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Abstract
Modeling pronunciation variation is key for recogniz-

ing conversational speech. Rather than being limited to
dictionary modeling, we argue that triphone clustering is
an integral part of pronunciation modeling. We propose
a new approach called enhanced tree clustering. This
approach, in contrast to traditional decision tree based
state tying, allows parameter sharing across phonemes.
We show that accurate pronunciation modeling can be
achieved through efficient parameter sharing in the acous-
tic model. Combined with a single pronunciation dic-
tionary, a 1.8% absolute word error rate improvement is
achieved on Switchboard, a large vocabulary conversa-
tional speech recognition task.

1. Introduction

Modeling conversational speech is a major challenge
for current speech recognition research. Conversational
speech is characterized by rampant pronunciation vari-
ations, where accurate pronunciation modeling can lead
to high recognition performance. Traditionally, people
have tried to add alternative pronunciations to the recog-
nition dictionary. Despite extensive investigation, this has
yielded only marginal improvement.

What is pronunciation modeling? Is pronunciation
modeling a synonym for dictionary modeling? As shown
in Figure 1, the boundary between pronunciation mod-
eling and acoustic modeling is not clear. For a given
word, the lexicon is first looked up to convert the word
into a phoneme sequence, which is subsequently trans-
lated into a state sequence using a phonetic decision tree.
The state sequence is ultimately used to align with the
acoustic observation. Hence the phonetic decision tree, a
traditionally acoustic modeling concept, also plays a key
role in the mapping from symbolic (phoneme) level to
model (state) level.

Subtle pronunciation variations may actually be bet-
ter modeled implicitly at the acoustic model level, rather
than modeled explicitly at the lexical level. For example,
phoneme AX can be alternately realized as phoneme IX
in certain words:

AFFECTIONATE AX F EH K SH AX N AX T
AFFECTIONATE(2) AX F EH K SH AX N IX T
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Figure 1: Pronunciation model as a mapping from sym-
bolic level to model level

Instead of adding a variant in the dictionary, we can
keep the dictionary unchanged, and either augment the
mixture model of AX with Gaussians from the mixture
model of IX (as in [1]), or simply tie these two models
together.

This paper focuses on implicit pronunciation mod-
eling using decision tree based tying. In Section 2, we
will first examine the relative merits of different pronun-
ciation modeling methods, namely, explicitly adding dic-
tionary variants versus implicit modeling using decision
tree based state tying. Section 3 introduces enhanced
tree clustering that allows parameter sharing/tying across
different phonemes. The new approach is evaluated
on Switchboard, a large vocabulary speech recognition
(LVCSR) task. Section 4 presents experiments and dis-
cussions. Related research work is reviewed in Section 5.

2. Explicit vs. Implicit Pronunciation
Modeling

Early attempts at pronunciation modeling take the form
of manually editing a lexicon. For example, to model
the flapping of T in BETTER, an alternative lexical entry
BETTER(2) is introduced:

BETTER B EH T AXR
BETTER(2) B EH DX AXR

Interestingly, for this kind of pronunciation variation,
triphone modeling turns out to be better than dictionary
editing. Triphone was originally introduced to model
context dependency. As there is a large number of tri-
phones in an LVCSR system, decision tree based state
tying is widely used to cluster triphones [2]. This ensures
sufficient training data for each model as well as better



generalization to unseen contexts. It turns out that many
coarticulation rules, such as the flapping of T, can be well
captured by triphone models in a purely data-driven fash-
ion. This gives us another solution: leave the dictionary
under-specified, and use automatic triphone clustering for
pronunciation modeling1. The use of mixture model as
the underlying distribution is also important, since we are
using the same triphone model for both the flapped and
unflapped version of T.

Compared to triphone clustering, manually editing a
lexicon is both labor intensive and error prone. In the
example of the flapping of T, one needs to be extremely
careful to make sure that all relevant dictionary entries
are modified, while nothing else is erroneously changed.
This turns out to be quite difficult in reality. Whereas
in the automatic solution, it is a lot easier to keep the
dictionary simple and consistent.

One could also use automatic procedures to gener-
ate pronunciation variants, in order to avoid the pitfall of
manual editing. There has been a lot of research in this
area. So far, the improvement has been marginal. This
could be attributed to several undesirable side effects of
pronunciation variants:

� First, adding variants increases lexical confusabil-
ity in a recognition dictionary;

� Second, if not done properly, adding variants in-
creases model confusability during training. As il-
lustrated in Figure 2, when a variant replaces phone
A by phone B, we are distributing to model B the
data that was originally used to train model A. In
cases where the variant is spurious, model B will
be contaminated with data belonging to A, making
A and B more confusable.
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Figure 2: Model Contamination

In summary, due to the complex interaction between
lexicon and acoustic modeling, adding pronunciation
variants should be exercised with great care. In the next
section, we introduce enhanced tree clustering for im-
plicit pronunciation modeling.

3. Enhanced Tree Clustering

Decision tree based state tying allows parameter shar-
ing at leaf nodes of a tree. Typically, one decision tree

1This actually resonates with single pronunciation dictionary [3]

is grown for each sub-state (begin/middle/end) of each
phone. With 50 phonemes in the phone set, 150 sepa-
rate trees are built (Figure 3(a)). Parameter sharing is not
allowed across different phones or sub-states. With en-
hanced tree clustering, a single decision tree is grown for
all sub-states of all the phones (Figure 3(b)). The clus-
tering procedure starts with all polyphones at the root.
Questions are asked regarding the identity of the cen-
ter phone and its neighboring phones, plus the sub-state
identity (begin/middle/end). At each node, the question
that yields the highest information gain is chosen and the
tree is split. This process is repeated until either the tree
reaches a certain size or a minimum count threshold is
crossed. Compared to the traditional multiple-tree ap-
proach, a single tree allows more flexible sharing of pa-
rameters. Any nodes can potentially be shared by multi-
ple phones, as well as sub-states.
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Figure 3: (a) shows the traditional clustering approach:
one tree per phone and sub-state. (b) shows the concept
of enhanced clustering using a single tree.

In sloppy speech, people don’t differentiate
phonemes as much as they do in read speech. Dif-
ferent phonemes tend to exhibit more similarity. Single
tree clustering is well suited to capture these cross-phone
parameter sharing, whereas the traditional approach does
not allow such sharing.

Furthermore, sharing parameters across phones al-
leviates certain problems in a dictionary, namely, over-
specification and inconsistencies.

Examples of these include the handling of T and DX,
AX and IX as mentioned before. Some lexicons choose
to differentiate them, while others do not. In lexicons that
do, they are most often not marked consistently through-
out. This is also referred to as the problem of choosing
an optimal phoneme set. Unfortunately, such an optimal
phoneme set does not exist. By allowing parameter shar-
ing across phonemes, we no longer face this tough de-
cision: if phonemes are indistinguishable under certain
context, they will be allowed to share the same model; if
they show sufficient differences under certain other con-
text, they will be allowed to use different models.

Under the same argument, enhanced tree clustering is
also a preferable choice for multilingual speech recogni-



tion or non-native speech recognition, where the phone
set is not well defined and different phones show in-
creased similarity.

4. Experiments and Discussions

4.1. Setup

Experiments are performed on the Switchboard (SWB)
task. The test set is a 1 hour subset of the 2001 Hub5e
evaluation set. The full training set includes 160 hours
of SWB data and 17 hours of CallHome data. We typi-
cally use a 66 hour subset of the 160 hours of SWB data
for fast experimentation. The baseline system is devel-
oped using the Janus speech recognition toolkit [4]. The
front-end uses vocal tract length normalization, cluster-
based cepstral mean normalization, and an 11-frame con-
text window for delta and double-delta. Linear discrimi-
nant analysis is applied to reduce feature dimensionality
to 42, followed by maximum likelihood linear transform.
We use a 15k vocabulary and a trigram language model
trained on SWB and CallHome.

The baseline acoustic model uses a quinphone tree
based, two level state tying scheme (described in [5], sim-
ilar to soft-tying [6]): 24k distributions sharing 6k code-
books, with a total of 74k Gaussians. It has a word error
rate (WER) of 34.4% [7]. Unless otherwise stated, all re-
sults reported here are based on first-pass decoding, i.e.
no adaptation or multi-stage processing.

Computational cost is the main difficulty for growing
a single big tree. As the number of unique quinphones
on the Switchboard task is around 600k, direct cluster-
ing on all of them is quite daunting. The traditional ap-
proach doesn’t have this problem, since polyphones are
divided naturally according to center phone and sub-state
identities. For this reason, we conducted two experiments
to investigate the effects of cross-phone tying and cross-
substate tying separately.

4.2. Cross-Phone Clustering

We grow six triphone trees for cross-phone clustering:
one for each of the begin/middle/end state of vowels and
consonants. We could have built three big trees, without
differentiating between vowels and consonants. The rea-
son is: first, we expect little parameter sharing between
vowels and consonants; furthermore, separating them re-
duces computation.

Initial experimentation gives a small, albeit signifi-
cant, improvement (from 34.4% to 33.9%). As the tree
is grown in a purely data-driven fashion, one may won-
der how much cross-phone sharing there actually is. It is
possible that questions regarding center phones are highly
important, therefore they are asked earlier in the tree, re-
sulting in a system which is no different from a phonet-
ically tied system. We examined the six triphone trees,
and found that 20% to 38% of the leaf nodes (out of a

total of 24k) are indeed shared by multiple phones.

4.3. Single Pronunciation Dictionary

Motivated by Hain’s work on single pronunciation dictio-
naries (SPD) [3], we tried to reduce the number of pro-
nunciation variants in the dictionary. The procedure to
derive a new lexicon is even simpler than Hain’s. First,
we count the frequency of pronunciation variants in the
training data. Variants with a relative frequency of less
than 20% are removed. For unobserved words, we keep
only the baseform (which is more or less a random de-
cision). Using this procedure, we reduced the dictionary
from an average 2.2 variants per word to 1.1 variants per
word. We are not using strictly single pronunciations, so
that we can keep the most popular variants, while prun-
ing away spurious ones. For example, the word A has
two variants in the resulted dictionary:

A AX
A(2) EY

Simply using SPD with traditional clustering gives
a 0.3% improvement, which is comparable to Hain’s
results. More interestingly, cross-phone clustering re-
sponds quite well with SPD. Overall, we achieve a 1.3%
gain by cross-phone clustering on a single pronunciation
dictionary (Table 1).

Dictionary Clustering WER(%)

multi- regular 34.4
pronunciation cross-phone 33.9

single regular 34.1
pronunciation cross-phone 33.1

Table 1: Cross-Phone Clustering Experiment

Note that experiments in Table 1 are based on the 66
hour training set and triphone clustering. The gain holds
when we switch to the full 180 hour training data and
quinphone clustering. Due to high computation, we only
compared two systems: one with multi-pronunciation
lexicon and no cross-phone clustering, and the other with
single-pronunciation lexicon and cross-phone clustering.
WER improves from 33.4% to 31.6%, a 1.8% absolute
gain.

4.4. Discussion

To explain why cross-phone clustering helps more with
SPD (from 34.1% to 33.1%), than with a regular dictio-
nary (from 34.4% to 33.9%), let us consider the (unin-
tended) side effects of pronunciation variants. When a
variant replaces phone A by phone B, we are distribut-
ing to model B the data that was originally used to train
model A (Figure 2), effectively allowing parameter shar-
ing between phones. Hence, cross-phone parameter shar-
ing exists even without explicit cross-phone clustering.
But this sharing will only contaminate models and hurt



performance, if those variants are not carefully scruti-
nized. As discussed in Section 2, adding pronunciation
variants is not as straightforward as it may seem. Changes
to a dictionary should be coordinated closely with acous-
tic modeling.

−1=consonant?

0=high−vowel? −1=obstruent? −1=L | R | W?

0=high−vowel?

0=front−vowel?

n y

n y n y

−1=voiced?

VOWEL−b

Figure 4: Top part of Vowel-b tree (beginning state of
vowels). “ �

�
=” questions ask about the immediately left

phone, “0=” questions ask about the center phone.

The top portion of the tree for the beginning state of
vowels is shown in Figure 4. It is clear that questions
about center phone identities are not necessarily preferred
over contextual questions. Again, 20% to 40% of the leaf
nodes are found to be shared by multiple phones. Conso-
nants that are most frequently tied together are: DX and
HH, L and W, N and NG. Vowels that are most frequently
tied together are: AXR and ER, AE and EH, AH and AX.

4.5. Cross-Substate Clustering

In this experiment, we build one tree for each phone,
which covers all three sub-states. Three new questions
are added regarding sub-state identities. Contrary to our
experience with cross-phone clustering, we find those
three questions to be highly important. They are chosen
in most cases as the top two questions. Hence, the re-
sulted tree is not any different from three separate trees,
as in traditional clustering.

5. Related Work

Pronunciation modeling has received a lot of attention
recently. To explain why simply modifying the lexicon
does not work as expected, Jurafsky et al. argued that tri-
phones can already capture many kinds of pronunciation
variations [8], including phone substitution and reduc-
tion. Hain questioned the use of pronunciation variants
in a recent work called “single pronunciation dictionary”
[3]. By systematically removing variants, he showed a
slight gain over a state-of-the-art Switchboard system.

Recent studies focus on implicit pronunciation mod-
eling by leveraging various acoustic modeling mecha-
nisms. Saraclar et al. proposed a state level pronuncia-
tion model, which tries to add Gaussians from the surface
form model to the baseform model. Pronunciation mod-
eling at a deeper level allows greater expressive power
and modeling resolution. For example, a pronunciation

variant, as a phone sequence, can always be translated
into a state/model sequence, but not vice versa. A ma-
jority of state/model sequences cannot be represented as
valid phone sequences. To address this, Hain proposed
the Hidden Model Sequence Model [9].

6. Conclusion

This paper shows that polyphone clustering is an inte-
gral part in pronunciation modeling. Enhanced tree clus-
tering is proposed to allow efficient parameter sharing
across phonemes. This effectively handles blurred phone
identities commonly found in conversational speech, in-
stead of making a hard decision in the lexicon. Combined
with a single pronunciation dictionary, the new approach
achieves a 1.8% WER reduction on the Switchboard task,
over state of the art decision tree based state tying. We be-
lieve this approach also holds promise in other tasks, such
as multilingual speech recognition and non-native speech
recognition.
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