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Abstract

With half of all spoken languages worldwide in danger of becoming extinct at the end
of the century, language preservation is an important challenge that could benefit
from machine assistance due to its complexity and current dependency on manu-
al linguistic work. For tonal languages, defining and classifying different tones is a
central part of this process, and considering the high number of tonal languages
worldwide, a tone recognition system could play an important role in supporting
linguists, as well as assisting the development of speech recognition technology. Ho-
wever, previous work on tone recognition was largely developed for the language-
specific context of the speech recognition task.

This thesis investigates different approaches to the tone recognition task, with the
aim of working towards the long-term goal of developing a universally applicable
tone classifier.

Using diverse Cantonese speech data, a variety of classifiers are applied to the frame-
wise tone recognition task, indicating that recurrent neural networks, specifically
long short-term memory models, are best suited to the challenge. Experiments with
numerous network parameters and features lead to a frame error rate of 63.47%
for the best-performing system, which is well above chance performance considering
classification is conducted across 7 classes. Additionally, the syllable-wise recognition
of tone is performed for several neural networks and k-nearest neighbors classifiers,
leading to a syllable-error rate of 64.82% for the best-ranking k-nearest neighbor
model.



Zusammenfassung

Die Hälfte aller gesprochenen Sprachen weltweit sind davon bedroht, bis zum Ende
des Jahrhunderts ausgestorben zu sein. Aus diesem Grund ist die Erhaltung von
Sprachen eine wichtige Herausforderung, die aufgrund ihrer Komplexität und der-
zeitiger Abhängigkeit von linguistischer Handarbeit von maschineller Unterstützung
profitieren kann. Für tonale Sprachen ist die Definition und Klassifikation ihrer Tö-
ne ein zentraler Bestandteil dieses Prozesses, und in Anbetracht der hohen Anzahl
tonaler Sprachen weltweit könnten ein Tonerkennungssystem eine wichtige Rolle in
der Unterstützung von Linguisten spielen, sowie eine Bestandteil für die Entwick-
lung von Spracherkennungstechnologie sein.

Diese Arbeit untersucht verschiedene Ansätze für die Aufgabe der Tonerkennung,
mit der Absicht auf das Langzeitziel eines universell einsetzbaren Tonklassifikators
hinzuarbeiten.

Auf einem vielseitigen kantonesischen Datensatz werden unterschiedliche Klassifika-
toren für die frame-weise Klassifikation von Ton eingesetzt, mit dem Ergebnis, dass
neuronale Netze, speziell long short-term memory Modelle, sich am besten für die
Herausforderung eignen. Experimente mit einigen Netzparametern und Merkmals-
typen führen zu einer Fehlerrate von 63.47% für das beste System - ein Resultat,
welches deutlich über dem Zufall liegt, da es sich um eine Klassifikation über 7 Klas-
sen handelt. Zusätzlich wird eine silbenweise Klassifikation von Ton für verschiedene
neuronale Netze und k-nearest neighbors Klassifikatoren erprobt, wodurch besten-
falls eine Fehlerrate von 64.82% erreicht wird.
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1. Introduction

1.1 Motivation

Currently, an estimated number of 6900 languages are spoken worldwide. However,
with the strong advance of globalization, a large number of languages have decrea-
sing numbers of native speakers, and many are in danger of becoming extinct. There
is a consensus among linguists that half of all languages may no longer be spoken
by the end of the 21st century.

Knowledge of a language is an important part of understanding a culture’s identity,
customs and history. To prevent a loss of this information, there is a global effort
to preserve these endangered languages. For this to happen, a language must be
studied and described by trained linguists, which is a time-consuming and often dif-
ficult procedure, involving the collection of data, transcription with the assistance
of native speakers, a phonological analysis and the definition of phoneme and gram-
mar systems. Considering the rate of language extinction and the complexity of the
problem, language description is certainly a task that could benefit from machine
assistance.

One challenging aspect of the language description process is the analysis of tone,
meaning the use of pitch to influence lexical or grammatical meaning. Estimates
state that the majority of languages spoken worldwide use tone to some degree
[Yip02], making tone classification an important task. The manual annotation of to-
ne is time-consuming and non-trivial for linguists, as there often exist fine differences
that are difficult to distinguish, and strong regional and speaker-specific differences
make the clear definition of a tone system even more problematic.

Previous work on tone recognition mostly focuses on integrating tone features into
language-specific speech recognition systems. Although this approach has been suc-
cessful and useful in this limited domain, it is of little use in the field of language
documentation, whereas the impact of a language-independent system for tone clas-
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sification in the field would be far greater.

In addition to assisting linguistic work, a general approach to tone classification
would be a vital piece in the development of speech recognition and translation
technologies, which, at the moment, perform very well for only a small subset of
languages worldwide. Due to the technological advancement and increasing interna-
tionalization, the need to develop such systems for further languages is increasing.

1.2 Goal

With the ultimate perspective of a language-independent tone classification system
in mind, the goal of this work is to explore different approaches to the tone reco-
gnition task, focusing on features and techniques that are not specific to a certain
language. Although this is a complex task, we hope to provide insight regarding the
realizability of such a system, and examine which approaches are suitable to the
problem.

1.3 Structure

The thesis begins with a chapter on relevant background information, covering diffe-
rent types of neural networks as well as linguistic tone. Next, various related publica-
tions are discussed. The following section describes the experimental framework used
in this work, including information on the data, the technologies that were used and
the types of experiments that were performed. Details regarding the experiments as
well as their results are enumerated and evaluated in the next section. Finally, the
thesis ends with a conclusion of the results.



2. Related Work

Although extensive work has been published on creating sophisticated speech re-
cognition systems for numerous languages, the majority of spoken languages are
still under-resourced and lacking dedicated speech technology. With the exception
of Mandarin Chinese, most tonal languages fall into this less researched category.
For this reason, most of the existing work on detecting tone in speech is focused
on integrating tone features into Mandarin speech recognition systems, along with
a small amount of experiments dedicated specifically to other single languages.

[LTGL+93] describes a speaker-dependent real-time dictation system for Mandarin
that integrates tone features into classification and represents the first system that
includes recognition of the neutral tone in addition to the four lexical tones. Based
on hidden Markov models (HMMs), the system first classifies isolated syllables by
separating the recognition of phones from the recognition of tone, with a total of
1300 possible syllables. A second subsystem then uses a language model to determine
the word sequence.
The tone recognition subsystem was trained and tested on a set of 190 syllables that
were specifically chosen to reflect each tone’s representation in Mandarin. These 190
utterances were recorded twice by 4 male and 4 female speakers, with one set being
used in training and the other for testing. It was found that while pitch contour as a
feature worked well in distinguishing the four lexical tones, performance was worse
when the neutral tone was included, as this tone is not generally represented by a
certain pitch pattern. However, examination of syllable wave forms showed that the
neutral tone typically displayed a lower signal amplitude and a shorter duration of
voicing than other tones, leading to the following frame-based feature vector:

yt = (log(ft) + log(ft+1), log(ft)− log(ft+1), log(et) + log(e), a), (2.1)

in which ft and et are the pitch and short time energy at frame t, respectively, while
e stands for the syllable-wise maximum of et and a represents the duration of the
voiced part of the syllable. Using these features in a 5-state discrete HMM with a
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codebook size of 32, it was possible to achieve an accuracy of 95.5% in tone classifi-
cation.

[HuQS14] also uses a speech recognition system for Mandarin, and examines the
integration of tone features into the deep neural network (DNN) based acoustic mo-
del. To represent the tone, the fundamental frequency and its first- and second-order
derivates are computed and combined with 39 MFCC features to make up the acou-
stic model’s feature vectors. The speaker-independent system was trained with 66
hours of speech data, consisting of read text such as novels and classical Chinese
literature, read by 230 female and 230 male speakers.
Compared to a baseline system for automatic speech recognition (ASR) with the
same parameters but using only MFCC features, the integration of tone features
achieves a 20% and 23% reduction in the error rate of tonal syllable recognition, for
female and male speakers, respectively. The tone error rate is lowered by 32% for
female and 35% for male speakers. When investigating the influence of the static
F0 as opposed to its deltas, it was found that the dynamic features are far more
important for recognizing tone, as removing the static F0 value from the features
resulted in only a negligible reduction in performance. It was further observed that
interpolating F0 during unvoiced speech segments, as opposed to using raw F0 va-
lues (which are zero in unvoiced segments), did not improve recognition performance.

[ScVu16] explores the impact of different types of features on a syllable-based tone
recognition system for Vietnamese. A baseline system was defined using absolute
pitch from three regions in the syllable, as well as two delta pitch values and the
syllable duration as features. System performance was measured as more features
were added step by step, beginning with energy and delta energy features, once for
the whole syllable and once divided into three equal-length parts, and later including
the degree of voicing, spectral tilt, harmonicity, and PaIntE parameters. PaIntE is a
model designed for intonation modeling in speech synthesis, and was restricted to be
based on a single syllable. Using six parameters that are linguistically motivated, the
model defines a function that approximates the F0 contour.Speech data was taken
from the GlobalPhone database, for both female and male speakers.
The classification results, which were obtained using Random Forest and Bagging
classifiers, showed that each newly added feature improved the results, most nota-
bly the harmonicity and PaIntE parameters. Using the full set of features, it was
possible to increase system performance from 57.7% to 71.2% using Random forests
and from 65.5% to 72.4% for the Bagging classifier. Experiments with subsets sepe-
rated by gender also showed that the algorithm is capable of generalizing between
male and female speakers to a degree, while using only female speakers led to higher
performance that when using male speakers. Furthermore, performing experiments
on dialect-specific speech showed much lower accuracy for cross-dialect models than
for those with a single dialect.

[MSWG+13] evaluates different approaches in tone feature modelling when used in
ASR systems for two tonal and two non-tonal languages. Apart from F0, six delta
and two double-delta features, as well as the cross-correlation, were used to model
pitch contour. Additionally, the fundamental frequency variation features described
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in [LaHE08] were applied, resulting in 7 additional coefficients. Different approaches
of integrating these features with the ASR system’s MFCC features were compared,
namely an early integration, resulting in merged features for bottleneck feature trai-
ning, and a late integration, in which the tone features were added after bottleneck
feature extraction. All combinations led an improvement in ASR performance, with
the integration of tonal features leading to an accuracy gain of multiple percent
points for tonal and non-tonal languages, relative to the previously best-performing
bottleneck feature ASR system.
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3. Background

3.1 Neural Networks

Artificial neural networks are computational models that have been successfully ap-
plied to classification in the area of speech recognition, and are presently used across
a wide range of fields, including natural language processing, image recognition and
object detection. This section provides an overview of relevant types of neural net-
works and techniques for their usage.

Inspired by the human brain and its ability of excelling at various cognitive tasks,
the core principles of artificial neural networks are derived from the connectionist
structure and computational process of their biological counterparts. The idea was
to create a model that is capable of learning a representation and adapting it if
necessary, using parallelism on a large scale for computational efficiency. Like the
human brain, this model should be able to generalize on unseen data and exhibit
robustness towards noisy inputs.

3.1.1 Perceptron

While research on artificial neural networks dates back to the description of the
first mathematical model of a neuron by McCulloch and Pitts in 1943 [McPi43], the
first operational model of a neural network, the perceptron, was conceived by Frank
Rosenblatt in 1958 [Rose57].
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Figure 3.1: A perceptron

The perceptron is a linear classifier in which knowledge is represented by the weight
vector w of the connections between the network’s input layer and the single neu-
ron responsible for the classification decision. The network classifies an (n+1)-
dimensional input vector x by passing the weighted sum of its components (1, x1, x2, ..., xn)
to an activation function f in the neuron, which computes a binary output y, as
described in the following equation:

y = f(
n∑

i=0

wixi) = f(wTx) (3.1)

The perceptron training is supervised, on a training set which provides a target out-
put value t for each input vector x. After specifying a learning rate η and threshold
γ and initializing the weight vector, training is an iterative process with two steps:

• Compute the current output y of the network

• Update the weight vector w: w ← w + ∆w, with ∆w = −η∇E(w).

E(w) denotes the error criterion, which is defined as

E(w) =
1

2

∑
x∈X

(tx − yx)2. (3.2)

3.1.2 Feedforward Neural Networks

A perceptron is a very basic network with limited learning ability - one example of
this is its inability to learn the XOR function. However, the same concept can be
used to create larger, more complex networks with multiple layers of neurons which
are capable of learning higher-order functions.
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Figure 3.2: A feedforward neural network with a single hidden layer

A feedforward neural network, as depicted in Figure 3.2, is a neural network made
up of an input layer, an ouput layer as well as at least one hidden layer of neurons,
in which the connections between neurons do not contain cycles - meaning that in-
formation only flows in one direction. For classification, the number of neurons in
the input layer is at least as high as the feature dimension, while the output layer
may typically contain as many neurons as classes in the problem.

As in the perceptron, a neuron’s output is computed by its activation function. In
classifying networks, typical activation functions are the sigmoid function σ(x) and
hyperbolic tangent function φ(x):

σ(x) =
1

1 + e−x
(3.3)

φ(x) =
2

1 + e−2x
− 1 (3.4)

Both functions are well-suited to classification due to their nonlinearity and limited
value range.

Furthermore, when dealing with classification problems with K > 2 classes, the
softmax function (3.5) is applied to the output layer neurons, normalizing the output
values to a range of [0, 1] with a total sum of 1, which allows the output to be
interpreted as class probabilites.

ϕ(o)j =
eoj∑K

k=1 e
ok

(3.5)

Training the network is accomplished by iteratively updating its weights using the
backpropagation algorithm [RuHW88], which allows for the calculation of an error
value for each neuron in the network, and uses the gradient descent method to mi-
nimize a loss function.
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More recently, there has been an improvement in quality of systems in the fields
of speech recognition and natural language processing by using networks with mul-
tiple hidden layers and a high number of neurons, known as deep neural networks
[DeHK13]. The increased model complexity along with improved learning procedures
such as pre-training techniques for weight initialization and the availability of lar-
ger datasets led to a higher system performance, while more powerful hardware and
the incorporation of parallel computing made the utilization of large models possible.

3.1.3 Recurrent Neural Networks

In contrast to traditional feedforward neural networks, recurrent neural networks
(RNNs) [LiBE15] are artificial neural networks in which information from one layer
can flow to previous layers as well as following layers. This is achieved by introducing
connections from a neuron to neurons of the previous layer. With these connections,
the network’s state is not only determined by its weights and input values, but also
by its previous states, thus forming a memory of past behaviour.

x

y

w

x(t−1)

y(t−1)

x(t)

y(t)

x(t+1)

y(t+1)

w w⇒

Figure 3.3: A diagram of an RNN, unfolded to show time steps

This sensitivity to context makes RNNs ideal for tasks such as speech recognition
and language processing, in which access to previous states provides a significant
information benefit. For example, the task of recognizing the semantic meaning of
a word in a sentence often requires knowledge of the previous words. With RNNs,
it is possible to create a model that processes phrases on a word level but includes
information from preceding words in the classification decision.

One well-documented problem of RNNs arises in the case of long-term dependencies,
meaning that the output at a certain point in time is dependent on information, and
thus a network state, from a far earlier point in time. The derivates of the sigmoid
and hyperbolic tangent functions which are used in the neurons are close to zero at
both ends, and the method of calculating the loss function in the backpropagation
algorithm involves a higher number of chain rule applications on neuron outputs for
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neurons that are further away in the network. For this reason, the gradient for these
neurons from more distant points in time quickly becomes zero, meaning that they
have no influence on the training. This is known as the vanishing gradient problem.
Similarly, the exploding gradient problem describes the opposite case, in which ac-
tivation functions with high-valued derivatives lead to an exponential growth of the
gradient.

3.1.3.1 Bidirectional Recurrent Neural Networks

Although standard RNNs incorporate information from past time states, informa-
tion from future points in time, which can be just as relevant to the task, is not
captured. One way to achieve this is to delay the output by a fixed number of fra-
mes in order to include following input data. However, this method does not perform
well for higher delay values.

Bidirectional Recurrent Neural Networks (BRNNs) [ScPa97] provide a solution to
this problem by extending a standard RNN’s hidden layers with a second, equally
large set of neurons in which the connections convey information from future instead
of past time states. Since these two sets are disjoint, the network can be unfolded
into a feedforward neural network just like a standard RNN, and can be trained in
the same manner.

x(t−1)

y(t−1)

x(t)

y(t)

x(t+1)

y(t+1)

Figure 3.4: A diagram of a bidirectional RNN, unfolded to show time steps

BRNNs were found to often outperform their single-direction predecessors, and the
principle of bidirectionality is regularly used in more complex, state-of-the-art vari-
ants of the RNN.

3.1.3.2 Long Short-Term Memory

As mentioned before, traditional RNNs fail to successfully represent long-term de-
pendencies due to the vanishing/exploding gradient problem. To provide a solution
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to this problem, long short-term memory (LSTM) was introduced in 1997 by Hoch-
reiter and Schmidhuber [HoSc97]. Due to their superiority in performance over stan-
dard RNNs in context-sensitive tasks, LSTM networks or a variation of the concept
is frequently used in practice.

While a standard RNN has long-term and short-term memory (represented by its
weights and the neuron activations with influence from previous layers, respectively),
the concept of LSTM is to add an additional type of memory by replacing each node
in the network’s hidden layer with a more complex model, referred to as the memo-
ry cell. This additional memory is stored in the cell state, which is passed forward
in time through the network, from one memory cell to the next. Gates inside the
cell determine which part of the cell state should be output, and which information
should be added or removed from the cell state.

The memory cell can be described fully with the following elements:

• An input node gc, which receives activation from the input layer x(t) and the
previous time step’s hidden layer h((t−1).

• An input gate ic, which receives the same activation as the input node, and
whose value is multiplied with the value of the input node to determine which
information to pass on.

• The internal state sc, which has a self-connected recurrent edge with a con-
stant weight, thus allowing for an unhindered error flow across time steps and
preventing the gradient from vanishing or exploding during gradient descent.

• A forget gate fc, which allows for information to be removed from the internal
state. The forget gate was proposed as a variation of LSTM in [GeSC99] and
was found to significantly improve performance.

• An output gate oc, whose value is multiplied with the value of the internal
state to produce the output of the cell.

There are numerous variants of the standard LSTM model that are used in practice.
One model that has shown success in practice is bidirectional LSTM, which combines
the LSTM’s memory cell concept with the structure of a bidirectional RNN. A more
recent modification aimed at computational efficiency is the GRU.

3.1.3.3 Gated Recurrent Units

A commonly used variation of LSTM is the gated recurrent unit (GRU) [CGCB14].
The GRU simplifies traditional LSTM by combining the input and forget gates into
a single update gate, while also merging the cell state and the hidden state and
removing the output gate. This reduction of parameters makes a GRU computatio-
nally more efficient, while results show that their performance is comparable to that
of LSTM.
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Figure 3.5: An LSTM cell. [http://blog.otoro.net/2015/05/14/
long-short-term-memory]

3.1.4 Training Techniques for NNs

Minibatch gradient descent

There are different strategies to applying the backpropagation algorithm when trai-
ning a neural network. One option is to compute the error and update the net-
work weights for each training sample seperately. The stochastic gradient descent
algorithm applies this method by sampling from training points and adjusting the
weights accordingly. However, this approach can be slow to converge, as noisy data
will quickly result in weight updates that don’t reflect the data. Another approach,
known as batch gradient descent, is to calculate the error for the complete trai-
ning set and then adjust the weights based on the average error. This approach
unfortunately makes iterations very time-consuming for larger datasets, which is
why minibatch gradient descent is used. This method divides the training set into
smaller batches of samples and then iterates over these subsets, calculating a weight
update for each minibatch. Ideally, the minibatches are large enough to be represen-
tative of the training data distribution and robust to noisy data points, while being
small enough to allow for fast iterations and to fit completely into the memory of
the device used, which reduces the iteration time by simplifying the computation.

Newbob scheduling

Newbob scheduling is an algorithm to control the learning rate during the training
of a neural network. The training starts with a fixed learning rate, which allows for
a quick training, and continues until the change of the validation error falls under
a predefined threshold. From this point on, the learning rate is exponentially decre-
ased with each step, fine-tuning the weights to a conversion. Training is completed
when the change of validation error falls below a second predefined threshold.

http://blog.otoro.net/2015/05/14/long-short-term-memory
http://blog.otoro.net/2015/05/14/long-short-term-memory
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3.2 Tone
In the field of linguistics, prosody is the general term for phenomena in a language’s
sound system that span across multiple phonetic units. Instead of being properties
of a single phoneme, these features are attributes of larger units such as syllables,
phrases or sentences. Among them are phenomena such as tone, intonation, and
rhythm, all of which can add different levels of meaning to the speech. For example,
a speaker can use prosodic elements to emphasize certain words or to define an ut-
terance as a question, but prosodic features can also convey information about the
speaker’s emotional state.

The definition of tone is the usage of pitch to change the lexical or grammatical mea-
ning of a word. It stands in contrast to intonation, which refers to the use of pitch
on the utterance level. The term pitch describes the human perception of the fun-
damental frequency F0 of speech, which is defined as the rate of opening and closing
of the speaker’s vocal chords. It can be determined in the spectral representation of
an audio signal as the frequency of the first harmonic. The fundamental frequency
range is determined by the vocal tract length, making it speaker-dependent, with the
average fundamental being about 150 Hz for male speakers and 200 Hz for female
speakers.

The categorization of languages into tone languages and languages without tone is
not always obvious, as tone is used in different degrees of frequency and distinctiven-
ess - it is however recognized that a tone language is one that uses tone regularly,
and not just in a few rare cases. Some estimates state that 60 to 70 percent of the
world’s languages may be tonal, and some tone languages, such as Mandarin and Vi-
etnamese, are among the most spoken worldwide. A high density of tonal languages
can be found in Sub-Saharan Africa, East and Southeast Asia, the Pacific region,
and Central America.

There are different mechanisms to create a system of different tones in a language,
based on the pitch and its contour. For one, it is possible to define a set of tones
with a level contour, but with different relative heights in pitch to each other. This
is exhibited frequently in the Bantu language family of Africa, in which most lan-
guages distinguish between three or more levels of pitch. Another possibility is to
differentiate between types of pitch contour, meaning the change of pitch over time
during the syllable. The perhaps most well-studied case of this is found in Manda-
rin Chinese, which uses four different tones, as well as a neutral tone, to state the
meaning of a word. An example of this for the syllable [ma] can be seen in Table
3.1.

Word (pinyin) contour translation
mā high level mother
má rising hemp
mǎ falling-rising horse
mà falling scold
ma neutral (question particle)

Table 3.1: Example for the influence of tone in Mandarin on the syllable [ma]
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Some languages also use a combination of contours and different level tones, such as
Cantonese, which defines six different types of tone, demonstrated in Table 3.2 for
the syllable [yau] :

Word (pinyin) contour
high level worry
high rising paint (noun)
mid level thin
low level again
very low level oil
low rising have

Table 3.2: Example for the influence of tone in Cantonese on the syllable [yau]

Tones can be defined to mean or modify different things. As seen in the case of
Mandarin and Cantonese, one option is the difference in lexical meaning for contras-
ting tones. However, a change in the grammatical meaning of the word can also be
induced by the tone, as is often the case in African tonal languages. As an example,
the Edo language, which is spoken in Nigeria, uses tone to define the tense of a word,
as well as the aspect (meaning if the action is completed or ongoing).

Due to the relative nature of tones and the speaker-dependency of the fundamental
frequency, it is not always possible to classify a tone from an isolated speech segment.
Additionally, the sentence intonation must be taken into account and distinguished
from the syllable-based tone. These difficulties, along with the strong variance across
similar dialects, often make the description of a tone system and the classification a
challenging task for linguists.
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4.1 Frameworks
This section gives an overview of frameworks that were used for the experimental
part of the thesis.

4.1.1 Janus

The JANUS Recognition Toolkit (JRTk) [WAWBC+94] was developed by ISL to
provide tools for the development of speech recognition systems for research as well
as for applications. The toolkit is created in C and can be programmed using Tcl.
Modules include extensive pre-processing options, acoustic modeling, and the Ibis
decoder. JRTk was used in this work to create a speech recognition system for Can-
tonese, upon which phoneme labels were extracted to align the corpus transcription
to frames. Additionally, pre-processing and extraction of tone features was also ac-
complished using JRTk.

4.1.2 Lasagne

Lasagne [DSRO+15] is a Python library which provides modules for building and cu-
stomizing various types of neural networks. It uses the Theano framework [Thea16],
which is responsible for lower-level optimization of training processes on GPUs, to
provide efficient functionality for training. Lasagne includes numerous neural net-
work architectures and layer types, including a variety of activation functions and
different scheduling techniques. In this work, the different types of recurrent neural
networks were realised using Lasagne.

4.1.3 detl

A second framework that was used is detl, which is a Python library for deep learning
that supplies functionality for creating and training neural networks. Detl provided
the layer models and training algorithms to create the feed-forward neural networks
used in this work.
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4.2 Data

4.2.1 Dataset

Cantonese was chosen as a tonal language to perform experiments on. The term
Cantonese is sometimes used to describe all language varieties of the Yue Chinese
language family, which are spoken in the Guangdong and Guangxi provinces of Chi-
na as well as in Hong Kong. However, the more precise definition, sometimes also
known as Cantonese ’proper’, describes the form spoken in the cities of Guangzhou
and Nanning on the Chinese mainland, along with Hong Kong and Macau. When the
broader definition is applied, Cantonese is a language with an estimated 80 million
speakers. It is generally considered to have nine distinctive tones, and each morph-
eme, which is typically one syllable in length, has a tone. However, three of these
tones are categorized as ’checked syllables’ or ’entering tones’ and are observed on
syllables that end abruptly with a stop consonant such as ’p’, ’t’ or ’k’. These tones
are typically treated as allotones of the three level tones, meaning that the language
can be described with six tones.
Data was obtained from the IARPA Babel Cantonese Language Pack [Aeal16], which
consists of transcribed speech data spoken by a variety of speakers from five different
dialect groups of Cantonese, all of which are spoken in the Guangdong and Guang-
xi provinces only. These dialect groups were defined with respect to phonological
variation, as there are pronunciation differences between regions, as well as geogra-
phic location and cultural differences, which lead to differences in lexical choice.
The dataset consists of 176 hours of conversational audio recorded from telephone
conversations in an 8 kHz 8-bit encoding, of which about 40-50% is speech data
[CCRK+13]. Also included are annotations in simplified Chinese characters as well
as in a romanized form, including a designation of the tone. In total, 1495 unique
syllables were present in the dataset.
In contrast to the Pinyin system used for Mandarin, a standardized romanization
scheme for Cantonese does not exist, and representing the language in alphabetic
form is recognized as a challenging task in itself. [Aeal16] uses the Yale romanization
system [fHKo58]. The Yale system defines seven contrasting tones, while Matthews
and Yip [BaBe97] recognize only six, conflating the Yale system’s high level and high
falling tones. On inspecting the data however, it was found that the high falling tone
was only annotated a total of 3 times, leading to the assumption that high level and
high falling tones were not distinguished. For this reason, six tone classes were used
in all experiments. Table 4.1 lists the six different tones that were defined in the
dataset.

Class Tone
1 high level
2 high rising
3 mid level
4 low falling
5 low rising
6 low level

Table 4.1: The tone classes present in the dataset
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The dataset was divided into a large training set with 80% of the data, and validation
and test sets with 10% each, with each set using completely different speakers.
Table 4.2 shows the distribution of tones to syllables in the dataset.

Tone Syllables
1 28.48%
2 12.77%
3 16.37%
4 9.32%
5 12.71%
6 20.34%

Table 4.2: Distribution of tones to syllables in the dataset

4.2.2 Features

The first step was the extraction of frame-wise tone features. A frame distance of
10ms was used, with a windows size of 32ms. For one, the absolute fundamental fre-
quency F0 was extracted, along with three delta and three double-delta values over
a range of 1, 2 and 3 frames in both directions. Secondly, the fundamental frequency
variation (FFV) features [LaHE08] were computed. FFV provides a continuous mea-
sure for frequency variation that is instantaneous, meaning it is computed without
context from adjacent frames. It makes use of all harmonics in the speech signal
(as opposed to only the first harmonic) and evaluates a vanishing-point product to
obtain seven parameters that determine the variation of the fundamental frequen-
cy. Additionally, the frame energy was computed, along with three delta and three
double-delta values in the same scheme as the F0 features. This led to a total feature
dimension of 21.

4.2.3 Data Extraction

To label the data, each frame had to be annotated with one of the six tone classes
present in Cantonese. Tone annotations were provided by the dataset on a sylla-
ble basis. Using the transcript and pronunciation dictionary, a reference phoneme
sequence was created for each utterance. An existing JANUS speech recognition
system trained on the same dataset was then used to provide frame-wise phoneme
sequences of the utterances, which were then aligned to the reference phoneme se-
quences, allowing each frame to be assigned to a syllable and thus also a tone.
Frames containing silence, noises, or phonemes that could not be aligned to the re-
ference were annotated with a seventh class with the label ’0’. The distribution of
tones to frames in the training set is presented in Table 4.3.



20 4. Experimental Setup

Tone Number of frames
0 8032872
1 2910107
2 962970
3 1482438
4 596194
5 879093
6 2006673

Table 4.3: Distribution of tones to frames the dataset

As the utterances frequently contained long durations of silence, there is a high num-
ber of frames with label ’0’. These frames can be important as context for frames
containing speech, which is the reason why this class is included in the classification.
However, long periods of silence contain many frames that are too far away from
the nearest speech segment to contain useful information, and were deemed to be
of little use to tone recognition. Therefore, it was decided create a modified dataset
that does not include class ’0’ frames that are more than 7 frames away from the
nearest frame annotated with a tone, significantly reducing the number of class ’0’
frames.

The examination of the data also shows that the tone classes are not equally repre-
sented. This is in part due to the uneven distribution of syllables shown in Table
4.2, and is further caused by the fact that syllables with certain tones were longer
on average. This can be seen in Table 4.4.

Tone Average syllable length
1 40
2 27
3 34
4 24
5 23
6 37

Table 4.4: Average syllable length for the different tones

As a consequence, the a balanced training set was created by undersampling the
data until all six tone classes were included with the same number of frames.

4.3 Experimental Approach

The experiments that were performed can be divided into two seperate groups that
take different approaches.

The experiments in the first grouped perform classification on single frames, re-
turning a predicted tone class for each frame separately. Initial experiments were
performed on a feedforward neural network and compared different types of features
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as well as the impact of including an additional class for nno speecḧınto the classi-
fication. Afterwards, experiments moved on to recurrent neural networks, including
the comparison of different network types and architectures as well as various feature
types and context lengths. The best-performing configuration was finally tested on
the test set.

The second group consists of experiments following the approach of a syllable-based
classification. After explaining how the data points were modified to allow for this
tactic, two different classifier types are described - a k-nearest neighbors classifier as
well as two different neural networks.
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5. Experimental Results

This chapter describes in detail the experiments that were performed on the dataset,
and the results that they produced. Initial experiments were performed on feedfor-
ward neural networks, which are presented in the first section. The second section
describes the work with different types of recurrent neural networks and the testing
of various parameters. In the third section, experiments with syllable-based features
show an alternative approach. The chapter closes with a final evaluation on the test
set.

5.1 Feedforward Neural Networks

First classification experiments were performed on the unaltered dataset with a feed-
forward deep neural network architecture that had previously been used successfully
in speech recognition setups. To compare the influence of the different feature ty-
pes, three models were trained: one model using only pitch and FFV features, one
model based on energy features, and a third model which utilized all features. A
context of 7 was used, meaning that the input consisted of the frame along with
the 7 previous and 7 following frames. This brought the input dimension to 210
for tone features, 105 for energy features and 315 for the combination. All three
nets consisted of 4 hidden layers with 1000 neurons each, and an output layer with
7 neurons. Table 5.1 shows the performance of the three models on the validation set.

Features Frame Error Rate
Pitch + FFV 47.26%
Energy 47.92%
Combination 46.19%

Table 5.1: Results for different features in a feedforward neural network

Although the error rate is significantly lower than expected for all three models,
a closer examination of the results showed that the network simply classified most
frames as belonging to the ’0’ class. As frames with this label make up almost 50% of
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Figure 5.1: Confusion matrix for combined features in a feedforward neural network.
Most frames were predicted to belong to the ’0’ class, and the good frame error rate
values can be explained by the fact that this class made up the largest portion by
far.

the dataset, the error rates are not surprising. Of the remaining frames, the largest
share was labeled with one of the classes that were represented more strongly in
the dataset, namely the ’1’ and ’6’ tones. It appeared that the uneven distribution
was influencing the classifier, and for this reason, only the balanced version of the
training set, with the irrelevant ’0’ frames removed, was used in further experiments.

In the next step, the same net architecture was applied to the modified training
set, this time only once for the combination of all features. Performance dropped to
an error-rate of 89.75%, which is significantly below chance. A confusion matrix of
the predicted labels for the validation set showed that the network was still mainly
outputting 3 classes, while some class labels were not even output a single time.

To investigate the influence of including the ’0’ class in classification, a neural net
that distinguishes between 6 classes instead of 7 was trained. In order to preserve
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the context information that the ’0’ frames include, the dataset for this case was fur-
ther modified by giving these frames the labels of the neighbouring tones for which
they provide context. Unfortunately, this approach proved to be unsuccessful, as the
model classified every single input frame from the validation set as having tone ’5’.

5.2 Recurrent Neural Networks

5.2.1 Comparison of different RNN types

After feed-forward neural networks were shown to be unsuited to the task, several
experiments were performed with recurrent neural networks. Due to the temporal
nature of speech, information from previous and future time states is often relevant
to recognition tasks. This is especially the case with tone recognition, as the process
relies strongly on the change of pitch over time. Since recurrent neural networks are
designed to integrate information from surrounding time states, it was a logical next
step to try this type of network.

As a first step, three different types of RNN were compared: a classic RNN, a stan-
dard LSTM model, and a GRU model. All models were bidirectional in order to
integrate preceding frames as well as succeeding frames. The architecture was kept
simple and was shared across all three RNNs - a single hidden layer with 150 units.
Context was included from the 7 neighbouring frames in either direction, and only
pitch and FFV features were used in order to keep the input dimension smaller.

Model Type Frame Error Rate
Basic RNN 77.40%
LSTM 68.06%
GRU 67.37%

Table 5.2: Results for different recurrent neural networks

The results, presented in Table 5.2 show that all three models are clearly superior to
the feed-forward architecture, performing with a better-than-chance accuracy. The
two LSTM variants outperform the classic RNN by a significant margin, indicating
that their ability to represent long-term dependencies may make LSTM models the
most appropriate RNN variant to the tone recognition task. For this reason, further
experiments focus on LSTM networks.

5.2.2 Comparison of features

To measure the influence of the different types of features, two LSTM models with
the same structure as in the previous experiment were trained separately, once only
with the 14-dimensional tone features, consisting of pitch contour and FFV coef-
ficients, and once using the 7-dimensional energy features. The results, which can
be seen in Table 5.3, show that they can not match the performance of the LSTM
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trained on all available features. The numbers also indicate that tone-related featu-
res are the most valuable information for tone recognition, while energy features are
certainly beneficial to the system, but not capable of representing tones by themsel-
ves.

Features Frame Error Rate
Pitch + FFV 68.06%
Energy 77.01%
Combination 66.47%

Table 5.3: Results for different features in a LSTM network

5.2.3 Comparison of context lengths

The next step was to compare different context sizes. The previously used context
value of 7 means that the tone classification is based on a sequence of 15 frames.
However, average syllable lengths for the different tones range between 23 and 40
frames, meaning that a larger context may be more suitable to represent the full
pitch contour of a tone.
The same LSTM structure was used, based on the combined 21-dimensional features.

Context length [frames] Frame Error Rate
11 67.75%
15 66.47%
19 67.99%
23 68.02%
31 68.41%

Table 5.4: Results for different context lengths in a LSTM network

As can be seen from the performance figures in Table 5.4, the system performs
slightly worse every time the context size is increased, while choosing a smaller con-
text length also leads to suboptimal results. Overall, there is no strong difference in
the error rates for the different context sizes. The results suggest that the choice of
context length does not have a strong influence on the system performance, at least
not for the given network structure.

5.2.4 Testing LSTM network parameters

In order to find the appropriate network size for the tone recognition task, experi-
ments comparing different network structures were performed.

In the first step, the number of units in the hidden layer was varied from 150 to
other values, while the context size remained fixed at 15. This lead to the results in
Table 5.5:
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Number of hidden units Frame Error Rate
100 73.92%
150 66.47%
200 67.58%
300 66.03%
500 67.96%

Table 5.5: Results for LSTM networks with different layer sizes

As can be seen from the frame error rate, increasing the size of the hidden layer
did not have a strong impact on the system performance. Using 300 hidden units
led to a very slight increase in performance, while using 200 or 500 units showed a
minimally higher frame error rate. Reducing the number of units to 100 showed a
strong decrease in result quality.

Up to this point, context and the number of hidden units had been varied separately,
so the possibility remained that a simultaneous increase in context size and layer size
could benefit the system. It appears plausible that the increased input dimension
would justify a larger network.

To test this possibility, a network with a context length of 31 and a hidden layer
size of 300 units was trained. It performed with a frame error rate of 67.32%, which
is similar, but not superior to previously tested systems.

A second way to increase the complexity of the network is to add a second layer
of hidden units. Several nets featuring two hidden layers were tested with different
combinations of context length and layer size. The results can be seen in Table 5.6.

Hidden units per layer Context length [frames] Frame Error Rate
150 15 75.95%
150 23 87.42%
250 15 85.94%

Table 5.6: Results for LSTM networks with different dimensions

The results show that the addition of a second hidden layer into the network had
a negative impact of the frame error rate. For two of the three combinations, the
results were not better than chance.

5.2.5 Analysis of best-performing system

To gain further understanding of the functionality of the best system, a LSTM
network with one hidden layer of 300 units, the results on the validation set were
examined more closely. A confusion matrix with the different classes is shown in
Figure 5.2.



28 5. Experimental Results

Figure 5.2: Confusion matrix for the best LSTM on the validation set
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The confusion matrix shows that not every tone is recognized equally well. The high
level (1) and low falling (4) tones were distinguished best from the others, while the
mid level (3) and low rising (5) tones were most often not identified correctly. It can
also be seen that the three level tones (1), (3) and (6) were frequently confused with
other level tones when misclassified, suggesting that the classification relies strongly
on contour. This confusion between tones with similar contours is less distinct for
the tones with rising contour, (2) and (5), but it is observable that the relative fre-
quency for the false prediction of tone (5) is highest for syllables with tone (2), and
vice versa. For tone (4), the only tone with falling contour, the frequency of false
predictions is spread relatively even across classes.

Additionally, discriminating non-speech frames from class 0 works relatively well,
with a significantly lower error rate than on speech frames.

Closer examination of some classification results showed that certain types of mi-
stakes occurred frequently. For one, boundaries between two syllables with different
tones seem to be a challenge. As presented in an example in Table 5.7, frames in
these transition sections are often misclassified, with a strong fluctuation between
classes. One reason for this could be that the tone is not always recognizable in
these parts of syllables due to the nature of connected speech. Since speech is an
anticipatory process, the usage of tone on a syllable is dependent on the following
syllable and its tone. The fact that the same syllable with the same tone can sound
different depending on its context is an aspect of tone recognition that can also be
challenging for linguists.

Reference sequence 6 6 6 6 6 6 6 6 6 6 6 6 1 1 1 1
Predicted sequence 6 6 6 2 2 2 2 2 2 1 1 1 1 1 1 1

Table 5.7: Example frame sequence showing errors around syllable boundaries

Examples such as the frame sequence depicted in Table 5.8 show that this issue is
also a problem at word boundaries. In this case, the location of the word boundary
was recognized correctly, but the final frames of the syllable were classified incor-
rectly and with strong fluctuation.

Reference sequence 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0
Predicted sequence 2 2 2 2 2 2 6 3 1 6 5 0 0 0 0 0

Table 5.8: Example frame sequence showing errors on borders between syllables and
silence

Another source of error that was observed often, although less frequently than errors
at syllable boundaries, was single frames (or small groups) inside a larger block of
correctly recognized frames being misclassified. An example frame sequence for this
case is presented in Table 5.9. The large part of the syllable (which includes more
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l Frame Error Rate
0 66.03
1 65.50
2 65.20
3 64.81
4 64.50
5 64.20
6 64.11
7 63.98
8 63.88
9 63.89
10 63.90
11 63.94
12 64.09
13 64.30
14 65.04
15 65.41

Table 5.10: Frame error rate for application of minimum error criterion with different
lengths

frames on both sides not pictured here) was correctly recognized, while multiple
small groups of one or two frames were classified incorrectly.

Reference sequence 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Predicted sequence 1 1 1 6 6 1 1 3 1 1 1 1 6 1 1 1

Table 5.9: Example frame sequence showing short errors inside a syllable

5.2.6 Minimum length criterion

Syllables in the data are well above 20 frames in length on average, and the arti-
culation of a syllable in only a few frames is, in most cases, not realistic. Inspired
by examples such as the one in Table 5.9, a minimum length criterion for tones was
defined, which states that a sequence of frames in the classification output must be
at least l frames in length. This criterion was applied as a smoothing technique in
certain cases in the validation set results as follows:

Given a label sequence of length n with f = f [1], ..., f [n] and a minimum length l,
if f [i] = f [i+ l + 1], then f [j] is set to f [i] for i < j ≤ i+ l.

The frame error rate for different values of l is given in Table 5.10. The application
of the minimum length criterion to frame groups bounded by the same label on both
sides leads to an absolute performance increase of 2.05%.

5.3 Syllable-based Approach
In previous experiments, classification was performed on single frames, as opposed
to entire syllables. This approach is very universal in that it does not depend on



5.3. Syllable-based Approach 31

the syllable length and can be used without knowledge of syllable boundaries, and
including surrounding frames allows for context to be taken into account. However,
it was frequently observed that frames which belong to the same syllable (and the-
refore share the same tone) were labeled with different tone classes.

In contrast, syllable-based classification leads to one decision for the entire syllable,
which eliminates the possibility of this inconsistency. To investigate if focusing on
syllables instead of frames can improve the classification performance, tone classifi-
cation was performed on syllables from the same data using different classifiers.

To achieve a syllable-based representation, the dataset was first split into groups
of frames marked by syllable boundaries, which had already been computed as a
by-product of the data extraction. As the syllables contained different amounts of
frames, making them difficult to compare, all groups were reduced to a 10-point
representation using linear interpolation on each of the 21 feature dimensions. Thus,
classification was performed on 210-dimensional vectors for the combined feature
case. Only the six tones were included in classification; frames containing silence or
noises were omitted.

5.3.1 K-Nearest Neighbors

For the purpose of gauging the performance of neural networks in general when app-
lied to the task of tone recognition, the k-nearest neighbors method for classification
was tested.

The k-nearest neighbors (k-NN) algorithm classifies a sample by examining the k
points that are nearest to the sample in the feature space and assigning a class to
the sample based on a majority vote of these points. Multiple values for k (1, 10
and 100) were tested on a small subset, and k = 100 was decided upon as the most
promising setting. As a distance metric, the Euclidean distance was used, which is
defined as

d(p, q) =

√√√√ n∑
i=1

(qi − pi)2. (5.1)

In addition to the combined features, separate classifiers for pitch and FFV features
as well as energy features were also trained. The performance of the classifiers can
be seen in Table 5.11.

Features Syllable Error Rate
Pitch + FFV 65.34%
Energy 73.91%
Combination 64.82%

Table 5.11: Results for a kNN classifier with different features

It can be seen that the k-NN classifier performs better than chance for all feature
inputs, while the combination of all features again performs best, with an error rate
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Figure 5.3: Confusion matrix for k-NN classifier with combined features

of 64.82%. In this case, integrating the energy features had a very low impact on
performance.

A confusion matrix for a k-NN classifier trained with the combined features is shown
in Figure 5.3. The recognition of the high level tone (1) works with a relatively high
accuracy. However, the other level tones (3) and (6) are misclassified much mo-
re frequently than in the frame-based classifier. In comparison to the frame-based
system, the syllable-based classifier performs significantly better on tones with a
non-flat pitch contour, with much higher recognition rates for the tones (2), (4) and
(5).

Since a single decision is made for a whole group of frames, the error rates are not
directly comparable to the results of the frame-based neural network classifiers. They
do however prove that the distinction of different tones is possible to some degree.

5.3.2 Neural Networks

The syllable-based features were also tested with two types of neural network: the 4-
layer feedforward neural network from section 5.1, as well as one the more successful
recurrent networks from section 5.2, a LSTM network with 150 hidden units. Both
nets were trained with the full 210-dimensional feature vectors. The results are
presented in Table 5.12.
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Classifier Syllable Error Rate
FFNN 83.41%
LSTM 74.55%

Table 5.12: Results for two syllable-based neural networks

The syllable error rates show that this approach was not very successful. The feedfor-
ward network performed with chance accuracy, while the performance of the LSTM
network was better than chance. However, both networks were outperformed by the
simple k-nearest neighbors classifier.

5.4 Final Evaluation

Finally, the best-performing system was evaluated on the test set. As the main focus
of this work was on the more universal frame-based classifiers, the evaluation was
performed on the most promising system of this type, which was a LSTM network
with one hidden layer of 300 units, and a context length of 15. Evaluation was per-
formed both with and without smoothing based on the minimal length criterion.
The frame error rates can be seen in Table 5.13.

Classifier Frame Error Rate
LSTM (without smoothing) 65.61%
LSTM (with smoothing) 63.47%

Table 5.13: Results on test set for the best-performing system

The system performed relatively well with frame error rate of 65.61%, which is
even slightly lower than the error rate on the validation set. With the application of
the minimal length criterion, the error rate could be lowered to 63.47%.

Overall, the results are more than satisfactory, as the classifier performs with an
accuracy that is significantly better than chance, which shows that a tone recogni-
tion system of this type can already provide a useful contribution to any task that
requires the recognition or annotation of tone.

The performance is also notable considering the challenging nature of the data which
was used. For one, the recordings originate from a variety of speakers and dialects,
both of which are factors that have a strong influence on the the usage of pitch
and the definition of tone in speech. Secondly, the audio quality is far from optimal,
due to the fact that the data stems from telephone recordings. It is expected that
performance can increase when higher-quality speech data is used.
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Figure 5.4: Confusion matrix for evaluation of the test set



6. Conclusion

The final chapter provides a short summary of experiments and results of the thesis,
and suggests ideas for the further research of the topic.

6.1 Summary

In this thesis, we evaluated different approaches to the language-independent tone
recognition task, using a dataset of Cantonese speech recordings from a variety of
speakers and regions.

The focus of the work was on developing classifiers for the frame-wise recognition of
tone. First experiments were performed using a deep neural network with 4 hidden
layers of 1000 units each, which performed with a below-chance accuracy, leading to
the decision to switch to recurrent neural networks.

The comparison different RNN types showed a significant performance increase for
long short-term memory models. With the goal of optimizing performance for a
LSTM network, a number of feature types and system parameters were tested. The
highest performance was achieved using a combination of pitch, fundamental fre-
quency variation and frame-wise energy features. As tone recognition relies on pitch
contours, neighboring frames were included into classification as context - however,
altering the context length had no significant effect on the system performance. A
number of classifiers with different numbers of hidden units as well as additional
hidden layers were trained. The best-performing model was a LSTM network with
one hidden layer of 300 units and a context length of 15 frames, which attained
a frame error rate of 65.61% on the test set. With the application of a smoothing
technique to reduce the irregularity of classifier output in frame sequences, the error
rate was further reduced to 63.47%.

As an alternative to performing classification of single frames, a syllable-based to-
ne recognition was also investigated. Equal-length representations of syllables were
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computed using linear interpolation. Performance of DNN and LSTM networks was
compared to that of a k-nearest neighbors classifier. The best k-NN model reached
a syllable error rate of 64.82%, outperforming both neural networks by a significant
margin.

In conclusion, the experiments proved to be successful, as both frame-wise and
syllable-wise approaches led to models that perform with an accuracy that is well
above chance performance despite the difficulty of the dataset, and are therefore
capable of providing beneficial results to the tone recognition task.

6.2 Future Work

Although a high number of experiments were performed with different models and
parameters, there are numerous ways in which the described tone recognition system
can possibly be improved.

One potential way of improving results is the integration of additional features, such
as harmonicity or PaIntE parameters, as these features were shown to improve re-
sults of language-specific speech recognition systems.

Furthermore, investigation of frame-wise classification results showed numerous pat-
terns that do not reflect realistic speech processes. The development of constraints
or additional smoothing techniques to prevent or correct this behaviour could po-
tentially benefit the quality of results.

Finally, a better evaluation of the system could be attained by performing similar
experiments on additional tonal languages and datasets. As tonality is displayed
differently across languages, an assessment of which types of tone are easier or more
difficult to classify would certainly be noteworthy. Examining the influence of the
quality of recordings in the dataset would also allow for better grading of experi-
mental results.
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