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Abstract

Generating images according to natural language descriptions is a challenging task. In this
thesis, we propose the Combined Attention Generative Adversarial Network (CAGAN) to
generate photo-realistic images according to textual descriptions; and we critically discuss
evaluation metrics for text-to-image generation. By combining squeeze-and-excitation
attention with word attention and applying spectral normalisation, a GAN stabilising
technique, our proposed CAGAN improves the state of the art on the inception score
for the Caltech-UCSD Birds 200 dataset while generating (mostly) realistic images and
showing a reasonable text-image correlation. We demonstrate that judging a model by
a single evaluation metric can be misleading by searching for opposing responses of
evaluation metrics and by developing an additional model which outperforms the state
of the art on the inception score while generating unrealistic images through feature
repetition. Furthermore, we demonstrate that a second popular evaluation metric, the
Fréchet inception distance, is calculated di�erently by multiple papers, thereby inhibiting a
fair model comparison. Our thesis stresses the need for the use of more than one evaluation
metric; a uni�ed evaluation approach in the �eld of text-to-image generation; and ideally
an evaluation metric o�ering a fair model comparison.
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Zusammenfassung

Das Generieren von Bildern aus natürlichen Sprachbeschreibungen ist eine anspruchsvolle
Aufgabe. In dieser Thesis, schlagen wir das Combined Attention Generative Adversa-
rial Network (CAGAN) vor, um fotorealistische Bilder nach textuellen Beschreibungen
zu generieren; und wir führen eine kritische Diskussion über Evaluationsmetriken für
Text-zu-Bildgenerierung. Indem wir squeeze-and-excitation Aufmerksamkeit mit Wortauf-
merksamkeit kombinieren und spektrale Normalisierung anwenden, verbessert unser
vorgeschlagenes CAGAN den state of the art des inception scores auf dem Caltech-UCSD
Birds 200 Datensatz, während es (meist) realistische Bilder generiert und eine vernünfti-
ge Text-Bild-Korrelation aufweist. Wir demonstrieren, dass die Bewertung eines Models
aufgrund einer einzigen Evaluationsmetrik irreführend sein kann, indem wir nach ent-
gegengesetzten Reaktionen von Evaluationsmetriken suchen und indem wir ein weite-
res Modell entwickeln, welches den state of the art auf dem incetpion score verbessert,
während es durch Merkmalwiederholungen unrealistische Bilder erzeugt. Des Weiteren
demonstrieren wir, dass eine zweite populäre Evaluationsmetrik, die Fréchet inception
distance, von mehreren Papern unterschiedlich berechnet wird. Dadurch wird ein fairer
Modellvergleich beeinträchtigt. Unsere Thesis bekräftigt die Notwendigkeit mehr als eine
Evaluationsmetrik zu benutzen; eines einheitlichen Vorgehens bei der Evaluation im Felde
der Text-zu-Bildgenerierung; und idealerweise einer Evaluationsmetrik, welche einen
fairen Modellvergleich gewährleistet.
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1. Introduction

Generating images according to natural language descriptions spans a wide range of
di�culty, from generating synthetic images to simple and highly complex real-world
images. It has tremendous applications such as photo-editing, computer-aided design,
and may be used to reduce the complexity of or even replace rendering engines, not
having to simulate complex light transport, surface geometry, shading, etc. [50] Further-
more, good generative models involve learning new representations. These are useful for
a variety of tasks, for example classi�cation, clustering, or supporting transfer among tasks.

Generating images highly related to the meanings embedded in a natural language de-
scription is a challenging task due to the gap between text modality and image modality.

There has been exciting recent progress in the �eld using numerous techniques and
di�erent inputs [39] [11] [22] [32] [9] [30] [58] [56] [57][59] yielding impressive results on
limited domains. A majority of approaches are based on Generative Adversarial Networks
(GANs) [19]. A GAN is composed of two networks: a generator and a discriminator which
are jointly trained with a competing goal in an adversarial manner. The discriminator
evaluates the di�erence between the real and the generated data distribution, thereby
avoiding to directly compare these distributions. This advantage led to GANs demonstrat-
ing impressive performance in generative tasks.

Zhang et al. introduced Stacked Generative Adversarial Networks [84] which consist
of two GANs generating images in a low-to-high resolution fashion. The second generator
receives the image encoding of the �rst generator and the text embedding as input to
correct defects and generate higher resolution images. Recently, a number of techniques
have been proposed improving upon Stacked GANs [86] [82] [52] [8] [38] [10] [53] [81] [85].

Xu et al. [81] improve on Stacked GANs by introducing AttnGAN which utilises a novel
loss function and �ne-grained word attention. We build on their approach, investigating
the introduction of several known attention models into the existing model and proposing
methods of combing attention. Furthermore, we discuss the impact of attention on di�erent
parts of the network.

Given that there has been a lot of recent research and progress in the �eld of self-attention
and that the existing model contains a complex word-attention model, we focus on the
introduction of several known self-attention mechanism. These include global, local,
spatially-aware, and light-weight approaches. We stabilise the training behaviour of the
GAN by applying spectral normalisation [44] in the discriminator. Additionally, we repur-
pose attention mechanisms to obtain sentence attention.
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1. Introduction

Having a number of attention maps from di�erent models leads to the question of how
to combine them. We experiment with di�erent views of attention, translating attention
maps to a common view, and combining attention maps. These encompass common
network structures, such as convolutions, normalisations, and activations as well as tensor
operations.

We evaluate our proposal using several of the most popular evaluation metrics for genera-
tive image modelling, including the Inception Score (IS) [61] and the Fréchet Inception
Distance (FID) [24]. By combining squeeze-and-excitation attention with word attention
and applying spectral normalisation, a GAN stabilising technique, our proposed Combined
Attention Generative Adversarial Network (CAGAN) boosts the IS of our baseline by
9.6% ± 2.4% from 4.36 ± 0.04 to 4.78 ± 0.06 and improves the state of the art by 0.6% ± 2.8%
from 4.75 ± 0.07 to 4.78 ± 0.06 on the CUB dataset [74].

Furthermore, our proposed CAGAN boosts the FID of our baseline by 10.0% from 47.76
to 42.98. A comparison to the FIDs of the state of the art is futile, because several papers
report no FID score and those that do report vastly di�erent FID scores on the CUB dataset
for the same baseline suggesting the use of di�erent FID implementations.

A subjective, qualitative visual analysis illustrates that our proposed CAGAN generates
images of similar quality to the AttnGAN and shows reasonable generalisation abilities.
In addition, we investigate di�erent views of attention and methods of combining attention.

We critically discuss evaluation metrics for text-to-image generation and for evaluat-
ing GANs. We demonstrate the importance of reporting more than on evaluation metric
by analysing the anti-correlation of our evaluation metrics by searching for opposing
responses, i.e., occurrences of improving on one metric while deteriorating on another
metric; and by developing a model boosting our baseline on one speci�c evaluation metric,
the IS, by 13.8%±2.2% from 4.36±0.04 to 4.96±0.05 while generating completely unrealistic
images through feature repetitions and having a major negative impact on the FID of our
baseline of 27.8% from 47.76 to 61.06.

We revisit a critical discussion of the inception score and the overall suitability of all
our measures in the context of text-to-image generation. Moreover, we show that several
recent papers [86] [8] [10] report vastly di�erent FID scores on the CUB dataset for the
same baseline suggesting the use of di�erent FID implementations. Our work stresses the
need for the use of more than one evaluation metric; a uni�ed evaluation approach in the
�eld of text-to-image generation; and ideally an evaluation metric o�ering a fair model
comparison.

Lastly, we observe mode collapse when applying attention in the discriminator; examples
of internal anti-correlation; and di�erent behaviour of evaluation metrics.
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2. Background

This chapter provides a brief introduction into the underlying methods used in the follow-
ing chapters. Section 2.1 is an excursion to the biological motivation of neural networks.
Section 2.2 introduces arti�cial neural networks and covers common activation functions
(Subsection 2.2.1), feed-forward neural networks (Subsection 2.2.2), common loss functions
(Subsection 2.2.3), gradient descent (Subsection 2.2.4), backpropagation (Subsection 2.2.5),
and popular improvements such as batch normalisation (Subsection 2.2.6) and residual
connections (Subsection 2.2.7).

Section 2.3 introduces Convolutional Neural Networks (CNNs), their basic building blocks
convolutional layers (Subsection 2.3.1) and pooling layers (Subsection 2.3.2), and gated
linear units (Subsection 2.3.3), an activation function designed for CNNs. Section 2.4
introduces recurrent neural networks, their accompanying vanishing gradient problem
(Subsection 2.4.1), and one of its solutions: long short term memory (Subsection 2.4.2).
Section 2.5 introduces generative adversarial networks and discusses several training
instabilities (Subsection 2.5.1) such as convergence, vanishing gradients, and mode col-
lapse. Lastly, Section 2.6 provides a brief introduction of autoencoders and denoising
autoencoders (Subsection 2.6.1).

2.1. Biological Background

Arti�cial neural networks were inspired by biological brains and are used for a variety
of machine learning tasks. Biological neurons consist of the soma (cell body), axons,
dendrites, and synapses. A spike or action potential is a short (1ms) and sudden increase
in voltage created by the soma. The axon is the signal carrier of a spike. Incoming signals
alter the voltage of a neuron. The synapses work as signal pre-processors and alter the
membrane voltage positively or negatively when receiving a spike. This makes them
crucial for learning and adaption. If the membrane voltage of a neuron reaches above a
threshold value the neuron sends out a spike. After the spike the neuron enters a short
refractory period (10ms). The refractory period is a short moment of rest in which the
neuron can not send out another spike.

The spikes of biological neurons are all similar. However, the postsynaptic potentials vary
in size, i.e., the e�ect of incoming spikes varies. Individual neurons send out erratic spike
trains (sequences of spikes) which alter dramatically in frequency over a short period
of time. Therefore, neurons have to use spatial and temporal information of incoming
spike patterns to encode their messages to other neurons. In addition to electrical as-
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2. Background

pects, biological neurons also have chemical aspects in form of transmitters enhancing or
diminishing the e�ects of spikes. [73] [20] [42]

2.2. Artificial Neural Networks (ANNs)

Arti�cial Neural Networks (ANNs) use a strongly simpli�ed version of biological neurons
ignoring chemical and temporal aspects: a single neuron receives input G over connections;
the input is multiplied by weights F ; then a bias 1 is added; and the result is put in an
activation function i yielding the output ~:

~ = i (F)G + 1) = i (
∑
8

F8 · G8 + 1) . (2.1)

2.2.1. Activation Functions

The activation function is typically non-linear, examples are the sigmoid function:

f (G) = 1
1 + 4−G , (2.2)

the ReLU, and the LeakyReLU [41]:

f (G) = G+ =<0G (0, G) (2.3)

f (G) =
{
G, if G ≥ 0
U · G, otherwise

. (2.4)

2.2.2. Feed-Forward Neural Networks (FFNN)

An ANN is de�ned by a structure G and internal parameters \ :

~ = �## (G, \ ) . (2.5)
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2.2. Arti�cial Neural Networks (ANNs)

Figure 2.1.: Feed-forward neural network with � inputs, ; hidden layers, each of size =: ,
and $ outputs. 1

A common structure is the Feed-Forward Neural Network (FFNN). A FFNN groups neurons
into layers and restricts connections, such that no cycle is allowed. Often, each layer only
receives the output of the previous layer as input, see Figure 2.1. We assume this case in
the following. Each layer : can be interpreted as function 5: that receives an input G: and
yields an output ~: ; we denote,: as the weight matrix between layer : and layer : − 1
and 1: as the biases for the neurons in layer : :

~: = 5: (G:) = 5: (~:−1) = i (,:~:−1 + 1:) . (2.6)

Thus, the output of the network is:

~ = 5= ◦ 5=−1 ◦ ... ◦ 51(G) . (2.7)

2.2.3. Loss Functions

The parameters,: and 1: are learned and not designed. This requires a loss function. A
loss function compares the output of the network ~ to a desired output ~′. Therefore, it is a
supervised learning problem. A typical loss function is the Mean Squared-Error (MSE/L2):

!(~,~′) = 1
=
·
=∑
8=1
(~8 − ~′8 )2 . (2.8)

1Figure was created by the author.
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2. Background

2.2.4. Simple/Stochastic Gradient Descent

To learn the parameters, the contribution of each parameter to the error is computed. The
contribution of a weightF8 9 is de�ned as the partial derivative of the loss function of the
weightF8 9 :

m!(~,~′)
mF8 9

. (2.9)

When using simple gradient descent as optimizer, the weightF8 9 is updated according to:

F ′8 9 = F8 9 + [ ·
m!(~,~′)
mF8 9

, (2.10)

where [ is the learning rate. Considering all training samples for each weight update is
costly and the gradient descent may get stuck in local minima. To approach these problems,
stochastic/batch gradient descent (SGD) considers only a single/�xed number of training
samples per weight update. This results in more weight updates and the ability to escape
local minima. However, the weight updates are less meaningful and a smaller learning
rate is recommended.

2.2.5. Backpropagation

Backpropagation provides an e�cient way to compute the gradients of a loss function
with respect to the individual weights:

m!

mF8 9
=
m!

m~

m~

mF8 9
. (2.11)

With the de�nition of Equation 2.6 and Equation 2.7 we can invoke the chain rule:

m~

mF8 9
=

m5=

m~=−1

m5=−1
m~=−2

...
m5 9+1
m~ 9

m5 9

mF8 9
. (2.12)

Backpropagation computes the gradients layer by layer, starting at the back. Each partial
derivative m59

m~ 9−1
is only computed once and reused for the previous layer, thus making it

an e�cient algorithm.

2.2.6. Batch Normalisation

Batch normalisation [29] is a technique that reduces over�tting, allows better generalisa-
tion, stabilises training, and increases convergence velocity by allowing higher learning
rates.

Batch normalisation introduces a new layer before the activation function which �xes the
means and variances. Ideally, the normalisation is conducted over all training examples.
In practice, the normalisation is conducted over a mini-batch allowing it to be used in
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2.2. Arti�cial Neural Networks (ANNs)

conjunction with SGD. Batch normalisation normalises the output of the previous layer
by subtracting the batch mean and then dividing by the batch standard deviation. The
resulting output has zero mean and unit variance.

Batch normalisation was originally designed to reduce the internal covariance shift, i.e.,
the shift around the mean. However, recent work [62] has shown that batch normalisation
does little in that regard, rather its e�ectiveness results from a signi�cant smoothing of
the optimisation landscape. Thereby, it introduces a more predictive and stable behaviour
of gradients.

2.2.7. Residual Connections

He et al. [23] introduced residual connections which advanced the state of the art for
multiple image-related tasks. A residual connection directly adds the output of a layer
to a later layer, thereby skipping the residual block (the layers in between). Usually, the
residual block consists of a few layers. The only restriction of the residual block is that its
output size must match its input size. The principle is depicted in Figure 2.2.

Figure 2.2.: Residual connection for an arbitrary residual block with matching output and
input size. 2

Residual connections provide the network with more paths: each residual block has two
paths. Therefore, a network with = residual blocks has 2= paths. One advantage of having
more paths is that gradients no longer vanish, because there is a direct path for the gradient.
Veit et al. [71] show this behaviour by demonstrating that most of the gradients during
training of a deep network originate from short paths. This allowed the training of net-
works that are two magnitudes deeper than previous models with up to thousands of layers.

Moreover, Veit et al. show that entire layers of a trained residual NN can be removed while
maintaining comparable performance. Similar procedure in common NNs decreases the
performance, because common NNs only provide a single path for the gradient. Removing
a layer compromises that path. In a residual NN, however, the residual connection remains
after removing a layer providing an uncompromised path.

2Figure was created by the author.
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2.3. Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) [37], interpretable as an extension of Time-Delay
Neural Networks (TDNNs) [75], introduce two new layers: the convolution layer and the
pooling layer. CNNs are commonly used for image-related tasks due to their ability to
deal with the high dimensionality of images. For example, a simple 128x128 RGB image as
input translates to 128 · 128 · 3 = 49152 parameters. Fully connecting them with a very
simple layer of a thousand neurons results in 49152 · 1000 ∼ 49.2million parameters to be
learned.

2.3.1. Convolutional Layer

The convolutional layer addresses the dimensionality issue via weight sharing. Instead
of having each neuron depend on all neurons of the previous layer, each neuron simply
depends on its mirror neuron, which is the neuron of the previous layer occupying the
same spatial position, and a small neighbourhood around it. Furthermore, the weights
among any neuron and its mirror neuron plus neighbourhood are identical, i.e., shared.
This ensures that the same features are being detected, regardless of their spatial position,
and it greatly reduces the number of parameters.

Figure 2.3.: The 7th step of a convolution with a �lter-kernel of size 3G3. 3

A convolutional layer performs a convolution with = �lter kernels, each of size :G: . Fig-
ure 2.3 shows a step of a 2D-convolution with a single feature map and a kernel of size
3G3. For a 2D-convolution the input is required to be two-dimensional or higher. Typically,
the input consists of multiple 2D feature maps, for example, one feature map for each
colour-channel of an RGB image. Each kernel operates on all input feature maps and

3Figure was created by the author.
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2.3. Convolutional Neural Networks (CNNs)

produces a single feature map as output. Thus, the number of output feature-maps equals
the number of kernels.

The input feature maps are being overlayed with the kernel which is then moved step by
step. In each step the overlayed elements are multiplied by the learned kernel weights and
then summed up yielding a single value in the output feature map. To preserve the spatial
size of the input feature map, the input may be padded. The step-size may also be adjusted
to reduce the spatial size of the output feature map.

2.3.2. Pooling Layer

Figure 2.4.: The 5th step of a max-pooling with a kernel of size 2G2. 4

The purpose of the pooling layer is to reduce the spatial size of the representation. Ideally,
the pooling layer also prevents over�tting and removes noise while keeping the relevant
information. The pooling layer combines multiple values of a neighbourhood into a single
value according to a �xed rule. Examples for the �xed rule are: max-pooling, where the
maximum of the values is the output, and average-pooling, where the mean of the values
is the output. Figure 2.4 is an example of a 2G2 max-pooling.

4Figure was created by the author.
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2.3.3. Gated Linear Unit (GLU)

Figure 2.5.: A gated linear unit using the output of a convolutional layer as input. One half
of the input feature map is used to gate the other half thereby keeping only
relevant information. 5

Dauphin et al. introduced Gated Linear Units (GLUs) [12] for CNNs to model natural
language. The GLU uses one half of its input to gate the other half thus keeping only
relevant information (see Figure 2.5).

More formally, the GLU splits the input into two equal sets � and �. � and � need
to be computed independently. The GLU is typically used after a convolutional layer. Since
each feature map is computed independently by its own �lter (see Subsection 2.3.1), only
the number of feature maps must be even to ful�l the independence condition. Then, � is
used to gate � to get the output $ :

$ = � ⊗ f (�) , (2.13)

where f is the sigmoid activation function. The gates calculated from � control what
information is passed on. In the context of CNNs relevant image features are passed on,
whereas irrelevant image features are forgotten.

Similar to a ReLU, the GLU provides non-linear capabilities and a linear path for the
gradient diminishing the vanishing gradient problem and making it applicable in deep
neural networks.

5Figure was created by the author.
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2.4. Recurrent Neural Networks (RNNs)

A disadvantage of common FFNN networks is their requirement for �xed-sized input. If
the input length varies the input needs to be padded to the length of the longest input
or clipped. Recurrent Neural Networks (RNNs) address this issue and are able to process
variable length sequences. Hence, they are widely used in natural language processing.
Moreover, RNNs recognize structures regardless of their position in the input.

Figure 2.6.: Simple recurrent neural network and the same network unfolded over time. * ,
+ , and, represent weight matrices. 6

Figure 2.6 depicts a simple RNN. An RNN contains a feedback loop: the output of the
previous calculation is used for the next calculation. In Figure 2.6 the hidden layer uses at
each time-step the previous hidden state ℎC−1 and GC as input:

ℎC = 5 (GC , ℎC−1) = f (,GC +*ℎC−1) , (2.14)

where, is the weight matrix between the input and the hidden layer and* is the weight
matrix between the hidden layer and itself. The initial hidden state ℎ0 can be initialised
arbitrarily.

Similar to a CNN, an RNN greatly reduces the number of parameters. However, instead of
sharing weights spatially, an RNN shares weights over time (see Figure 2.6).

2.4.1. Vanishing Gradient Problem

Training an RNN is similar to training a deep neural network. Since the previous output
of the network in�uences the next output of the network, an RNN needs to be unrolled to
train it (see Figure 2.6). Backpropagating through multiple layers or in this case through
time either causes the gradient to vanish or to explode. This results in slow or no learning
or, respectively, in divergence.

6Figure was created by the author.
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Short-term dependencies backpropagate through only a few time-steps. Therefore, they
are less a�ected by the vanishing gradient problem and have been shown to dominate
long-term dependencies [25].

2.4.2. Long Short TermMemory (LSTM)

Long Short Term Memory (LSTM) [26] addresses the issues of the vanishing gradient
problem and long term dependencies. LSTM uses a cell state which is updated or deleted
independently from the output. This allows LSTMs to store long term dependencies.

Figure 2.7.: A single LSTM cell. 2C is the cell state and ℎC is the cell output. Blue boxes
represent a neural network layer with its respective activation function. Red
ellipses represent point-wise operations. 7

7Figure was created by the author.
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Figure 2.7 depicts a single LSTM cell. It receives its old cell state 2C−1, its old output ℎC−1,
and GC as input. To compute the new output and cell state, a new cell state candidate is
computed:

2̂C = C0=ℎ(,2GC +*2ℎC−1) . (2.15)

A forget gate 5C speci�es which old data is forgotten:

5C = f (,5 GC +* 5ℎC−1) (2.16)

and an input gate 8C determines what new information is stored:

8C = f (,8GC +*8ℎC−1) . (2.17)

The input gate protects the memory from noise and unnecessary information. Together,
the input and the old cell state form the new cell state controlled by its respective gates:

2C = 5C � 2C−1 + 8C � 2̂C . (2.18)

An output gate >C determines the importance of the input for the output:

>C = f (,>GC +*>ℎC−1) . (2.19)

Finally, the output is computed using the new cell state (see Equation 2.18) and the output
gate (see Equation 2.19): ,

ℎC = >C · C0=ℎ(2C ) . (2.20)

2.5. Generative Adversarial Networks (GANs)

Goodfellow et al. introduced Generative Adversarial Networks (GANs) [19] which have a
wide range of applications such as domain transfer, synthetic data generation and re�ne-
ment, super-resolution, and high-resolution image generation.

A GAN consists of two di�erentiable submodules: a generator � and a discriminator
� that are trained interdependently. The generator models a transform function: it re-
ceives a latent noise vector I, sampled from a distribution ?I , as input. ?I is usually a
normal distribution. The generator is trained to generate images � (I) (or other output)
resembling the training data distribution ?I .

The discriminator resembles a discriminative function or classi�er: it receives the gener-
ated images � (I) and the corresponding real training data G as input and is trained to
di�erentiate between the two. The output of the discriminator � (~) is the probability that
� assigns to the image ~ that ~ was sampled from the true data distribution. Thus, the
discriminator can be thought of as a trainable loss function for the generator. Figure 2.8
depicts this architecture.

13



2. Background

Figure 2.8.: Architecture of a simple GAN generating images from noise. 8

The generator and discriminator compete against each other in an adversarial manner: �
is trained to minimize the probability of � identifyig the images as synthetic: � (� (I)) ≈ 0,
whereas � is trained to maximize that probability: � (� (I)) ≈ 1. This competition is
expressed in a min-max function [18]:

min
�

max
�
+ (�,�) = EG∼?' [;>6(� (G))] + EI∼?I [;>6(1 − � (� (I)))] . (2.21)

The parameters are updated using alternating stochastic gradient descent between the two
models. The generator receives its error gradient from the discriminator instead of using
a direct comparison of its generated samples to the training data samples, like a FFNN.
Therefore, the generator never directly sees a sample of the training data.

This concept allows GANs to avoid the di�cult task of comparing two probability distri-
butions based on samples. Furthermore, because the generator only receives information
about the true data distribution from gradients of the discriminator, GANs are largely
una�ected by over�tting.

The GAN converges if the min-max function reaches an equilibrium. Ideally, the generator
perfectly reproduces the training data distribution, i.e., ?' = ?I .

2.5.1. Training Instabilities

There are various di�culties when training GANs. The existence of an equilibrium is not
guaranteed. Hence, convergence is not guaranteed.

8Figure was created by the author.
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A common issue is that the discriminator often rejects samples with high con�dence, es-
pecially during early phases of training where the generator is unsophisticated. Therefore,
the absolute value of gradients passed on to the generator is small, hindering the generator
from learning.

A severe problem is mode collapse [18]: the generator collapses to one or a few modes
where multiple di�erent inputs are mapped to the same image that the discriminator
believes to be real, i.e., it has the largest discriminator output. This occurs because the
gradients in the discriminator are computed independently of each other, without incor-
porating a similarity measure of a given mini-batch [61].

When the discriminator receives the same image or nearly identical images in a mini-batch,
it quickly learns to identify this single image as fake. However, because the received
images are (nearly) identical, the gradients of the discriminator are (nearly) identical as
well. Thus, the generator update pushes the generator to generate a di�erent single image
instead of generating multiple images leading to an oscillatory failure state.

Various techniques have been proposed [54] [61] [1] [44] to stabilise the training procedure
and generate compelling results.

2.6. Autoencoders

An autoencoder consists of an encoder and a decoder. The encoder computes an encoding
of the input. It receives an input G ∈ '3 and maps it to a latent representation ℎ ∈ '3 ′

using a deterministic function 5\ = f (,G + 1) with parameters \ = {,,1}. The decoder
tries to reconstruct the original input from the encoding. It performs a reverse mapping
using the function ~ = 6\ ′ = f (, ′G + 1′). Often, the parameters are constrained such that
, ′ =, ) . [5]

Learning occurs in an unsupervised manner, because the label equals the input. The
encoder learns an e�cient data encoding which can be used for dimensionality reduction.
The decoder learns to reconstruct/generate data from data encodings which can be applied
in generative models.

2.6.1. Denoising Autoencoders

A further development of the autoencoder is the denoising autoencoder [72], which is
more robust towards noise in the data. A denoising autoencoder tries to reconstruct noisy
inputs. During training the original input G is corrupted to G′ by adding E times noise on
the input, for example, uncorrelated Gaussian noise for colour images. The parameter
E represents the percentage of permissible corruption. Then, the autoencoder tries to
reconstruct the original input G from the corrupted input G′.
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3. RelatedWork

This chapter provides a brief overview of natural language models and generative im-
age models. Section 3.1 introduces neural and non-neural natural language models with
a focus on recent large pretrained models. Section 3.2 illustrates the three most com-
mon approaches of generative image modelling: generative adversarial networks (see
Subsection 3.2.1), autoencoders (see Subsection 3.2.2), and autoregressive models (see
Subsection 3.2.3), as well as further approaches (see Subsection 3.2.4).

3.1. Natural Language Models

Modelling natural language is a research area that has been around for decades and poses
an important aspect of many tasks. There are non-neural approaches such as class-based
=-gramm models with essentially a hidden Markov model (HMM) [7] or a spectral algo-
rithm [65], structural correspondence learning [6], etc.

Neural approaches, such as deep RNNs, have been around for a couple of years. Re-
cently, with ELMo [49], ULMFiT [27], and with the OpenAI GPT [55] and BERT [15] using
the transformer architecture [70], new large pretrained language representation models
were developed, each advancing the state of the art for multiple NLP tasks.

The idea is to pretrain those models unsupervised on a large amount of data, at least
100 million words+. BERT, for example, was trained on the BooksCorpus (800 million
words) [87] and English Wikipedia (2500 words). Then, the models are �ne-tuned on the
respective downstream task, only needing to learn a fraction of their parameters.

3.2. Generative Image Models

While there has been substantial work for years in the �eld of image-to-text translation,
such as image caption generation [3] [17] [79], only recently the inverse problem came into
focus: text-to-image generation. Generative image models require a deep understanding
of spatial, visual, and semantic world knowledge and have many applications for artists or
graphic designers, such as photo-editing, computer-aided design, etc. Conditional image
synthesis conditions generation on additional input.

Generative image models can be divided into three categories: Generative Adversarial
Networks (GANs) [19] jointly train a generator for synthesizing images and a discriminator
for classifying them as real or fake; Variational Autoencoders (VAEs) [34] use probabilistic
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graphical models with the goal to maximize the lower bound of data-likelihood; and
Autoregressive Models [47] which factorise the joint distribution of images into per-pixel
factors and condition each pixel on all previous pixels.

An alternate approach of discriminating generative image models is by their type of
input: for example, image-to-image translation with pixel-wise semantic scene layouts
as input can be done with a conditional GAN [30], an encoder-decoder [59], or with a
CNN modelled as a cascaded re�nement network [9]. Apart from various types of image
inputs [11], there are plain text [57] [84], processed text, such as scene graphs [32], and
text with additional information, for example, segmentation masks and bounding boxes
for characters and objects [22] or object location constraints [58], inputs.

3.2.1. Generative Adversarial Networks (GANs)

Reed et al. [57] use a GAN with a direct text-to-image approach and have shown to gen-
erate images highly related to the text’s meaning. Reed et al. [56] further developed this
approach by conditioning the GAN additionally on object locations. Zhang et al. built
on Reed et al.’s direct approach developing Stacked Generative Adversarial Networks
(StackGAN) [84] generating 256x256 photo-realistic images from detailed text descriptions.
Although StackGAN yields remarkable results on speci�c domains, such as birds or �owers,
it struggles when many objects and relationships are involved.

Zhang et al. [85] improved StackGAN by arranging multiple generators and discrimi-
nators in a tree-like structure, allowing for more stable training behaviour by jointly
approximating multiple distributions. Xu et al. [81] introduced a novel loss function and
�ne-grained word attention into the model.

Recently, a number of works built on Xu et al.’s [81] approach: Cheng et al. [10] em-
ployed spectral normalisation [44] and added global self-attention to the �rst generator;
Qiao et al. [53] introduced a semantic text regeneration and alignment module thereby
learning text-to-image generation by redescription; Li et al. [38] added channel-wise
attention to Xu et al.’s spatial word attention to generate shape-invariant images when
changing text descriptions; Cai et al. [8] enhanced local details and global structures by
attending to related features from relevant words and di�erent visual regions; Yin et al. [82]
focused on disentangling the semantic-related concepts and introduced a contrasive loss
to strengthen the image-text correlation; and Zhu et al. [86] re�ned Xu et al.’s �ne-grained
word attention by dynamically selecting important words based on the content of an initial
image.

Instead of using multiple stages or multiple GANs, Li et al. [39] used one generator
and three independent discriminators to generate multi-scale images conditioned on text
in an adversarial manner. Johnson et al. [32] introduced a GAN that receives a scene
graph consisting of objects and their relationships as input and generates complex images
with many recognizable objects. However, the images are not photo-realistic. Qiao et
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al. [52] introduced LeicaGAN which adopts text-visual co-embeddings to convey the visual
information needed for image generation.

3.2.2. Autoencoders

Autoencoders not only generate images but interpret them. However, autoencoders tend
to generate blurry images when being used with popular error functions, such as MAE
or MSE. Thus, novel approaches use di�erent error functions. Furthermore, estimating
likelihoods in a high-dimensional image space is very di�cult [68].

Snell et al. [64] use deterministic and stochastic autoencoders with multiscale structural-
similarity score (MS-SSIM) [76], a loss function calibrated to human perceptual judgments
of image quality. Dorta et al. [16] use a hierarchy of VAEs analogous to a Laplacian
pyramid. Each VAE models a single pyramid level and is conditioned on the coarser levels.
Additionally, a novel loss function is used, allowing the latent Gaussian to have an arbitrary
mean and variance while still being e�ciently trainable and samplable. The Laplacian
framework can also be applied to GANs to generate natural images in a coarse to �ne
fashion, see [14].

3.2.3. Autoregressive Models

Oord et al. developed PixelCNN [46] an autoregressive model to generate images condi-
tioned on any vector, for example, descriptive labels, tags, or latent embeddings created
by other networks. To do so PixelCNN uses autoregressive connections to model images
pixel by pixel, decomposing the joint image distribution as a product of conditionals. This
approach requires one network evaluation per pixel. Hence, inference is costly: O(N) for
N pixels. Reed et al. [58] improve on this approach by modelling certain pixel groups as
conditionally independent via object locations. They achieve O(log N) sampling instead of
O(N) sampling, thereby enabling the practical generation of 512x512 images.

Gupta et al. introduced CRAFT (Composition, Retrieval and Fusion Network) [22] a
network capable of generating short cartoon videos from novel captions. CRAFT learns
from densely annotated video clips. However, CRAFT requires segmentation masks and
bounding boxes for characters and objects as well a clean background. Moreover, CRAFT
does not generate frames pixel-by-pixel. Instead, it sequentially composes a scene layout
and retrieves entities from a video database.

3.2.4. Further Approaches

Further approaches encompass generative image modelling using an RNN with spatial
LSTM neurons [67]; multiple layers of convolution and deconvolution operators trained
with Stochastic Gradient Variational Bayes [36]; an encoder de-rendering an image to
an XML scene description with a deterministic rendering function as decoder [77]; a
probabilistic programming language for scene understanding with fast general-purpose
inference machinery [35]; and generative ConvNets [78].
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4. Method

This chapter presents reasoning behind our choice of base architecture, several attention
models, approaches of interpreting and combining attention, and spectral normalisation.
Section 4.1 discusses the choice of the AttnGAN [81] as our base architecture. Section 4.2
presents the structure of the AttnGAN and the novel loss function it introduces. In Sec-
tion 4.3 we present global (Subsection 4.3.1), local (Subsection 4.3.2), and light-weight
(Subsection 4.3.3) self-attention for CNNs.

Section 4.4 repurposes linear attention (Subsection 4.4.1) and grid attention (Subsec-
tion 4.4.2) to be used as sentence attention. Section 4.5 focuses on incorporating the
attention models of Section 4.3 and Section 4.4 in the AttnGAN. This includes the up-
sampling block (Subsection 4.5.1) of the network with no previous attention model and
extending the attention module (Subsection 4.5.2) to mix the pre-existing word attention
with other attention models.

4.1. Motivation

This section provides insights of the choice of our base architecture, text-encoder, and
attention models. First, we decided on the general direction of our approach. Most pre-
existing work in the context of generative image modelling falls into three categories:
Autoencoder, Autoregressive Model, or Generative Adversarial Network (GAN).

Autoencoders typically require the same input and output format. With text-to-image
generation the input and the output are fundamentally di�erent. Training an autoencoder
with a text representation as input and an image representation as output will not work.
Using text and image as input may lead to a multimodal representation in the autoencoder.
However, this would still require to bridge the gap between the text representation and
the learned multimodal representation.

Autoregressive models typically model images pixel by pixel which makes them im-
practical for larger images. Advanced modelling techniques usually require additional
input, like object locations, segmentation masks, bounding boxes, etc. This work focuses
on large images (256x256 pixels). Thus, we decided against autoregressive models.

While GANs have training stability issues, they excel at generating data. Furthermore, by
using a discriminator network as a trainable loss function, they are a able to avoid having
to use complicated loss functions for images. Therefore, and because of their success in
this domain we chose GANs.
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A number of existing GAN approaches [86] [82] [52] [8] [38] [10] [53] [81] employ the con-
cept of stacked GANs [84] [85]. Following the approach of recent models [86] [82] [8] [38] [53]
[10] we chose Xu et al.’s AttnGAN [81] as our base architecture, ensuring better compara-
bility through a common baseline. Furthermore, the network allows us to investigate in
the introduction of di�erent attention models. With the recent success of self-attention in
the �eld of generative image modelling, we mainly focus on self-attention.

We did some minor experiments with large pretrained text-encoders, namely BERT [15].
While they had major success in a number of other NLP-tasks, we found them impractical
in our context. In the other tasks the text representation is almost the solution which is
then obtained by adding a softmax layer or a small network.

While a good text representation is necessary for text-to-image generation, the more
challenging issue is the translation of the text representation to the image representation.
Due to their versatility, these pretrained models are large, for example, BERT with 100
million parameters in its smaller version. Therefore, spending a lot of resources on them
while retaining a major part of the problem is impractical.

4.2. AttnGAN

Figure 4.1.: The AttnGAN architecture. Each attention model automatically retrieves
the conditions (i.e., the most relevant word vectors) for generating di�erent
subregions of the image. The DAMSM provides a �ne-grained image-text
matching loss for the generative networks. 1

1Figure taken from [81].
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4.2. AttnGAN

The AttnGAN [81] consists of two models: an attentional generative network consisting
of stacked GANs generating images in a small-to-large scale fashion (see Subsection 4.2.1)
and a Deep Attentional Multimodal Similarity Model (DAMSM, see Subsection 4.2.2)
computing a �ne-grained image-text matching loss. Figure 4.1 depicts the architecture of
the AttnGAN. Figure 4.2 and Figure 4.3 visualize submodules.

4.2.1. Attentional Generative Model

The attentional generative model consists of< generators (�0,�1, ...,�<−1), which receive
the image feature vectors (ℎ0, ℎ1, ..., ℎ<−1) as input and generate images of small-to-large
scales (~̂0, ~̂1, ..., ˆ~<−1).

Figure 4.2.: The architecture of an upsampling block in Figure 4.1. 2

First, a deep bidirectional LSTM encoder encodes the input sentence into a global sentence
vector B and a word matrixF . Conditioning Augmentation ��� [84] converts the sentence
vector into the conditioning vector.

Conditioning augmentation [84] is a technique introduced by Zhang et al. which gener-
ates additional conditioning variables. Instead of using a non-linear transformation on
the sentence vector, conditioning augmentation uses B to sample from an independent
Gaussian distribution:

N
(
` (B),

∑
(B)

)
, (4.1)

where the mean and the diagonal covariance matrix are functions of B . This yields more
training pairs, thereby mitigating the problem of discontinuities in the latent data manifold
due to a high-dimensional latent space for text-embeddings (usually > 100) and sparse
training pairs. Thus, it encourages robustness to small perturbations along the condition-
ing manifold.

One textual description usually corresponds to a number of images. To facilitate that
variety, a regularisation term is added to the objective function of the generator during
training. The regularisation term is the Kullback-Leiber (KL) divergence between the
conditioning Gaussian and the standard Gaussian distribution:

�KL
(
N

(
` (B),

∑
(B)

)
| |N (0, 1)

)
. (4.2)

2Figure was created by author.
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A �rst network �0, consisting of a fully connected layer and then upsampling blocks (see
Figure 4.2, Figure 4.1), receives the conditioning vector ��� (B) and noise I, sampled from
a standard normal distribution, as input and computes the �rst image feature vector ℎ0:

ℎ0 = �0
(
I, ��� (B)

)
. (4.3)

Figure 4.3.: The architecture of a residual block in Figure 4.1. 3

Each generator �8 is a simple 3x3 convolutional layer that receives the image feature
vector ℎ8 as input to compute the image ~̂8 :

~̂8 = �8 (ℎ8) . (4.4)

The image feature vectors ℎ8 , except for ℎ0, are computed by the network �8 consisting of
multiple residual blocks and an upsampling block (see Figure 4.3, Figure 4.2, Figure 4.1). �8
receives the previous image feature vector ℎ8−1 and the result of the 8th attentional model
�0CC=8 as input:

ℎ8 = �8
(
ℎ8−1, �

0CC=
8 (F,ℎ8−1)

)
. (4.5)

The attentional model �0CC=8 receives the previous image feature vector ℎ8−1 and the word
matrix F of the text-encoder as input and computes an attention map. First, the word
vectors are converted into a common semantic space using a perceptron layer * :

F ′ = *F . (4.6)

For each subregion: of the image a word-context vector 28,: is computed. The word-context
vector is a dynamic representation of word vectors that are relevant to the subregion of the

3Figure was created by author.
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4.2. AttnGAN

image. Each column : in the image feature vector ℎ8 is a feature vector of the subregion :
of the image. The word-context vector 28,: is computed by:

28,: =

)−1∑
;=0

14C08,:,;F
′
8 , where V8,:,; =

4G? (B8,:,; )∑)−1
I=0 4G? (B8,:,I)

and B8,:,; = ℎ)8, 9F
′
:
. (4.7)

V8,:,; indicates the weight the 8th model attends to the ; th word when generating subregion
: . Then, the next image feature vector is computed according to Equation 4.5. The �nal
image ˆ~<−1 is generated by the last generator �<−1 from the �nal image feature vector
ℎ<−1 (Equation 4.4).

To generate realistic images with multiple levels (i.e., sentence level and word level)
of conditions, the �nal objective function of the attentional generative network is de�ned
as:

! = !� + _!DAMSM, Fℎ4A4 !� =

<−1∑
8=0

!�8 . (4.8)

Here, _ is a hyperparameter to balance the two terms. We follow the authors recommen-
dation of a _ = 5 for the CUB dataset [74]. The �rst term is the GAN loss that jointly
approximates conditional and unconditional distributions. At the 8th stage of the AttnGAN,
the generator �8 has a corresponding discriminator �8 . The adversarial loss for �8 is
de�ned as:

!�8 = −
1
2
E~̂8∼%�8

[
;>6(�8 (~̂8))

]︸                         ︷︷                         ︸
unconditional loss

− 1
2
E~̂8∼%�8

[
;>6(�8 (~̂8, B))

]︸                         ︷︷                         ︸
conditional loss

, (4.9)

where the unconditional loss determines whether the image is real or fake while the
conditional loss determines whether the image and the sentence match or not. Alternately
to the training of �8 , each discriminator �8 is trained to classify the input into the class of
real or fake by minimizing the cross-entropy loss de�ned by:

!�8 = −
1
2
E~8∼%30C08

[
;>6(�8 (~8))

]
− 1
2
E~̂8∼%�8

[
;>6(1 − �8 (~̂8))

]︸                                                                   ︷︷                                                                   ︸
unconditional loss

+

−1
2
E~8∼%30C08

[
;>6(�8 (~8, B))

]
− 1
2
E~̂8∼%�8

[
;>6(1 − �8 (~̂8, B))

]︸                                                                        ︷︷                                                                        ︸
conditional loss

, (4.10)

where ~8 is from the true image distribution %30C08 at the 8Cℎ scale, and ~̂8 is from the model
distribution %68 at the same scale. Discriminators of the AttnGAN are structurally disjoint,
so they can be trained in parallel. Each of them focuses on a single image scale. The
second term of Equation 4.8, !DAMSM, is a �ne-grained word-level image-text matching
loss computed by the DAMSM, elaborated in Subsection 4.2.2. [81]
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4.2.2. Deep Attentional Multimodal Similarity Model (DAMSM)

This subsection outlines the Deep Attentional Multimodal Similarity Model (DAMSM), for
details regarding the corresponging loss function we refer to [81]. The DAMSM learns
two neural networks that map subregions of the image and words of the sentence to a
common semantic space, thus measuring the image-text similarity at the word level to
compute a �ne-grained loss for image generation.

The text-encoder is a bidirectional LSTM encoder. The image encoder is built upon
a pretrained Inception-v3 model [66]. The weights of the Inception-v3 model remain �xed.
Added perceptron layers extract visual feature vectors for each subregion of the image
and a global image vector.

Similar to Equation 4.7 of Subsection 4.2.1, with an extra hyperparameter determining
how attention is paid to features of relevant subregions, the word-context vectors 2 for
each subregion are computed. Then, the relevance between the 8th word and the image is
computed:

'(28,F8) = (2)8 F8)/(‖28 ‖‖F8 ‖) . (4.11)

Finally, the attention-driven image-text matching score between the entire image (&) and
the whole text description (�) is de�ned as:

'(&, �) = ;>6
( )−1∑
8=1

4G? (W2'(28,F8))
)1/W2 . (4.12)

This attention-driven image-text matching score is used to de�ne the loss function !DAMSM,
for details we refer to [81].
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4.3. Self-Attention Models

4.3. Self-Attention Models

4.3.1. Global Self-Attention

Recently, Zhang et al. [83] introduced a self-attention model. It addresses the issue of
spatial locality in CNNs by modelling long-range dependencies for image generation.

Figure 4.4.: Global self-attention module. 4

Figure 4.4 depicts the self-attention model. The feature maps of a convolutional layer of
sizeF xℎx2 are fed to three individual 1x1 convolutional layers yielding a query of size
F
:

x ℎ
:

x2 , a key of size F
:

x ℎ
:

x2 , and a value of sizeF xℎx2 . While the value maintains the
number of channels, the query and the key usually reduce the number of channels by a
factor of : to save memory consumption in the following step. : has to be a power of 2
and is commonly around 8.

The query and the key are both reduced along the spatial dimension rendering matrices of
size F

:
· ℎ
:

x2 = F ·ℎ
:2

x2 . Then, the query is transposed and multiplied to the key yielding a
matrix of size F ·ℎ

:2
x F ·ℎ
:2

. A softmax generates an attention-map.

Lastly, the attention map is multiplied by the value and then convolved by a 1x1 convolu-
tional layer resulting in a global self-attention map of the original input size (F xℎx2).

The authors recommend to scale this �nal self-attention map by a learnable parame-
ter W and add it back to the input. Thus, we can interpret this attention map as a scaled
heightmap. W is initialised with zero allowing the network to �rst rely on local cues in
the neighbourhood and then to gradually learn to assign more importance to non-local
evidence, i.e., the global self-attention.

4Figure taken from [83].
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An issue of global self-attention is its memory consumption. The factor of : mitigates that
problem to some extent, because it in�uences the matrix size quadratically. However, both
the width and height of the feature map have a quadratic in�uence. Therefore, adjusting
the spatial size, in both width and height, has an impact of a power of 4. Hence, global
self-attention becomes unviable for large feature maps.

For example: given an input of size 128x128x16 the intermediate matrix with a : of
1 has the size: (128 · 128 · 16)2 · 32 bit = 256GiB. With a recommended : of 8, the size
shrinks by :2 = 256 down to 1GiB. However, that size still has to be multiplied by the
batch size. Thus, we downsample inputs of a width and/or height of 128 or higher to a
size of 64 using mean-pooling. The resulting self-attention map is upsampled using the
nearest strategy.

4.3.2. Local Self-Attention

Ramachandran et al. [48] proposed a self-attention model similar to the model in Subsec-
tion 4.3.1. However, while the former is a global attention model making it unviable for
large spatial inputs, Ramachandran et al. focus on a local model. Similar to a convolution,
the proposed attention mechanism extracts a local region of pixels 01 ∈ N: (8, 9) for each
pixel G8 9 and a given spatial extent : . An output pixel ~8 9 computes as follows:

~8 9 =
∑

0,1∈N: (8, 9)
softmax01 (@)8 9:01)E01 . (4.13)

@8 9 =,&G8 9 denotes the queries, :01 =, G01 the keys, and E01 =,+G01 the values, each
obtained via linear transformations , of the pixel 8 9 and their neighbourhood pixels.
Figure 4.5 depicts this mechanism.

Figure 4.5.: Left: The self-attention module with a kernel size of 3. Right: Relative distances.
The format of the distances is row o�set, column o�set. 5

5Figure taken from [48].
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4.3. Self-Attention Models

The advantage over a simple convolution is that each pixel value is aggregated with a
convex convolution of value vectors with mixing weights (softmax01) parametrised by
content interactions. Furthermore, the mechanism can easily be used as a multi-headed
attention mechanism by partitioning the pixel-features G8 9 depth-wise into # groups. Then,
each group separately computes single-headed attention with di�erent transformations
,& ,, , and,+ . Concatenating the output of each head yields the �nal output ~8 9 . This
allows to learn multiple distinct representations of the input.

The authors intended to replace all convolutional layers, excluding 1x1 convolutions,
in a network with their attention mechanism. But, in its current form the attention en-
codes no positional information. Therefore, permutations are equivariant limiting its
expressivity for vision tasks. The authors propose a second mechanism addressing this
issue with relative attention, i.e., attention with 2D relative positional embeddings.

Relative attention uses a relative distance of 8 9 to each position 01 ∈ N: (8, 9). The relative
distance is factorised across dimensions, i.e., each position 01 is assigned two values: a
row o�set 0 − 8 and a column o�set 1 − 9 . Figure 4.5 depicts an example. The row- and
column o�sets refer to embeddings A0−8 and A1− 9 , respectively. Each embedding is half
the output dimension. A0−8,1− 9 refers to the concatenation of both embeddings. Then, the
relative attention is de�ned as:

~8 9 =
∑

0,1∈N: (8, 9)
softmax01 (@)8 9:01 + @)8 9A0−8,1− 9 )E01 . (4.14)

Thus, in addition to its content, each element 0, 1 ∈ N: (8, 9) is also modulated by its
relative distance. Therefore, this mechanism is translation equivariant like convolutions.
Furthermore, the parameter count is independent of the size of the spatial extent, whereas
convolutional parameters grow quadratically. The computational cost of attention grows
slower with spatial extent compared to convolutions, for example, if 38= = 3>DC = 128 a
convolutional layer with a kernel size of 3 has the same computational cost as an attention
layer with a kernel size of 19.

4.3.3. Squeeze-and-Excitation Blocks

Recently, Hu et al. introduced Squeeze-and-Excitation (SE) [28] blocks. Instead of focusing
on the spatial component of CNNs, SE blocks aim to improve the channel component by
explicitly modelling interdependencies among channels via channel-wise weighting. Thus,
they can be interpreted as a light-weight self-attention function on channels.
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Figure 4.6.: A convolution followed by a squeeze-and-excitation block. 6

Figure 4.6 depicts the structure of an SE block. First, a transformation �CA , which is typically
a convolution, outputs the feature map * . Because convolutions use local receptive �elds,
each entry of * is unaware of contextual information outside its region. A corresponding
SE-block addresses this issue by performing a feature recalibration.

A squeeze operation aggregates the feature maps of* across the spatial dimension (� G, )
yielding a channel descriptor. The proposed squeeze operation is mean-pooling across the
entire spatial dimension of each channel. The resulting channel descriptor serves as an
embedding of the global distribution of channel-wise features.

A following excitation operation �4G aims to capture channel-wise dependencies, speci�-
cally non-linear interaction among channels and non-mutually exclusive relationships.
The latter allows multiple channels to be emphasized. The excitation operation is a simple
self-gating operation with a sigmoid activation function:

�4G (I,, ) = f (6(I,, )) = f (,2X (,1I)) , (4.15)

where X refers to the ReLU activation function,,1 ∈ R
�
A
G� , and,2 ∈ R�G

�
A . To limit model

complexity and increase generalisation, a bottleneck is formed around the gating mecha-
nism: a Fully Connected (FC) layer reduces the dimensionality by a factor of A . A second
FC layer restores the dimensionality after the gating operation. The authors recommend
an A of 16 for a good balance between accuracy and complexity (∼ 10% parameter increase
on ResNet-50). Ideally, A should be tuned for the intended architecture.

The excitation operation �4G computes per-channel modulation weights. These are applied
to the feature maps* performing an adaptive recalibration.

6Figure adapted from [28].
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4.4. Sentence Attention

4.4.1. Linear Attention

Jetley et al. [31] used a simple additive linear attention mechanism for their image clas-
si�cation model. We use this mechanism to obtain a single feature map highlighting
important regions of the currently generated intermediate image based on the sentence
embedding.

The mechanism assumes a compatibility function � (!̂B, 6) for linear transformed fea-
ture maps !̂B and a global feature vector 6. The linear transformation maps feature maps
!B to the dimensionality of 6, i.e., it matches the number of channels. The authors suggest
either the repurposed alignment model:

2B8 = 〈D, ;̂B8 + 6〉 , (4.16)

where D is a weight vector that learns the universal set of relevant features, or the dot
product:

2B8 = 〈;̂B8 + 6〉 (4.17)

for the compatibility function. Given a compatibility function� (!̂B, 6), compatibility scores
are computed and then normalized using the softmax function:

0B8 =
exp(2B8 )∑=
9 exp2B

9

. (4.18)

The �nal output is obtained by element-wise averaging over the normalised compatibility
scores:

0B8 =

=∑
8

0B8 · ;B8 . (4.19)

4.4.2. Grid Attention

Schlemper et al. [63] introduced a grid attention block using Attention Gates (AGs). The
block can easily be included in any CNN. The proposed AG mechanism identi�es salient
image regions and prunes feature responses to preserve only relevant activations. Identical
to Subsection 4.4.1, the block was originally designed for image classi�cation. We use it
to obtain a single feature map highlighting important regions of the currently generated
intermediate image based on the sentence embedding.
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Figure 4.7.: Model of the grid attention block using Attention Gates. 7

Figure 4.7 illustrates the grid attention block. It expects two inputs: the gating signal 6
and feature maps G; . Both inputs are considered jointly to attend features that are most
relevant. The number of channels of the gating signal and the feature maps must match.
The additive gating mechanism is:

@;0CC,8 = k
) (f1(, )

G G
;
8 +, )

6 6 + 1G6)) + 1k (4.20)

U; = f2(@;0CC (G; , 6;\0CC )) . (4.21)

f1(G) is the ReLU and f2(G) is a normalisation function. The normalisation function can
be a sigmoid, softmax, or any activation function with the output range [0, 1]. \0CC denotes
a set of parameters: linear transformations,G ,,6, i and bias terms 1i , 1G6. The output of
the AG mechanism U; represents coe�cients between zero and one and determines salient
image regions and prunes feature responses. The �nal output of the grid attention block
is: U; · G; .

4.5. Models

This section illustrates how the di�erent attention models presented in Section 4.3 and
Section 4.4 are incorporated into the base model presented in Section 4.2. We view the
parts of the network independently. Subsection 4.5.1 covers the upsampling block, which is
primarily used in the �rst part of the network, and Subsection 4.5.2 illustrates the attention
module used by each generator except the �rst.

4.5.1. Upsampling Block

The original upsampling block is described in Subsection 4.2.1 and illustrated in Figure 4.2.
We incorporate global (see Subsection 4.3.1) or local (see Subsection 4.3.2) self-attention
by either adding the self-attention layer before the convolutional layer or by replacing the
convolutional layer with the self-attention layer.

7Figure taken from [63].
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When replacing the convolutional layer with a self-attention layer, either local or global,
we do not add scaling or residual connections (see Figure 4.8 top). When adding local
self-attention, we simply add the new block (see Figure 4.8 mid). When adding the global
self-attention layer, we follow the authors [83] recommendation of scaling the output of
the self-attention layer and adding its input back to it, i.e., creating a residual connection
(see Figure 4.8 bottom).

Figure 4.8.: Top: upsampling block with global/local self-attention instead of convolutions.
Middle: upsampling block with an added local self-attention block.
Bottom: upsampling block with scaled global self-attention that is added back
to the input. 8

8Figure was created by author.
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4.5.2. Attention Module

Figure 4.9.: Top: Combining two attention models using the gating property of the GLU.
Bottom: Combining three attention models by using the original input as
padding and two subsequent convolution+batch normalisation+GLU blocks. 9

9Figure was created by author.
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The attention module provides attention to each generator, except for the �rst (see Subsec-
tion 4.2.1). Because of the residual nature of the generators (see Figure 4.3), the attention
for a generator is only computed once per epoch. This subsection illustrates how to
combine multiple attention models with the pre-existing word attention. The techniques
are generic for self-attention. Support for sentence attention is partially present.

Receiving feature maps as input, any of the self-attention models from Section 4.3 and
word attention (not counting the additional word matrix input) yield a same-sized output.
To maintain a direct residual path in the generators, the attention module has to follow
that behaviour, i.e., the output size has to match the input size. Therefore, we condense
the output of multiple attention models to the input size. We introduce two approaches:
either using CBG which utilizes the gating property of the GLU or by viewing attention as
a scalable heightmap and combining the heightmaps.

The CBG approach is simple and can be used for combining any number of attention
models. First, if the number of attention models is not a power of two, then the input is
used as padding (if needed multiple times) to achieve a power of two. Then, the appropriate
number of convolution+batch normalisation+GLU blocks, hence CBG, is used until the
output size matches the input size. Figure 4.9 depicts an example of two attention models
and three attention models with the input as padding.

The second approach interprets attention as a scalable heightmap. Figure 4.10 illus-
trates an example of a feature map and a feature map modi�ed by attention. Figure 4.11
demonstrates the concept of attention as a heightmap obtained by subtracting the original
input from the attention-modi�ed feature map.

Heightmaps of di�erent attention models may contain values di�ering in magnitudes of
order. In the CBG approach the convolution before the gating mechanism is mitigating
that. Here, we scale each heightmap with a learnable parameter to facilitate a common
order of magnitude.

Figure 4.10.: Example of the positive side of a feature map and the positive side of a feature
map after attention. Here, attention increased positive activity. 10

10Figure was created by author.
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Figure 4.11.: The left side shows a feature map (dark red) overlayed with its attention-
modi�ed version (light blue) (see Figure 4.10). Subtracting the unmodi�ed
version (dark red) from the attention-modi�ed yields attention interpreted as a
heightmap (right). Positive activations in the attention heightmap correspond
to light blue surfaces in the left. Negative correspond to dark red surfaces. 11

To combine multiple heightmaps, we propose using either a height-max or a mean op-
eration. The height-max operation keeps the largest absolute value while preserving its
original sign, see Figure 4.12. The intuition is that the bigger the value, i.e., the change
in the original feature map, the more important this value is. However, it may be contra-
productive if the attention models suggest changes in opposite directions.

The mean operation simply calculates the mean of the values, see Figure 4.12. The idea
is that opposing values cancel each other out while values that the models agree upon
remain. The mean operation tends to weaker responses, because the less con�dent model
always dampens the response.

Figure 4.12.: Top: height-max operator: keeps the largest absolute value while preserving
its original sign.
Bottom: mean operator: calculates the mean of the values. 12

11Figure was created by author.
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4.6. Spectral Normalisation (SN)

Miyato et al. introduced Spectral Normalisation (SN) [44] which is a weight normalisation
technique to stabilise the training of the discriminator in GANs. It has shown to produce
images of better or equal quality than previous training stabilisation techniques, such as
weight normalisation [61], weight clipping [2], and gradient penalty [21]. Furthermore,
the additional computational cost is small and the technique has only one low-impact
hyperparameter to tune.

SN addresses common issues of GAN training such as mode collapse, vanishing gra-
dients, and gradient explosion. Recent research indicates that the function space from
which the discriminators are selected crucially a�ects the performance of GANs. A popular
approach [21] [69] [51] is using Lipschitz continuity to assure the boundness of statistics.
To do so, the Lipschitz constant of the discriminator is controlled by regularisation terms
based on the input examples G . Spectral normalisation follows this approach by restraining
the discriminator to a K-Lipschitz continuous function:

arg max
‖ 5!8? ‖≤ 

+ (�, �) . (4.22)5!8? is the smallest value " such that ‖ 5 (G) − 5 (G′)‖ / ‖G − G′‖ ≤ " for any G, G′ with
the norm being the ;2 norm. 5 (G) is a simple discriminator made of a neural network with
learning parameters \ := {, 1, ...,, ;+1}.

For each layer 6 : ℎ8= → ℎ>DC the Lipschitz norm ‖6‖!8? is equal to BD?ℎ (f (∇6(ℎ))),
where f (�) is the spectral norm of the matrix � (!2 matrix norm of �):

f (�) := max
ℎ:ℎ≠0

‖�ℎ‖2
‖ℎ‖2

= max
‖ℎ‖2≤1

‖�ℎ‖2 . (4.23)

Therefore, for a linear layer 6(ℎ) =,ℎ the Lipschitz norm is given by:

‖6‖!8? = BD?ℎ (f (∇6(ℎ))) = BD?ℎ (f (, )) = f (, ) . (4.24)

If the Lipschitz norm of the activation function is equal to 1, then Equation 4.24 can be
used to observe the following bound on 5!8? (for details we refer to [44]):5!8? ≤ !+1∏

;=1
f (, ; ) . (4.25)

The spectral normalisation bounds the spectral norm of the weight matrix, so that it
satis�es the Lipschitz constraint f (, ) = 1:

, (# (, ) :=, /f (, ) . (4.26)

With, ; normalised per Equation 4.26 and f (, (# (, )) = 1, Equation 4.25 bounds
5!8?

from above by 1. In conclusion, spectral normalisation bounds the Lipschitz norm, sets
the spectral norm to a designated value, and augments the cost function with a sample
data dependent regularisation function.
12Figure was created by author.
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This chapter illustrates our experiments, discusses evaluation metrics, and provides a
comparison to state-of-the-art models. Section 5.1 illustrates the common setup of our
experiments. Section 5.2 introduces several evaluation metrics such as the inception score
(Subsection 5.2.1), wasserstein distance (Subsection 5.2.3), kernel maximum mean discrep-
ancy (Subsection 5.2.4), 1-nearest neighbour classi�er (Subsection 5.2.5), and the Fréchet
inception distance (Subsection 5.2.2). Furthermore, it provides general thoughts on the
suitability and use of the evaluation metrics and an in-depth discussion of the inception
score. Lastly, Subsection 5.2.6 analyses the anti-correlation of the evaluation metrics and
demonstrates that improvements on speci�c metrics, especially relative improvements,
have to be viewed sceptically.

Section 5.3 outlines our experiments with di�erent attention models, strategies to combine
them, GAN training stabilising techniques, attention in the discriminator, and (partially)
replacing convolutions with attention. In Subsection 5.3.7 we perform a hyperparameter
tuning for our best models. A visual analysis of those tuned models follows in Subsec-
tion 5.3.8. Lastly, Section 5.4 compares our tuned models to state-of-the-art approaches
and reinforces the need to use more than one evaluation metric.

5.1. Common Setup

This section illustrates the common setup of our experiments. We use the Caltech-UCSD
Birds 200 (CUB) dataset [74], a well-known dataset for text-to-image generation consisting
of 8855 train and 2933 test images. Each image has ten di�erent captions. To compute our
evaluation metrics, one image per caption in the test dataset is computed. Therefore, the
evaluation metrics are computed over 29330 images. We compute our evaluation metrics
every 25 epochs.

The images in the dataset are real-world images of 200 di�erent classes of birds with
varying backgrounds. The train/test split is oriented along the class of the bird: all bird
images that show the same class of bird are either in the train or in the test split. The train
split contains 150 classes and the test split 50 classes.

We use the Adam optimiser [33] for both the generators and the discriminators with
a learning rate of 0.0002, V1 = 0.5, and V2 = 0.999. We train with a batch size of 20 because
of the high memory consumption of images. We generate 256x256 images.
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Each model employs spectral normalisation [44]. We follow the authors recommendation
and use spectral normalisation with an ; of 5. We use a _ of 5.0 because it performed best
on our base architecture AttnGAN [81].

Unless explicitly stated otherwise, each model applies attention to the upsampling block
according to Subsection 4.5.1 and to the attention module using the CBG method from
Subsection 4.5.2 in conjunction with word attention.

Initially, we train each model for 400 epochs. Then, we train the best performing models
for an additional 200 epochs. Furthermore, we perform a hyperparameter tuning of the
common hyperparameters and model-speci�c hyperparameters on those models (see Sub-
section 5.3.7).

We evaluate each model along our �ve evaluation metrics. For the AttnGAN we use
the o�cially reported inception score. We compute the other four evaluation metrics by
evaluating the o�cial model1. We indicate this by adding a * symbol to the AttnGAN in
the legends.

Recent papers [86] [8] [10] using the AttnGAN as baseline have reported vastly dif-
ferent FID scores for the AttnGAN suggesting the use of di�erent FID implementations.
Therefore, a comparison to their FIDs, with the possible exception of [10], is futile (for
details see Section 5.4 and Table 5.5).

5.2. Evaluation Metrics

Evaluating GANs is hard. Qualitative measures are inherently limited, subjective, time-
consuming, and possibly misleading. Several quantitative metrics have been introduced,
however, as of yet, there is no consensus as to which metric o�ers a fair model compar-
ison. Furthermore, recent research [80] suggests that some of the metrics have serious
limitations, including the inception score which, according to the authors of [4]: "fails to
provide useful guidance when comparing models".

Moreover, the proposed metrics are solely for evaluating generative image models. They
do not take into account the corresponding text in the context of text-to-image generation.
Thus, they may be fooled by a network ignoring the textual input and only focusing on
generating realistic looking images from the corresponding dataset.

We use several of the most popular evaluation metrics, namely the Inception Score (IS)
(Subsection 5.2.1), Kernel Maximum Mean Discrepancy (MMD) (Subsection 5.2.4), the
Wasserstein Distance (EMD) (Subsection 5.2.3), the 1-Nearest Neighbour Classi�er (1-NN)
(Subsection 5.2.5), and the Fréchet Inception Distance (FID) (Subsection 5.2.2).

1downloaded from https://drive.google.com/open?id=1lqNG75suOuR_8gjoEPYNp8VyT_ufPPig ,
see https://github.com/taoxugit/AttnGAN
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5.2. Evaluation Metrics

Considering that the IS is perhaps the most widely adopted metric in text-to-image gener-
ation and used as a primary evaluation metric of our base architecture, we discuss the IS
in detail. We also use it as our primary evaluation metric while keeping in mind the issues
discussed in Subsection 5.2.1.

In Subsection 5.2.6 we analyse the anti-correlation of our evaluation metrics by searching
for opposing responses. Our �ndings demonstrate that improvements on speci�c measures,
especially relative improvements, have to be viewed sceptically.

The aim of a generative model is to use samples G to derive the unknown real data distribu-
tion ?A (G). A generative model� encodes a distribution over new samples ?6 (G). The gen-
erative model aims to model the real data distribution as close as possible: ?6 (G) ∼ ?A (G).

Unfortunately, GANs do not have an explicit representation of ?6 (G). Therefore, direct
evaluation metrics, like the likelihood, cannot be used. This leads to many sampling-based
metrics treating the generative model like a black-box: we assume that we can sample
from ?6 (G) and assume nothing further of the structure of the model.

The feature space in which a metric is computed is of importance. The Inception v3
Network [66] (see Figure A.1) is a deep convolutional architecture designed for classi�ca-
tion tasks on ImageNet [13]. ImageNet is a popular dataset consisting of 1.2 million RGB
images from 1000 classes. We use the Inception v3 Network to compute our metrics, except
the IS, in the convolutional (the output of the last inception model) feature space. Figure 5.1
visualizes the process. The IS uses the softmax (�nal output of the network) feature space
(see Figure 5.2). All our evaluation metrics use the same pre-trained Inception v3 Network
�ne-tuned to the CUB dataset as our baseline the AttnGAN [81].

Using feature extractors before computing a metric’s score may be misleading considering
that the score may be una�ected by changes in the spatial relationship. However, it is still
the preferred method as to directly comparing images, because there are many "correct"
images for a textual description.
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Figure 5.1.: Evaluation process for the FID, EMD, MMD, and 1-NN evaluation metrics. The
full Inception v3 model is depicted in Figure A.1. 2

Figure 5.2.: Evaluation process for the IS evaluation metric. The full Inception v3 model is
depicted in Figure A.1. 3

5.2.1. Inception Score (IS)

The Inception Score (IS) [61] is a quantitative metric to evaluate generated images and
is perhaps the most widely adopted score for text-to-image generation. It measures two
properties: highly classi�able and diverse with respect to class labels. Salimans et al.
introduced the IS and demonstrated a reasonable correlation between the IS and the
quality and diversity of generated images. Figure 5.2 visualizes the evaluation process
with the IS.

2Schematic Inception v3 model was altered from [43]. Rest of the �gure was created by author.
3Schematic Inception v3 model was altered from [43]. Rest of the �gure was created by author.
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The IS for a network� measures the average Kullback-Leiber (KL) divergence between
the conditional class distribution ? (~ |G) and the marginal class distribution ? (~):

IS(�) = 4G? (EG∼?6 [� ! (? (~ |G) | |? (~))]) = 4G? (� (~) − EG [� (~ |G)]) . (5.1)

G ∼ ?6 indicates that G is sampled from ?6. � ! (? | |@) is the KL-divergence between the
distributions ? and @. � (G) represents entropy of the variable G . ? (~ |G) is the conditional
class distribution of the (generated) image G , estimated using the pretrained Inception v3
Network [66]. ? (~) is the marginal class distribution:

? (~) =
∫
G

? (~ |G)?6 (G) ∼
1
#

#∑
8=1

? (~ |G8)?6 (G8) . (5.2)

? (~ |G) is expected to have low entropy for better classi�able samples. Therefore, it is
supposed to encourage a better sample quality. ? (~) is expected to have high entropy if
all classes are equally represented in the set of samples. Thus, it is supposed to encourage
high diversity.

Although the IS is perhaps the most widely used metric in text-to-image generation,
it has several issues regarding the computation of the score itself and the usage of the
score.

Rosca et al. [60] point out that the IS was originally proposed for generative image models
trained on ImageNet. Therefore, the use of the IS on other datasets may be misleading. For
example, a simple class-conditional model memorising one example per ImageNet class
achieves a high IS.

Furthermore, Barratt and Sharma [4] demonstrate with a simple one-dimensional example
that the true underlying data distribution may achieve a lower IS than other distributions.
They also raise another signi�cant issue: while the classi�cation accuracy of the inception
network (v2 or v3) is robust against slight weight changes, the IS itself is not. They demon-
strate this behaviour by showing that the IS varies up to 11.5%, depending on whether a
tensor�ow, keras, or pytorch implementation of the inception network with virtually the
same classi�cation accuracy is used.

To avoid this speci�c issue, we use the same IS implementation, using an Inception
v3 Network �ne-tuned to the CUB dataset, as our baseline the AttnGAN [81]. Lastly,
Odena et al. [45] show that the IS is asymmetric and a�ected by image resolution.

5.2.2. Fréchet Inception Distance (FID)

Heus et al. introduced the Fréchet Inception Distance (FID) [24]. The FID is computed in
the convolutional feature space of the pretrained Inception v3 Network (see Figure 5.1 for
the evaluation process with the FID). The features are viewed as a continuous multivariate
Gaussian and the mean ` and the covariance

∑
are computed for both the real data A and
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the generated data 6. With these the FID computes as:

FID(A, 6) = | |`A − `6 | |22 +)A
(∑

A

+
∑
6

−2
(∑

A

∑
6

) 1
2
)
. (5.3)

A lower FID implies a closer distance between the generated image distribution and the
real image distribution. The FID is consistent with human judgment and more consistent
to noise than the IS [24]. Furthermore, it is able to detect a model generating only one
sample per class which still scores a high IS (see Subsection 5.2.1) but a bad FID score.
However, the FID assumes that features are of Gaussian distribution which is often not
the case. Moreover, Lucic et al. [40] show that the FID has a slight bias.

We use the o�cial pytorch implementation4of the FID. To ensure a consistent calcu-
lation of all of our evaluation metrics, we replace the generic Inception v3 network with
the pre-trained Inception v3 Network �ne-tuned to the CUB dataset used by all our other
evaluation metrics and for the AttnGAN [81].

5.2.3. Wasserstein Distance (EMD)

The wasserstein distance measures the minimum mass displacement to transform one
distribution into the other. The closer the distributions, the smaller the distance. For two
distributions %A and %6 it is de�ned as:

WD(%A , %6) = inf
W∈Γ(%A ,%6)

E(GA ,G6)∼W [3 (GA , G6)] . (5.4)

Γ(%A , %6) denotes the set of all joint distributions whose marginals are %A and %6, respec-
tively. 3 (G,~) denotes the base distance between two samples. For discrete distributions ?A
and ?6 the wasserstein distance is often referred to as the Earth Mover’s Distance (EMD)
and corresponds to the solution of the optimal transport problem:

EMD(?A , ?6) = min
F∈R=G<

=∑
8=1

<∑
9=1
F8 93 (G8A , G

9
6)

subject to
<∑
9=1
F8 9 = ?A (G8A ) ∀8,

=∑
8=1

F8 9 = ?6 (G 96) ∀9 . (5.5)

This �nite sample approximation of the wasserstein distance is used in practice. Figure 5.1
visualizes the evaluation process with the EMD.

5.2.4. Kernel MaximumMean Discrepancy (MMD)

Kernel Maximum Mean Discrepancy measures the dissimilarity of two distributions ?A
and ?6 for some �xed kernel function : :

MMD2(?A , ?6) = EGA ,G ′A∼?A ,G6,G ′6∼?6 [: (GA , G
′
A ) − 2: (GA , G6) + : (G6, G′6)] . (5.6)

4https://github.com/bioinf-jku/TTUR
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A lower MMD implies a closer distance between the two distributions. In practice, �nite
samples from distributions are used to estimate the MMD. Therefore, the MMD may not
be zero even if the distributions are identical. Figure 5.1 visualizes the evaluation process
with the MMD.

5.2.5. 1-Nearest Neighbour Classifier (1-NN)

The 1-Nearest Neighbour Classi�er (1-NN) is part of the two-sample test family. It tests
whether two distributions are identical. Given two sets of samples BA ∼ ?A and B6 ∼ ?6, the
Leave-One-Out (LOO) accuracy of a 1-NN classi�er trained on BA and B6 is computed. BA
uses positive labels and B6 uses negative labels. While any binary classi�er can be used
to compute the LOO accuracy, the 1-NN classi�er is convenient because it requires no
special training and little hyperparameter tuning.

Ideally, the LOO accuracy is 50%. If the GAN memorizes every sample in BA and re-
generates them perfectly, then every sample from B6 has its nearest neighbour in BA with a
distance of zero resulting in a 0% LOO accuracy. [80] Figure 5.1 visualizes the evaluation
process with the 1-NN.

5.2.6. Anti-Correlation of Evaluation Metrics

This subsection analyses the anti-correlation among our evaluation metrics. Section 5.2
establishes that some of the metrics have serious limitations, especially the IS, and that
there is no consensus as to which metric o�ers a fair model comparison. We concur with
this statement by demonstrating anti-correlation, both relative and normalised, among
our evaluation metrics.

For that we search for opposing responses of our evaluation metrics across all our experi-
ments. For an evaluation metric 4 , two models<1 and<2, and a speci�c epoch C we de�ne
the relative improvement A as:

A =

{
4 (<1, C)/4 (<2, C) − 1.0, if 4 = IS
−(4 (<1, C)/4 (<2, C) − 1.0), otherwise .

(5.7)

We need to di�erentiate between the IS and the other evaluation metrics because a higher
IS is a positive improvement whereas for the other evaluation metrics a lower score is a
positive improvement. For two evaluation metrics 40 and 41 we search for two models<1
and<2 and a speci�c epoch C such that A0 and A1 yield opposing responses, i.e., we search
for occurrences of a relative improvement on one metric with a relative deterioration
on the other. We de�ne the relative anti-correlation as the sum of the absolutes of two
opposing relative improvements:

|A0 | + |A1 | ,where A0 ≥ 0, A1 < 0 or A0 < 0, A1 ≥ 0 . (5.8)

We visualize this process in Figure 5.3. There, we mainly observe anti-correlation between
the IS and the other evaluation metrics: the IS displays a positive relative improvement
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whereas the other metrics display a negative relative improvement. At epoch 225 and
250 the MMD displays anti-correlation to the EMD, 1-NN, and FID. This demonstrates
that the evaluation metrics may vary signi�cantly in their response and that a relative
improvement on a speci�c metric is not necessarily meaningful.
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Figure 5.3.: Relative improvements on the IS and FID (see Figure A.2 for EMD, MMD, and
1-NN) of local self-attention with se attention over se attention. 5

Maximising the relative anti-correlation for each pair of evaluation metrics results in
Table 5.1. The �rst 49 epochs are excluded because of the initial rapid convergence of the
evaluation metrics (see Table 5.2). Moreover, both local self-attention in the discriminator
and replacing convolutions with local self-attention are excluded due to failure states
during training. The relative anti-correlation is symmetrical per de�nition. Each row
highlights its maximum. The IS is the only metric with an uncertainty. Therefore, only
relative anti-correlation involving the IS has an uncertainty.

We observe that the FID and the IS have the strongest overall relative anti-correlation
while the EMD has the lowest. In the case of the 81% ± 2% between the IS and the FID the
IS went from 4.28 to 4.33 yielding a positive improvement of +1.2% while the FID went
from 52.27 to 94.07 yielding a negative improvement of −80.0%. This demonstrates that
using a single evaluation metric can be misleading.

5Figure was created by author.
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Table 5.1.: Maximum relative anti-correlations of our evaluation metrics in our experiments
excluding the �rst 49 epochs and models with failure states during training.

IS FID EMD MMD 1-NN

IS - 81% ± 2% 23% ± 3% 26% ± 2% 23% ± 3%
FID 81% ± 2% - 13% 52% 45%

EMD 23% ± 3% 13% - 21% 13%
MMD 26% ± 2% 52% 21% - 10%
1-NN 23% ± 3% 45% 13% 10% -

While our �ndings on relative anti-correlation yield insights into the signi�cance of rela-
tive improvements, they are not an assessment of the quality of the evaluation metrics,
because they are inherently di�erent. We can observe that by examining their value ranges
(see Table 5.2): excluding the �rst 49 epochs the IS ranges between 3.37 and 4.96 in our
experiments, whereas the FID ranges between 137.14 and 42.49. Thus, the maximum rela-
tive improvement of the IS is 47%, whereas of the FID it is −223%. For the 1-NN score the
maximum relative improvement is at −6%. As a consequence, the relative anti-correlation
of the 1-NN and any other evaluation metric consists mainly of the other metrics relative
improvement.

Moreover, the same di�erence in value yields di�erent positive and negative improvements.
In the case of the 81% ± 2% between the IS and the FID changing the point of view to a
deterioration of the IS from 4.33 to 4.28 and an improvement of the FID from 94.07 to 52.27
results in a relative anti-correlation of 46%.

Table 5.2.: Occurring value ranges of our evaluation metrics. min (50+) and max (50+)
exclude the �rst 49 epochs. In addition, both local self-attention in the discrimi-
nator and replacing convolutions with local self-attention are excluded due to
failure states during training.

IS↑ FID↓ EMD↓ MMD↓ 1-NN −→
←−

min 1.00 399.62 18.71 0.705 1.000
min (50+) 3.37 137.14 15.05 0.209 0.994

max 4.96 42.49 11.36 0.141 0.936
max (50+) 4.96 42.49 11.36 0.141 0.936

To gain further insights into the behaviour of the evaluation metrics we examine normalised
anti-correlation. The idea is to normalise each evaluation metric using the range of their
occurring values. The �rst 49 epochs are excluded because of the initial rapid convergence
of the evaluation metrics (see Table 5.2). This may be misleading if a technique has a major
impact on one evaluation metric but not on the others. However, the evaluation metrics
are not bound, except for the 1-NN, thereby we have to introduce bounds. Furthermore,
this allows to observe the strength of the reaction of the evaluation metrics in regards to
each other.
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For an evaluation metric 4 , two models<1 and<2, and a speci�c epoch C we de�ne the
normalised improvement = as:

= =

{
(4 (<1, C) − 4 (<2, C))/(4<0G50+ − 4<8=50+), if 4 = IS
−(4 (<1, C) − 4 (<2, C))/(4<0G50+ − 4<8=50+), otherwise ,

(5.9)

where [4<8=50+, 4<0G50+] is the range of the occurring values excluding the �rst 49 epochs
for 4 . The values of = range between −1 and 1, where −1 represents the worst occurring
negative improvement from 4<0G50+ to 4<8=50+ and 1 the opposite. The values in between
represent a linear interpolation: a value G represents an improvement of G · (4<0G50+ −
4<8=50+). We de�ne the normalised anti-correlation as the mean of the absolutes of two
opposing normalised improvements:

|=0 | + |=1 |
2

,where =0 ≥ 0, =1 < 0 or =0 < 0, =1 ≥ 0 . (5.10)

Maximising the normalised anti-correlation for each pair of evaluation metrics results
in Table 5.3. The �rst 49 epochs are excluded because of the initial rapid convergence of
the evaluation metrics (see Table 5.2). The normalised anti-correlation is symmetrical per
de�nition. Its values range between 0 and a 1. Moreover, the same di�erence yields the
same positive and negative improvement. Each row highlights its maximum. The IS is the
only measure with an uncertainty. Therefore, only normalised anti-correlation involving
the IS has an uncertainty.

Table 5.3.: Maximum normalised anti-correlations of our evaluation metrics in our ex-
periments excluding the �rst 49 epochs and models with failure states during
training.

IS FID EMD MMD 1-NN

IS - 31% ± 4% 34% ± 3% 32% ± 3% 41% ± 3%
FID 31% ± 4% - 6% 20% 21%

EMD 34% ± 3% 6% - 28% 28%
MMD 32% ± 3% 20% 28% - 19%
1-NN 41% ± 3% 21% 28% 19% -

We observe that the IS has the largest normalised anti-correlation. This behaviour most
likely originates from its several issues discussed in Subsection 5.2.1. The EMD and
FID have the lowest normalised anti-correlation of 6% and second-lowest relative anti-
correlation of 13%. This concurs with strongly coherent behaviour of both evaluation
metrics throughout our experiments. In general, our �ndings demonstrate that improve-
ments on a speci�c evaluation metric have to be viewed sceptically, especially relative
improvements.
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Figure 5.4.: Normalised evaluation metrics for se attention with _ = 5.0, A = 16 (top),
with _ = 0.1, A = 16 (middle), and se attention with local self-attention with
_ = 5.0, A = 4. 6

Lastly, normalising the evaluation metrics allows us to directly compare them and to
observe the strength of their responses. In Figure 5.4 we see all our evaluation metrics
normalised for three similar models, all displaying a di�erent behaviour. The �rst se
attention model (top) shows two groups of response strengths: the EMD and the FID with
near identical maximum response strengths and the other three evaluation metrics with a
clearly weaker response ranging between 60% and 80%.

The second se attention model (middle) demonstrates that a little alteration, such as
lowering the hyperparameter _ from 5.0 to 0.1, may have a huge impact on some eval-
uation metrics. We observe a major positive impact on the MMD and 1-NN with the
MMD showing a maximum response at epoch 300. The IS also displays a positive impact

6Figure was created by author.
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now reaching above 80%. The FID remains near its maximum response. Only the EMD
shows a negative response to this hyperparameter-tuning performing 5% to 10% lower as
previously. Overall, all �ve evaluation metrics show a strong correlation, especially the
four without the IS.

In the previous two models the IS had the lowest performance. In the third model the IS
responds the strongest, reaching its maximum response strength at epoch 599. The EMD
displays the weakest response of about 60%. The third model uses local self-attention. In
addition, it uses se attention after every convolution, with the exception of the discrimina-
tor and convolutions used in attention mechanisms. Furthermore, the internal bottleneck
reduction hyperparameter A is lowered from 16 to 4.

In conclusion, our examples demonstrate that evaluation metrics may react signi�cantly
di�erent to di�erent forms of attention and may even show strong reactions to little
alterations, such as hyperparameter tuning. Therefore, results on single evaluation metrics
must be viewed sceptically. They also indicate that the IS behaves most erratically out
of our �ve evaluation metrics concurring with our analysis of relative and normalised
anti-correlation.

5.3. Models

This section outlines our experiments with di�erent attention models, strategies to com-
bine them, attention in the discriminator, and (partially) replacing convolutions with
attention. Section 5.1 outlines the common setup of our experiments and the de�nitions
of hyperparameters and abbreviations.

5.3.1. Global vs. Local Self-Attention

Figure 5.5 shows the impact of global and local self-attention. Shown are 5 models: global,
local, spatially-aware local, and global self-attention mixed with local/spatially-aware
local self-attention. When mixing, we initially use global self-attention and then switch
to local self-attention if a spatial dimension of the input of the layer is ≥ 128. For global
self-attention spatial dimensions ≥ 128 of the input are downsampled to 64 to avoid large
memory consumption (see Subsection 4.3.1).

Global and global self-attention mixed with either local models behave similar, because
the network mostly relies on global self-attention. Only in the second generator is the
input large enough in the attention module to switch to local self-attention. However, we
would expect a signi�cant di�erence for larger images due to the down- and upsampling
to and from 64, whereas local self-attention is mostly spatially independent.
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Figure 5.5.: IS and FID (see Figure A.3 for EMD, MMD, and 1-NN) of global, local, spatially-
aware local, and global self-attention mixed with local/spatially-aware local
self-attention. When mixing, local self-attention is used if a spatial dimension
of the input is ≥ 128. Otherwise, the input is downsampled to 64 for global
self-attention (see Subsection 4.3.1). 7

We observe that each model reaches the uncertainty region of the IS of the AttnGAN.
However, only local self-attention shows signi�cant improvements boosting the IS by
10.3% ± 2.2% from 4.36 ± 0.04 to 4.81 ± 0.05 at epoch 325. In contrast, local self-attention
displays major negative improvements on the FID score. At epoch 325 the FID increases
by 44.5% from 47.76 to 69.01. The EMD re�ects this behaviour displaying major negative
improvements as well. Both the MMD and the 1-NN show similar scores on all models.
These signi�cantly di�erent responses of the evaluation metrics are discussed in Subsec-
tion 5.2.6. In addition, due to its excellent performance on the IS the local self-attention
model receives further training and hyperparameter tuning in Subsection 5.3.7.

7Figure was created by author.
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5.3.2. Sentence Attention
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Figure 5.6.: IS and FID (see Figure A.4 for EMD, MMD, and 1-NN) of sentence attention. 8

Figure 5.6 compares sentence attention to the AttnGAN. Sentence attention is only applied
to the attention model using the CBG method from Subsection 4.5.2 in conjunction with
word attention. Unlike the other attention models, it is not applied to upsampling blocks.

It shows that the results remain largely una�ected by sentence attention. The minor
improvements on some of the evaluation metrics may originate from spectral normali-
sation. We trace this result back to word attention already encompassing the important
information of the sentence in a more �ne-grained matter. Therefore, our results endorse
the e�ectiveness of the pre-existing word attention mechanism and show that additional
sentence attention is obsolete.

8Figure was created by author.
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5.3.3. Squeeze-And-Excitation Attention
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Figure 5.7.: IS and FID (see Figure A.5 for EMD, MMD, and 1-NN) of squeeze-and-excitation
attention after every convolution (with the exception of the discriminator and
convolutions used in attention). 9

Figure 5.7 compares squeeze-and-excitation attention to our baseline. Unlike self-attention,
squeeze-and-excitation attention is applied after every convolution, with the exception
of the discriminator and convolutions used in attention mechanisms. We observe mi-
nor improvements on the IS, MMD, and 1-NN and comparable results on the EMD and
FID. Therefore, the se model receives further training and hyperparameter tuning in
Subsection 5.3.7.

9Figure was created by author.
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5.3.4. Combining Attention Models

0 100 200 300 400

4.
0

4.
2

4.
4

4.
6

4.
8

5.
0

Evaluation Scores

IS

AttnGAN* CBG height_max mean

0 100 200 300 400

40
50

60
70

80

Epoch

F
ID

Figure 5.8.: IS and FID (see Figure A.6 for EMD, MMD, and 1-NN) of global mixed with
local self-attention combined using the convolution+batch normalisation+GLU
(CBG) approach or by viewing attention as heightmaps and using the height-
max or mean approach. 10

Figure 5.8 investigates di�erent techniques of combining attention. It shows that the
di�erent techniques of combining attention only have a mild impact. The height_max
approach shows slightly better results on the IS but slightly worse results on the EMD and
FID than the CBG approach. The mean approach displays slightly inferior or comparable
results across all evaluation metrics.

As stated in Section 5.1 we chose the CBG approach for our other models. Compared to the
other two approaches, the CBG approach is able to consider the neighbourhood of a value,
does not require individual scaling, and has learnable parameters to adapt to each task.
However, our results show that the height_max approach is also a viable option, especially
when focusing on the IS. In addition, one of the other approaches may harmonise better
with a di�erent attention model than global mixed with local self-attention.

10Figure was created by author.
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Figure 5.9.: IS and FID (see Figure A.7 for EMD, MMD, and 1-NN) of combining global,
local, and spatially aware local self-attention with word attention using the
CBG method (CBG_all) and of global and local self-attention. 11

Figure 5.9 displays the e�ect of combining global, local, and spatially aware local self-
attention with word attention using the CBG method. Initially, we observe a spike in
the IS indicating a strong in�uence of local self-attention. This behaviour is to be ex-
pected, because global self-attention starts with a W of zero and then gradually assigns
more importance to global self-attention. As the training progresses all evaluation metrics
approximate the results of global self-attention.

Therefore, global and local self-attention should be used on its own or require regulation,
such as a constant W , to prevent one attention model from dominating the other(-s).

11Figure was created by author.
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5.3.5. Attention in the Discriminator
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Figure 5.10.: IS and FID (see Figure A.7 for EMD, MMD, and 1-NN) of local self-attention
and of adding local self-attention in the discriminators. 12

So far, all proposed techniques aimed to enhance the generator. We experiment with
using local self-attention before every convolution in the discriminator and with using se
attention after every convolution in the discriminator. We refrain from from the use of
global self-attention due to its memory intensive nature for large images.

Figure 5.10 illustrates that se attention in the discriminator has no major impact. The
model behaves similar to our normal se model. However, it performs slightly worse across
all evaluation metrics. Local self-attention in the discriminator behaves chaotically and
learns very slowly. On the 1-NN score it displays no learning at all.

We assume that the min-max game of the GAN is impaired when using local self-attention.
Figure 5.11 visualizes the training errors of each generator and discriminator and the
DAMSM loss. The large jumps in all three, especially in the second discriminator and
generator, indicate mode collapse. This may originate from enhanced capabilities of the
discriminators causing it to learn too fast and impairing the min-max GAN game. Ad-
justing the learning rates may solve this issue. Alternatively, local self-attention may be
unsuited for the discriminator task at hand.

12Figure was created by author.
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Figure 5.11.: Training losses of discriminator 2 and generator 2 (for 0, 1, and the DAMSM
loss see Figure A.10) of local self-attention and of adding local self-attention
in the discriminator. 13

5.3.6. Replacing Convolutions

We experiment with replacing convolutions, excluding 1x1 convolutions, in the genera-
tors with local self-attention. We refrain from the use of global self-attention due to its
computational cost for large images.

Figure 5.12 shows that replacing convolutions does not learn across all evaluation metrics.
However, analysing the training losses (Figure 5.13) reveals that the network does learn
and improves upon its loss functions. The discriminators perform slightly better while
the generator losses are uncharacteristically high for their accompanying discriminator
losses based on the behaviour of our other models. The high DAMSM loss suggests that
the network is less susceptible to the DAMSM. A higher _ may resolve this issue and yield
competitive results.

Alternatively, the min-max game of the GAN may be impaired; or local self-attention
alone may not be suited for the generative task at hand; or the used loss functions may be
misleading.

13Figure was created by author.
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Figure 5.12.: IS and FID (see Figure A.9 for EMD, MMD, and 1-NN) of replacing convolutions
in the generators with local self-attention. 14
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Figure 5.13.: Training losses of discriminator 2 and generator 2 (for 0 and 1 see Figure A.11)
of replacing convolutions in the generators with local self-attention. 15

14Figure was created by author.
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5.3.7. Hyperparameter Tuning of our best Models

In the previous subsections two models showed promising results: local self-attention
(see Subsection 5.3.1) and squeeze-and-excitation attention (see Subsection 5.3.3). All
models in the previous subsections used the same set of hyperparameters optimised for the
AttnGAN. For the new hyperparameters of the introduced attention models we followed
their authors recommendations.

However, introducing other attention models and spectral normalisation changes the
dynamic of the network. In addition, the context of the introduced attention models
changed. Therefore, we tune our hyperparameters to achieve maximum performance.

The �rst hyperparameter we tune is _. The authors of the AttnGAN [81] recommend a _
of 5.0. We decrease _ to 0.1.
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Figure 5.14.: IS and FID (see Figure A.12 for EMD, MMD, and 1-NN) for initial tuning of _
of our se attention model with an A of 16. 16

For our se attention model we observe a positive impact on the 1-NN and MMD and a
negative e�ect on the EMD (see Figure 5.14). Both the IS and FID yield comparable results,
but the peak performance of both the best IS-FID (see Table A.1) and overall combination
(see Table A.3) is better. We determine the best combination by maximising the sum of the
relative improvements over the AttnGAN.

15Figure was created by author.
16Figure was created by author.
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On the local self-attention model we observe positive impacts on the 1-NN, MMD, EMD,
and FID, but a major negative impact on the IS (see Figure 5.18). However, we picked the
local self-attention model for hyperparameter tuning due to its excellent performance on
the IS. Since the performance of the IS (see Table A.2 for IS peak performances) is worse
with a lower _ of 0.1 and the EMD and the FID are still not in a competitive region (see
Table A.4), we prefer the _ of 5.0.

This tuning of the �rst hyperparameter demonstrates that di�erent attention models
react di�erently to hyperparameters indicating that they may ease or exacerbate learning
in parts of the networks, for example in the DAMSM loss.

For our se attention model we experimented with tuning the internal hyperparameter
A , which controls the reduction of the bottleneck layer in the se attention blocks. The
authors[28] recommend an A of 16 that is ideally tuned for the actual network. We tested
our network with an A of 16, 4, and 1, while having a _ of 0.1. With an A of 4 we observe
slightly better results on the IS and similar results on the other evaluation metrics (see
Figure 5.15). With an A of 1 we achieve even better results. Moreover, the peak performance
of both the best IS-FID (see Table A.1) and overall combination (see Table A.3) is best at
A = 1.
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Figure 5.15.: IS and FID (see Figure A.13 for EMD, MMD, and 1-NN) for tuning the hyper-
parameter A , which controls the reduction of the bottleneck layer in the se
attention blocks, of our se attention model with a _ of 0.1. 17

17Figure was created by author.
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Figure 5.16.: IS and FID (see Figure A.14 for EMD, MMD, and 1-NN) for tuning of _ of our
se attention model with an A of 1. 18

After tuning A to 1, we experimented with tuning _ again. However, both an increase to 0.5
and a decrease to 0.025 yield similar results across all evaluation metrics (see Figure 5.16)
and slightly worse peak performances of both the best IS-FID (see Table A.1) and overall
combination (see Table A.3).

The authors of [83] suggest employing spectral normalisation not only in the discriminator,
but also in the generator. However, we observe a worse response across all our evaluation
metrics throughout training (see Figure 5.17) and on the peak performance (see Table A.1,
Table A.3) for our se attention model.

Lastly, we combine local self-attention and se attention. Thereby, we only use local
self-attention in the �rst generator and refrain from the use of se attention there. In the
latter generators both attention models are applied as before: local self-attention is used in
the attention module in conjunction with word attention and se attention is applied after
every convolution except for convolutions used in attention mechanisms. We observe
a positive impact on the IS and major negative impacts on the EMD and the FID. The
average relative improvement over the AttnGAN turns negative for both the best IS-FID
(see Table A.1) and overall combination (see Table A.3).

18Figure was created by author.
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Figure 5.17.: IS and FID (see Figure A.15 for EMD, MMD, and 1-NN) for employing spectral
normalisation in the generator (se(#� ) and for combining local-self attention
and se attention. 19

For our local self-attention model we focus on trying to boost the IS, because of the bad
performance on the FID and EMD. As previously stated, decreasing _ to 0.1 had a negative
impact on the IS.

In Subsection 5.3.4 we observe a minor positive impact on the IS using the height_max
rather than the CBG method for our mixed model, which uses global self-attention in the
early stages and local self-attention in the later stages. For our local self-attention model,
we observe slightly worse scores on the IS and similar scores on our evaluation metrics
when using the height_max method. Furthermore, the peak performance of the IS is worse
(see Table A.2).

Finally, we combine local self-attention and se attention (see above). We observe a positive
impact on all evaluation metrics. While the EMD and FID are not competitive, the IS is
boosted from 4.81 to 4.96.

19Figure was created by author.
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Figure 5.18.: IS and FID (see Figure A.16 for EMD, MMD, and 1-NN) of various local self-
attention models with di�erent hyperparameters and of local self-attention
with se attention. 20

In conclusion, judging by the best IS-FID and overall combination our best model is se
attention with A = 1, _ = 0.1 yielding signi�cant average relative improvements of 9.8%
and 6.8%, respectively, over the AttnGAN. Combining local self-attention and se attention
achieves the best IS of 4.96 at the cost of signi�cant negative improvements on the FID
and EMD.

20Figure was created by author.
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5.3.8. Visual Analysis of our best Models

Figure 5.19.: Examples of images generated by (a) AttnGAN, (b) our se attention model
with A = 1, _ = 0.1, (c) our local self-attention model with _ = 5.0, and
(d) our combined model of se attention and local self-attention with A =

4, _ = 5.0 conditioned on text descriptions from the CUB test set and (e) the
corresponding ground truth. 21

In the previous sections we solely relied on quantitative metrics to evaluate our models.
Here, we perform qualitative tests of our best models. Figure 5.19 presents a subjective
visual comparison among the AttnGAN, our se attention model with A = 1, _ = 0.1, our
local self-attention model with _ = 5.0, our combined model of se attention and local
self-attention with A = 4, _ = 5.0, and the corresponding ground truth.

Figure 5.19 shows that images generated by the AttnGAN are of great detail (4Cℎ , 5Cℎ ,
6Cℎ , and 7Cℎ column), but are also cut o� (1BC and 2=3 column), colors are inconsistent with
the text descriptions (7Cℎ and 8Cℎ column), birds melt with their surrounding (2=3 column),
and birds are drawn strangely (3A3 and 4Cℎ column). Our se attention model generates
images of similar quality with similar mistakes (see 3A3 , 5Cℎ , and 7Cℎ column for cut-o�s,
7Cℎ and 8Cℎ column for color inconsistencies, etc.) while scoring better across all evaluation
metrics except the EMD. Figure 5.19 also shows that the test data is not perfect either:
images are cut o� as well (1BC , 3A3 , and 4Cℎ column) and the blue head of the bird is missing
21Figure was created by author. AttnGAN images generated using the o�cial model.
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in the corresponding text description (2=3 column).

Both models incorporating local self-attention fail to produce realistic looking image,
despite scoring higher ISs than the AttnGAN and our se attention model. Instead, they
draw repetitive features manifesting in the form of multiple birds, drawn out birds, multiple
heads, or strange patterns. The drawn features mostly match the textual descriptions.
This provides a possible explanation why both models have a high IS despite scoring
poorly on the other evaluation metrics: the IS cares mainly about the images being highly
classi�able and diverse. Thereby, it presumes that highly classi�able images are of high
quality. Our networks demonstrate that high classify-ability and diversity and therefore a
high IS can be achieved through completely unrealistic, repetitive features of the correct
bird class. This is further evidence that improvements solely based on the IS have to be
viewed sceptically.

For our se attention model we further test its generalisation ability by testing how sensitive
the outputs are to changes in the most attended, in the sense of word attention, words
in the text descriptions (see Figure 5.20). The test is similar to the one performed on the
AttnGAN [81]. The results illustrate that adding se attention and spectral normalisation
do not harm the generalisation ability of the network: the images are altered according to
the changes in the input sentences, showing that the network retains its ability to react to
subtle semantic di�erences in the text descriptions.

Additional images of our models during training and at their peak performance are Fig-
ure A.17, Figure A.18, Figure A.19.

Figure 5.20.: Example results of our se attention model with A = 1, _ = 0.1 trained on
the CUB dataset while changing some most attended, in the sense of word
attention, words in the text descriptions. 22
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5.4. Comparison to the state of the art

Table 5.4.: Fréchet Inception Distance (FID) and Inception Score (IS) of state-of-the-art
models and our two CAGAN models on the CUB dataset with a 256x256 image
resolution.

Model IS↑ FID↓
Real Data 25.52 ± 0.09 0.00

GAWWN [56] 3.62 ± 0.07 67.22
StackGAN-v1 [84] 3.70 ± 0.04 51.89
StackGAN-v2 [85] 3.82 ± 0.06 −

AttnGAN [81] 4.36 ± 0.04 47.7623

PPAN [39] 4.38 ± 0.05 −
HAGAN [10] 4.43 ± 0.03 44.6424

MirrorGAN [53] 4.56 ± 0.05 −
ControlGAN [38] 4.58 ± 0.09 −

DualAttn-GAN [8] 4.59 ± 0.07 14.0625

LeicaGAN [52] 4.62 ± 0.06 −
SD-GAN [82] 4.67 ± 0.09 −
DM-GAN [86] 4.75 ± 0.07 16.0926

CAGAN_SE (ours) 4.78 ± 0.06 42.98
CAGAN_L+SE (ours) 4.96 ± 0.05 61.06

Table 5.4 compares our two best models squeeze-and-excitation attention and squeeze-
and-excitation attention combined with local self-attention to the state-of-the-art models.
Our squeeze-and-excitation attention model boosts the IS of our baseline by 9.6% ± 2.4%
from 4.36 ± 0.04 to 4.78 ± 0.06 and improves the state of the art by 0.6% ± 2.8% from
4.75± 0.07 to 4.78± 0.06; and it boosts the FID of our baseline by 10.0% from 47.76 to 42.98.
A comparison to the FIDs of the state of the art is futile, because several papers report no
FID score and those that do report vastly di�erent FID scores on the CUB dataset for the
same baseline suggesting the use of di�erent FID implementations (see Table 5.5).

Our combined model boosts the IS of our baseline by 13.8% ± 2.2% from 4.36 ± 0.04
to 4.96±0.05 and improves the state of the art by 4.4%±2.6% from 4.75±0.07 to 4.96±0.05.
However, it generates completely unrealistic images through feature repetitions (see Sub-
section 5.3.8) and has a major negative impact on the FID of our baseline of 27.8% from
47.76 to 61.06. This demonstrates the importance of reporting both scores.

22Figure was created by author.
23Not an o�cially reported score. Re-evaluated using the o�cial model.
24Reported a slightly di�erent baseline FID of the AttnGAN (see Table 5.5).
25Reported a di�erent baseline FID of the AttnGAN (see Table 5.5).
26Reported a di�erent baseline FID of the AttnGAN (see Table 5.5).
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Table 5.5.: Fréchet Inception Distance (FID) of the AttnGAN on the CUB dataset with a
256x256 image resolution reported by respective papers. The AttnGAN paper
itself does not report an FID score.

Paper/Model FID of the AttnGAN

AttnGAN [81] −
HAGAN [10] 46.43

DualAttn-GAN [8] 16.48
DM-GAN [86] 23.98

CAGAN (ours) 47.76

Table 5.5 lists the Fréchet Inception Distance of the AttnGAN on the CUB dataset reported
by recent state-of-the-art papers. We observe that the three papers report vastly di�erent
FID scores for the same network, on the same dataset, with the same split, with the same
image resolution, and with an almost identical number of roughly 30k samples. With such
a di�erent baseline, any comparison of the reported FID scores of the respective papers is
futile.

Our measurement of the AttnGAN’s FID is closest to the HAGAN measurement [10].
The di�erence of nearly 3% may result from di�erent seeds or the use of the tensor�ow
implementation of the Inception v3 network instead of the pytorch implementation.
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6. Conclusion

We proposed combining multiple attention models in the context of text-to-image gen-
eration with stacked Generative Adversarial Networks (GANs). These models included
global, local, and light-weight self-attention on feature maps as well as linear and grid
attention repurposed for sentence attention.

We evaluated our proposal using several of the most popular evaluation metrics for
generative image modelling, including the Inception Score (IS) and the Fréchet Inception
Distance (FID). By combining squeeze-and-excitation attention with word attention and
applying spectral normalisation, a GAN stabilising technique, our proposed Combined
Attention Generative Adversarial Network (CAGAN) boosted the IS of our baseline (the
AttnGAN) by 9.6% ± 2.4% from 4.36 ± 0.04 to 4.78 ± 0.06 and improved the state of the art
by 0.6% ± 2.8% from 4.75 ± 0.07 to 4.78 ± 0.06 on the CUB dataset.

Furthermore, our proposed CAGAN boosted the FID of our baseline by 10.0% from 47.76
to 42.98. A comparison to the FIDs of the state of the art is futile, because several papers
report no FID score and those that do report vastly di�erent FID scores on the CUB dataset
for the same baseline suggesting the use of di�erent FID implementations.

We demonstrated that these alterations change the training behaviour of the network,
such as increasing the learn-ability of certain parts of the loss function. We showed that
these altered networks bene�t from a new set of optimised hyperparameters. Future work
may include further hyperparameter tuning and a better understanding on the impact of
attention models on the individual parts of the loss function.

We critically discussed several evaluation metrics for text-to-image generation and analysed
their anti-correlation by searching for opposing responses, i.e., occurrences of improving
on one metric while deteriorating on another metric. Our �ndings demonstrate that
evaluation metrics may vary signi�cantly and that relative improvements on speci�c
metrics, especially relative improvements, have to be viewed sceptically. Moreover, we
managed to create a model boosting our baseline on one speci�c evaluation metric, the IS,
by 13.8% ± 2.2% from 4.36 ± 0.04 to 4.96 ± 0.05 while generating completely unrealistic
images through feature repetitions and having a major negative impact on the FID of our
baseline of 27.8% from 47.76 to 61.06.

We observed internal anti-correlation in our experiments and demonstrated that the
choice of the evaluation metric or even the choice of the combination of evaluation metrics
may lead to di�erent model judgements. Our �ndings emphasize the need for the use of
more than one evaluation metric; a uni�ed evaluation approach in the �eld of text-to-image
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6. Conclusion

generation; and ideally an evaluation metric o�ering a fair model comparison.

Future work may also include gaining a deeper understanding of di�erent and coherent
behaviour of evaluation metrics; how attention models impact di�erent parts of networks;
and how di�erent parts of networks in�uence evaluation metrics.

In our experiments using attention in the discriminator led to mode collapse. Inves-
tigating this behaviour and developing attention models for the discriminator remains
future work. Replacing convolutions with local self-attention in the generators also showed
no learning across the evaluation metrics. However, a preliminary analysis revealed that
instead of a mode collapse the network does slowly learn its loss functions. A deeper
analysis may explain why the evaluation metrics are not re�ecting this behaviour and its
cause.

Future work may also include generating 3D data which is then rendered to an image
instead of directly generating the image. This results in a more meaningful yet complex
representation, may reduce artefacts, and may generate images of higher quality.
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A. Appendix

A.1. Experimental Results and Evaluation

Figure A.1.: Schematic diagram of the Inception v3 network. 1

1Figure taken from [43].
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2Figure was created by author.
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3Figure was created by author.
4Figure was created by author.
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5Figure was created by author.
6Figure was created by author.
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Table A.1.: Best IS-FID combination of our se attention models and their relative improve-
ments over the AttnGAN.

Model Epoch IS↑ FID↓ EMD↓ MMD↓ 1-NN − →
←− ◦

Score 4.53 43.73 11.36 0.156 0.953 -se, A = 16, _ = 5.0 550
A +3.9% +8.4% +1.5% +4.2% +0.7% +6.2%

se, A = 16, _ = 0.1 599 Score 4.72 44.71 11.64 0.147 0.941 -
A +8.3% +6.4% −1.0% +9.7% +1.9% +7.3%

Score 4.78 44.07 11.66 0.147 0.942 -se, A = 4, _ = 0.1 525
A +9.6% +7.7% −1.1% +9.7% +1.8% +8.7%

se, A = 1, _ = 0.1 500 Score 4.78 42.98 11.52 0.145 0.941 -
A +9.6% +10.0% +0.1% +11.0% +1.9% +9.8%

Score 4.73 43.61 11.62 0.142 0.940 -se, A = 1, _ = 0.025 599
A +8.5% +8.7% −0.8% +12.8% +2.0% +8.6%

se, A = 1, _ = 0.5 599 Score 4.67 42.49 11.39 0.148 0.947 -
A +7.1% +11.0% +1.2% +9.1% +1.3% +9.1%

Score 4.36 47.00 11.80 0.151 0.948 -se(#� , A = 4, _ = 0.1 599
A +0.0% +1.6% −2.4% +7.3% +1.2% +0.8%

local+se, A = 4, _ = 5.0 599 Score 4.96 61.06 12.56 0.151 0.951 -
A +13.8% −27.8% −8.9% +7.3% +0.9% −7.0%

Table A.2.: Best Inception Scores of our local self-attention models and their relative
improvements over the AttnGAN.

Model Epoch IS↑ FID↓ EMD↓ MMD↓ 1-NN −→
←− ◦

Score 4.81 69.01 12.97 0.158 0.956 -local, _ = 5.0 325
A +10.3% −44.5% −12.5% +3.0% +0.4% +10.3%

local, _ = 0.1 225 Score 4.22 67.26 12.76 0.156 0.950 -
A −3.2% −40.8% −10.7% +4.2% +1.0% −3.2%

Score 4.64 71.83 13.02 0.157 0.962 -local_height_max, _ = 5.0 325
A +6.4% −50.4% −12.9% +3.6% −0.3% +6.4%

local+se, A = 4, _ = 5.0 599 Score 4.96 61.06 12.56 0.151 0.951 -
A +13.8% −27.8% −8.9% +7.3% +0.9% +13.8%
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Table A.3.: Best overall combination of our se attention models and their relative improve-
ments over the AttnGAN.

Model Epoch IS↑ FID↓ EMD↓ MMD↓ 1-NN −→
←− ◦

Score 4.53 43.73 11.36 0.156 0.953 -se, A = 16, _ = 5.0 550
A +3.9% +8.4% +1.5% +4.2% +0.7% +3.7%

se, A = 16, _ = 0.1 599 Score 4.72 44.71 11.64 0.147 0.941 -
A +8.3% +6.4% −1.0% +9.7% +1.9% +5.1%

Score 4.68 44.05 11.66 0.144 0.939 -se, A = 4, _ = 0.1 450
A +7.3% +7.8% −1.1% +11.6% +2.1% +5.5%

se, A = 1, _ = 0.1 525 Score 4.75 42.88 11.58 0.141 0.941 -
A +8.9% +10.2% −0.4% +13.4% +1.9% +6.8%

Score 4.73 43.61 11.62 0.142 0.940 -se, A = 1, _ = 0.025 599
A +8.5% +8.7% −0.8% +12.8% +2.0% +6.3%

se, A = 1, _ = 0.5 599 Score 4.67 42.49 11.39 0.148 0.947 -
A +7.1% +11.0% +1.2% +9.1% +1.3% +5.9%

Score 4.36 47.00 11.80 0.151 0.948 -se(#� , A = 4, _ = 0.1 599
A +0.0% +1.6% −2.4% +7.3% +1.2% +1.6%

local+se, A = 4, _ = 5.0 599 Score 4.96 61.06 12.56 0.151 0.951 -
A +13.8% −27.8% −8.9% +7.3% +0.9% −3.0%

Table A.4.: Best overall combination of our local self-attention models and their relative
improvements over the AttnGAN.

Model Epoch IS↑ FID↓ EMD↓ MMD↓ 1-NN −→
←− ◦

Score 4.61 66.22 12.79 0.160 0.959 -local, _ = 5.0 500
A +5.7% −38.6% −10.9% +1.7% +0.0% −8.5%

local, _ = 0.1 275 Score 4.05 60.04 12.50 0.151 0.949 -
A −7.1% −25.7% −8.4% +7.3% +1.1% −6.6%

Score 4.56 63.99 12.71 0.161 0.955 -local_height_max, _ = 5.0 575
A +4.6% −34.0% −10.2% +1.1% +0.5% −7.7%

local+se, A = 4, _ = 5.0 599 Score 4.96 61.06 12.56 0.151 0.951 -
A +13.8% −27.8% −8.9% +7.3% +0.9% −3.0%
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A.1. Experimental Results and Evaluation

Figure A.17.: 16 images generated from random captions of the test dataset for epochs 250
(left) and 500 (right) of our se attention model, A = 1, _ = 0.1. 17

Figure A.18.: 16 images generated from random captions of the test dataset for epochs 175
(left) and 325 (right) of our local self-attention model, _ = 5.0. 18

17Figure was created by author.
18Figure was created by author.
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Figure A.19.: 16 images generated from random captions of the test dataset for epochs 300
(left) and 599 (right) of our se attention combined with local self-attention
model, A = 4, _ = 5.0. 19
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19Figure was created by author.
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