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a b s t r a c t

Acquiring new knowledge through interactive learning mechanisms is a key ability for humanoid robots
in a natural environment. Such learning mechanisms need to be performed autonomously, and through
interaction with the environment or with other agents/humans. In this paper, we describe a dialogue
approach and a dynamic object model for learning semantic categories, object descriptions, and new
words acquisition for object learning and integration with visual perception for grounding objects in the
real world. The presented system has been implemented and evaluated on the humanoid robot Armar III.
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1. Introduction

An important aspect of humanoid robots in a natural environ-
ment, is the ability to acquire new knowledge through learning
mechanisms, which enhances an artificial system with the abil-
ity to adapt to a changing or new environment. In contrast to
most learning algorithms applied inmachine learning today,which
mainly work with offline learning on training samples, such learn-
ingmechanisms need to be performed autonomously, and through
interaction with the environment or with other agents/humans.
Here, dialogue offers an appropriate means.

In this paper, we address learning of unknown objects in
dialogue, which enables a robot to acquire information about
unknown objects, and store this information in a knowledge
base. A typical problem in this domain is that non-trivial
information must be communicated, that spoken interaction
results in recognition errors, new words occur in speech that
cannot be understood by the system. Thus, the dialogue system
needs to conduct dialogue strategies for learning in a way that
information about the object can successfully be communicated.
And it has to cope with new word learning on speech recognition,
grammatical and semantic levels to achieve the learning goal.

The scenario for the system is a household environment for the
humanoid robot Armar III, in which the robot is confronted with
different everyday-life objects. These objects are parts of tasks that
the robot performs, e.g. requests from a human to bring a specific
object to someone. Some of these objects that the robot encounters
are unknown to the robot. In this case, it is important that the
robot can acquire information about the object. The robot needs
to acquire verbal information, to understand when the object is
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referenced by the user, or to talk about the object. It needs to create
amodel of the object’s semantics,which describe the type of object,
properties of the object and what the object can be used for. In
addition, visual information is stored by the object recognizer and
linked to the object’s ID.

The presented approach addresses these challenges with a
dialogue model for acquiring semantic knowledge, and learning
new words from speech recognition. Dialogue strategies are
suggested and analyzed, to obtain a semantic category of an object
including one shot learning and browsing through the ontology,
and to obtain property descriptions of objects, potentially with
the usage of unknown words. A dynamic object model is
presented, with interlinking an objects database, object ontology
and recognition resources that can be updated interactively during
runtime. The approach is integrated with visual object recognition
and learning for grounding objects in the real world.

The remainder of the paper is organized as follows: Section 2
gives an overview over state-of-the art technology and related
work. Section 3 describes the system architecture of our approach
to interactive learning of objects. Section 4 describes the system’s
knowledge sources and its ontology. Section 5 describes detection
of unknown information and new words acquisition in dialogue.
Section 6 presents an algorithm to symbol grounding for assigning
a semantic category to an unknown object in dialogue. Section 7
describes experiments and an evaluation conducted with the
system. Section 8 gives a conclusion, and an outlook to futurework.

2. Related work

Interactive learning for artificial systems has been studied in
several systems. However, the number of approaches that allow
interactive knowledge acquisition for humanoid robots is still
comparably small. The task to interactively acquire knowledge
about objects includes different aspects, which are addressed
here, with a discussion of related work. One important aspect of
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interactive learning, is to detect and understand unknown words
in speech recognition. A typical approach for learning newwords in
speech recognition first addresses detection of an unknown word,
which is also called an out-of-vocabulary word (OOV). In a second
step, the system then acquires pronunciation (phoneme) and
spelling (grapheme) representations of the new word, to update
the speech recognizer’s dictionary. A further step is necessary to
update the speech recognizer’s language model, which essentially
tells the recognizer where the word can occur in speech, and
which probabilities are associated with the word. [17] suggests
an approach to learn new words in a multimodal scenario, with
the integration of written words on a projection screen. Other
work purely relies on speech recognition, such as [22,6,26,24] with
different approaches. For example [26] uses multiple recognition,
and passes on a single speech utterance with a phoneme-based
OOV-model in the first step, and successively narrows down the
search vocabulary in the second step. Our work uses the approach
described in [24,25], which uses so-called Head-Tail models for
acoustic modeling of unknown words. A second recognition run
is then performed only on utterances where an OOV has been
detected, with a broader vocabulary. It has the advantage that it
can be integrated with our speech recognition grammar, which
also gives information about a possible semantic meaning of the
OOV, based on grammatical construction of the utterance.

During the last few years several approaches have been
presented for learning of unknown objects. These are for example
[20,32,19], whose main focus however is on the visual side,
whereby only known words can be used in speech recognition.
Learning of semantic meaning is not addressed there. In the same
context the work from [10] addresses cross-modal learning of
visual categories. Here, spacial reasoning is applied to associate
visual categories to different objects in one image for which a
description is given by a human tutor. [27] analyze object models
and speech segments that correspond to objects in video sequences
from TV shows. Further work addresses learning of speech, for
example [13,23] with visual grounding, presuming minimal prior
knowledge. The main focus is on grounding and semantics in
early stage language acquisition of children. Also, the approach
of [30] analyzes very early stage language acquisition, with social
learning for the robot pet Aibo. Grounding of event descriptions
with visual perception is presented by [29]. Early work for learning
in dialogue can be found in the work by [4], with the systems
FOUL-UP and POLITICS. Recent work for learning semantics also
in dialogue has been presented by [8,9] with the spoken dialog
system ‘‘ABILITY’’, which is capable of learning new words and
phrases during interaction with users. After learning, users could
use these new words during their future interactions with the
system.

[3,18] describe a system, which is able to develop an ontology
with interactive means. The user can insert new objects into the
ontology by applying different input modalities. The ontology
describes an object hierarchy and properties, attributes and actions
can be associated with an object. Sensor feedback is used to detect
selected features automatically, which can be confirmed by the
user.

In contrast to most of the work referenced here, our approach
is intended for human–robot interaction in a household environ-
ment, and takes an approach of learning in dialogue. Application of
the approach to a humanoid robot defines the type and style of the
interaction, the scenario and available sensors. In contrast to work
from [3,18], who cover many details of the knowledge representa-
tion in a training center, our approach is intended to easily acquire
information with comparably short dialogues, in a manner which
is acceptable for the communication partner. While the presented
approach does not intend to build ontology and object model from
scratch, it tries to describe new types of objects with known ob-
ject categories and concepts. Our approach does not attempt to

solve problems of visual processing, such as interactive learning
of 3D shapes, or suggest new algorithms for unknown objects seg-
mentation. However, the presented dialogue approach integrates
such a component, and could also be integrated with other, similar
components. Grounding is an important issue in the field of learn-
ing new objects. While approaches presented above do ground-
ing connected with language learning, our approach implements a
grounding as a submodule in dialogue, however, the main focus is
on the construction of dialogues and dialogue strategies, to catego-
rize a new object and learn properties, potentially with newwords
in speech recognition. In addition, while some of the approaches
presented above address only some aspects of object learning, our
approach combines the aspects presented above, namely learning
new words, learning semantic concepts and properties, visual ob-
ject recognition for grounding of the objects in the real world, in a
dialogue approach.

3. System overview

Our approach for the interactive learning of objects integrates
several knowledge sources with the following aspects:

• semantic information about the object is acquired in dialogue.
Semantic information covers the type of the object and several
properties.

• different descriptions for spoken reference can be acquired for a
new object, which includes introduction of new words

• visual information is used for visual recognition and associates
internal object representation to perceptions in the real world.

Fig. 1 shows the integration of the different components
within the dialogue system. Dialogue management is handled
by the Tapas dialogue tools [14]. The central component in this
work is the dialogue manager, which handles user input from
speech recognition and object recognition results from the robot.
Dialogue strategies conducted with the system make use of
several knowledge source, which will be introduced in more detail
in the following. The dialogue manager uses (semantic) typed
feature structures (TFS) for language-independent knowledge
representation for input, discourse and state description. On top of
the discourse, an abstract statemodel defines a context for strategy
execution, which selects moves from the dialogue manager’s
action model to interact with the environment. The slot model
defines pieces of information that are collected during a dialogue,
in terms of a goal-based strategy.

The learning target in the presented work is kitchen and
household objects. In the presented system, learning is conducted
as an interactive dialogue approach. The dialogue manager
processes requests from the user, integrates object recognition
hypotheses, and conducts dialogue strategies to learn information,
when a learning dialogue has been initiated during human–robot
interaction dialogues. Such a ‘learning dialogue’ is designed to
acquire new information for known or unknown objects or to
clarify information, each to update the system’s knowledgemodel.
Learning covers new semantic categories, new descriptions for
existing objects including newwords, learning of object properties,
and association with visual object IDs. Before a learning dialogue
can be initiated, certain triggers are used to determine when an
unknown object has been found, e.g. by the object recognition
component, or when unknown words occur.

Speech recognition, unknown word detection and new words
learning is performedwith the Janus speech recognizer and Ibis de-
coder, presented by [28]. It is integratedwith the dialoguemanager
Tapas in an interactive system for human–robot interaction. An
overview of themultimodal perceptual components for the robotic
system with further details about additional components can be
found in [31].
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Fig. 1. System overview of the different components in the dialogue system, and data flow of perceptual input with response generation by the dialogue manager.

Experiments reported later in the paper have been conducted
on the humanoid robot Armar III, which is described by [1].
Conducting the experiments with the humanoid robot Armar III,
leads to a typical human–robot interaction scenario, which defines
the type of interaction, and defines the perceptual system for our
approach. While from a technical point of view, the humanoid
robot is only used as a perceptual system which can go to and
look at different places, users reported that interactions with the
humanoid robot is fun, and the robot represents a communication
partner they can talk to. Using the humanoid robot also serves as a
proof of concept that the approach works on the target platform.

Visual processing uses stereo vision from the robotic head’s
cameras. For visual processing, detection and recognition of
objects, we have integrated an object recognizer provided by
Azad et al. [2] and the software toolkit IVT.1 Though visual object
recognition is not the main focus of the paper, we want to give
a brief description of the recognizer’s functionality to the extent
that is necessary to follow the experiments. It can recognize
textured objects using SIFT features [21], and untextured objects
using 3D shape models and color. Because learning of 3D shape
models requires complex modeling, and scanning of the object
from different angles to observe its structure, this approach is
currently not realistically applicable for interactive learning in
real-time. Rather, the use of SIFT features allows to learn an object
from features extracted from a single image taken from the scene
with stereo vision, during the learning dialogue and in real-time.
Another advantage of this approach, is that the object’s features
are mostly independent of scaling, angle of view, rotation, light
conditions and their position in the input image.

The object recognizer is able to recognize objects and detect
unknown objects in real-time, which is triggered by the dialogue
system. For learning of new objects, the object recognizer can
store acquired visual features, together with a given label during
runtime, such that the object can be recognized immediately
after learning. The label is generated by the dialog system and
represents an internal ‘ID’ that is used to identify an object
instance. The visual features are automatically segmented from
a scene, using stereo vision, depth information and occurrence
of visual features. The features for unknown object detection are
kept in the memory, until a decision is provided by the dialogue
manager to store the unknown object or to discard the features.
More details regarding the visual object recognizer can be found in
the referenced publication [2].

In the following, first the dialogue manager’s knowledge model
is described, and afterwards, the dialogue strategies for learning
are introduced.

1 Integrating Vision Toolkit - IVT: http://ivt.sourceforge.net.

Fig. 2. Knowledge bases which represent lexical knowledge, semantic knowledge
and a database of known objects.

4. Object representation and knowledge model

The knowledge bases in our system comprise representational
knowledge and interaction knowledge. The representational
knowledge bases define the aspects of the knowledge which the
system can talk about, and which it can extend by acquiring new
information. Interaction knowledge tells the system how to obtain
the knowledge via a communication process i.e. the dialogue
strategy for acquiring new information.

4.1. Object model

The (representational) knowledge sources and their interrela-
tion are shown in Fig. 2. The figure shows three knowledge mod-
els: an objects database, recognition resources and a semantic
ontology. Each object is stored as an entry in the objects database
and is encoded in part by each of the three knowledge sources.
The objects database thus contains all ‘‘real world’’ objects, i.e. in-
stances of all known objects and objects in the environmentmodel.
The database is realized as a relational database, and an object is
represented by a database entry. An object entry in the database
includes an ID (unique label), the semantic category (type), values
for object properties, and an association to a list of observed textual
descriptions. The ID is the same label that is used by the object rec-
ognizer to identify an object, for example ‘granini_juice_0001’. The
type values associates an object instances with ontological con-
cepts, for example the object ‘granini juice’ is associated with the
concept ‘obj_juice’. Values of object properties store additional in-
formation about the object instance, such as brand ‘granini’ or color
‘yellow’. Observed textual descriptions could be ‘granini juice’.

Type information and semantic categories of objects are
modeled in an ontology. The object ontology provides inheritance
information (isA hierarchy of concepts with multiple inheritance)
and defines properties that can be associated to objects. To be
able to talk about object types, e.g. refer to the concept ‘obj_juice’
by using the word ‘juice’, an additional mapping file is defined
which is used for grammar creation in speech recognition and
understanding, and for spoken output.
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Considering spoken interaction, the recognition resources
represent lexical and grammatical information of the objects. The
grammar describes how objects are embedded in grammatical
constructs, i.e. their lexical representation and how the objects
are referenced in speech. In the following example: ‘please open
the granini juice for me’, the term ‘granini juice’ is a description
of an object which is stored in the database. The lexical tokens -
here ‘granini juice’ - are read from the database and dynamically
update the grammar at a predefined position defined by semantic
categories.

4.2. Language understanding and grammars

The definition of grammars in our system follows the approach
and formalism of semantic context free grammars, see [7]. This
formalism defines a grammar based on semantic categories, in
addition to syntactic information with the formalism of vectorized
grammar nodes. A grammar node defines three values in the
following way <sem_concept, syntactic_category, subcategory>.
With this construction, the grammar inherently carries semantic
information in its grammatical structure. The grammar’s syntax is
defined in the Java Speech Grammar Format (JSGF).2

The grammar is shared by the speech recognizer, which uses
the grammar as a language model, and by the dialogue manager
which uses these grammars for natural language understanding
and contextual weight adaptation. In the presented approach,
parts of the grammar are generated automatically from database
and ontological information. Rule generation from database
informationmakes use of semantic categories and rule inheritance,
which is defined in the following way. A non-terminal symbol that
is defined on the right hand side of a rule, e.g.<obj_openable,NP,_>,
is automatically extended to its descendants, e.g.<obj_juice,NP,_>,
if <obj_openable,NP,_> is not defined in the rule set. Such
inheritance approaches are applied to functional object categories,
e.g. openable, portable, eatable, etc. These functional categories
are used throughout the grammar to integrate actions / speech
acts with objects that are applicable to these actions. For example
‘please open the granini juice for me’ is covered by a grammar rule
that interrelates the speech act act_open with an object of type
openable. The simplified rule looks as follows:

public <act_open,VP,_> =

<please> <open,V,_> <obj_openable,NP,_>

<recv_me>;

The syntactic categories used in the example are VP for verb-
phrase, V for verb, and NP for noun-phrase. Subcategories are not
used here, but are used in the grammar, e.g. for singular and plural
rules or contextual utterances.

The actual generation of grammar rules from database infor-
mation is realized with the following approach. So called ‘import’
statements which are specified as the right-hand side of a gram-
mar rule, define grammar rule generation with database content.
The presented grammar generation approach from database infor-
mation extends previous work on a multimedia access dialogue
system [11], by the definition of more complex import statements
to match object descriptions, and supporting interactive extension
of the models. The left hand side of the rule is a standard non-
terminal symbol, e.g. <obj_juice_db >, the right hand side of the
rule is started with a VOID element, which conforms to the JSGF
syntax specification. The import definition includes DB connec-
tion, imported fields and semantic conversion rules with the syn-
tax import DB� ref entry1 entry2 . . . entryn. Each entry consists of a

2 http://java.sun.com/products/java-media/speech/forDevelopers/JSGF/.

table-field pair with an optional list of semantic values in the form
of table field {sem_type1 sem_value1 . . . sem_typek sem_valuek}. For
example, the import defined by the entries
objects_juice brand {BRAND objects_juice:brand } objects_juice type
{TYPE import }
generates the right-hand the side productions

granini { BRAND granini } juice { TYPE juice}

| valensina { BRAND valensina } juice { TYPE juice}

from the given database entries

Type Flavor Brand Onto type
Juice Apple Granini obj_juice
Juice Orange Granini obj_juice
Juice Orange Valensina obj_juice

With these tools, more complex grammar constructs are pos-
sible, such as combining two rules <prp_object_db><obj_object_
type_db>. This allows understanding of any known property in
combination with any known object type, for example ‘red cup’,
‘blue DVD’, but also combinations can be parsed that have not been
observed before, such as ‘green juice’. The latter example is neces-
sary to understand assignment of yet unobserved properties. If one
wants to restrict grammar coverage to only knownproperty-object
combinations, the import statement is specified accordingly with
more than one imported field, as done in the example above.

As mentioned above, the grammars are shared by the dialogue
manager and the speech recognizer. For the purpose of using
the grammars as language models, a self-contained standard
context free grammar is generated. This is done by the Tapas
dialogue tools in a compilation step at system startup. During
system runtime, the speech recognizer’s grammar and the dialogue
system’s grammar share the same structure, but are different
instances. Automatic updates to the grammar, which result from
the learning method, are always modifications to the database
rather than to the grammar structure. The learning step updates
the database andmodifies the runtimeobjects of speech recognizer
and dialogue manager accordingly during runtime, by adding new
entries to the corresponding grammar rules. With this approach,
the grammar instances of dialoguemanager and speech recognizer
are always kept synchronized, a prerequisite for tight coupling
of both components. The advantage of tight coupling is that
speech recognition output already represents a parse-tree, and no
additional parsing is necessary, to initiate language understanding,
which maps grammar nodes to TFS nodes. Another advantage of
tight coupling, is that the dialoguemanager canmaintain a generic
expectation model. For example when the system asks the user
to name the color of an object, the expectation model contains
ontological concepts that can describe a color, and subsequently
the speech recognizer’s grammar rules are adapted to better fit
the expected input. Since the expectation model contains (among
others) speech acts such as inform_color and property descriptions
such prp_color which aremapped to grammar rules<inform_color,
VP,_>,<prp_color, A,_>,<prp_color, AP,_>, the presented learning
approach does not interfere with this model and works in
combination with this approach as well. As it has been shown
previously, contextual weighting improves speech recognition
accuracy significantly [16], especially for short responses, such
as ‘yes’, ‘red’, or ‘yellow’. It offers a benefit especially for large
grammars, e.g. to prevent incorrect recognition of an object type,
when a color has been said.
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Fig. 3. Ontology organization with functional concepts, type hierarchy and properties.

4.3. Ontology

The robot’s knowledge about objects is represented in a specific
object model. The model specifies object classes, properties and
views of the object. Classes and properties are modeled in an
ontology, where a real object can be associated with multiple
properties and classes. This allows different attributes to be
associated with one object. Examples for properties are color,
name, and title of an object.

Fig. 3 shows an excerpt from the system’s ontology. Properties
are listed at the lower part of the figure. The middle section shows
object classes (also referred to as types). The upper section shows
functional concepts that model how an object can be used.

The ontology defines object classes hierarchically. General
objects are displayed at the top; more specific (inheriting) objects
are displayed further down in the ontology. Each object can inherit
from one or more functional concepts. Each child of an object
inherits the parent’s functional classes. This inheritance relation is
used in the definition of semantics. As mentioned in the system
overview, typed feature structures (TFS) [5] are used to represent
semantics in the dialogue system. The definition of TFS allows
types from a hierarchy, including multiple inheritance.

For example, an object instance of a kitchen object has the
semantic concept ‘kitchen object’, and all inheriting concepts, such
as ‘crockery’, ‘drink’ and ‘food’, are kitchen objects as well. In
further inheritance, the concept ‘drink’ is split into the concepts
‘hot drink’ and ‘cold drink’.

The ontology’s functional concepts describe what can be done
with an object. For example, all objects which are described in
the presented ontology are ‘portable’. However, only a bottle is
‘openable’ whereas coffee is ‘drinkable’. These functional classes
are used to refer to objects in the semantic grammar for speech
recognition and understanding. For example, if the user tells the
robot to open something, the conceptwhich is used in the grammar
is of type ‘openable’. All objects that inherit from ‘openable’ are
automatically inserted into the grammar and can be referenced
by the user. The complete list of functional classes used in the
experiments covers nine categories: cook, drink, eat, fill, open, play,
carry, switch on, and watch.

5. Learning in dialogue and new words acquisition

5.1. Detecting deficient information

A dialogue for learning is initiated by the system during normal
interaction, when the system detects deficient information. In the
scenario addressed by our system, the goal of most dialogues is
to instruct the robot to do a specific task. A typical task-oriented
dialogue is conducted when the user instructs the system to bring
a specific object, serve something to drink, or put something into
the dishwasher. Within such dialogues we have extracted two
categories of deficient information.

• the user input cannot be understood correctly by the system
given verbal information

• the specified object cannot be found, or an unknown object is
detected.

The first case addresses speech recognition and understanding,
the second case addresses visual processing of objects in the
environment. Both cases can serve as so-called ‘‘deficiency
detectors’’.

Deficient information in vision occurswhen the object specified
by the user cannot be found, or when an unknown object is
detected by the system. In either case, the system first needs to
detect an unknown object, i.e. obtain visual features for an object
which is referred to by the user. If the system does not detect an
unknown object, it cannot store any features, and therefore cannot
learn information about the object. Thus the detection of features
and together with that, segmentation of the object’s shape are
prerequisites for the learning process. For detection of unknown
objects, segmentation and learning of new features, we use the
object recognizer described in [2]. In addition to feature detection,
the object recognizer uses 3D information for object segmentation.
Thus the robot can learn the object when it is held in front of
the robot’s camera, as shown in Fig. 4 in the leftmost image. The
object can also be learned from visual features only, when no
3D segmentation is possible and the background does not have
rich texture, as is shown in Fig. 4 in the rightmost image. For the
experiments described in this paper, objects were put at a specific
location, next to the sink. This way the test subjects did not have to
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Fig. 4. Snapshots taken from the robot camera. From left to right: object held in front of the robot’s camera, multiple objects recognition, unknown object recognition during
the experiment with feature extraction and shape segmentation.

pay attention to where to put the object, so that the robot can find
it again and comparable dialogues could be produced. The objects
where put on a black surface, with a standard kitchen background,
e.g. parts of a cupboard and the sink can be seen in the pictures
taken by the robot. In the experiments, the objects’ shapes could
be segmented reliably from feature clusters only.

Deficient information in speech recognition occurs when the
user produces input that cannot correctly be recognized by
the system. [12] describes different error situations that occur
in human–robot interaction, for which data from text-based
interactions and interactions with the real robot have been
analyzed. The largest number of miscommunication errors occurs
due to new syntactic and semantic concepts, i.e. new formulations,
new objects, new goals, and meta-communication. In cases of
unknown objects, user input typically leads to sentences that are
not covered by the grammar. As described earlier in this paper,
the grammar is created automatically from database entries, so
that only attributes describing known objects are covered by
the grammar. This has the advantage that speech recognition
performs well for known utterances, but the disadvantage that
new formulations are not covered by the grammar. To prevent
this problem, the standard approach in speech recognition would
be to extend the vocabulary until all words which have to be
covered are contained in the vocabulary. However, in case of object
names it is not clear which words need to be covered by the
vocabulary in advance, since unpredictable words can occur. In
speech recognition evaluation this effect is typically very small,
since the standardword-error-rate (WER) is hardly affected, if once
in a while, a word cannot be recognized. For the robot in turn,
exactly these words can be very important. To show the effect of
WER let us consider the example ‘please open the granini juice
for me’ which has been used previously. If the word ‘granini’ (let
this be an unknown word) is misrecognized, the WER is affected
in the same way, as if the word ‘please’ was not understood.
However, in the first case, themain information for disambiguating
the object in the environment is lost. Extending the vocabulary
with a very large number of possible words is not a good option,
since speech recognition rates for known objects would drop
drastically. However, approaches are known to detect unknown
words in speech. We use out-of-vocabulary words (OOVs) which
are recognized by the system when an unknown word has been
spoken. Our approach uses an implementation of so called Head-
Tail models [24] for detection of unknown words. Given an
example sentence, which contains the command to switch on an
unknown object, the grammar might recognize: ‘please open the
OOV juice for me’. Here, speech recognition detects an unknown
word, which is encoded as OOV. For the detection, both language
model scores (defined by the grammar) and acoustic scores
(acoustic speech recognition models) are considered. The example
sentence also gives us a first hint about the semantic category
of the unknown word by observing verb-object subcategorization
information, by the semantic frame given through the grammatical
construct. Using OOV models has originally been studied for
n-gram models. In [15] this approach is also described for usage

with context free grammar for the recognition of unknown names.
The same approach has been adopted for the present system.
Following this approach, unknownwords can only occur at specific
positions in the grammar. The used grammar formalism defines
‘oov’ symbols in the grammar in the following way. For example
a noun phrase describing an object could be

public <obj_object,NP,_> =

oov |

<obj_juice_db>|

<prp_juice,A,_> <obj_juice_db>;

Here, the oov replaces a full nounphrase. In analogy, the oov can
also replace a property, syntactically represented as an adjective or
a noun.

5.2. New words learning

Once unknown words have been detected in the utterance,
these words can be learned by the system in dialogue. During
the experiments, these words are either properties of objects,
object types, or part of the object names. In addition to the
dialogues to obtain semantic information of the object, which
is described in the next section, the system needs to acquire
spelling and phonetic information of the word and update the
speech recognizer’s vocabulary, dictionary and language model. A
pronunciation for a new word is generated with a grapheme-to-
phoneme converter, which is available with text-to-speech tools,
such as Festival or Cepstral. Both a grapheme representation,which
is obtained e.g. from spelling, and the phoneme representation are
needed to update the speech recognizer’s dictionary. In addition
to the dictionary, the speech recognizer’s language model and
the dialoguemanager’s understanding grammars are updated. The
speech recognition grammar is shared by the dialogue manager
and the speech recognizer and thus have the same structure. Both
can be extended on the fly, and are updated during dialogue, once
the new word has been confirmed by the user.

6. Interactive learning of semantic categories for objects

6.1. Learning object properties

The algorithm for learning properties and semantics of an
unknown object includes obtaining a description from speech and
clarifying properties with their values and semantic types, which
is done in a dialogue with the human. The dialogue for learning
properties allows the user to formulate any property of the object
whichhe thinks is useful. The systemalreadyunderstands different
property values, such as color and size. Other properties, such
as title or name (e.g. a DVD has usually been referenced by its
title) is restricted to names stored in the database. When the
user formulates a description which is not covered by existing
property values, the speech recognizer can detect this as unknown
words, and reports an OOV detection to the dialogue manager.
In the case of OOV detection, the user is asked again to say only
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the property of the object, since additional repeats increase the
chance of understanding the word correctly. If the word cannot be
understood correctly, which is determined by obtaining feedback
from the user, the unknown word can also be spelled by the user.
The user is only asked for spelling, if the OOV-part of utterance
is relatively short (which is determined by phoneme recognition
on the utterance). For spoken output, standard grapheme-to-
phoneme rules of the text-to-speech synthesis component are
used. If the user confirms theword, it is then learned by the system,
by adding the word to the speech recognizer’s dictionary, and to
the speech recognition and understanding grammars. The new
word can then immediately be used within the same dialogue.
For better understanding of several words which form the title of
an object e.g. ‘a book on advances in robot control’ an additional
speech recognition module with n-gram language model and a
large vocabulary can be used.

A new word learning dialogue is also initiated when the user
refers to an object, e.g. ‘bring me the red cup’ and an OOV is
detected for the utterance. In this case the system first needs to
find out whether the unknown word is part of the object’s type
description or if it represents a property. The learning dialogue is
the conducted as described above.

6.2. Learning an object’s category

Learning of object types is conducted with an approach that
combines open input by the user, who can name a category,
and a prompted mode which implements browsing through the
ontology. In the open input mode, the user can name a category
which he would use to classify the object. The open input mode is
also referred to as one shot learning, since one input by the user is
enough to describe the category. A simple one shot learning dialog
follows the example:

System: What type of object is this? Open question
User: It is a juice Type is set to juice
System: Did you say that the object is a juice? Confirmation
User: Yes Type confirmed

One shot learning has the advantage of quickly obtaining a
hypothesis for a category. Drawbacks are that it is not necessarily
obvious to the user, how the robot’s internal object hierarchy
is structured and the user does not know what the system
can understand. For example, it was observed that functional
categories pose even stronger problems to the one shot learning
approach than object types. As a reply to the question ‘what can
you do with this object’ some persons replied with very complex
statements, and some had to think for some time before they
could come up with an answer. Thus, in the present experiments,
open questions are only asked regarding the type of the object,
and functional classes can be queried by system initiative only.
For example the system can ask ‘can you eat this?’ or ‘is this
edible?’ when asking for the functional concept ‘eatable’. Thus, the
dialogue is improved, when the system can choose the wording.
The browsing mode addresses exactly this problem, and can
choose from questions for object types and functional classes for
disambiguation. It starts at a base category and iteratively tries to
classify the object as one of the subclasses of the current category.
This way, the structure of the ontology can be communicated
and input by the user is restricted to a smaller set of possible
meanings than in the open input case. Drawbacks of the browse
mode are that this mode can be tiring for users, and that for large
ontologies, descending the hierarchy can even take toomany turns
to be practically applicable. An example of the browsingmode is as
follows:

System: is the item a kitchen object? Ask type
User: yes Type: kitchen_object
System: can you eat this object? Ask function
User: no Type: kitchen_object
System: can you drink this object? Ask function
User: yes type: Drink
System: is this a hot drink? Ask type
User: no type: Drink
System: is this a juice? Ask type
User: yes Type: juice

The combined approach beginswith a single one shot approach,
and then give the opportunity to refine the category be browsing
the neighborhood. The dialogue to conduct this strategy begins
with a question to specify the class of the object (open input).
The input is confirmed. If no children of the class are found in
the hierarchy, the dialog ends here. Otherwise the robot switches
to the browsing mode until a leaf node has been found in the
hierarchy, or no further refinement is given by the user. The
questions in browsing mode address children of the selected
type or functional concepts to disambiguate subclasses and are
formulated as yes/no questions. Fig. 5 depicts this algorithm in a
flow diagram. The start-node named ‘‘find initial class’’ represents
the one-shot learning node. After the one-shot learning, the
learned class can be refined by browsing the ontology’s type
hierarchy or functional concepts. After posting one question to
the user and a confirmation response (bottom node in the flow
diagram), the loop is entered again. The combined approachmakes
sense because of several aspects. (i) Due to speech recognition
and understanding problems the desired category cannot be
understood. (ii) The user does not know the category description
used by the system. (iii) The user communicates a category that is
too general, e.g. ‘drink’. This general category can then be refined
to obtain a better model.

7. Experiments and evaluation

7.1. Experimental setup

For evaluation of the approach, experiments were conducted
with the robot in the kitchen environment. The users could, for
example, command the robot to bring a specific object from a
location, or report which objects he can see at a specific location.
The robot knows about several locations from its environment
model, such as the sink, sideboard, stove, cupboard, fridge, etc. The
robot can also understand directions such as ‘‘next to the sink’’,
‘‘left side of the sideboard’’, ‘‘in the middle of the sideboard’’, ‘‘in
the fridge’’, etc. For identifying a requested object (grounding),
the robot can ask for the location, which can be given by speech
or using pointing gestures. If multiple objects are found at a
location, the robot conducts a simple dialog listing all known
objects to clarify which object is unknown. If there is more than
one unknown object, the user would have to move the object
and present the object to the robot e.g. by holding the object
in his hand as shown in Fig. 4 in the leftmost image. For the
sake of obtaining comparable dialogues during the presented
experiments, the setting was restricted to the sink location, with
at most one unknown object and grounding restricted to speech.
In case there is an unknown object at the given location, the robot
ideally would ask the user to help him to learn the object and
identify the object’s properties. If an unknown object or unknown
words occur during the interaction, learning dialogues are initiated
by the system as described in the previous section.

The experiments comprise 52 dialogues which were conducted
with six naive users—who haven’t interacted with a robot before.
The goal of these dialogues was to have the robot serve a
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Fig. 5. Learning scheme to acquire semantic categories for an object and dialogue flow.

Table 1
Overview of the experiment and recognition rates of visual object recognition

# Cat 1 # Cat 2 # Comment

Dialog condition 52 Unknown 40 Known 12 Dialogues with known and unknown objects
Unknown detection 40 Correct 39 Failed 1 Interaction by the user in 5 cases
Known detection 12 Correct 10 Failed 2 Interaction by the user in 2 cases
Detection summary 52 Correct 49 Failed 3

specific object or get information from the robot which objects
he can see at a predefined position in the kitchen. Each of these
dialogues includes detection of objects at the sink location. When
an unknown object or an unknown word is detected, the learning
dialogues were initiated. This way, a dialogue could be very short
(if only known object), in this case these dialogues are used to
evaluate detection rates. Or, the dialogues could as long as required
to reach the learning goal. For example, learning an object’s
property does not always include learning a newword. In this case,
these dialogues are used to evaluate the different learning tasks of
properties and concepts.

The users did not know in advance which objects were known
to the robot, and which objects were unknown. The interaction
started after a brief introduction about the scenario and the robot’s
task. No details were given about how the robot performs its
learning strategies to prevent biasing of the users. The dialog
started with a greeting or directly with a request from the user
to either serve a specific object, or to report which objects the
robot could see. The following evaluation section describes results,
success rates and recognition rates from these dialogues.

7.2. Evaluation

Meaningful numbers for the experimented scenario of interac-
tions and learning dialogues are success rates (number of success-
ful dialogues) and dialogue length (measured in number of turns).
The firstmetric is important tomeasure the effectiveness of the ap-
proach. The second metric is important to measure the efficiency
and burden for the user. Numbers are reported here for learning
object categories and object properties for unknown objects. Also,
a comparison of different learning strategies for object categories
is made.

An overview of the experiment conditions and conducted
dialogs is shown in Table 1. The table shows a total number of

5 conducted dialogues, the separation into known and unknown
objects conditions and detection rates of known and unknown
objects. A closer look at the different categories, shows that out
of 39 objects that could correctly be detected as unknown objects,
five objects required interaction by the user. The same situation
happened in the known condition, where two objects required
interaction by the user. Interaction by the user means that the
object could not be detected upon the first try, e.g. because the
object was completely or partly out of the robot’s field of view.
The users then turned the objects into the robot’s field of view
after which in all these cases, the object was classified correctly.
To further analyze the errors that were made by the system, one
can look at the failed attempts, which sum up to 3 out of 52.
The reasons for failure were that, once visual features were not
sufficient for detection, and twice known and unknown categories
were confused.

These requests provided the basis for the evaluation of the
learning algorithm in dialogue. Learning of an object according
to the algorithm described above includes learning of the object
description for reference in speech, properties of the object, and
the type of the object. The description of the object however, is
a combination of object properties and the type of the object.
For example, the ‘‘red cup’’ is an example of combining the type
of the object (the cup) with a property of the object (red) to
create a description that can be used in speech (see Section 4.2 for
details). The first part was to understand properties of the object.
In the second step the type of the object was narrowed down in
more detail. The two parts are addressed by the different learning
dialogues described earlier, and are evaluated separately. Table 2
shows the number of dialogues, success rates and average number
of turns of dialogues conducted for learning of object properties.
Learning of a property value was possible in two ways. Either the
word was known (25 dialogues) or the word was recognized as
unknown, in which case the word could be spelled (15 dialogues).
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Table 2
The three learning tasks and successful completion rates in the experiment

Task #dialogues Success Avg turns

Learn object property 40 83% (33) 1.8
- with known words 25 87% (22) 1.4
- with spelling 15 74% (11) 2.6

Table 3
Application of one shot learning, browsing and the combined approach during the
experiments for acquisition of the semantic category

Task #dialogues Success Avg turns

One shot learning (47%) 16 81% (13) 2
Browse (6%) 2 100% (2) 10.5
Combined (47%) 16 81% (13) 4.2
All one shot (100%) 34 68% (23) 2
All combined (100%) 34 82% (28) 3.6

The more complex learning task was to learn the semantic
category of an object (described in Section 6.2). Thirty four
dialogues were conducted for this task. In 82% of these cases,
the dialogue could be completed successfully with the learning
algorithm that applies the combined approach. The combined
approach was applied in all 34 dialogues. From the conducted
dialogues, comparison can be drawn with the one shot learning
approach and the browsing strategy. The combination of different
possibilities, how a class can be learned by the system, resulted in
different combinations of one shot learning and browsing. In 47% of
the dialogues, the classwas specified directly by the user, and could
be learned directly as a pure one shot learning. After the one shot
attempt, the dialogue was stopped by the user. The same number
of dialogues (additional 16 dialogues) was conducted, where the
classwas refined after the one shot learning step. The remaining 6%
of the dialogues was conducted as pure browsing of the ontology,
after the one shot learning approach did not result in a recognized
type that could be used for browsing. The browsing dialogue then
started with the most general class in the hierarchy. This way, the
user could complete the dialogue quickly with one shot learning
within only two turns, if it was clear to him how to categorize the
object.

Table 3 shows the figures and results from the learning
dialogues for acquisition of the semantic category. The top three
rows give the numbers for the three approaches as conducted
in the experiment. The table shows the number of dialogues
conducted for each strategy, the rates and numbers of successful
dialogues and the average number of turns per successful dialogue.
Since the combined approach starts with a one shot learning
hypothesis, and then refines the class in further step with a
browsing strategy, comparison can be drawn between one shot
learning and the combined approach on all 34 samples. The
number of all successful dialogues with the combined strategy is
the sum of all successful dialogues. In case of the one shot learning
approach, the two cases which could be learned only with the
browsing strategy are classified as failures for the one shot learning
approach, since no category could be identified. In addition, 3
samples of the remaining dialogueswould not report an acceptable
result after the one shot learning step.

8. Conclusions and future work

8.1. Conclusions

We have presented a dialogue system that is able to detect
deficient information in dialogues, and initiate a learning strategy
to acquire information and learn unknown objects. The system
is able to learn new words, properties and types of objects. Both
properties and types of objects are important to learn, since

both contribute to the description of an object, which is used by
users to reference an object. During reference to objects, different
properties are specified by the users. The speech recognition and
understanding grammar thus support a variable combination of
different properties and types for each object. Since objects are
categorized with different levels of abstraction, it is necessary to
model functionalities as separate concepts in the ontology. The
robot can then distinguish different functionalities of an object,
which can be given from context in speech or from the description
of the user.

The combined approach for learning of object classes has shown
better success rates than pure one shot learning. The presented
algorithm requires only little more interaction with the user (in
terms of number of turns), but it produces significantly better
results in categorizing the object according to error rates and
accuracy. These first results show that the algorithm provides
an accurate means to categorize unknown objects in terms of
semantic categories within an ontology.

In contrast to pure recognition output of the object recognizer,
employing dialogue capabilities significantly improves the final
recognition results after confirmation. The dialogue uses implicit
and explicit confirmation strategies, which both give the user the
opportunity to interrupt the robot and correct the recognition
hypothesis in the case of errors.

8.2. Future work

The presented system is able to categorize and learn new
objects in dialogue with the user. The resulting knowledge base
allows the system to recognize the detected object, talk about
the object and understand when the user refers to the new
object in speech. Further work could be directed at combining
understanding approaches, such as the one presented here, with
knowledge acquisition how the robot can manipulate the object.
To do so, first, additional perceptual information needs to be
collected, e.g. to better segment the object’s shape with 3D
information acquisition. Integration with vision currently requires
that segmentation of an object is possible, e.g. by 3D or feature-
based segmentation, and that grounding has already been done,
when the learning dialogue is initiated.

Limitations of the presented approach, are that currently all
object types and properties aremodeled statically. To some extent,
dynamic changes in the environment are reflected as properties
that change over time, which is already covered by the ability
to associate one object with different categories. Also different
verbal representations can be associated to objects. However, the
system does not cover dynamics in a way that a cup of tea only
is associated with tea if it is filled with tea, and that it would
be associated with coffee, if it were filled with coffee. Modeling
such information requires extending the approach with a state
model that keeps track of object properties, such as ‘dirty’, ‘full’, etc.
Some other properties make only sense if they are interpreted as
user-specific properties. For example a person’s most favorite cup
cannot be generalized as being themost favorite cup of everybody.
But this generalization is indeed appropriate for some properties.
For example, a red cup remains to be a red cup, or a book continues
to have the same title, which does not change over time. For
user specific properties, user ID information could be integrated
as an additional variable to relate user specific properties to
specific users. Another approach can be to correct wrongly stored
information or ‘forget’ information that leads to contradictions
in the knowledge base but is not necessary for interaction with
the user. To assess how the system evolves over time additional
experiments are required, e.g. to quantify effects of storing objects
at a wrong position in the ontology.
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