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Abstract. We present a system capable of visually detecting pointing
gestures and estimating the 3D pointing direction in real-time. We use
Hidden Markov Models (HMMs) trained on different phases of sample
pointing gestures to detect the occurrence of a gesture. For estimating
the pointing direction, we compare two approaches: 1) The line of sight
between head and hand and 2) the forearm orientation. Input features
for the HMMs are the 3D trajectories of the person’s head and hands.
They are extracted from image sequences provided by a stereo camera.
In a person-independent test scenario, our system achieved a gesture
detection rate of 88%. For 90% of the detected gestures, the correct
pointing target (one out of eight objects) was identified.

1 Introduction

In the concept of multi modal user interfaces, users are able to communicate with
computers using the very modality that best suits their current request. Apart
from mouse or keyboard input, these modalities include speech, handwriting
or gesture. Among the set of gestures intuitively performed by humans when
communicating with each other, pointing gestures are especially interesting for
applications like smart rooms, virtual reality or household robots. The detection
of pointing gestures is particularly useful in combination with speech recognition,
as they can help to resolve ambiguities and specify parameters of location in
verbal statements (”Switch that light on!”).

In this paper, a pointing gesture is defined as a movement of the arm towards
a pointing target. This is why we chose the trajectory of the hand as input
feature for the gesture models. Our system was designed to function in natural
environments, to operate in real-time, and to be person- and target-independent.
The system performs three tasks:

– color- and range-based tracking of head and hands to gain input features for
the gesture models;

– classification of the trajectories by means of a combination of Hidden Markov
Models (HMMs) in order to detect pointing gestures in natural movements;

– determination of the pointing direction.



1.1 Related Work

There are numerous approaches for the extraction of body features by means
of one or more cameras. In [1], Wren et al. demonstrate the system Pfinder,
that uses a statistical model of color and shape to obtain a 2D representation of
head and hands. Azarbayejani and Pentland [2] describe a 3D head and hands
tracking system that calibrates automatically from watching a moving person.
An integrated person tracking approach based on color, dense stereo processing
and face pattern detection is proposed by Darrell et al. in [3].

Hidden Markov Models have been used for years in continuous speech recog-
nition [10], and have also been applied successfully to the field of gesture recog-
nition. In [4], Starner and Pentland were able to recognize hand gestures out of
the vocabulary of the American Sign Language with high accuracy. Becker [5]
presents a system for the recognition of T’ai Chi gestures based on head and
hand tracking. In [6], Wilson and Bobick propose an extension to the HMM
framework, that addresses characteristics of parameterized gestures, such as
pointing gestures. Jojic et al. [7] describe a method for estimating the point-
ing direction in dense disparity maps.

2 Tracking of Head and Hands

In our approach we combine stereoscopic range information and skin-color clas-
sification in order to achieve a robust tracking performance. The setup consists
of a fixed-baseline stereo camera connected to a standard PC. A commercially
available library (see [8]) calculates a dense disparity map made up of pixel-
wise disparity values, and provides 3D coordinates for each pixel (Fig. 1b). A
histogram-based model represents the distribution of human skin color in the
chromatic color space. In order to initialize and maintain the model automati-
cally, we search for a person’s head in the disparity map of each frame. Following
an approach proposed in [3], we first look for a human-sized connected region,
and then check its topmost part for head-like dimensions. Pixels inside the head
region contribute to the skin-color model.

In order to find potential candidates for the coordinates of head and hands,
we search for connected regions in the morphologically filtered skin-color map.

a. Left camera image b. Disparity map c. Skin color map

Fig. 1. In the disparity map, the brightness of a pixel is associated with its distance to
the camera. In the skin color map, dark pixels represent hight skin color probability.



For each region, we calculate the centroid of the associated 3D pixels. If the
pixels belonging to one region vary strongly with respect to their distance to
the camera, the region is split by applying a k-means clustering method. We
thereby separate objects that are situated on different range levels but acciden-
tally merged into one object in the 2D image.

The task of tracking consists in finding a good hypothesis st for the positions
of head and hands at time t. The decision is based on the current observation
Ot (the 3D skin-pixel clusters) and the hypothesis for the preceding frame st−1.
With each new frame, all combinations of the clusters’ centroids are evaluated
to find the hypothesis st that maximizes the product of the following 3 scores:

– The observation score P (Ot|st) is a measure for the extent to which st

matches the observation Ot. P (Ot|st) increases with each pixel that com-
plies with the hypothesis.

– The posture score P (st) is the prior probability of the posture. It is high if
the posture represented by st is a frequently occurring posture of a human
body. To be able to calculate P (st), a model of the human body was built
from training data.

– The transition score P (st|st−1) is a measure for the probability of st being
the successor of st−1. It is higher, the closer the positions of head and hands
in st are to their positions in st−1.

Our experiments indicate that by using the method described, it is possible
to track a person robustly, even when the camera is moving and when the back-
ground is cluttered. The tracking of the hands is affected by occasional dropouts
and misclassifications. Reasons for this can be temporary occlusions of a hand, a
high variance in the visual appearance of hands and the high speed with which
people move their hands. Due to the automatic updates of the skin-color model,
the system does not require manual initialization.

3 Detection of Pointing Gestures

When looking at a person performing pointing gestures, one can identify three
different phases in the movement of the pointing hand:

– Begin (B): The hand moves from an arbitrary starting position towards the
pointing target.

– Hold (H): The hand remains motionless at the pointing position.
– End (E): The hand moves away from the pointing position.

We examined pointing gestures performed by different persons, and measured
the length of the separate phases. The average length of a pointing gesture was
1.8 sec. Among the three phases, the hold phase shows the highest duration
variance (from 0.1sec up to 2.5sec).

For estimating the pointing direction, it is crucial to detect the hold phase
precisely. Therefore, we model the three phases separately: Three dedicated
HMMs (MB , MH , ME) were trained exclusively on data belonging to their
phase. We choose the same HMM topology (3 states, left-right) for each of the
three models. For each state, a mixture of 2 Gaussian densities represents the
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Fig. 2. Output probabilities of the phase-models during a sequence of two pointing
gestures

output probability. To get a reference value for the output of the phase models,
we train a null model M0 on short feature sequences (0.5sec) which do not be-
long to a pointing gesture. For M0, we choose an ergodic HMM with 3 states and
2 gaussians per state. The models were trained with hand-labeled BHE-phases
using the Baum-Welch reestimation equations (see [10]).

3.1 Classification

As we want to detect pointing gestures on-line, we have to analyze the obser-
vation sequence each time a new frame has been processed. The length of the
BHE-phases varies strongly from one gesture to another. Therefore, we classify
not only one, but a series of subsequences s1..n, each one starting at a dif-
ferent frame in the past and ending with the current frame t0 (see also [5]).
The lengths of the sequences are chosen to be within the minimum/maximum
length of a pointing gesture. For each of the phase models, we search for the
subsequence ŝB,H,E that maximizes the probability of being produced by the
respective model. As P (ŝ|M0) represents the probability, that ŝ is not part of a
pointing gesture, we use it to normalize the phase-models output probabilities:

ŝB,H,E = argmax logP (s1..n|MB,H,E) (1)
PB,H,E = logP (ŝB,H,E |MB,H,E)− logP (ŝB,H,E |M0)

In order to detect a pointing gesture, we have to search for three subsequent
time intervals that exhibit high output probabilities PB , PH and PE . Ideally,
the respective model would significantly dominate the other two models in its
interval. But as Fig. 2 shows, MH tends to dominate the other models in the
course of a gesture. That is why we detect a pointing gesture whenever we find
three points in time, tB < tH < tE , so that

PE(tE) > PB(tE) ∧ PE(tE) > 0 (2)
PB(tB) > PE(tB) ∧ PB(tB) > 0

PH(tH) > 0
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Fig. 3. The hand position is transformed into a cylindrical coordinate system. The plot
shows the feature sequence of a typical pointing gesture.

3.2 Features

We evaluated different transformations of the feature vector, including carte-
sian, spherical and cylindrical coordinates1. In our experiments it turned out
that cylindrical coordinates of the hands (see Fig. 3) produce the best results for
the pointing task. The radius r represents the distance between hand and body,
which is an important feature for pointing gesture detection. Unlike its counter-
part in spherical coordinates, r is independent of the hand’s height y. The origin
of the coordinate system is set to the center of the head, to achieve invariance
with respect to the person’s location. Since we want to prevent the model from
adapting to absolute hand positions – as these are determined by the specific
pointing targets within the training set – we use the deltas (velocities) of θ and
y instead of their absolute values. The final feature vector is (r, ∆θ, ∆y).

3.3 Estimation of the Pointing Direction

We explored two different approaches to estimate the direction of a pointing
gesture: 1) the line of sight between head and hand and 2) the orientation of the
forearm. The estimate of the pointing direction is based on the mean value of
the head and hand measurements (resp. forearm measurements) within the hold
phase of the respective gesture.

In order to identify the orientation of the forearm, we calculate the covariance
matrix C of the 3D-pixels within a 20cm radius around the center of the hand.
The eigenvector v1 with the largest eigenvalue (first principal component) of C
denotes the direction of the largest variance of the data set. As the forearm is an
elongated object, we expect v1 to be a measure for the direction of the forearm
(see Fig. 4). This approach assumes that no other objects are present within the
critical radius around the hand, as those would influence the shape of the point
set2.
1 See [11] for a comparison of different feature vector transformations for gesture

recognition.
2 We found that in the hold phase, this pre-condition is satisfied, as the distance

between hand and body and between hand and target object is generally sufficient.
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Fig. 4. The first principal component (depicted by an arrow) of the 3D-pixel cloud
around the hand is used as an estimate for the forearm orientation.

4 Experiments and Results

In order to evaluate the performance of our system, we prepared an indoor test
scenario with 8 different pointing targets (see Fig. 5). Ten test persons were
asked to imagine the camera was a household robot. They were to move around
within the camera’s field of view, every now and then showing the camera one of
the marked objects by pointing on it. In total, we captured 206 pointing gestures
within a period of 24 min.

4.1 Pointing Direction

The head-hand line and the forearm line were evaluated on hand-labeled H-
phases in order to avoid errors caused by the gesture detection module. Never-
theless, an error was induced by the stereo vision system as the camera’s coor-
dinates did not comply perfectly with the manual measurements of the target
positions. Table 1 summarizes the results. The good results of the head-hand
line indicate that most people in our test set intuitively relied on the head-hand
line (and not the forearm line) when pointing on a target. The test persons
were pointing with an outstretched arm almost every time, thus reducing the
potential benefit even of a more accurate forearm measurement3.

Avg. error angle Target identified
Head-hand line 14.8◦ 99.1%

Forearm line 42.8◦ 69.6%

Table 1. Accuracy of the pointing direction: a) average angle between the extracted
pointing line and the ideal line between hand and target, b) the percentage of gestures
for which the correct target (1 out of 8) was identified.

3 Unlike the relatively stable head position, the forearm measurements vary strongly
during the H-phase.
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Fig. 5. Positions of the 8 targets in the test scenario. The minimum distance between
two targets was 50cm. The arrows depict the camera’s field of view.

4.2 Gesture Detection

Two measures were used to determine the quality of the gesture detection:

– the detection rate (recall) is the percentage of pointing gestures detected
correctly,

– the precision of the gesture detection is the ratio of the number of correctly
detected gestures to the total number of detected gestures (including false
positives).

We performed the evaluation with the leave-one-out method to make sure that
the models were evaluated on sequences that were not used for training. Here,
we measured the quality of the extracted pointing direction using the head-hand
line on automatically detected H-phases. See Table 2 for the results.

While the detection rate is similar in both cases (88%), the person-dependent
test set has a lower number of false positives compared to the person-independent
test set, resulting in a higher classification accuracy. In addition, the estimation
of the pointing direction is more accurate in the person-dependent case, so that
97% of the targets were identified correctly. This indicates that it is easier to
locate the H-phase correctly when the models are trained individually for each
subject. However, even in the person-independent case, 90% of the targets were
identified correctly.

Detection rate Precision Avg. error Target
(Recall) angle identified

person-dependent 88.2% 89.3% 12.6◦ 97.1%
person-independent 87.6% 75.0% 20.9◦ 89.7%

Table 2. Evaluation of the quality of pointing gesture detection. The person-
independent results are the average results on ten subjects. For the person-dependent
case, average results on three subjects are given (see text for details).



5 Conclusion

We have demonstrated a real-time4 3D vision system which is able to track a
person’s head and hands robustly, detect pointing gestures, and to estimate the
pointing direction. By using dedicated HMMs for different gesture phases, high
detection rates were achieved even on defective trajectories. In an evaluation,
our system achieved a gesture detection rate of 88%. For 90% (97% person-
dependent) of the gestures, the correct pointing target could be identified. For
estimating the pointing direction, we compared the line of sight between head
and hands and the forearm orientation. With an average error of 14.8◦, the
head-hand line turned out to be a good estimate for the pointing direction.
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