increase would allow for online usage during
training.

52

Bibliography

[AWD97] M. Araki, T. Watanabe, and S. Doshita, “Evaluating dialogue strategies for
recovering from misunderstandings,” in In Proc. IJCAI Workshop on Collab-
oration Cooperation and Conflict in Dialogue Systems. Citeseer, 1997, pp.
13–18.

[B+06] C. M. Bishop et al., Pattern recognition and machine learning. springer New
York, 2006, vol. 1.

[Bli02] L. Blin, “Apprentissage de structures d’arbres à partir d’exemples: application
à la prosodie pour la synthèse de la parole,” Université de Rennes, vol. 1, 2002.

[Bon02] B. Bonet, “An e-optimal grid-based algorithm for partially observable markov
decision processes,” in Proc. 19th International Conf. on Machine Learning,
2002, pp. 51–58.

[BPNZ06] T. H. Bui, M. Poel, A. Nijholt, and J. Zwiers, “A tractable ddn-pomdp ap-
proach to affective dialogue modeling for general probabilistic frame-based
dialogue systems,” 2006.

[Bra97] R. I. Brafman, “A heuristic variable grid solution method for pomdps,” in
AAAI/IAAI. Citeseer, 1997, pp. 727–733.

[BS98] A. G. Barto and R. Sutton, “Reinforcement learning: An introduction. adap-
tive computation and machine learning,” 1998.

[DMA03] Y. Deng, M. Mahajan, and A. Acero, “Estimating speech recognition error
rate without acoustic test data.” in INTERSPEECH, 2003.

[FLAK02] E. Fosler-Lussier, I. Amdal, and H.-K. J. Kuo,“On the road to improved lexical
confusability metrics,” in ISCA Tutorial and Research Workshop (ITRW) on
Pronunciation Modeling and Lexicon Adaptation for Spoken Language Tech-
nology, 2002.

[GDK94] E. Goldberg, N. Driedger, and R. I. Kittredge, “Using natural-language pro-
cessing to produce weather forecasts,” IEEE Expert, vol. 9, no. 2, pp. 45–53,
1994.

[GHL05] K. Georgila, J. Henderson, and O. Lemon, “Learning user simulations for infor-
mation state update dialogue systems.” in INTERSPEECH, 2005, pp. 893–896.

[GKM+08] M. Gašić, S. Keizer, F. Mairesse, J. Schatzmann, B. Thomson, K. Yu, and
S. Young, “Training and evaluation of the his pomdp dialogue system in noise,”
in Proceedings of the 9th SIGdial Workshop on Discourse and Dialogue. As-
sociation for Computational Linguistics, 2008, pp. 112–119.

[GR09] A. Gatt and E. Reiter, “Simplenlg: A realisation engine for practical appli-
cations,” in Proceedings of the 12th European Workshop on Natural Language
Generation. Association for Computational Linguistics, 2009, pp. 90–93.

53

54 Bibliography

[GY11] M. Gašić and S. Young, “Effective handling of dialogue state in the hidden in-
formation state pomdp-based dialogue manager,”ACM Transactions on Speech
and Language Processing (TSLP), vol. 7, no. 3, p. 4, 2011.

[HB95] K. Hone and C. Baber, “Using a simulation method to predict the transac-
tion time effects of applying alternative levels of constraint to user utterances
within speech interactive dialogues,” in Spoken Dialogue Systems-Theories and
Applications, 1995.

[HL08] J. Henderson and O. Lemon, “Mixture model pomdps for efficient handling
of uncertainty in dialogue management,” in Proceedings of the 46th Annual
Meeting of the Association for Computational Linguistics on Human Language
Technologies: Short Papers. Association for Computational Linguistics, 2008,
pp. 73–76.

[HP99] E. Horvitz and T. Paek, A computational architecture for conversation.
Springer, 1999.

[JLK+09] S. Jung, C. Lee, K. Kim, M. Jeong, and G. G. Lee, “Data-driven user simula-
tion for automated evaluation of spoken dialog systems,” Computer Speech &
Language, vol. 23, no. 4, pp. 479–509, 2009.

[KLC98] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in
partially observable stochastic domains,” Artificial intelligence, vol. 101, no. 1,
pp. 99–134, 1998.

[LGHS06] O. Lemon, K. Georgila, J. Henderson, and M. Stuttle, “An isu dialogue system
exhibiting reinforcement learning of dialogue policies: generic slot-filling in the
talk in-car system,” in Proceedings of the Eleventh Conference of the European
Chapter of the Association for Computational Linguistics: Posters & Demon-
strations. Association for Computational Linguistics, 2006, pp. 119–122.

[LGJ+09] F. Lefévre, M. Gašić, F. Jurč́ıček, S. Keizer, F. Mairesse, B. Thomson, K. Yu,
and S. Young, “k-nearest neighbor monte-carlo control algorithm for pomdp-
based dialogue systems,” in Proceedings of the SIGDIAL 2009 Conference: The
10th Annual Meeting of the Special Interest Group on Discourse and Dialogue.
Association for Computational Linguistics, 2009, pp. 272–275.

[LL07] O. Lemon and X. Liu, “Dialogue policy learning for combinations of noise and
user simulation: transfer results,” in Proc. SIGdial, 2007.

[LPE00] E. Levin, R. Pieraccini, and W. Eckert, “A stochastic model of human-machine
interaction for learning dialog strategies,” Speech and Audio Processing, IEEE
Transactions on, vol. 8, no. 1, pp. 11–23, 2000.

[MWP03] H. M. Meng, C. Wai, and R. Pieraccini, “The use of belief networks for mixed-
initiative dialog modeling,” Speech and Audio Processing, IEEE Transactions
on, vol. 11, no. 6, pp. 757–773, 2003.

[P+96] S. G. Pulman et al., “Conversational games, belief revision and bayesian net-
works,” in Computational Linguistics in the Netherlands. Citeseer, 1996.

[PD06] O. Pietquin and T. Dutoit, “A probabilistic framework for dialog simulation
and optimal strategy learning,”Audio, Speech, and Language Processing, IEEE
Transactions on, vol. 14, no. 2, pp. 589–599, 2006.

[PH05] R. Pieraccini and J. Huerta, “Where do we go from here? research and com-
mercial spoken dialog systems,” in 6th SIGdial Workshop on Discourse and
Dialogue, 2005.

54

Bibliography 55

[Pie04] O. Pietquin, A framework for unsupervised learning of dialogue strategies.
Presses univ. de Louvain, 2004.

[Pie06] ——, “Consistent goal-directed user model for realisitc man-machine task-
oriented spoken dialogue simulation,” in Multimedia and Expo, 2006 IEEE
International Conference on. IEEE, 2006, pp. 425–428.

[PR02] O. Pietquin and S. Renals, “Asr system modeling for automatic evaluation and
optimization of dialogue systems,” in Acoustics, Speech, and Signal Processing
(ICASSP), 2002 IEEE International Conference on, vol. 1. IEEE, 2002, pp.
I–45.

[Rei95] E. Reiter, “Nlg vs. templates,” arXiv preprint cmp-lg/9504013, 1995.

[RL06] V. Rieser and O. Lemon, “Cluster-based user simulations for learning dialogue
strategies.” in INTERSPEECH, 2006.

[RML95] E. Reiter, C. Mellish, and J. Levine, “Automatic generation of technical doc-
umentation,” Applied Artificial Intelligence an International Journal, vol. 9,
no. 3, pp. 259–287, 1995.

[RPT00] N. Roy, J. Pineau, and S. Thrun, “Spoken dialogue management using proba-
bilistic reasoning,” in Proceedings of the 38th Annual Meeting on Association
for Computational Linguistics. Association for Computational Linguistics,
2000, pp. 93–100.

[SB98] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction
(Adaptive Computation and Machine Learning). A Bradford Book, Mar.
1998. [Online]. Available: http://www.worldcat.org/isbn/0262193981

[SS73] E. A. Schegloff and H. Sacks, “Opening up closings,” Semiotica, vol. 8, no. 4,
pp. 289–327, 1973.

[STW+07] J. Schatzmann, B. Thomson, K. Weilhammer, H. Ye, and S. Young, “Agenda-
based user simulation for bootstrapping a pomdp dialogue system,” in Human
Language Technologies 2007: The Conference of the North American Chapter
of the Association for Computational Linguistics; Companion Volume, Short
Papers. Association for Computational Linguistics, 2007, pp. 149–152.

[STY07a] J. Schatzmann, B. Thomson, and S. Young, “Error simulation for training sta-
tistical dialogue systems,” in Automatic Speech Recognition & Understanding,
2007. ASRU. IEEE Workshop on. IEEE, 2007, pp. 526–531.

[STY07b] ——, “Statistical user simulation with a hidden agenda,” Proc SIGDial,
Antwerp, pp. 273–282, 2007.

[SWSY06] J. Schatzmann, K. Weilhammer, M. Stuttle, and S. Young, “A survey of sta-
tistical user simulation techniques for reinforcement-learning of dialogue man-
agement strategies,” The Knowledge Engineering Review, vol. 21, no. 02, pp.
97–126, 2006.

[SWY04] M. N. Stuttle, J. D. Williams, and S. Young, “A framework for dialogue data
collection with a simulated asr channel.” in INTERSPEECH, 2004.

[SY02] K. Scheffler and S. Young, “Automatic learning of dialogue strategy using
dialogue simulation and reinforcement learning,” in Proceedings of the second
international conference on Human Language Technology Research. Morgan
Kaufmann Publishers Inc., 2002, pp. 12–19.

55

http://www.worldcat.org/isbn/0262193981

56 Bibliography

[TGK+08] B. Thomson, M. Gasic, S. Keizer, F. Mairesse, J. Schatzmann, K. Yu, and
S. Young, “User study of the bayesian update of dialogue state approach to
dialogue management.” in INTERSPEECH, 2008, pp. 483–486.

[Tra99] D. R. Traum, “Computational models of grounding in collaborative systems,”
in Psychological Models of Communication in Collaborative Systems-Papers
from the AAAI Fall Symposium, 1999, pp. 124–131.

[TSW+07] B. Thomson, J. Schatzmann, K. Weilhammer, H. Ye, and S. Young, “Training
a real-world pomdp-based dialogue system,” in Proceedings of the Workshop on
Bridging the Gap: Academic and Industrial Research in Dialog Technologies.
Association for Computational Linguistics, 2007, pp. 9–16.

[TSY08] B. Thomson, J. Schatzmann, and S. Young, “Bayesian update of dialogue
state for robust dialogue systems,” in Acoustics, Speech and Signal Processing,
2008. ICASSP 2008. IEEE International Conference on. IEEE, 2008, pp.
4937–4940.

[TY10] B. Thomson and S. Young, “Bayesian update of dialogue state: A pomdp
framework for spoken dialogue systems,”Computer Speech & Language, vol. 24,
no. 4, pp. 562–588, 2010.

[TYK+10] B. Thomson, K. Yu, S. Keizer, M. Gasic, F. Jurćıcek, F. Mairesse, and
S. Young, “Bayesian dialogue system for the let’s go spoken dialogue chal-
lenge,” in Spoken Language Technology Workshop (SLT), 2010 IEEE. IEEE,
2010, pp. 460–465.

[VR08] C. Venour and E. Reiter, “Tutorial for simplenlg (version 3.7),” 2008.

[WAD98] T. Watanabe, M. Araki, and S. Doshita, “Evaluating dialogue strategies under
communication errors using computer-to-computer simulation,” IEICE trans-
actions on information and systems, vol. 81, no. 9, pp. 1025–1033, 1998.

[Wal00] M. A. Walker, “An application of reinforcement learning to dialogue strategy
selection in a spoken dialogue system for email,” Journal of Artificial Intelli-
gence Research, vol. 12, pp. 387–416, 2000.

[Wil10] J. D. Williams, “Incremental partition recombination for efficient tracking of
multiple dialog states,” in Acoustics Speech and Signal Processing (ICASSP),
2010 IEEE International Conference on. IEEE, 2010, pp. 5382–5385.

[WRR02] M. A. Walker, O. C. Rambow, and M. Rogati, “Training a sentence planner
for spoken dialogue using boosting,” Computer Speech & Language, vol. 16,
no. 3, pp. 409–433, 2002.

[WY07a] J. D. Williams and S. Young, “Partially observable markov decision processes
for spoken dialog systems,” Computer Speech & Language, vol. 21, no. 2, pp.
393–422, 2007.

[WY07b] ——, “Scaling pomdps for spoken dialog management,” Audio, Speech, and
Language Processing, IEEE Transactions on, vol. 15, no. 7, pp. 2116–2129,
2007.

[YGK+10] S. Young, M. Gašić, S. Keizer, F. Mairesse, J. Schatzmann, B. Thomson,
and K. Yu, “The hidden information state model: A practical framework for
pomdp-based spoken dialogue management,” Computer Speech & Language,
vol. 24, no. 2, pp. 150–174, 2010.

[You07] S. Young, “Cued standard dialogue acts,” Report, Cambridge University Engi-
neering Department, 14th October, vol. 2007, 2007.

56

Bibliography 57

[YSWY07] S. Young, J. Schatzmann, K. Weilhammer, and H. Ye, “The hidden informa-
tion state approach to dialog management,” in Acoustics, Speech and Signal
Processing, 2007. ICASSP 2007. IEEE International Conference on, vol. 4.
IEEE, 2007, pp. IV–149.

57

Appendix

A. Domain Ontology

entity -> venue(type, name, area, near, addr, phone, postcode)

type -> placetostay(staytype, hasinternet, hasparking, price, pricerange, stars)

type -> placetoeat(eattype, pricerange, openhours, price)

type -> placetodrink(drinktype, pricerange, openhours, price)

type -> placetosee(seetype, pricerange, openhours)

type -> entsvenue(entstype)

type -> univenue(unitype, openhours)

type -> sportsvenue(sport)

type -> transvenue(transtype)

type -> shopvenue(shoptype, openhours)

type -> amenity(amtype)

amtype -> hospital()

amtype -> policestation()

amtype -> bank(openhours)

amtype -> postoffice(openhours)

amtype -> touristinfo(openhours)

shoptype -> supermarket()

shoptype -> shoppingcentre()

transtype -> airport()

transtype -> busstation()

transtype -> trainstation(openhours)

staytype -> guesthouse()

staytype -> hotel()

eattype -> restaurant(food)

drinktype -> bar(childrenallowed, hasinternet, hasmusic, hastv, openhours, price)

drinktype -> coffeeshop()

drinktype -> pub(childrenallowed, hasfood, hasinternet, hastv)

seetype -> architecture()

seetype -> museum()

seetype -> park()

unitype -> college()

unitype -> library()

entstype -> cinema()

entstype -> theatre()

food = { American, Cafe food, Chinese }

pricerange = { free, cheap, moderate }

sport = { badmintoncourt, cricketfield, footballfield }

Figure A.1.: Domain ontology

59

60 Appendix

B. Sample user simulator dialogue

C0 =

 type = bar
drinks = beer
area = central

R0 =

name =
addr =
phone =

Sys 0 Hello, how may I help you?

A1 =

inform(type = bar)
inform(drinks = beer)
inform(area = central)

request(name)
request(addr)
request(phone)

bye()

Usr 1 I am looking for a fine beer bar.
Sys 1 Ok, a wine bar. What pricerange?

A2 =

negate(drinks = beer)
inform(price = cheap)
inform(area = central)

request(name)
request(addr)
request(phone)

bye()

Usr 2 No, beer please!
Sys 2 You are looking for a beer bar, correct?

A3 =

affirm()
inform(price = cheap)
inform(area = central)

request(name)
request(addr)
request(phone)

bye()

Usr 3 Yeah something cheap in the town centre.
Sys 3 Murphy’s on Main Square serves cheap beer.

A4 =

[
request(phone)

bye()

]
Usr 4 Ok, and what’ s the phone number?
Sys 4 The number is 796 69 94.
A5 =

[
bye()

]
Usr 5 Thanks, goodbye!

Figure B.2.: Sample dialogue and agenda sequence

60

C. ARPAbet phonemes 61

C. ARPAbet phonemes

Phoneme Example Translation

AA odd AA D
AE at AE T
AH hut HH AH T
AO ought AO T
AW cow K AW
AY hide HH AY D
B be B IY
CH cheese CH IY Z
D dee D IY
DH thee DH IY
EH Ed EH D
ER hurt HH ER T
EY ate EY T
F fee F IY
G green G R IY N
HH he HH IY
IH it IH T
IY eat IY T
JH gee JH IY
K key K IY
L lee L IY
M me M IY
N knee N IY
NG ping P IH NG
OW oat OW T
OY toy T OY
P pee P IY
R read R IY D
S sea S IY
SH she SH IY
T tea T IY
TH theta TH EY T AH
UH hood HH UH D
UW two T UW
V vee V IY
W we W IY
Y yield Y IY L D
Z zee Z IY
ZH seizure S IY ZH ER

Table C.1.: ARPAbet phonemes

61

62 Appendix

D. ARPAbet phoneme neighbours

Phoneme Neighbours

IY IY|IH|IX
IH IH|IY|AX|EH
EH EH|IH|AX|ER|AE
AE AE|EH|ER|AH
AH AH|AE|ER|AA
AA AA|AH|ER|AO
AO AO|AA|ER|AX|UH
UH UH|AO|AX|UW|UW
UW UW|UH|AX|UW
UW UW|IX|AX|UH|UW
IX IX|IY|IH|AX|UW
AX AX|IX|ER|UW
ER ER|EH|AH|AO|AX
EY EY|EH|IY|AY
OY OY|AO|IY|AY
AY AY|AA|IY|OY|EY
AW AW|AA|UH|OW
OW OW|AO|UH|AW
P P|T|B|HH
T T|CH|K|D|P|HH
CH CH|SH|JH|T
K K|G|T|HH
SH SH|S|ZH|CH
S S|SH|Z|TH
B B|P|D
D D|T|JH|G|B
JH JH|CH|ZH|D
G G|K|D
ZH ZH|SH|Z|JH
Z Z|S|DH|ZH
TH TH|S|DH|F|HH
F F|HH|TH|V
DH DH|TH|Z|V
V V|F|DH
HH HH|TH|F|P|T|K
L L|R|W
R R|Y|L
Y Y|W|R
W W|L|Y
M M|N
N N|M|NG
NG NG|N
DX DX|DX|S|HH|DH
DX DX|DX|T
N N|AX|M|NG

Table D.2.: ARPAbet phoneme neighbours map

62

	Contents
	1 Introduction
	1.1 Spoken dialogue systems
	1.2 Goals
	1.3 Related work
	1.4 Thesis structure

	2 Background
	2.1 Reinforcement learning
	2.1.1 Markov decision process
	2.1.2 Partially observable MDP

	2.2 Hidden Information State Model
	2.2.1 HIS POMDP
	2.2.2 Domain ontology
	2.2.3 Dialogue acts
	2.2.4 Partitioning
	2.2.5 Probability models
	2.2.6 Policy representation
	2.2.7 Pruning

	2.3 User simulator
	2.3.1 Agenda-Based Simulation
	2.3.2 Agenda update model
	2.3.3 Goal update model

	2.4 Error simulator

	3 Phoneme-based error channel confusion model
	3.1 Introduction
	3.1.1 Natural language generation
	3.1.2 Natural language understanding

	3.2 Confusion model

	4 Implementation
	4.1 Matching
	4.2 Partitioning
	4.2.1 User goal state representation
	4.2.2 Partitioning

	4.3 Partition pruning
	4.4 Dialogue history
	4.5 Policy
	4.5.1 Handcrafted policy
	4.5.2 Summary space
	4.5.3 Monte Carlo policy
	4.5.4 k-nn Monte Carlo policy

	4.6 Policy training
	4.6.1 Monte Carlo policy training
	4.6.2 k-nn Monte Carlo policy training

	4.7 Knowledge base
	4.8 Dialogue manager
	4.9 User simulator
	4.10 Error channel

	5 Evaluation
	5.1 Experimental setup
	5.2 Evaluation
	5.2.1 Dialogue manager training
	5.2.2 Confusion models

	5.3 Summary

	6 Conclusion
	6.1 Summary
	6.2 Outlook

	Bibliography
	Appendix
	A Domain Ontology
	B Sample user simulator dialogue
	C ARPAbet phonemes
	D ARPAbet phoneme neighbours

