
Topic Prediction in Dialogs using
Convolutional Neural Networks

Master’s Thesis of

Kuangyuan Jin

At the Department of Informatics
Institute for Anthropomatics and Robotics

Reviewer: Prof. Dr. Alexander Waibel
Second reviewer: Prof. Dr. Tamim Asfour
Advisor: Dr. Jan Niehues

Duration: April 26, 2017 – October 25, 2017

I declare that I have developed and written the enclosed thesis completely by myself,
and have not used sources or means without declaration in the text.

Karlsruhe, October 25, 2017

..
(Kuangyuan Jin)

Zusammenfassung

Dialog State Tracking ist ein unverzichtbarer Bestandteil in einem modernen Sprach-
dialogsystem, der die Handlungen des Systems direkt beeinflusst. Für nicht zielori-
entierte Dialogsysteme ist das Gesprächsthema ein Dialog State von hohem Inter-
esse. Um eine passende Antwort zu generieren muss das System nicht nur das
aktuelle Thema verfolgen können, sondern auch Thema für den darauffolgenden
Zug vorhersagen. Das Ziel dieser Arbeit ist es, einen Ansatz zu implementieren,
der die drei Aufgaben Topic Tracking, Next Topic Prediction und Topic Change
Prediction lösen kann. Hierfür werden drei unterschiedliche Convolutional Neural
Network Architekturen verwendet und zwar ein Grundmodell, ein mehrschichtiges
Modell und ein Word Embedding Modell. Techniken zur Optimierung wie Dropout,
L1 und L2 Regularisation werden eingesetzt, um die Modelle gegen Overfitting zu
stärken. Da nur nicht gelabelte Dialogdaten verfügbar sind, die zu den vorgegebe-
nen Aufgaben passen, werden diese manuell mit passenden Topic Labels annotiert,
um ein Dialogkorpus zum Trainieren und Testen der Netze zu erhalten. Außerdem
werden mehrere Wortmodelle zur Generierung von Vektorrepräsentationen trainiert,
die verwendet werden um die Gesamtperformance zu verbessern.

Die Modelle werden umfangreich bezüglich mehreren Modell- und Trainingsparam-
etern ausgewertet, um die jeweils besten Werte zu finden. Die beste Performance
wird mit dem Grundmodell erreicht und zwar mit einem Cross-validation F-score
von 0,750 für Tracking, 0,652 für Next Topic Prediction und 0,818 für Topic Change
Prediction. Obwohl die F-scores der Prediction Aufgaben relativ hoch sind, scheint
es, dass Vorhersagen für Themenwechsel immer noch eine sehr schwierige Aufgabe
sind. Insgesamt ist es dem Modell für Topic Prediction gelungen, 31% der neuen
Themen und 56% der Themenwechseln korrekt vorherzusagen. Trotz den Fehlern
kann die Performance der Netze als gut betrachtet werden, da Themenvorhersage in
Gesprächen eine Aufgabe ist, die sogar für Menschen sehr schwierig ist. Außerdem
sind die Modelle für beide Prediction Aufgaben in den meisten Fällen genau, wenn
kein Themenwechsel stattfindet.

Abstract

Dialog state tracking is an essential component in a modern spoken dialog system
which directly influences the actions of such a system. For non-goal-oriented dialog
applications, the conversation topic is a dialog state of high interest. In order to
generate appropriate answers, the system has to be able to not only track the current
topic but also make topic predictions for the subsequent turn. The goal of this
work is to implement an approach to solve the three tasks of topic tracking, next
topic prediction and topic change prediction. Therefore we employ three different
architectures of convolutional neural networks which are a basic model, a multilayer
network and a word embedding network. Optimization techniques such as dropout,
L1 and L2 regularizations are applied to strengthen our models against overfitting.
Since only unlabeled dialog data are available which are suited for our tasks, we
manually annotate the data with appropriate topic labels to create a dialog corpus
for training and testing our networks. Additionally, we also train several word
models to generate vector representations which are employed to improve the overall
performance on our given tasks.

Our models are extensively evaluated on various model and training hyperparame-
ters to find optimal values for each of them. The best performance is achieved by
the basic model with a cross-validation F-score of 0.750 for tracking, 0.652 for next
topic prediction and 0.818 for topic change prediction. Although the scores ob-
tained for the prediction tasks are relatively high, it seems that making predictions
for topic changes is still a very difficult task. Our topic prediction models are able
to correctly predict 31% of the new topics and 56% of all topic changes. Despite
the errors, we think that the performance of our networks can still be considered as
good since making topic predictions in conversations is a task that is difficult even
for human. Furthermore, the models for both prediction tasks are mostly accurate
when no topic change takes place.

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Overview . 3

2. Basics 5
2.1. Neural Networks . 5

2.1.1. Feedforward Neural Networks 6
2.1.2. Convolutional Neural Networks 7
2.1.3. Network Training . 8
2.1.4. Optimizations . 11

2.1.4.1 L1 and L2 Regularization 11
2.1.4.2 Dropout . 12

2.2. Dialog State . 14
2.3. Distributed Representation of Words 15

3. Related Work 19
3.1. CNN Applications . 19

3.1.1. ImageNet Classification . 19
3.1.2. Text Classification . 21
3.1.3. Other Applications . 22

3.2. Dialog State Tracking . 23
3.2.1. Dialog State Tracking Challenge 23
3.2.2. Elaborate Rule-based Tracker 24
3.2.3. Multichannel CNN Tracker . 25
3.2.4. Other Methods . 26
3.2.5. Discussion . 27

4. Convolutional Neural Networks for Topic Prediction 29
4.1. Task Definition . 29
4.2. Data Creation . 30
4.3. Models . 32

4.3.1. Basic Model . 32
4.3.1.1 Model Input . 33
4.3.1.2 Convolutional and Pooling Layer 34
4.3.1.3 Output Layer . 36

4.3.2. Multilayer Network . 36
4.3.3. Word Embedding Network . 38

5. Evaluation 41
5.1. Data Analysis . 41

x Contents

5.2. Evaluation Metrics . 44
5.3. Training Speed . 45
5.4. Word Model . 46
5.5. Hyperparameters . 48

5.5.1. Filter Size . 49
5.5.2. Number of Filters . 50
5.5.3. Learning Rate . 51
5.5.4. Other Parameters . 51

5.6. Regularizations . 52
5.7. Model Variations . 53
5.8. Final Results . 54

6. Conclusion 63

Appendix 65
A. BilingBank Files . 65
B. Topic Labels . 69
C. Word2vec Results . 70
D. Parameter Performances . 72

Bibliography 73

List of Figures

1.1. Components of a spoken dialog system 1

2.1. A standard feedforward neural network 6
2.2. Example of 2-dimensional max-pooling 8
2.3. Dropout in a standard neural network 12
2.4. Example of max-pooling dropout . 13

3.1. Architecture of the CNN for object classification 20
3.2. Character-level CNN for text classification 21
3.3. Elaborate rule-based tracker with four steps 24
3.4. Architecture of the multichannel CNN model 25

4.1. Architecture of the basic CNN model 33
4.2. Graphs of activation functions . 35
4.3. Architecture of the multilayer CNN 37
4.4. Architecture of the word embedding CNN 38

5.1. Distribution of the topic labels . 42
5.2. Model performance during training 45
5.3. Word model accuracy for different vector sizes 47
5.4. Word model accuracy for different learning rates 47
5.5. Word model accuracy and overall performance 48
5.6. Experiments on different filter sizes 49
5.7. Experiments on different numbers of filters 50
5.8. Experiments on different learning rates 51
5.9. Results on L1 and L2 regularizations 52
5.10. Experiments on different hidden layer sizes 54
5.11. Results for each of the topic labels 61

C.1. Word model accuracy for different parameters 70

List of Tables

2.1. Example dialog annotated with dialog states 15

4.1. Sample dialog segments from the training corpus 32

5.1. Number of examples of each topic for every test case 43
5.2. Example of a simple confusion matrix 44
5.3. Performance of different filter combinations 50
5.4. Results on various dropout probabilities 53
5.5. Comparison of the three architectures 55
5.6. Results of the final models . 55
5.7. Results on topic changes . 57
5.8. Confusion matrix for the tracking task 58
5.9. Confusion matrix for the next topic prediction task 59
5.10. Confusion matrix for the topic change prediction task 60

A.1. All labeled files from the BilingBank corpora 67
A.2. BilingBank files divided into test cases 68
B.1. Overview of the topic labels . 69
C.1. Overview of all word2vec test categories 71
D.1. Performance comparison of different parameters 72

1. Introduction

1.1. Motivation

Spoken dialog systems are computer applications which are able to interact with
users in a natural language. Compared to alternative systems where the user has
to enter commands manually, spoken dialog systems allow a hands- and eyes-free
communication which can be essential in many cases. For example, when a car
driver wants to interact with the on-board computer, it can be very dangerous if
the driver is distracted from a manual input. However, with a computer system
that can communicate with voice, the driver can concentrate on the traffic while
giving instructions to the computer. Speech as input is also a much faster way of
communication and is very natural and easy to use.

In recent years, conversational systems are gradually becoming a part of daily life,
with examples including Apple’s Siri, Google Now and Microsoft’s Cortana. The
main components of a typical spoken dialog system can be found in figure 1.1.

Figure 1.1: Main components of a modern spoken dialog system.

2 1. Introduction

The first component is the automatic speech recognition (ASR) which interacts with
the user and receives the spoken utterances as audio data. Its task is to decode the
sound waves and transform them into a text form. The output of the ASR is then
passed to the spoken language understanding (SLU) component which aims to derive
meaningful representations out of the recognized utterances. The SLU component
is followed by a dialog state tracker which makes estimations of the current dialog
state using the SLU results. This new dialog state is passed to the dialog policy
which decides on an appropriate action depending on the updated dialog state. The
system’s response to the user is then created by the natural language generation
component which converts the output of the dialog policy into texts in a natural
language. Finally, the generated texts are transformed into an audio form using the
text to speech component and are then passed back to the user.

This work focuses on dialog state tracking which is a difficult task because ASR and
SLU errors are common due to noises in the input audio and ambiguities in natural
languages. Errors in previous steps can cause the system to misunderstand the user
and significantly influence the performance of the tracking component. At the same
time, a robust dialog state tracker is essential because the dialog policy completely
relies on the estimated dialog state to choose the right actions. Unlike the tracking
component illustrated in figure 1.1, which uses the SLU output to determine the
dialog state, there are also trackers that employ the ASR output instead or outputs
from both the ASR and SLU. Our approach is based on the ASR results alone, which
means that raw user utterances are directly processed to make estimations for the
dialog state.

Non-goal-oriented dialog systems are applications that aim to build natural conver-
sations with the users without trying to accomplish any goals or tasks. For these
systems, the current topic of the conversation contains important information that
needs to be maintained and hence can be seen as part of the dialog state. It is
essential for the system to keep track of the topics in order to continue the con-
versation. Tracking in non-goal-oriented dialogs is usually more difficult than in
goal-oriented dialogs since the user’s utterances are not as specific and may contain
statements that do not provide a lot of information. Most of the previous works on
dialog state tracking are employed for goal-oriented systems and to our knowledge,
there are no well-known approaches for tracking topics in social conversations to
date. Additionally, tracking topics enables the system to follow the conversation,
but a good dialog policy component is still needed to generate appropriate answers.
A component, which not only tracks the topic of the current turn but is also able
to generate topic predictions for the subsequent turn, contains functionalities of the
dialog policy component as well which in some cases can be omitted. This combi-
nation of tracking and dialog policy is also a field which has not been studied well
and introduces the possibility to novel approaches.

Over the years, many techniques have been developed to solve the task of dialog
state tracking in goal-oriented systems, including rule-based methods, statistical
machine learning and neural network approaches. Convolutional neural networks are
models inspired by the biological visual system which are capable of learning from
examples. Although they are primarily developed for image classification tasks, they
have demonstrated excellent performance on tasks involving natural languages. On
the field of dialog state tracking, they have been successfully employed as well and

1.2. Overview 3

are able to achieve state-of-the-art performance. Following the success of previous
works, we apply convolutional neural networks and evaluate them on the new tasks
of topic tracking and prediction in non-goal-oriented dialogs.

1.2. Overview

This work is organized as follows. First, chapter 2 provides the necessary basics
on convolutional neural networks, including the algorithm for network training and
different optimization techniques. It also formalizes the dialog state tracking prob-
lem and introduces a text pre-processing scheme which converts words into vector
representations. Chapter 3 reviews several interesting works using convolutional
neural networks for different kinds of applications. Various related researches on
the field of dialog state tracking are also presented and a comparison of these works
and our own tasks can be found at the end of the chapter. Our own approach is
described in detail in chapter 4 along with a precise definition of our tasks. Chap-
ter 4 also includes the data creation process for the labeled dialog corpus used for
training and the three different network architectures we employ to solve our given
tasks which are the basic model, the multilayer network and the word embedding
network. Chapter 5 provides a further analysis of our data and introduces the
metrics used to evaluate the performance of our models. It then covers the most
important results achieved during our experiments including those from thorough
hyperparameter tuning, implementation of regularization schemes and evaluation of
the different network architectures. At the end of the chapter, we present the final
results achieved by our best models. Finally, chapter 6 concludes by summarizing
the most important aspects of this work and proposes ideas for possible future works.

4 1. Introduction

2. Basics

In recent years, machine learning algorithms have rapidly become popular due to
the large amount of data that today’s applications need to process. Artificial neural
networks are computing systems inspired by biological neural networks in order to
solve problems in the same way that a human brain would. With their ability to
derive patterns from imprecise data, they can be trained to learn trends from given
examples and apply their knowledge in real world systems. Neural networks have
been successfully employed for various kinds of tasks where the problems are too
complex for conventional algorithmic methods. They have demonstrated excellent
results on tasks involving natural language, therefore we also implement a neural
network approach to solve our given tasks on transcribed spoken dialogs. This
chapter provides a brief introduction to the field of neural networks, along with the
convolutional architecture employed in this work. It also gives an explicit definition
of dialog state, a general term used to represent information in dialogs which the
topic of a conversation belongs to. Additionally, we employ a technique to create
continuous representations of words in order to improve the performance of our
neural network model. A description of this scheme can be found in the following
sections as well.

2.1. Neural Networks

Neural networks were primarily developed back in 1943 by the scientists McCulloch
and Pitts in [McPi43] to describe how neurons in the brain might work. Their paper
inspired various researches on the field of artificial neural network like the compu-
tational machines in [FaCl54] and [RHHD56], and the perceptron in [Rose58]. The
first functional networks with many layers were published in [IvLa67], but research
on this field stagnated after [MiPa69] because computers at that time did not have
enough processing power to effectively handle large models. With hardwares grow-
ing more and more powerful, a renewed interest in neural networks led to many key
advances like further development of the backpropagation algorithm introduced in
[Werb75], deep-learning on a large scale through the use of GPUs and various model
architectures like recurrent networks in [Schm93] and restricted Boltzmann machines

6 2. Basics

in [Smol86]. As of today, deep neural networks have won various international com-
petitions like handwriting recognition in [GrSc09] and traffic sign recognition in
[CMMS12], with the latter achieving human-competitive or even superhuman per-
formance. For a better understanding of the neural network approach employed in
this work, a brief overview of the standard feedforward network as well as the more
powerful convolutional architecture is given in the following. To train the network,
the backpropagation algorithm is used which is described in this section as well,
along with strategies to optimize the result of the training.

2.1.1. Feedforward Neural Networks

A simple neural network consists of a collection of units, the neurons, and the con-
nections between them. Neurons are processing devices that take several inputs to
produce a single output. The importance of the respective inputs to the output is
expressed by weights and the units usually also have an activation function which
determines the final output of the neuron. Given the inputs x1, x2, ..., xn, the re-
spective weights w1, w2, ..., wn and the activation function f , the neuron’s activated
output o can be calculated by

o = f(
n∑
i=1

xiwi) = f(x ·w).

The weighted sum of the inputs can be expressed as the inner product of the input
vector and the weight vector as seen on the right side of the equation. The activation
function is a nonlinear function which is important for neural networks to solve
problems that are not linear. Commonly used activation functions are the threshold,
the sigmoid and the hyperbolic tangent function. By connecting the outputs of
certain neurons to the inputs of other ones, a directed and weighted network is
formed.

Typically, neurons are organized in a layered architecture depending on their interac-
tions with the environment and the different kinds of transformations they perform
on their inputs. Neurons that receive inputs from the outside form the input layer
and those that produce outputs to the outside are part of the output layer. Units

Figure 2.1: A standard feedforward neural network with input and output layer,
and one hidden layer.

2.1. Neural Networks 7

that are only connected to other neurons are hidden from the environment and thus
belong to the hidden layers. Figure 2.1 shows a simple neural network consisting of
an input and an output layer with two neurons each and one hidden layer with three
units. Since the directed connections only go from a previous layer to the next one
and not backwards, it is called a feedforward network. It is also a fully-connected
model because the output of each neuron in one layer is connected with every neuron
of the subsequent layer. Besides the standard feedforward network there are more
complex architectures like recurrent networks and convolutional networks which are
developed to perform different tasks.

2.1.2. Convolutional Neural Networks

Convolutional neural networks (CNNs) are special feedforward models which are
inspired by the receptive fields of the animal visual system and the strong spatially
local correlation in natural images. Variations of the CNN architecture are for
example the time delay networks described in [WHHS+89]. Similar to the ordinary
network illustrated in figure 2.1, CNNs also consist of an input and an output layer,
as well as one or multiple hidden layers. The hidden layers are either convolutional,
pooling or fully-connected. Typically, the input layer is a convolutional layer and the
output layer is fully-connected to its previous layer. A convolutional layer is usually
followed by a pooling layer and fully-connected hidden layers are mostly placed
towards the end of the network. Since CNNs are often used for image classification,
the layers are sometimes arranged in three dimensions reflecting the input’s width,
height and color depth.

Convolutional layers are sparsely connected to the input or the previous layer as each
neuron in a convolutional layer is only connected to a small region of the preceding
layer. The connection weights between such a region and a neuron are shared across
the entire input, so a different neuron connected to a different region of the input also
has the same set of weight parameters. All neurons of a convolutional layer that share
the same parameters are grouped together and form a feature map. Mathematically,
the outputs of a feature map are computed by applying a convolution operation to
the input with the shared weights as the filter. Given the input matrix X of size
Mx×Nx and a 2-dimensional filter W of size Mw×Nw, the convolution is expressed
with C = X ∗W where each element of the output is calculated by

Ĉ(i, j) =
Mw−1∑
m=0

Nw−1∑
n=0

X(i−m, j − n) ·W(m,n)

where 0 ≤ i < Mx+Mw−1 and 0 ≤ j ≤ Nx+Nw−1. Note that this definition also
performs convolution on the outer bound of the input where the filter area exceeds
the input. Since this is not the case in convolutional layers, the actual output of a
feature map is the slice of Ĉ without the border results

C = Ĉ((Mw − 1):(Mx − 1), (Nw − 1):(Nx − 1))

where : indicates the sequence slice between the starting index on the left and the
stopping index on the right. Convolutional layers use multiple sets of filter weights

8 2. Basics

and mostly consist of a large number of feature maps. But through weight sharing,
they usually still have much fewer free parameters than fully-connected layers of
similar size. Since the filter sizes are comparatively small, their complexity is solely
given by the number of feature maps. The collection of all feature map outputs can
be taken as the final output of the convolutional layer, but typically, an activation
function is further applied to ensure the nonlinearity of the layer.

Another important concept of CNNs is the pooling layer, which is often employed
after a convolutional layer. Pooling is a form of nonlinear downsampling and can be
performed on one entire feature map or on a small cluster of inputs. Therefore the
input is partitioned into a set of regions which are defined by the pooling size and
stride. One output is generated for each region, for example by taking the maximum
or the average value. Figure 2.2 illustrates a non-overlapping max-pooling process
with a pooling size of 2× 2.

Figure 2.2: Example of 2-dimensional max-pooling with a pooling size of 2× 2 and
a stride of 2. Source: 1.

Pooling aims to reduce computation for subsequent layers by removing values that
do not have a high importance. It is also able to process inputs with different sizes
and return outputs of the same size for subsequent layers which only work on one
fixed input size. Additionally, a form of translation invariance is provided, since
small translations of the input would not have a very big impact on the output.
The convolutional and pooling layers are often followed by fully-connected layers
to increase the computational power of the model and to convert the network out-
put into a classification decision. A shallow CNN architecture usually employs one
convolutional and pooling layer while a deep model consists of multiple pairs of
convolutional and pooling layers and one or two fully-connected hidden layers.

2.1.3. Network Training

Neural networks as classifiers are superior to rule-based algorithms because they are
able to learn patterns and trends from examples. Rather than being specifically pro-
grammed for a given task, they can be trained to solve different kinds of problems
depending on the input data. Training neural networks employs algorithms that
gradually modify the network’s parameters, for example the weights on the connec-
tions between each two neurons. During the training process, the network is given a
desired output or a loss function which it tries to reproduce or to minimize through
adjustments to its parameters. A set of model parameters that yields the most fa-
vored result is usually found after iterating several times over the entire training

1https://en.wikipedia.org/wiki/Convolutional neural network

https://en.wikipedia.org/wiki/Convolutional_neural_network

2.1. Neural Networks 9

data. These parameters can then be saved and employed to solve the same task on
new data. Various learning algorithms are available for neural networks and even
with a very efficient algorithm, training a large model can take a great amount of
time. Hence it is often necessary to reduce model complexity as a balance between
the model’s performance and the effort to train it.

A common method to train neural networks is the backpropagation algorithm which
was originally introduced in the 1970s. But its importance was not fully appreciated
until the paper [RuHW86] by Rumelhart et al. was published. The authors found
out that backpropagation performed much faster than earlier learning approaches,
making it possible to use neural nets to solve problems which had previously been
insolvable. Backpropagation has been essential to the growth in neural network re-
search over the years and even today, it is still the most successful and widely used
algorithm for training. It can be employed on a wide range of different network archi-
tectures like the standard feedforword models as well as the CNN architectures used
in this work. Because of the reduced number of parameters, training CNNs using
backpropagation is usually even more efficient than standard feedforward models.

The backpropagation algorithm, which is also called backpropagation of errors, con-
sists of two major steps, propagation and weight update. When the input is pro-
cessed by the model, information is propagated forward through the network until
it reaches the output layer. The output of the network is then compared to the
desired output and an error value is calculated for each of the neurons in the out-
put layer. Network training is carried out by minimizing the number of errors the
network commits and therefore an error function, also called loss function, is needed
to compute the error. An intuitive loss function is the zero-one loss which simply
returns 1 if the classification result is correct and else 0. But since the goal is to
optimize the model with regards to the error function and therefore we need to com-
pute the gradient, the non-differentiable zero-one loss is rather inappropriate. Thus,
maximizing the log-likelihood of the model given a training set, or here minimizing
the negative log-likelihood, is a more common approach. The negative log-likelihood
NLL is defined as

NLL(θ,D) = −
N∑
i=1

log fθ(xi) = −
N∑
i=1

logPθ(Y = yi|xi)

where θ is the set of all model parameters and D the training dataset consisting of
N example pairs. The input values and label of example i are denoted by xi and yi,
respectively. The continuous likelihood function fθ is a discrete distribution and can
be expressed by the term Pθ(Y = yi|xi). It describes the probability of the correct
label yi given the input xi which is computed by the network during the forward
propagation. Pθ can be directly taken from the output of the softmax function as it
already yields a probability distribution over the label classes.

After calculating the error value, it is then propagated backwards starting from the
output layer. To minimize the error for each output neuron and the network as a
whole, each of the parameters in the network has to be updated according to its
influence on the overall error. Given a model parameter θi and we want to know
how much a change in θi affects the total error, it is appropriate to calculate the
gradient of the loss function with respect to this parameter

10 2. Basics

∆θi =
∂NLL(θ,D)

∂θi
.

The next step is to update the parameters so that the error becomes as small as
possible. This can be achieved using the gradient descent algorithm. It is a method
to find a local minimum of the loss function by repeatedly taking small steps down-
ward on the error surface. The steps taken by one model parameter are proportional
to the negative of the gradient with respect to this parameter, so its new value θ̂i is
calculated by

θ̂i = θi − γ∆θi

where γ is the learning rate, a constant which defines the length of the steps made
in direction of the negative gradient. The learning rate is a hyperparameter which
is chosen and optimized through experiments.

Once the parameters are updated, a new iteration is started by generating model
outputs, evaluating the error and calculating the gradients. In this way, the network
parameters are adjusted iteratively in order to find a set of parameter values that
minimize the error. Instead of the standard gradient descent algorithm, its stochas-
tic variant is often used which estimates the gradients directly from one example at
a time instead of the entire training set. This simplifies the gradient calculation and
hence proceeds more quickly than the original method. The whole training algo-
rithm consisting of backpropagation and stochastic gradient descent is summarized
in algorithm 1.

Algorithm 1 Backpropagation with Stochastic Gradient Descent

1: Initialize network parameters θ with random values
2: while looping do
3: for each example (xi, yi) in training set do
4: Generate network output using model parameters θ
5: Compute probability Pθ(Y = yi|xi)
6: Compute loss function NLL(θ, xi, yi)
7: Compute gradient ∆θk for all parameters
8: Update parameter θk by −γ∆θk for all parameters
9: end for

10: if <stopping condition> then
11: Set looping to false
12: end if
13: end while
14: return parameters θ

While bias parameters can be simply initialized with 0, weights are usually set to
small numbers randomly generated from a symmetric interval. Glorot and Bengio
suggested in [GlBe10] a combination of the fan-in and fan-out

r =

√
6

fan-in + fan-out

2.1. Neural Networks 11

where fan-in and fan-out are the number of inputs and outputs of the unit, respec-
tively. Weights are then uniformly sampled from the interval [−r, r]. The training
algorithm stops when a specified maximum number of iterations is reached or when
the model has converged. This means that there were no significant improvements
to the model during the last few iterations and hence suggests that a local minimum
was found. The speed of convergence depends highly on the chosen learning rate γ
used for gradient descent. A larger value for the learning rate accelerates the train-
ing speed but there is also the possibility that the steps made are too big to find
the minimum. It is necessary to experiment with various learning rates to optimize
the training algorithm. For further information on backpropagation and stochastic
gradient descent, see [LBOM12] and [LeBH15] for example.

2.1.4. Optimizations

Deep neural networks become more powerful with growing complexity and number
of model parameters. But with the increasing size of the networks, they also become
more vulnerable to overfitting, which is one of the biggest challenges on the field of
machine learning. Overfitting is a serious problem that occurs during training. It
is caused by the network trying to minimize the error on the training data too
much and hence memorizing the training examples instead of learning classification
patterns. An overfitted model does not generalize well which means it performs
badly on examples which were not part of the training data. One way to combat
overfitting is to divide the training data and keep two sets of examples exclusively
for validation and testing purposes which we also apply in our work. While the
testing set is used to evaluate the performance of the network on unseen data, the
validation set is employed to determine whether to continue training or to stop
before it converges. If the model’s performance ceases to improve sufficiently on the
validation set, or even degrades with further optimization, then it is an indication
of the network starting to overfit and that no more training is needed. To further
improve the generalization ability of our CNN models, three other optimization
schemes are employed additionally. These three methods are L1 regularization, L2
regularization and dropout which are described in the following sections.

2.1.4.1. L1 and L2 Regularization

L1 and L2 regularization, sometimes also called as weight decay, are commonly used
techniques to reduce overfitting. The idea of L1 and L2 regularization is to add an
extra term to the loss function, a term called the regularization term. It is defined
as the sum of the absolute values of the model weights for the L1 regularization and
the squared sum of the weights for the L2 regularization

L1 =
∑
w

|w|, L2 =
∑
w

w2

where w iterates over all weight parameters from the convolutional, the hidden and
the output layer. For the loss function from section 2.1.3

NLL(θ,D) = −
N∑
i=1

logPθ(Y = yi|xi)

12 2. Basics

the regularized loss function becomes

E(θ,D) = NLL(θ,D) + λ1 ∗ L1 + λ2 ∗ L2

with the hyperparameters λ1 and λ2 which determine the relative importance of
the two regularization terms. Both λ1 and λ2 are commonly small numbers since
the original loss should still be the most significant term to minimize. Adding the
regularization terms to the loss function encourages the model to learn small weights
which results into simple network solutions. Large weights are mostly penalized
and only allowed if they considerably improve the first part of the regularized loss
function.

L1 and L2 regularization can be viewed as a way of compromising between finding
small weights and minimizing the original loss function. When the network is able to
find simple solutions, it does not necessarily mean that it also generalizes well. But
empirically, it was found that performing such regularization helps with reducing
the effects of overfitting, especially on small datasets. One explanation is that if
a weight vector is very large, it most likely stays pointing in the same direction,
since a change due to gradient descent only makes a very small difference to the
direction of a long vector. A different point of view states that with small weights,
changes in the input do not have a big impact on the behavior of the model. This
makes the regularized network less prone to noises in the data and it learns mostly
from examples which are often seen across the training set. Since regularizing bias
parameters does not change the result very much empirically, they are usually not
included in the L1 and L2 regularization terms.

2.1.4.2. Dropout

An almost certain way for performance improvement is to combine many models that
either have different architectures or were trained on different data. But training
different architectures is expensive and there are usually not enough data available.
Dropout is a regularization technique that not only helps to improve generalization
but also provides a way of approximately combining many different network archi-
tectures efficiently. Unlike L1 and L2 regularization, dropout does not modify the
loss function, but the network itself.

Figure 2.3: Dropout in a standard neural network with fully-connected layers.
Source: [SHKS+14].

2.1. Neural Networks 13

The idea is to drop units with a fixed probability during training which means
that they are temporarily removed from the network, along with all their incoming
and outgoing connections. Figure 2.3 illustrates this process in a standard neural
network with fully-connected layers. The left image shows the model before dropout
and the right shows a thinned model produced by applying dropout to it. This
scheme prevents the units from overfitting too much as it breaks up co-adaptions of
feature detectors since the dropped out units cannot influence other retained units.
Additionally, a new thinned network is sampled for each training iteration consisting
of all the units that remained after the dropout. So training a neural network with
dropout can be seen as a very efficient form of model averaging where the number
of different models is exponential in that of the units and these models share the
same parameters.

Dropout can be conveniently implemented by applying a binary mask on the input
of the layer. Given the original input x and the mask m, the input after dropout x̂
is calculated with

x̂ = x ◦m

where ◦ denotes element wise product and m is a vector of the same length as x with
entries drawn independently from a Bernoulli distribution with the given dropout
probability. For CNN models, dropout can not only be employed in fully-connected
layers, but also in the convolutional and pooling layers. Applying this technique
on the convolution output feature map turns the subsequent max-pooling into a
stochastic process.

Figure 2.4: Example of applying dropout before max-pooling on an output feature
map of size 4. Source: [WuGu15].

An example showing the procedure of max-pooling dropout is depicted in figure
2.4. Without dropout, the strongest activation 6 is always selected as the output.
But with dropout, each unit in the pooling region could be removed which leads
to possible different pooling results. In this case, since the actual maximum 6 has
been dropped out, 3 is chosen as the pooled output instead. Max-pooling dropout
functions as a randomized activation according to the dropout probability distri-
bution and also increases the number of possibly trained networks. Experiments
confirm that dropout before max-pooling further improves the performance which
was observed in [WuGu15]. More details on dropout regularization can be found in
[SHKS+14] and [HSKS+12].

14 2. Basics

2.2. Dialog State

Dialog systems are computer applications that are developed to converse with human
in a natural language. To build a conversation, it is important for the computer to
track what has happened in the dialog and to respond according to the context. As
the dialog progresses, the dialog system needs to maintain a representation of the
previous and current content of the conversation which is generally called the dialog
state. Depending on the application, there are different kinds of conversation content
that can be defined as part of a dialog state. For example when a user interacts with
a travel planning system to search for a hotel, the dialog state might indicate the
search parameters for the type of hotel such as the desired star rating, location and
price range. A non-goal-oriented dialog system on the other hand usually needs to
follow the topic of the conversation in order to generate sensible replies to the user’s
utterances.

Dialog state tracking is the task to determine representations for a current dialog
state and to update them at each moment for an on-going conversation in a spoken
dialog system. Since the output of the dialog state tracking component is used to
decide what action should be taken next, it is an essential component in dialog
systems and therefore has a huge impact on the final performance of the complete
system. Spoken dialogs usually have a rich information content, hence it is usually
required to track a set of multiple values and maintain them as the dialog state.
But since dialog systems often have a specific purpose, it is only necessary to track
dialog states that are relevant to the given purpose. For systems that help a user
to complete a task, dialog state tracking is typically applied to the user’s goal and
other information required to fulfill the goal. Possible values for dialog states need
to be determined for the specific domain beforehand in order to apply them during
the tracking process. These values, also referred as the ontology, specify the scope
of what the system understands and the tasks that it can help the user complete.

A definition of slot-based dialog state tracking was given in the Dialog State Track-
ing Challenge which is an on-going series of research community competitions for
developing state-of-the-art dialog state trackers (see 3.2.1 for further information on
the challenge). This definition was firstly applied to human-computer dialogs with
systems that help the user search an entity of a database with the user’s desired
attributes. According to the definition, the dialog state can be represented by a set
of slots which need to be filled with values. These slots can be divided into two types
of subsets, the constraint slots and the request slots. Constraint slots are attributes
of the database entities that the user may use to limit their search by specifying a
value. Request slots are attributes that might also be of interest but the user does
not, in many cases cannot, specify a value for them.

Examples for constraint and request slot labels can be found in the dialog excerpt
in table 2.1. Here, the interaction between a user and a dialog system for restaurant
queries is illustrated where a dialog state is defined for every turn of the conversation
consisting of one utterance per speaker. For each slot, a set of possible values is
defined and used to describe the state of the dialog segments. Constraint slot values
like the attributes area and price range are explicitly specified by the user and hence
consist of a name and value pair. Phone number and address, which are attributes
that the user asks for, belong to the request slots and fill them with the name of

2.3. Distributed Representation of Words 15

Speaker Utterance Dialog State

Computer: Which part of town? Constraint slots:
User: A cheap place in the North. area=north, pricerange=cheap

Request slots:
-

Computer: Clown café is a cheap restaurant in the North Constraint slots:
part of town. area=south, pricerange=cheap

User: Do you have any others like that, maybe in Request slots:
the South part of town? -

Computer: Galleria is a cheap restaurant in the South. Constraint slots:
User: What is their number and address? area=south, pricerange=cheap

Request slots:
phone, address

Table 2.1: Example dialog excerpt between an user and a dialog system for restau-
rant queries annotated with the according constraint and request slot values. Source:
[HeTW14a].

the attribute only. In case the user has no preference for a constraint slot, it is
still treated as a constraint and a ”dontcare” value is assigned to the attribute. The
two slot subsets are not necessarily disjoint, for example the user might constrain
the search by stating a desired price range or ask for it given a search result. For
human-computer dialogs as shown in the example, dialog states can commonly be
defined for every turn since each of the user’s utterances usually contains enough
information to fill the slots. In human-human conversations, this is usually not the
case and hence a dialog state is often defined over a span of multiple turns. Since
our task also involves conversation between real persons, we use dialog segments
instead of single turns. More information on how dialog states are determined in
this work can be found in section 4.1.

2.3. Distributed Representation of Words

CNNs can be directly trained on raw dialog text data with minimum preprocessing
and simple encoding schemes. Word encodings can for example be created by build-
ing a vocabulary containing all occurring words and representing the words with
their respective indices in the vocabulary. But this scheme causes the word repre-
sentations to loose information about similarities between them, hence words should
not be treated as simple discrete indices, but also the relationships that may exist
between the words should be provided. For similar words like ’dog’ and ’cat’, their
representations should be close as well, so the model can use what it has learned
about ’dogs’ when it processes the word ’cat’. To create word representations that
can replicate word similarities faithfully, it is necessary to increase the complexity
of these representations, i.e. using vectors instead of scalars and continuous values
instead of discrete ones. Finding good word embeddings can be an important step
since it is possible that the overall performance of the CNN models can be improved
in this way as well.

There are publicly available methods that are able to generate embeddings of words
in a continuous vector space. A well-known and efficient tool for learning word

16 2. Basics

embeddings is word2vec 2. This scheme was initially introduced in [MCCD13] and
was further improved in [MSCC+13]. Word2vec models are shallow neural networks
which learn to map words into a low-dimensional vector space from their distri-
butional properties observed in an input text corpus. They are able to group the
vectors of semantically similar words together to nearby points in the vector space.
There are two distinct models, the continuous bag-of-words (CBOW) model and the
skip-gram model. These models are trained to predict context and target words,
for example given the word context ’dogs and cats are’ and the target word ’pets’,
the CBOW model tries to predict the word ’pets’ from the context, while the skip-
gram model does the inverse and predicts the context words from the target word.
Using either the CBOW or the skip-gram model, word vector representations are
trained which can be subsequently employed in many natural language processing
applications.

A well trained word2vec model can accurately make guesses about a word’s meaning
based on its occurrences in the given training data. Those guesses can be used
to establish a word’s association with other words which can be investigated by
calculating the distance between the word vectors. By entering a word, the distance
function will display the most similar words and their distances to the specified word.
For example for the word ”france”, the output should look like

spain 0.678515

belgium 0.665923

netherlands 0.652428

italy 0.633130

switzerland 0.622323

luxembourg 0.610033

portugal 0.577154

russia 0.571507

germany 0.563291

catalonia 0.534176

...

with a top 10 consisting of mostly other major European countries. Interesting
linguistic regularities can also be observed by performing arithmetic operations on
the word vectors. For example by computing vparis − vfrance + vitaly which indicate
the word vector for Paris, France and Italy, respectively, the resulting vector is one
that is very close to vrome. To observe such strong regularities in the word vector
space, it is needed to train the models on a very large data set and with sufficient
vector dimensionality.

A Python adaption of the original C tool is implemented in the Python library
gensim which is a collection of various tools for topic modeling, document indexing
and similarity retrieval tasks. Detailed information on the gensim framework can be
found in [ŘeSo10]. Additional to core word2vec functionalities, gensim also provides
useful methods such as preparing the input and building a vocabulary. Gensim’s
word2vec implementation takes a text corpus as input and yields the trained model
as output which can be saved and loaded as a Python dictionary consisting of word

2https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/

2.3. Distributed Representation of Words 17

vector pairs for each word in the vocabulary. For the input there are special sen-
tence iteration methods for the Brown corpus 3 and the Wikipedia text8 corpus 4,
as well as a general method for texts consisting of one sentence per line. These
sentences can be directly used as input for training the word model, but to further
improve the training data, gensim’s phrases module can be applied beforehand.
The phrases function is able to automatically detect common multiword expres-
sions from a stream of sentences. For example if the input stream contains the
phrase ”new york”, it will detect it as a collocation and convert it into a single
word token ”new york”. Using phrases, the word2vec model is able to learn more
meaningful multiword expressions instead of single words.

After preparing the input data, the vector space word model can be trained using
gensim’s word2vec method. This method accepts several parameters that affect
both training speed and quality. For example a minimum count of a word can be
specified, so words that rarely appear in a very large corpus can be treated as typing
errors and removed from the dictionary. The dimensionality of the feature vectors
can also be defined, as well as the number of iterations the model is trained on
the input data. It is also possible to choose between the CBOW and skip-gram
model and set the number of threads for training parallelization. The trained model
can be stored and loaded with the standard gensim methods which use Python’s
pickle module internally. A persisted model can be loaded from file into a dictionary
object for word vector lookup operations or to continue training with more sentences.
Similar to the original C tool, gensim provides various word similarity tasks that
can be performed with the model, for example finding the most fitting words given
positives and negatives or a mismatch in a stream of words. Overall, gensim’s
word2vec is a very useful tool for implementing machine learning in Python which
not only ported the original training algorithm, but also extended it with additional
functionalities for natural language tasks.

3http://www.hit.uib.no/icame/brown/bcm.html
4http://mattmahoney.net/dc/textdata

http://www.hit.uib.no/icame/brown/bcm.html
http://mattmahoney.net/dc/textdata

18 2. Basics

3. Related Work

With the growing availability of training data, methods based on convolutional neu-
ral networks have been successfully employed in many new technologies, especially
when the tasks are too difficult for traditional computer algorithms. CNNs can be
applied on a wide range of applications like image classification, video recognition
and natural language processing. Results of various kinds of competitions show
that they are able to achieve state-of-the-art performance and outperform several
other machine learning approaches. This chapter presents an overview of interesting
works using CNNs with focus on text and image classification tasks. It also provides
a summary of previous works on the field of dialog state research where different
kinds of techniques are briefly introduced. Many recent works on this field were
developed during one of the Dialog State Tracking Challenges. An introduction to
these series of challenges can also be found in the following sections.

3.1. CNN Applications

CNNs are commonly employed for image processing tasks since they require rela-
tively little pre-processing compared to other image classification algorithms. They
are able to learn the filters by themselves where for traditional algorithms, prior
knowledge and human effort are needed to design the filters. Standard neural net-
works have also been successfully used for image recognition, but due to the full
connectivity between neurons, they suffer from the exponential increase of weight
parameters and do not scale well to higher resolution images. Other than image
classification, CNNs have also been successfully applied on areas like video recogni-
tion, information filtering and natural language processing. The following sections
provide an overview of various application areas where CNNs have been able to
achieve excellent results.

3.1.1. ImageNet Classification

ImageNet is a huge dataset consisting of 15 million high resolution images containing
one object each. These images are hand-labeled with an object label from over
22,000 object classes. A competition is held every year since 2010 which is titled

20 3. Related Work

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) where one task is
to classify the objects of the ImageNet dataset. For the 2010 competition a subset
of the database containing 1.2 million images and 1000 object classes was used.
Participating systems had to generate five labels ordered by their probabilities for
each input image. Performance was tested using two metrics which are the top-1
and top-5 error rates evaluating how often the correct label was not among the best
one and best five labels, respectively. More details on ILSVRC can be found in
[BeDFF10] and [RDSK+14].

Krizhevsky et al. trained a large, deep convolutional neural network to classify the
images in the ILSVRC-2010 contest in their work [KrSH12]. Their CNN consisted
of five convolutional layers, some of which were followed by max-pooling layers, and
three fully-connected layers with the last one being a 1000-way output layer. An
illustration of the entire architecture can be found in figure 3.1.

Figure 3.1: Architecture of the CNN employed for the large scale object classification
task. The numbers denote the 3-dimensional sizes of the input, the layers and the
filters, respectively. Source: [KrSH12].

Overall, the CNN had about 650,000 neurons and 60 million parameters with most
of parameters coming from the fully-connected layers. The network was divided into
two parts between the first and the last layer which means that it was trained on two
GPUs, since a single GPU did not have enough memory for a CNN of this size. Using
two GPUs not only enabled training very large networks but also helped to reduce
the error rates. To further improve the performance of their network, the authors
employed various optimizations on their architecture like rectified linear units which
are neurons that use the maximum function as activation. Regularization techniques
like the local response normalization and dropout were applied as well to improve the
generalization ability of the model. For the pooling layers, an overlapping pooling
scheme was used where the pooling regions overlap with each other.

On the test data, the CNN achieved top-1 and top-5 error rates which were con-
siderably better than the previous state-of-the-art. With an error rate of 37.5% for
top-1 and 17.0% for top-5, it surpassed the former best result of 45.7% and 25.7%
by 9.6% and 11.2% absolute, respectively. Krizhevsky et al. also entered a variant
of their model in the ILSVRC-2012 competition and achieved a winning top-5 test
error rate of 15.3%, compared to 26.2% by the second-best entry. Their undisputed
victory marked a turning point for large-scale object recognition in the history of
ILSVRC and their influence could be clearly seen in the subsequent competitions.
Following their success, the vast majority of entries employed deep CNNs in their

3.1. CNN Applications 21

submissions for the contest. The winner of the ILSVRC-2013 classification task
used the average of several large deep convolutional networks which is described in
[ZeFe14] and achieved a top-5 error rate of 11.7%. Even more significant progress
was made during ILSVRC-2014 with a top-5 error rate of 6.7% by [SLJS+14]. CNN
approaches were also able to win other ILSVRC task categories, for example the
entries from [SEZM+13], [SiZi14b] and [LiCY14].

3.1.2. Text Classification

Text classification is a common topic on the field of natural language processing
where the task is to assign a text document to predefined categories. For this task,
traditional algorithms are usually used which are based on simple statistics of some
ordered word combinations like n-gram models. Zhang et al. employed deep CNNs
for text classification in [ZhZL15] which operated on texts at character level. They
compared their approach to traditional models and their character-level CNNs were
able to achieve state-of-the-art or competitive results.

The architecture of their CNNs is illustrated in figure 3.2. It consisted of 6 convolu-
tional layers, each followed by a max-pooling, and 3 fully-connected layers. A large
and a small CNN were trained where the large model contained 1024 feature maps in
each of its convolutional layers and 2048 units in the fully-connected hidden layers.
As input, the model took a sequence of character vectors which were generated from
the input text through 1-of-n encoding.

Figure 3.2: Architecture of the character-level CNN employed for text classification.
Source: [ZhZL15].

Since CNNs usually need a great amount of training data to perform well, Zhang
et al. built several large-scale datasets for their experiments with several millions of
samples, mostly from news articles and reviews on the internet. To further enhance
the training of their network, they experimented data augmentation by using an
English thesaurus obtained from Word-Net [Fell05]. For all of the large datasets,
their CNN models were able to outperform traditional methods like bag-of-words
and n-gram models. With smaller datasets of size up to several hundreds of thou-
sands, the CNNs performed slightly worse than the best models. Their experiments
demonstrated that CNNs for text classification can be successfully employed on
character-level given sufficient amount of data.

Other works on the field of text classification are for example [Kim14] where simple
CNNs with little hyperparameter tuning were trained for sentence-level classification
tasks. These CNNs were able to achieve excellent results on multiple benchmarks.
In [JoZh14], instead of low-dimensional word vectors as input, high-dimensional

22 3. Related Work

text data were directly applied to CNNs to exploit the structure of texts. A semi-
supervised framework with CNNs was presented in [JoZh15] which was able to learn
embeddings of small text regions from unlabeled data. To counter the ambiguity
problems in short texts because of their lack of context, a method based on CNN
and semantic clustering was introduced in [WXXL+15]. For a detailed analysis
of how CNN architecture components effect the overall model performance in text
classification tasks, see [ZhWa15].

3.1.3. Other Applications

Aside from ImageNet, CNNs have been successfully employed on other image datasets
like the MNIST database of handwritten digits. An error rate of 0.23% on this
database was reported in [CiMS12] where deep CNNs with winner-takes-all neu-
rons were trained to solve this task. On the MNIST handwriting benchmark, this
approach was the first to achieve near-human performance and on a traffic sign
recognition benchmark it even outperformed humans by a factor of two. Excellent
results for object classification on the datasets NORB and CIFAR10 were obtained in
[CMML+11] with fast trained CNN variants. They achieved error rates of 2.53% and
19.51% on NORB and CIFAR10, respectively. For the considerably more difficult
face recognition task, CNNs were able to significantly reduce error rate compared
to alternative methods as stated in [LGTB97]. In [MMMK03], a 97.6% recognition
rate was reported on 5,600 still images of more than 10 subjects. A deep CNN
demonstrated in [Tech15] the ability to spot faces from a wide range of angles with
competitive performance, even when the faces are partially occluded. CNNs have
also been explored on the field of video analysis which is much more complex than
images because of the additional temporal property. The paper [CaVGB06] de-
scribes a CNN application for automatic and objective measurement of the quality
of digital videos. Action recognition in videos as well has been experimented with
deep CNNs in works like [JXYY13], [KTSL+14] and [SiZi14a].

CNN models have also been proven to be effective on tasks involving natural lan-
guage. Like text classification, CNNs achieved excellent results on the field of se-
mantic parsing which was shown in [GBFH14]. The authors stated that their ap-
proach was especially suitable to grammatically malformed or syntactically atypical
texts. The paper [SHGD+14] presented semantic models based on CNNs to learn
low-dimensional semantic vectors for search queries and web documents. Results
demonstrated that the novel model significantly outperformed other semantic mo-
dels, which were the prior state-of-the-art. Deep CNN models could also be used
on sentiment analysis of short texts as shown in [SaGa14]. The authors achieved
state-of-the-art results on the Stanford Sentiment Tree-bank for single sentence sen-
timent prediction in both binary classification and fine-grained classification tasks.
A dynamic CNN was described for the semantic modelling of sentences in [KaGB14].
The network achieved excellent performance in sentiment prediction tasks and over
25% error reduction with respect to the strongest baseline. In the paper [SaZa14],
a deep CNN was proposed that was able to learn character-level representation of
words to perform Part-of-Speech tagging. Using the proposed approach, Part-of-
Speech taggers for English and Portuguese were produced which achieved over 97%
accuracy on the respective corpora. Further works on CNNs on the field of natural
language processing can be found in [CoWe08], [CWBK+11] and [ZhLe15].

3.2. Dialog State Tracking 23

3.2. Dialog State Tracking

Numerous techniques for dialog state tracking have already been proposed prior
to the Dialog State Tracking Challenges. But due to different domains, system
components and evaluation metrics that were used, a direct comparison of progresses
on this field was not possible. Ever since a common testbed was provided by the first
competition as well as labeled dialog data, a variety of methods have been developed
and successfully applied to dialog state tracking. While during the first challenge,
less than half of the entries were able to outperform the simple baselines, results
of the last two challenges demonstrated great advances as most of the submissions
were able to outperform the given baselines. This section provides an overview of the
challenges as well as various techniques developed over the years from older works
to recent state-of-the-art approaches.

3.2.1. Dialog State Tracking Challenge

The Dialog State Tracking Challenge (DSTC) is an on-going series of competitions
held since 2013. The task for each of the past challenges was to create a tracker
that can determine the dialog state for new dialogs. Labeled dialog data, a common
testbed and evaluation framework were provided for the challenges to support the
participating research teams. Simple baseline trackers were implemented each time
as a comparison for the submissions. For all competitions, the dialog corpus used
was taken from a specific domain and the conversations were between two speakers
with one asking for information and the other providing that information. While the
first three competitions had focus on human-machine dialogs, DSTC4 and DSTC5
differed from the previous challenges by employing human-human dialogs as training
and test data. Over the years, DSTCs have enabled the development of new methods
for dialog state tracking, as well as various evaluation techniques.

Since there were no common evaluation measures for the task of dialog state track-
ing prior, the goal of the first DSTC was to provide such a testbed to enable
progress comparison on this field. A corpus of 15,000 transcribed and labeled human-
computer dialogs between users and a bus schedule information system was used to
train and test the trackers. The outputs of the trackers were evaluated using 11 met-
rics and compared to two simple baselines. Details on the evaluation metrics and
the competition results can be found in [WRRB13]. Similar to the first challenge,
DSTC2 and DSTC3 studied the problem of dialog state tracking on human-computer
dialog corpora. Instead of a system for bus information, the second and third chal-
lenge each used data from the restaurant search domain. While only constraint slots
were employed during DSTC1, the dialog states were extended by including request
slots and search methods identified in the user’s utterances. The performance of
the participating models during these two subsequent competitions were thoroughly
analyzed and the results demonstrated the difficulty of the problem. An overview
of DSTC2 and DSTC3, and a summary of the results can be found in [HeTW14a]
and [HeTW14b], respectively.

From the fourth challenge onwards, the focus changed from human-computer dialogs
to human-human dialogs. The goal of the main task in DSTC4 was to develop
trackers for conversations between tourists and tour guides. A corpus consisting
of 35 dialog sessions was used which contained touristic information for Singapore

24 3. Related Work

and summed up to over 31,000 utterances. Since dialog states could not always
be expressed in just a single turn in these conversations, they were defined for
dialog segments spreading over multiple turns. In addition to the main task, the
challenge included a series of optional pilot tasks for developing end-to-end dialog
systems using the same dataset. For a detailed description on DSTC4, see the paper
[KDBW+16a]. Following a similar scheme to DSTC4, the fifth edition again used
dialogs in the tourist information domain, but introduced a cross-language dialog
state tracking task. Therefore trackers for a target language had to be built using
existing resources in the source language and the corresponding machine translated
sentences in the target language. Like DSTC4, different pilot tasks were proposed
for the core components in developing end-to-end dialog systems following the same
cross-language setting. A summary of the results achieved during DSTC5 can be
found in [KDBW+16b].

3.2.2. Elaborate Rule-based Tracker

With the increased size of the ontology and the utterances labeled at a subdialog
level during DSTC4, a dialog state tracking method designed to work robustly under
these new conditions was introduced in [DLBB16]. In this work, an elaborate tracker
was constructed which combined multiple rule-based techniques. The whole system
was implemented in a pipeline structure and figure 3.3 shows the four main steps of
the pipeline.

Figure 3.3: Pipeline structure of the elaborate rule-based tracker with four main
steps. Source: [DLBB16].

In addition to the current utterance and the dialog history, which is a list of previous
utterances and predicted dialog states, the systems also received knowledge of the
problem domain in form of the ontology as input. The first step in the pipeline
performed a keyword matching between the input and the ontology to detect slot
value pairs. In order to enhance the robustness of the detection, a synonym list of the
ontology was used as well which for example included plural forms of nouns in the
ontology. After finding slot-value pairs by matching synonyms, the tracker further
applied a resolution system for place-related coreferences. Using different templates,
it aimed to resolve indirect place-related statements, e.g. ”our hotel”, and fill the slot
with the exact name of the place. Since the outputs from the previous steps often
resulted in closely related slot values with only one being a correct dialog state label,
the tracker utilized the domain knowledge in the ontology as well as observations
from the training data to select the most likely slot-value pair during the third step.
Finally, the detected slot-value pairs were carried over to the following utterances

3.2. Dialog State Tracking 25

until another value appeared because many slot-value pairs were observed to remain
present for several subsequent utterances. A hybrid tracker was developed as well
which used the rule-based tracker’s outputs and combined it with a machine learning
based classifier.

The performance of the elaborate approach was evaluated on the DSTC4 test set on
both utterance-level and subdialog-level in comparison to the baseline and submis-
sions by other research groups. Both the rule-based and the hybrid tracker were able
to yield performances far above the fuzzy matching baseline. For the utterance-level
evaluation, the rule-based model and the hybrid model achieved the best F-scores
of 0.52 and 0.53, respectively. Only one other team was able to obtain a score of
0.45 and all other team were below 0.35 which reflected the difficulty of the task.
Similar for the subdialog-level, almost all teams obtained F-scores of less than 0.40,
while both the rule-based and hybrid trackers were able to achieve a score of 0.57
which outperformed the second best entry at a score of 0.50. The results of DSTC4
demonstrated that elaborate rule-based approaches are able to yield competitive re-
sults, when the size of the ontology is large and the utterances are labeled at the
subdialog-level only. It was also shown that further performance improvement can
be obtained by combining both rule-based and machine learning approaches.

3.2.3. Multichannel CNN Tracker

A purely machine learning based approach was presented in [SUEY+17c] to solve the
new cross-language dialog state tracking task introduced in DSTC5 where trackers
had to be built on an English training corpus and evaluated on an unlabeled Chinese
corpus. The authors proposed a multichannel CNN architecture in which English
and machine translated Chinese were treated as different input channels of one
single CNN model. The overall architecture of the multichannel CNN can be found
in figure 3.4.

Figure 3.4: Architecture of the multichannel CNN model with three input channels
for cross-language dialog state tracking. Source: [SUEY+17c].

26 3. Related Work

The input of each channel is a 2-dimensional matrix representing the input text
using word embeddings. Two different embeddings were generated for Chinese and
one for English, hence the full model input consisted of three channels. Different
sets of filters were used for each channel because word embeddings among different
languages varied greatly and thus should not be filtered in the same way. The
authors trained five models with different number of filters ranging from 1200 for
the smallest to 2800 for the largest network. They also implemented the dropout
technique to reduce overfitting and experimented with different dropout probabilities
for each of the models.

For the DSTC5 evaluation, the multichannel CNN model was able to achieve the
best score among all participating teams. Their best model outperformed the second
best team by 50% relative with an accuracy of 0.0956 compared to 0.0635. A 15%
improvement from 0.3945 to 0.4519 could be achieved when using the F-measure as
evaluation metric. The multichannel model was found to be robust against transla-
tion errors and outperformed monolingual single channel CNN models. The CNN
based approach was not only able to achieve best performance, but also did not
require any prior knowledge about the target languages and therefore can be easily
applied to other languages.

3.2.4. Other Methods

Since dialog state tracking is an important component in a dialog system, various
techniques have been developed over the years. Early systems mostly used rule-based
approaches, for example the framework for dialog managers built in [LaTr00] where
a set of information state variables was tracked using hand-written update rules. A
probabilistic approach was introduced in [HiNA03] which aimed to resolve speech
ambiguity based on heuristic scores obtained from dialog corpora. Bayesian networks
were also applied to spoken dialog systems as shown in [WiYo07] and [DeSt07] where
they demonstrated significant performance gains compared to existing techniques.
In the paper [BoRu06], a belief updating model which tracked speech understanding
hypotheses was presented and numerous variations of this approach could be found
in subsequent works like [MeBW13] and [Will14].

For the first DSTC, many different approaches could be found among the sub-
missions, including hand-crafted rules [WaLe13], decision trees [Will13] and deep
neural networks [HeTY13]. The dialog state tracker proposed in [LeEs13] was the
winning entry at DSTC1 which was built upon a combination of techniques like
a wide-coverage data selection, a feature-rich discriminative model and unsuper-
vised prior adaptation. The word-based tracking method presented in [HeTY14b]
was among the winning teams for the different tasks of DSTC2. It was based on
a recurrent neural network structure which required very little feature engineering
and demonstrated consistently high performance across all of the tasks and metrics.
Other DSTC2 submissions employed for example linear conditional random fields
[KiBa14] and a combination of deep neural networks and maximum entropy models
[SCZY14b]. Similar approaches could also be found in the submissions for DSTC3
as well as rule-based methods proposed in [KVLM+15] and [SCZY14a], and a novel
dialog state tracker based on a Markovian neural network model [ReXY14]. The
recurrent neural network model which achieved great results during DSTC2 could
be further improved in [HeTY14a] and was also able to obtain best scores in many

3.2. Dialog State Tracking 27

DSTC3 tasks. Aside from the elaborate rule-based tracker and the multichannel
CNN described in 3.2.2 and 3.2.3, there were various other approaches submitted to
the DSTC4 and DSTC5 with most of them outperforming the baseline by a large
margin. A system combining probabilistic and rule-based strategies was introduced
in [LiWu17] and [SuLW16] for the fourth and fifth challenges, respectively. Works
like [SUEY+17a], [YHNN17] and [JHLC+16] employed neural network architectures
to solve the given tasks. For further details on dialog state tracking approaches and
more information on DSTC evaluations, see [Hend15] and [WiRH16].

3.2.5. Discussion

Although a large number of techniques has been developed over the years, those
methods have in common that they only aim to track the current state of the dialog
and do not make any decisions. For a complete dialog system to utilize the output
dialog states, further components are required to evaluate them and take actions
depending on the evaluation result. Our task is to expand the idea of dialog state
tracking and combine it with a decision making capability for the subsequent step
of time. This has, to our knowledge, not yet been addressed in any existing works
and hence is a novel approach on the field of dialog state research. The majority
of previous works are also employed in a context where the data corpus is taken
from a specific domain and the speakers are divided into someone who requests
information and someone who provides that information. In contrast to these goal-
oriented dialog systems, this work aims to develop techniques for non-goal-oriented,
social dialog systems in which the speakers discuss about everyday topics and are
equivalent conversation partners.

As seen in the history of DSTC, neural network approaches, especially CNNs, have
been able to achieve state-of-the-art performance on the task of dialog state tracking.
Compared to other methods like hand-written rules, they have the advantage that
no prior domain or language knowledge is required to build such a tracker. For
training a CNN classifier for dialog tasks, it is usually not required to build very
deep models as shallow CNNs can be successfully employed as well. Therefore, we
apply different variations of the CNN architecture to track dialog states relevant to
our task and additionally train models that are capable of making predictions for
subsequent dialog states.

28 3. Related Work

4. Convolutional Neural Networks
for Topic Prediction

Tasks involving spoken dialogs are challenging because natural language is often
complex, ambiguous and depends mostly on the speech context. Traditional pattern
matching methods have been the state-of-the-art on this field previously, but those
approaches often ignore the contextual information in dialogs and are not able to
capture the whole semantics in the words. Hence, as seen in section 3.2, they could
be outperformed by the latest neural learning approaches. Convolutional Neural
Networks (CNNs) are often used for image and video classification tasks, but they
also show great results when applied to natural language processing systems. In
this work, three variations of CNN architectures are employed to accomplish the
given tasks. The following sections contain a detailed description of each of the
three network architectures as well as an explicit definition of our given tasks. For
training the networks, it is necessary to collect a dialog corpus that fits the task
specifications. Since only not labeled dialog data are publicly available which fit the
criteria, the appropriate topic labels need to be added manually. A description of
the data creation process can also be found in this chapter.

4.1. Task Definition

The goal of this work is to create CNN models which are able to determine represen-
tations of topics in human-human dialogs. Our tasks involve identifying the dialog
state in an ongoing conversation, as described in 2.2. Since the models in this work
are developed for non-goal-oriented dialog systems, the relevant dialog states differ
from those for a database related system. A user interacting with such a system
does not try to achieve some goal, so there are no constraining attributes but rather
informative ones. Informative slots can be treated in the same way as constraint
slots and filled with name value pairs. For our purpose of predicting topics during
a conversation, we define ”topic” as an attribute for the informative slots. There are
also other attributes that can been seen as relevant to the dialog state, e.g. a more
detailed representation of what the speakers have said. But for this work, we limit
the scope to the attribute ”topic” and treat it as the only part of dialog state that

30 4. Convolutional Neural Networks for Topic Prediction

we are interested in. Hence instead of ”dialog state”, we simply use the word ”topic”
in the following.

Besides predicting the next topic in a conversation, it is also of interest to track
the current topic and to predict the occurrence of a topic change. Therefore, we
train networks on three different tasks which are tracking, next topic prediction and
topic change prediction. A great advantage is that the same model architecture
and learning algorithm can be employed for any of the three tasks. To make the
networks learn features for different tasks, it is only necessary to alter the way the
training data is used. For the tracking task, the training example pairs consist of a
dialog segment and its corresponding topic label, so the model is trained to classify
the current state of the dialog. The input for the two prediction tasks is the same
as for the tracking task, but different reference output labels are used. For the next
topic prediction task, the topic label of the dialog segment, which directly follows the
current one, is used as the reference output. For the topic change prediction task,
the reference output is set to 1 if the next topic label differs from the current and
else to 0. Training neural networks on these task variant inputs will automatically
lead the models to learn solutions for the different tasks without the need of further
adjustments.

4.2. Data Creation

As described in the previous section, our tasks are not only to classify the cur-
rent state of the dialog but also to predict topic changes in the conversation flow.
Therefore we need dialog data where the speakers do not only talk about a single
topic but frequently change the conversation subject. The tasks further specify that
the network models should work on non-goal-oriented conversations, also known as
social dialog. The transcribed Switchboard-1 1 dialog corpus available at the KIT
Interactive Systems Lab 2 unfortunately could not be employed for this work, be-
cause the dialogs discuss about one specific subject and no significant topic changes
could be found. A few other unlabeled dialog corpora were available on the internet,
including the Cornell Movie-Dialogs corpus [DNMLe11], the Ubuntu Dialog corpus
[LPSP15] and the TRAINS Dialog corpus 3. But the final choice fell on the Talkbank
Conversation corpus because of the huge size of the text collection and its relevance
for the specifications.

Talkbank 4 is a large collection of various kinds of multilingual recordings and tran-
scriptions which support fundamental research in the study of human-human com-
munication. It was established by the Carnegie Mellon University in cooperation
with the University of Pennsylvania and contains sample databases for several sub-
fields of communication research, including language acquisition, conversation ana-
lysis and medical science. These databases are publicly shared and collected in order
to advance the development of standards and tools for creating systems for linguistic
purposes. Further information and a detailed description of all available Talkbank
databases can be found in [MacW07].

1https://catalog.ldc.upenn.edu/LDC97S62/
2http://isl.anthropomatik.kit.edu/english/
3https://catalog.ldc.upenn.edu/LDC95S25/
4http://talkbank.org/

https://catalog.ldc.upenn.edu/LDC97S62/
http://isl.anthropomatik.kit.edu/english/
https://catalog.ldc.upenn.edu/LDC95S25/
http://talkbank.org/

4.2. Data Creation 31

The data used in this work are taken from Talkbank’s BilingBank database which
is part of the CABank, a collection of dialog corpora for conversation analysis re-
search. It contains over 150,000 lines of daily conversations which were recorded by
Universities from around the world like the USA, England, Argentina, Singapore
and many more. There is a great diversity in the group of speakers as it ranges
from teenagers, who talk about things like school and hobby, to elderly people who
often speak of health. The recorded conversations are transcribed by researches
from the respective universities where information about the speakers like gender,
age and the relationship between them were also included. As the name implies, the
speakers in these corpora are bilingual and sometimes switch between English and
their native language. It is desired to work on an English vocabulary only and fortu-
nately the transcribers also included a translation for parts that were not spoken in
English. Aside from the translations, the transcribed texts also contain additional
information like part of speech tags, special words for sounds and comments by the
researchers. Since the main purpose of the BilingBank corpora is to analyze speech
patterns and code-switching, there are no labels or tags related to the contents of
the conversations. Hence, we need to manually label as much data as possible with
the corresponding topics to create a dataset for training our networks.

Before starting the labeling, the dialogs have to be cleaned up because all the additi-
onal information tags make the texts hard to read. After removing the not required
tags and replacing the non-English parts with the respective translations, we can
finally annotate the dialogs with appropriate labels. Since it is hard to find topics
on an utterance-level, labels are thus defined for dialog segments of multiple utter-
ances. Therefore the dialogs are divided into segments consisting of 3 turns and only
conversations between 2 speakers are selected which means that a dialog segment
always has the length of 6 utterances. Making the dialog segments equal in length
simplifies further processing steps and a size of 3 turns seems to be appropriate as
it is long enough to represent a dialog state. Due to the limited time of this work,
only a subset of the BilingBank corpora can be labeled. Also there are some parts
in the dialogs where no specific conversation topic can be determined or the context
of the statement is unclear and those parts are removed. This is done carefully, so
no changes to the conversation flow are made.

There were no specific topics given, so the topic labels have to be found during
the labeling process. While reading through the dialogs segment by segment, we
intuitively assign an appropriate topic label to the dialog segment which we consider
to be a good generic term representation for the current conversation subject. The
labels found in this way are collected in an ontology, so if we want to assign a certain
topic label to a dialog segment which is not already part of the ontology, it is then
added to the list. Since the conversations are informal, the resulting topics are all
common subjects of everyday life like school or work. Some dialog segments also
contain a topic change within and those are assigned the topic label which spans
over more utterances and thus has more importance in that segment. After the
labeling process, the initial ontology consists of 30 topics, but since there are topic
labels with close semantics and not many examples each, they are fused together
to a single topic label. The final ontology contains 23 distinct topic labels and the
full list can be found in section 5.1. An exemplary extract from the labeled training
corpus annotated with the corresponding topic labels can be found in table 4.1.
In this example, the first and third segments can be unambiguously labeled with

32 4. Convolutional Neural Networks for Topic Prediction

Speaker Utterance Dialog State

*TIM: Right now I have to go to the university because I’m going to
register for some classes.

*MIG: Oh.
*TIM: Plus now I have to take a whole bunch of classes. Topic=Education
*MIG: How many classes?
*TIM: Three.
*MIG: How many were you taking?

*TIM: Dunno. Well, now I have to study all day.
*MIG: No kidding, then when you look the years have gone by and

you’ll be way behind.
*TIM: Exactly. So I’m going to register for the classes and I’m going Topic=Education

to study, I don’t know, I think maybe all day.
*MIG: And you’re not going to work.
*TIM: I don’t think so.
*MIG: Why?

*TIM: Because no, I don’t really have to work.
*MIG: Well, once you start working it’s like, even if you stop working

and even if they’re paying everything, it’s like, I don’t know.
*TIM: Yeah, man. In any case, I’m going to get a part time job at

the weekends. Topic=Work
*MIG: Right, a little part time job there, some extra dough there,

does you no harm at all.
*TIM: Yeah.
*MIG: Mhm.

Table 4.1: Sample dialog segments from the training corpus annotated with corres-
ponding topic labels.

the topics Education and Work, respectively. A topic change is indicated in the
second segment and since the focus here is still on the previous topic, it also receives
Education as label.

4.3. Models

To solve the given tasks, we implement a CNN approach which has not only been
successfully applied on tasks involving images, but also on text classification tasks.
Researches have demonstrated that CNNs work well on raw data with minimal
amounts of preprocessing. They can also be directly applied without any knowledge
on the syntactic or semantic structures of a language which is a major advantage
compared to rule-based methods. Additionally, the convolution operation helps
to reduce the number of free parameters and improve the generalization ability
of the model. Three variations of CNN architectures are employed in this work to
accomplish the given tasks. They differ in their composition of layers and the amount
of input data preprocessing, but have the same form of output. The architecture of
each of the three networks is presented in detail in the following sections.

4.3.1. Basic Model

The network models used in this work are based on Kim’s architecture for sentence
classification as described in [Kim14]. The author was able to achieve excellent

4.3. Models 33

results on multiple benchmarks with little parameter tuning. A similar model was
also employed by Shi et al. in [SUEY+17b] which was one of the best entries at
the Fourth Dialog State Tracking Challenge. Following their success, we also use a
simple design for our CNN to solve the given tasks. Our basic model consists of a
convolutional layer with multiple filters and feature maps, followed by a max-pooling
layer. Results of the pooling layer are forwarded to the fully connected output layer
which utilizes the softmax function to generate the final output of the network. An
overview of the architecture can be found in figure 4.1.

Figure 4.1: Architecture of the basic CNN model. In this example, the model has 2
different filter lengths and 5 feature maps for each of the filter lengths.

4.3.1.1. Model Input

Neural networks perform arithmetic operations on the given data and thus require
the input to be numerical values. Therefore a dialog segment consisting of raw
words has to be converted to a mathematical representation beforehand. A vector
representation of words is desired and can be gained in many different ways. There
are commonly used algorithms which train neural networks to produce word vectors
in a continuous space. In addition to the word itself, there are also other relevant
information that can be added to the vector of one word.

For our CNN model, a vector representation of each word in the dialog segment is
obtained by the following combination of feature vectors

x = fword ⊕ ftag ⊕ fspeaker

34 4. Convolutional Neural Networks for Topic Prediction

where ⊕ denotes the concatenation of two vectors. The first feature vector fword
is a S-dimensional vector in a continuous space representing the given word. It
is obtained using a trained word2vec model as described in 2.3 where its optimal
dimensionality S is determined through further experiments. In order to use the
information of the ontology, which is the list of all possible dialog segment labels,
the vector ftag is added to the overall word vector. This tag vector sets the word with
the topic label it belongs to, if the substring matches with an entry in the ontology.
The tagged topic is then indicated using the 1-of-n encoding scheme which sets the
vector element at its index in the ontology to 1, else 0. Since there are 23 topic labels
(see section 5.1 for details), this tag vector also has a dimension of T = 23. The
word vector completes with a 2-dimensional speaker vector fspeaker which indicates
the speaker of the utterance this word belongs to. These speaker vectors are given
by [1, 0] and [0, 1] for the first and second speaker, respectively. To sum it up, each
word in an utterance is represented by a K-dimensional continuous vector where K
is equal to S + T + 2 and together they form the dialog segment matrices.

A dialog segment matrix consists of all words in the utterances in their occurring
order where speaker indicators and punctuation marks are omitted. Each row of
this matrix corresponds to the K-dimensional feature vector xij ∈ RK of the j-th
word in the i-th utterance. Additionally, a zero vector is inserted between every two
adjacent utterances. For a dialog segment with n utterances, which are of length
l1, l2, ..., ln, the dialog segment matrix M is given by

M =
[
x11, · · · ,x1l1 ,0,x21, · · · ,x2l2 , · · · ,0,xn1, · · · ,xnln

]T
.

When we set N =
∑

i li + n− 1, the total size of this dialog segment matrix can be
expressed with N×K where N is a varying number depending on the lengths of the
utterances. To simplify the calculations, the input matrices are made equal-sized by
padding with zero row vectors when neccessary.

4.3.1.2. Convolutional and Pooling Layer

As the first step, the input dialog matrices are processed by the convolutional layer.
It consists of several sets of filter weights which differ in their lengths. For example,
a unigram filter is a filter of length 1 which operates on a single row of the input
matrix, where a bigram filter has a length of 2 and works on 2 word vectors at the
same time (depicted in figure 4.1 as red and blue, respectively). Each of the filters
performs convolution on whole word vectors of length K, hence the total size of a
filter with length L is given by L×K.

Through the convolution operation with the filters, feature maps are generated out
of the inputs. Let Wc ∈ RL×K denote a filter weight matrix of length L and with
the definition of the convolution operator ∗ from section 2.1.2, the associated feature
map c is calculated by

c = f(X ∗Wc + bc).

Here, bc is a bias vector that is usually added after the convolution operation and
thus has the same length as the convolution result which is N−L+1 (N is the length

4.3. Models 35

Figure 4.2: Graphs of the non-linear activation functions tanh (left) and ReLU
(right). Source: 5

of the dialog segment matrix as defined in the previous section). The function f acts
like an activation function that ensures the non-linearity of the model. Commonly
used non-linear functions include the hyperbolic tangent tanh and the rectified linear
unit (ReLU) which is defined as

f(x) = max(0, x).

ReLU as an activation function was first introduced in [HSMD+00] and used for
convolutional networks by Glorot et al. in [GlBB11]. Figure 4.2 displays the graphs
of both mentioned funtions. While tanh is traditionally used in many types of neural
networks, it has been shown that convolutional neural networks can sometimes be
trained more efficiently using ReLU.

After applying the filter Wc to the input matrix and calculating the activation, a
max-pooling operation is applied over the entire feature map c ∈ RN−L+1 which
takes its maximum value

ĉ = max(c)

as the feature corresponding to this particular filter. Additional to reducing the
number of model parameters, the max-pooling technique is also able to capture the
most important feature for each feature map which is the one with the highest value.
This pooling scheme also reduces the influence of the dialog segment length. Shorter
segments can be treated the same way as longer ones, since the important aspect is
not the amount of words but their information content.

As described above, applying one filter extracts one single feature out of the input
matrix. By using many sets of filters, multiple features can be obtained. It is also
beneficial to experiment with different filter sizes, although a huge number of filters
increases the complexity of the network model as well. But since one filter is shared
across the entire input, there are less parameters to optimize compared to densely
connected neural networks. After applying all the filters, the pooled features are

5http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/

http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/

36 4. Convolutional Neural Networks for Topic Prediction

concatenated to form a single vector, such that for a set of n filters of varying
lengths, the final output ĉ of the convolutional and pooling layer is

ĉ = [ĉ1, ..., ĉn]T

where ĉ1, ..., ĉn are the features extracted from each of the filters. This concate-
nated output vector is then passed to the fully-connected output layer for a further
processing step.

4.3.1.3. Output Layer

Goal of the output layer is to generate a meaningful result out of the network
computations. This layer consists of the same number of neurons as there are topic
labels to classify. It is fully connected to the convolutional and pooling layer which
means that every neuron in this layer is connected to each output unit of the previous
layer. Let ĉ again denote the concatenated features from the previous layer, the
output layer computes the following

o = ĉ ·Wo + bo

where Wo and bo are the weight matrix and bias vector of this layer, respectively.
The result o is a vector of the same dimension as the number of topic classes and
thus contains information for each of the classes.

It is desirable to gain a result that is easy to interpret. Therefore, we additionally
apply the softmax function σ which is elementwisely defined as

σ(o)j =
eoj∑T
t=1 e

ot
for j = 1, ..., T

for a T -dimensional vector o and e as the natural exponential function. It has
the property to convert vector elements of arbitrary values to values between 0
and 1 which sum up to 1. This implies that the output of the softmax function
can be directly used as a probability distribution over the topic classes. Further
information on the softmax function can be found in [Bish06]. To determine the
final classification result, we can simply take the index of the maximum argument
from the output vector.

4.3.2. Multilayer Network

As described in the previous section, the basic model consists of one convolutional
and pooling layer aside from the output layer. Since this design is comparatively
simple, it would be interesting to experiment with architectures that are slightly
more complex. Therefore we extend our first model by adding more depth in form
of one or more hidden layers. Figure 4.3 displays the structure of this second CNN
architecture. Additional to the already described layers, the network consists of two
hidden layers which are fully connected to their neighboring layers.

Hidden layers are layers that reside between the input and output layer. Unlike
input neurons that take information from the external world or output neurons

4.3. Models 37

Figure 4.3: Architecture of the multilayer CNN model with two fully connected
hidden layers.

whose values can be observed from the outside, hidden neurons are not connected
to the environment and only communicate with other neurons. Hidden units act as
feature detectors for some types of inputs. By combining these features, the output
units can sometimes perform more powerful classifications than they can without
the hidden units. As mentioned above, the hidden units are connected to every
output unit of the previous layer. Their activity depends on the neuron inputs and
the weights on the connections between the previous layer and the hidden units.
The output hi of the i-th hidden layer can be computed with

hi = f(hi−1 ·Whi + bhi)

where Whi is the weight matrix and bhi the bias vector of this hidden layer. The ex-
pression hi−1 denotes the output of the previous hidden layer where h0 is the output
of the max-pooling layer. Similar to the convolutional layer, a non-linear activation
function f is used to determine the final activity of the hidden units. Commonly
used hidden activations are the hyperbolic tangent or the sigmoid function. After
propagating the inputs through the hidden layers, the outputs produced by the last
hidden layer are then passed to the units of the output layer.

The example in figure 4.3 displays a network with two hidden layers. In fact, the
number of hidden layers should be kept small since the dense connections increase
the network complexity by a great amount of parameters. Hence, one or at most two
hidden layers are feasible choices. Also the number of units in a hidden layer should
not be very large. A smaller hidden layer not only increases the rate at which
the network can be trained, it can also help to improve the overall performance.
With too many hidden units, the network tends to memorize the correct label for
each example in the training set instead of learning a general solution. By limiting
the number and size of the hidden layers, the network is forced to develop more

38 4. Convolutional Neural Networks for Topic Prediction

generalized feature detectors and will probably show better performance for unseen
inputs.

4.3.3. Word Embedding Network

In section 4.3.1.1 it was stated that for the basic model, words of the input dialog
segments are converted into vector representations using pre-trained word2vec mo-
dels before they are processed by the network. Neural network classifiers are also
able to learn continuous word representations themselves, so it is possible to directly
use the raw input dialog data with minimum preprocessing. This can be achieved
by employing a projection layer which receives the input and generates the dialog
matrices required by the subsequent convolutional layer. An overview of the word
embedding architecture can be found in figure 4.4.

Figure 4.4: Architecture of the word embedding CNN model with an additional
projection layer.

The projection layer maps all words of an input dialog segment to a continuous
vector space. Since it requires the input words to be numeric values, the 1-of-n
encoding scheme is employed. Each word is then represented by a vector of binary
valued elements of length equal to the size of the vocabulary which is a list of all
words occurring in the dataset. For a word with the index i in the vocabulary, only
the i-th element of the vector is set to 1 and all other values are set to 0. Since
the words will be represented by lots of zeros in this way, a more compact method
is to represent the words only by their indices. Hence the input dialog segment is
defined by a vector consisting of word indices where the index 0 is inserted between
two adjacent utterances.

The number of units in the projection layer is specified by the desired size of the
continuous space where the word representations are taken from. Each neuron in
the projection layer is represented by a number of weights equal to the size of the
vocabulary. These weights form together the projection matrix which is shared by

4.3. Models 39

all inputs such that the same words in a dialog segment also receive the same pro-
jected vector. Using the standard 1-of-n encoding, projection can be performed by
multiplying the projection matrix with the input. But since the encoded vectors
are reduced to word indices, the output for a particular word with index i is simply
the i-th row of the projection matrix. Like parameters of other layers, the projec-
tion matrix is also learned during training, so the network can optimize the matrix
weights to find word representations that produce the desired output. Like for the
basic model, the word embedding vectors are extended by tag and speaker vectors
ftag and fspeaker which are defined in the same way as previous. The concatenated
feature vectors for each word form the dialog segment matrix which is used as the
input to the convolutional layer.

40 4. Convolutional Neural Networks for Topic Prediction

5. Evaluation

We train several neural networks for each of the architectures described in the pre-
vious section 4.3 on the labeled Talkbank corpus obtained in section 4.2. These
networks are trained on three different tasks which are tracking, next topic predic-
tion and topic change prediction. Various experiments are conducted to analyze
the impact of different model and training parameters on the network performance
and to find optimal values for each of them. The regularization techniques from
section 2.1.4 are also extensively evaluated to improve the generalization ability of
the model. While performance is an important factor, it is also necessary to consider
the time needed to train the networks. Since training large neural models usually
requires a lot of time, it is important to compromise between the model’s complex-
ity and the effort to train it, as well as to stop training early if no more significant
improvement is observed. For the vector space word model described in section 2.3,
we also train various models with different sets of parameters and test the perfor-
mance on sample tasks. The following sections provide more details on the labeled
dialog corpus and summarize the most important results obtained in the course of
this work.

5.1. Data Analysis

Overall, the resulting training dataset is taken from 41 conversations and sums up
to 10,284 utterances and 122,541 words. The size of the vocabulary used in these
conversations amounts to 5,197 unique words. A list of all labeled files from the
BilingBank corpora can be found in table A.1 in the appendix. These dialogs are
split into 1,714 dialog segments which are labeled using one of 23 distinct topic
labels found during the labeling process described in 4.2. Figure 5.1 shows how the
assigned topics are distributed over the entire labeled dataset. Most frequent topics
are Acquaintance with 161 occurrences, followed by Work, Health and MovieAndTV
with over 120 occurrences each. While Acquaintance, Work and Health are topics
that appear in many conversations, MovieAndTV is a topic that is only found in a
few dialogs, but is talked about for a very long time. Least frequent topics include
Car, Politics and Location with only about 30 examples each. All topic labels are

42 5. Evaluation

161Acquaintance

133Work

124Health

120MovieAndTV

115Family

102FoodAndDrink

100Education

93Travel

93Finance

77Personal

70Housing

60Music

54AnimalAndPlant

51Technology

48Clothing

44Sport

44Religion

44DateAndTime

43ComputerAndInternet

41Language

35Location

31Politics

31Car

0 20 40 60 80 100 120 140 160

Figure 5.1: Distribution of the 23 topic labels over all labeled dialog segments.

further summarized in table B.1 in the appendix along with examples of subtopics
covered by each of the labels.

Usually, the whole dataset should be divided into three subsets, for training, valida-
tion and testing, in order to strengthen the network against overfitting. But due to
the limited amount of labeled data and the complexity of the tasks, there are not
enough data for some to be used for validation and testing purposes only. Therefore,
the k-fold cross-validation scheme is applied. The idea is to break the training data
into k subsets and train the same number of neural networks on these subsets. Each
of the networks uses a different subset for testing, then randomly chooses one of the
remaining subsets for validation and the last k − 2 subsets are utilized for training.
After training the k models, their performances are averaged as an estimate of the
overall network performance. The advantage of this method is that all examples
are used for both training and testing, and each example is used for testing exactly
once.

In our case, the training dataset is divided into k = 10 subsets, which are hence
called the test cases. These test cases should be similar in their sizes and ideally
also have comparable distributions over the topic labels. But since examples of one
dialog need to stay together to keep the conversation flow, it is unfortunately not
possible to achieve similar label distributions for all test cases. Moreover, there are

5.1. Data Analysis 43

many topics that are insufficiently represented in some test cases and a few topics
that do not appear there at all. This creates a significant difference between these
test cases, so deviations in network performance depending on the test case used
can be expected. Details on the exact number of each topic label contained in the
test cases can be found in table 5.1 below. Additionally, the number of topic change
occurrences in each test case can be found in the last row. Table A.2 in the appendix
further lists for every test case which conversation files belong to it.

Topic label T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Acquaintance 9 16 16 0 18 10 1 17 40 34

AnimalAndPlant 0 17 4 4 0 0 19 0 4 6

Car 0 6 0 8 0 9 5 3 0 0

Clothing 5 1 12 0 9 2 4 9 6 0

ComputerAndInternet 0 0 0 0 0 0 11 0 13 19

DateAndTime 5 0 19 0 6 5 7 0 2 0

Education 4 15 23 7 0 2 10 6 22 11

Family 11 10 7 13 14 19 21 12 3 5

Finance 22 0 10 6 6 10 7 20 11 1

FoodAndDrink 0 16 17 4 12 23 0 13 5 12

Health 9 36 8 10 6 32 0 18 5 0

Housing 16 2 2 11 10 0 3 8 9 9

Language 21 0 0 3 7 0 5 0 5 0

Location 3 0 0 18 0 2 10 2 0 0

MovieAndTV 2 3 18 28 33 5 0 0 3 28

Music 0 0 5 17 0 5 18 0 0 15

Personal 0 3 32 8 11 1 0 10 6 6

Politics 0 0 5 0 0 4 0 7 15 0

Religion 10 9 0 0 0 9 16 0 0 0

Sport 10 4 5 0 2 6 4 4 9 0

Technology 5 3 0 2 7 3 4 0 16 11

Travel 9 14 13 11 12 9 0 6 15 4

Work 21 7 16 11 7 5 17 25 22 2∑
162 162 212 161 160 161 162 160 211 163

Topic change 27 36 47 27 40 38 39 35 41 30

Table 5.1: Number of examples of each topic label for every test case T1 to T10.
The last two rows show the overall number of examples and the number of topic
changes, respectively. While most test cases are about the same size, it is difficult
to achieve similar topic distributions among them.

44 5. Evaluation

5.2. Evaluation Metrics

The performance of a network is evaluated by comparing its calculated outputs with
the reference labels. Two kinds of evaluation metrics are employed to measure the
accuracy of the models. One of them is error rate, which is defined as the percentage
of model outputs that do not match with the reference labels for a given dataset
and is mathematically expressed by

error rate =
number of wrong outputs

total number of outputs
· 100.

Error rate is a simple way to evaluate the accuracy of neural networks, but it typically
does not provide enough information on whether the model is really a good classifier
or not. This particularly happens when the dataset is greatly unbalanced, which
means that the number of instances for each class is very different from each other.
For example on a dataset with two classes where 80% of the instances belong to the
first class and 20% to the second, a binary classifier could achieve an error rate of
20% by always returning the first class. A relatively low error rate of 20% might be
interpreted as a good performance, but the model is not very accurate since it will
classify every instance of the second class wrongly which can be serious mistakes in
some cases.

A better way of measuring a model’s accuracy is the F-measure or F-score and it
is computed by combining two other metrics which are the precision and the recall.
For classification tasks with multiple class labels, they can be calculated using the
confusion matrix. Table 5.2 shows a simple confusion matrix which summarizes the
results of a classification task involving 3 classes. Each of the rows represent a model
output class where the columns contain the reference classes. Therefore an entry in
the ith row and jth column is the number of results that are predicted as class i by
the model but actually belong to class j. Ideally, the confusion matrix is a diagonal
matrix consisting of non-zero entries only when i = j or at least have negligibly
small values for all the other entries.

Class 1 Class 2 Class 3
Class 1 88 2 2
Class 2 4 24 0
Class 3 2 0 17

Table 5.2: Example of a simple confusion matrix with 3 classes and the corresponding
classification results.

Precision and recall are calculated for each of the classes separately. While precision
for a class i is defined as the fraction of correct outputs among all class i outputs
made by the model, recall reflects the fraction of correctly predicted class i outputs
over the total amount of class i reference labels in the dataset. Given a confusion
matrix C with N classes, precision and recall for class i can be calculated by

5.3. Training Speed 45

precision(i) =
Cii∑

j=1,...,N Cij

, recall(i) =
Cii∑

j=1,...,N Cji

.

A high precision for a class means that more correct results than incorrect ones
were returned and the model is more exact, whereas a high recall means that most
instances of that class were found correctly and the model is more complete. Trying
to increase only precision or recall would usually reduce the other, hence it is required
to balance both values and combine them into a single measure, such as the F-score.
The traditional F-score is defined as the harmonic mean of precision and recall. For
class i it becomes

F-score(i) = 2 · precision(i) · recall(i)

precision(i) + recall(i)

and the overall score can be obtained by averaging the scores for each of the classes.
Like precision and recall, F-score reaches its best value at 1 and worst at 0. While
training on error rate only minimizes the overall model error, using F-score opti-
mizes the model performance on the two different aspects of model accuracy and is
generally a more significant measurement for tasks with high class imbalance. Hence
instead of error rate, we use F-score to train our network models and also in most
parts of the evaluation.

5.3. Training Speed

The time required to train our CNN models strongly depends on the hyperparameter
settings. A small network can be trained in less than 10 minutes on a NVIDIA Tesla
M2075 GPU where for a larger regularized model, it can take more than 100 minutes
for it to converge. But actually, a near convergence performance is usually already
achieved after a few epochs.

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

epoch

F
-s

co
re

training

validation

test

Figure 5.2: Model performance during training on the training, validation and test
dataset.

46 5. Evaluation

Figure 5.2 shows the performance of the first 15 training epochs on the training,
validation and test datasets. The model is trained on the tracking task, with a
learning rate of 0.1, filters of size 1 and 2, and 200 filters each. For the other two
tasks, a similar behavior can be observed. As shown in the diagram, the maximum
performance on the training set is already hit after 10 epochs and the model starts to
converge on the validation and test sets at the same time as well. But training usually
lasts for many more epochs while going back and forth before it finally converges. In
this case, it ends after the maximum number of 200 epochs is reached and is able to
obtain a test performance of 0.71. Since this is a significant improvement compared
to the score of 0.65 after 15 epochs, it is usually still beneficial to continue training
despite the additional effort.

5.4. Word Model

As described in section 2.3, the word model to convert raw words into continuous
vector representations can be trained using gensim’s word2vec tool. These models
are trained using a very large Wikipedia corpus which can be found on the same
page as the Wikipedia text8 corpus. It consists of 1 GB of English Wikipedia articles
and has got a vocabulary of over 1.4 million words. Since these texts are directly
taken from Wikipedia, they contain special text parts which are not contents of the
actual articles like XML tags and links. Hence the text corpus needs to be cleaned
up first by removing all the unnecessary parts. The remaining clean text files can
then be passed to gensim’s text8 iteration method to generate sentences which can
be used to train the word model.

Since word2vec training is an unsupervised task, there is no good way to objectively
evaluate the result. Google’s research group has released a testing set of over 23,000
syntactic and semantic test examples with each consisting of four words. In all
examples, the words follow the rule that the relationship between the first two words
is the same as between the last two words, e.g. ”Athens Greece Berlin Germany”
which describes a country and its capital. The testing set is divided into 18 categories
where four of them consist of examples with phrases, which are compositions of two
or more words. An overview of all test categories can be found in table C.1 in the
appendix. Gensim supports this evaluation set in exactly the same format as the
original tool and it returns the number of correct answers for each class separately
as well as an overall model accuracy. Although better performance on this test set
does not necessarily mean that the word model will also work better on our tasks,
but it is still worth trying to optimize the model and compare the performance in
combination with our neural network models.

Gensim’s implementation provides a large range of parameters and we experiment
with various parameter values to obtain a model with a greatly improved perfor-
mance. Using only the default configuration, the trained model evaluates 6,057 of
11,847 test examples correctly which relates to an accuracy of roughly 51.1%. While
some of the parameters achieve the best results at their default values, there are
a few other parameters that can be tuned to increase the model’s accuracy. One
of them is the size of the word vectors, the dimension of the vector space where
the word representations lie. Since the default value at 100 is relatively small, we
train models with increased sizes without changing the other parameter values. The
experimental results can be found in figure 5.3.

5.4. Word Model 47

100 200 300 400 500 600 700
50

52

54

56

58

60

word vector size

m
o
d
el

ac
cu

ra
cy

in
%

Figure 5.3: Overall accuracy of word models trained with different vector sizes and
other parameters at default values.

While the performance can be improved by increasing the vector size, it apparently
converges after reaching a vector size of 300 and peaks at an accuracy of 55.5%.
Training each of the sizes takes about the same time on a NVIDIA Tesla K20m
GPU, which is roughly 50 minutes. Although increasing the dimensionality does
not require more time to train, it might introduce new complexity to the CNN and
therefore a simpler word model should be preferred.

Another significant factor is the initial learning rate which drops linearly as training
progresses. Like for the word size, an improvement can be observed by changing
the given default value of 0.025 as shown in figure 5.4. Also here, a convergence
occurs after reaching a model accuracy of around 55% at a learning rate of 0.05.
When increasing the learning rate beyond 0.13, the performance rapidly falls down
to under 1%.

0.02 0.04 0.06 0.08 0.10 0.12
0

20

40

60

initial learning rate

m
o
d
el

a
cc

u
ra

cy
in

%

Figure 5.4: Overall accuracy of word models trained with different initial learning
rates and other parameters at default values.

48 5. Evaluation

Hence the best model performance can be achieved by choosing a learning rate be-
tween 0.05 and 0.1. Similar to the experiments on word size and learning rate,
several other parameters are evaluated as well and the results can be found in figure
C.1 in the appendix. Since by simply choosing the best value for each of the para-
meters does not yield a very good performance, further experiments are necessary to
find the optimal combination of parameters. Our final best model is trained with,
among others, a vector size of 200, a learning rate of 0.05 and 15 iterations over
the corpus. Training the model takes about 2 hours 44 minutes and it achieves an
overall accuracy of 71.5% on the test data. A detailed result for each test category
can also be found in table C.1.

Since a better word vector model does not automatically improve the overall per-
formance on the given tasks, further evaluations in combination with the CNNs are
required. Therefore, four word models with quite different accuracies are tested on
each of the three tasks and the results are summarized in figure 5.5.

55 60 65 70
0.5

0.6

0.7

0.8

0.9

1

word model accuracy in %

F
-s

co
re

track

topic pred

change pred

Figure 5.5: Results of experiments on the correlation between word model accuracy
and overall performance of the CNN for each of the three given tasks.

The CNNs are all trained on test case 1 and they also share the same set of pa-
rameters. The basic model described in 4.3.1 is used with a convolutional layer
consisting of filters of size 1 and 2, and 200 filters each. Learning rate is set to 0.1
for training and no regularization is applied. As seen in the experimental results
above, a significant performance improvement can be observed for each of the three
tasks. For the current topic tracking task, the F-score increases from 0.598 with
the word model trained with default parameters to 0.699 with the best word model
which is an excellent improvement of over 0.1. An even greater F-score increase of
about 0.12 from 0.764 to 0.875 is achieved for the topic change prediction task. And
finally, the performance for the next topic prediction task increases from 0.524 to
0.589, a slightly lower improvement of 0.065 compared to the other two tasks.

5.5. Hyperparameters

Our CNN models are trained with several hyperparameters which are set to fixed
values and are not changed during the entire training process. To evaluate each

5.5. Hyperparameters 49

of the hyperparameters in order to find optimal values, models are trained with
varying values of one parameter while keeping the remaining ones unchanged. Since
this optimization step is very time consuming, experiments are conducted with the
basic model only because a similar behavior can be expected for the other two
architectures. It is also not possible to test the various hyperparameter values on
all 10 test cases, hence we limit our experiments to test case 1 and try to find the
best parameter combination given these restrictions. For most of the experiments,
models are trained for all three given tasks and the performances are compared. The
following sections provide the results for the most interesting parameters, which are
filter size, number of filters and the learning rate. A brief summary of results on
other parameters can also be found below.

5.5.1. Filter Size

The first experiments are conducted to investigate the impact of different filter sizes.
Therefore, we apply 300 filters of the same size and compare the performance on each
of the three tasks. All models are trained with a learning rate of 0.1 and without any
form of regularization. The results are displayed in figure 5.6. Note that filter size
refers to the height of the filters, i.e. the number of words to be processed at once.
The width of the filters is equal to the length of the word vectors, so the actual size
of the filters is filter size times word vector length.

1 2 3 4 5

0.4

0.6

0.8

1

filter size

F
-s

co
re

track

topic pred

change pred

Figure 5.6: Results of experiments on different filter sizes for the convolutional layer
where 300 filters are used for each of the sizes.

As shown in the results, unigram filters are able to perform best and bigram filters are
close behind. Filters that span over four or more words loose a significant amount of
performance, especially for the tracking and topic prediction tasks. Although there
are local correlations in natural languages like in images, our CNNs do not seem to
benefit from these correlations. A possible explanation is the sparsity of the training
data, since longer word sequences are most likely rarely seen during training and the
network is unable to properly learn from them. Since the experiments only employ
filters of one size, it would also be interesting to combine filters of different sizes
which is further investigated in the following section.

50 5. Evaluation

5.5.2. Number of Filters

Similar to the experiments on the size of the filters, we train models with various
numbers of unigram and bigram filters. For example if the number of filters is set
to 100, this means that 100 filters of each filter size are used and hence results in
overall 200 filters. A comparison of the performances can be found in figure 5.7.

100 200 300 400 500
0.5

0.6

0.7

0.8

0.9

1

number of filters

F
-s

co
re

track

topic pred

change pred

Figure 5.7: Results of experiments on different numbers of filters for the convolu-
tional layer where filters of size 1 and 2 are used.

Although the F-score can be improved by increasing the number of filters of each size
from 100 to 300 (400 for the topic prediction task), it worsens again after a further
increase. Despite the fact that training with 1000 filters takes 50% more time than
600 filters, it does not achieve the desired improvement. Like for the filter size, the
reason for this behavior can be the sparsity of training data which is not enough to
train large networks and causes them to overfit. Further experiments on different
combinations of filter sizes and number of filters are conducted and the results can
be found in table 5.3.

Filter sizes Number of filters Track Topic pred Change pred
1, 2, 3 200 0.66 0.60 0.83
1, 2, 3 300 0.70 0.61 0.82
1, 2, 3 400 0.66 0.61 0.84

1, 2, 3, 4 200 0.68 0.57 0.84
1, 2, 3, 4 300 0.66 0.55 0.77

Table 5.3: Performance of different combinations of filter sizes and number of filters.
The last three columns contain the F-scores for the tracking, next topic prediction
and topic change prediction tasks, respectively.

For the tracking and next topic prediction tasks, the performance can be improved
by adding trigram filters in addition to the unigram and bigram filters. This is
not the case for the topic change prediction task because training for this task is
probably more vulnerable to overfitting since there are considerably less ”change”
than ”no change” examples.

5.5. Hyperparameters 51

5.5.3. Learning Rate

We also evaluate different values for the learning rate, a parameter defined in the
previous section 2.1.3 which influences both the quality and the speed of the training
algorithm. Usually, the learning rate should be neither too small nor too large in
order to achieve good results in relatively short training periods. Figure 5.8 gives a
summary of the experimental performances. All models employ filters of size 1, 2
and 3, and use 300 filters of each size.

0.05 0.10 0.15 0.20
0.5

0.6

0.7

0.8

0.9

1

learning rate

F
-s

co
re

track

topic pred

change pred

Figure 5.8: Results of experiments on training CNNs with different learning rates.

A similar behavior can be observed for all three tasks with each of them achieving the
best performance at a learning rate of 0.075. Since in most cases training continues
until the maximum number of epochs is reached, the training time is about the same
for each of the learning rates and lies between 30 and 40 minutes.

5.5.4. Other Parameters

Besides the three above mentioned hyperparameters, there are a few other parame-
ters that can be fine tuned. One of them is the size of the mini batches which defines
how many examples are processed by the model at once. Therefore the training data
is divided into batches of the specified size where only full batches can be used and
the remaining ones have to be omitted. The stochastic gradient descend algorithm
is altered to iterate over these batches instead of single examples and uses the batch
average likelihoods for calculating the gradients. Hence the batch size is a parameter
that can have influence on the overall model performance. In order to loose as little
examples as possible, only small batch sizes are tried out. The results show that a
size of 50 examples per batch performs best which leads to 26 or 27 mini batches
for training depending on the test case used.

Another parameter that can have an impact on the model’s performance is the
length of the dialog history. It specifies the number of previous dialog segments
which are used as network input in addition to the current dialog segment. All other
hyperparameter experiments are conducted on a history length of 0, i.e. without
the use of history. By including a history of one dialog segment in the input, the

52 5. Evaluation

model is able to achieve an F-score improvement of 0.02 on the tracking task, but
no performance gains on the other tasks. Increasing the history length even more
unfortunately only worsens the performance on all three tasks. Considering the
additional time needed to train the networks, which amounts to more than twice
the usual time, and the relatively low performance gain, we hence omit the use of
the history.

As described in 4.3.1.2, there are two non-linear functions that are often used as
activation function in CNNs. We evaluate both functions on all layers that imple-
ment an activation and the results demonstrate no significant differences between
the two schemes. Only for the tracking task, the ReLU function performs slightly
worse than tanh, although it is commonly better for convolutional layers. Since this
is not the case for our models and tasks, we use tanh as the non-linear activation
function for all layers. Detailed evaluation results for all parameters described in
this section can be found in table D.1 in the appendix.

5.6. Regularizations

After finding good values for each of the hyperparameters, we implement the regu-
larization schemes described in section 2.1.4. For L1 and L2 regularization weights,
values between 10−6 and 10−3 are tested. The results can be found in figure 5.9
where the models are trained with a learning rate of 0.075 and 300 filters of size 1,
2 and 3.

10−6 10−5 10−4 10−3
0.5

0.6

0.7

0.8

0.9

1

λ1

F
-s

co
re

track

topic pred

change pred

10−6 10−5 10−4 10−3
0.5

0.6

0.7

0.8

0.9

1

λ2

F
-s

co
re

track

topic pred

change pred

Figure 5.9: Results of experiments on different L1 (left) and L2 (right) regularization
weights λ1 and λ2.

Interestingly, the tasks tracking and next topic prediction show very similar behav-
iors for both L1 and L2 weights. But while the best models for the topic prediction
task are able to outperform not regularized ones by 0.02 with L1 and 0.03 with L2,
regularized models for the tracking task do not perform better than not regularized
ones. The L1 regularized models for the topic change prediction task are also not
able to outperform not regularized ones, but the best L2 regularized model achieves
an improvement of 0.01. Overall, the performance gains from L1 and L2 regulariza-
tions unfortunately are not as significant as desired for our CNNs and tasks.

Experiments are also conducted on dropout probabilities for different layers. Table
5.4 provides an overview of some obtained results.

5.7. Model Variations 53

Filter sizes Number of filters Dropout prob Track Topic pred Change pred
1, 2, 3 300 0.1, 0.0, 0.0 0.71 0.58 0.83
1, 2, 3 300 0.0, 0.1, 0.0 0.66 0.60 0.83
1, 2, 3 300 0.0, 0.0, 0.1 0.69 0.59 0.85

1, 2, 3, 4 300 0.1, 0.0, 0.0 0.74 0.62 0.86
1, 2, 3, 4 400 0.1, 0.0, 0.0 0.67 0.66 0.87
1, 2, 3, 4 400 0.1, 0.1, 0.0 0.69 0.63 0.86
1, 2, 3, 4 400 0.1, 0.0, 0.1 0.67 0.63 0.83

Table 5.4: Results on dropout probabilities applied to each of the layers. The three
numbers in the third column indicate the dropout probability for the convolutional,
pooling and output layer, respectively. The last three columns contain the F-scores
for the tracking, next topic prediction and topic change prediction tasks.

Dropout is applied to the convolutional, pooling and output layer which is indicated
by the three probability values in the third column of table 5.4. At first we test
different dropout probabilities on models with 300 filters of size 1, 2 and 3 (row
1 to 3 in the table), and none of them is able to outperform models of the same
size with no dropout. Increasing the dropout probability to 0.2 or 0.3 in any layer
mostly lowers the F-score. Since the dropout scheme is usually employed for large
networks, we further test it on two bigger models (row 4 and 5). These models
achieve new best scores for each of the three tasks which improve the former bests
by 0.02, 0.04 and 0.01, respectively. Row 6 and 7 contain results of models with two
dropout layers, but neither combination is able to outperform the models with only
the convolutional layer as a dropout layer.

We also test various combinations of dropout probabilities and L1 and L2 weights,
but no further improvement compared to using dropout alone can be observed in
most of the cases. Only for the topic change prediction task, the F-score can be
improved by 0.01 by adding a very small L2 term in addition to the convolutional
layer dropout. While L1 and L2 regularizations do not influence the training time,
dropout networks require about 50% more time to train. Although the two regulari-
zation schemes are able to slightly improve the performance of the CNNs when used
alone, these improvements unfortunately do not add up when combining both app-
roaches. Since dropout applied to the convolutional layer is able to achieve better
results regardless of the task, it is hence the preferred regularization method.

5.7. Model Variations

As described in section 4.3.2, a slightly more complex model is also employed in
addition to the basic architecture. The new complexity is introduced by adding one
or more hidden layers, but because of the sparsity of the data, only one hidden layer
is used. Figure 5.10 shows models trained with different hidden layer sizes where
the remaining parameters are the same as in the previous section. Hidden layers
with 300 or more neurons highly suffer from the large amount of parameters and
are hence trained with a dropout probability of 0.5. This enables huge performance
improvements ranging from 0.05 to over 0.1 which can be observed across all three
tasks. Since the results without dropout are rather poor, figure 5.10 already displays
the improved results.

54 5. Evaluation

200 400 600 800 1,0001,2001,400
0.5

0.6

0.7

0.8

0.9

1

hidden layer size

F
-s

co
re

track

topic pred

change pred

Figure 5.10: Results of experiments on CNNs with one hidden layer of various sizes.
Hidden layers of 300 or more units are trained with a dropout probability of 0.5
while smaller hidden layers do not employ dropout.

Similar behaviors can also be found here between the tracking and the next topic
prediction tasks. While models for these two tasks perform badly with small hidden
layers, for the topic change prediction task, they achieve their maximum with a
hidden layer of only 100 units. But despite the excellent improvements through
dropout, our best models with the additional hidden layer still do not outperform the
best basic models with scores that are close behind. This implies that we probably
do not even have enough data to effectively train one additional hidden layer which
causes the overall network performance to decrease.

The shortage of training data is even more visible for the word embedding architec-
ture described in section 4.3.3. These models should be able to learn word repre-
sentations which capture optimal word associations for our data and tasks. Hence,
the CNNs should also perform better compared to using word embeddings trained
on a different corpus. We evaluate models with various projection layer sizes, but
unfortunately they perform poorly for all three tasks. For example the best F-score
for the tracking task is 0.34 which is achieved with a projection layer size of 500 and
is far below the best score of 0.74 by using pre-trained word vectors. Similarly, for
the next topic prediction task, the best result is 0.28 when setting the size of the
projection layer to 300. It shows that our corpus consisting of roughly 480 KB text
data is simply not enough to train meaningful word embeddings compared to the 1
GB corpus used for word2vec. To further investigate this assumption, a word2vec

model is trained on our much smaller dialog corpus and employed in the basic model.
As expected, the results are lower than the ones achieved by the word embedding
models with for example a F-score of 0.27 for the tracking task.

5.8. Final Results

A comparison of the best models for each of the three network architectures can
be found in table 5.5. All models are evaluated on test case 1 where the multilayer
network consists of a hidden layer of size 300 and the word embedding network uses
a projection layer of size 500.

5.8. Final Results 55

Model Track Topic pred Change pred
Basic 0.749 0.642 0.826
Multilayer 0.678 0.570 0.815
Word Embedding 0.346 0.275 0.725

Table 5.5: Comparison of the best models for each of the three architectures. All
models are evaluated on test case 1. The F-scores for each of the tasks are given by
the last three columns.

Since both the multilayer and word embedding architectures are unable to outper-
form the basic network, the latter is employed for our final models which are trained
on each of the 10 test cases for cross-validation. All 30 models are trained using a
learning rate of 0.075, a batch size of 50, no dialog history and tanh as the activation
function. The models for the tracking task use 300 filters of size 1, 2, 3 and 4, and a
dropout probability of 0.1 in the convolutional layer. A similar configuration is also
employed for the next topic prediction task except for the number of filters which is
set to 400. Also for the topic change prediction task, 400 filters of each size are used
and an L2 regularization weight of 0.00005 is applied additional to dropout. Table
5.6 provides the results achieved by our final models. They are evaluated on each of
the 10 test cases and the three given tasks.

Test case Track Topic pred Change pred
T1 0.749 0.642 0.826
T2 0.727 0.542 0.826
T3 0.798 0.714 0.796
T4 0.738 0.665 0.837
T5 0.800 0.667 0.780
T6 0.752 0.654 0.812
T7 0.666 0.573 0.838
T8 0.755 0.676 0.820
T9 0.728 0.596 0.783
T10 0.744 0.606 0.876

Cross 0.750 0.652 0.818

Table 5.6: Results of our final models evaluated on each of the 10 test cases T1
to T10. The F-scores for each of the tasks are given by the last three columns.
The last row contains the cross-validation result which is an approximated overall
performance of the models.

Observations can be made that not all test cases are equally difficult, e.g. a high
tracking score of 0.800 is achieved for test case 5 while the best score for test case 7 is
only 0.666. But for most test cases, the resulting F-scores show similar values. The
difficulty of a test case also depends on the task it is trained for. There are test cases
that achieve good scores on both the tracking and the next topic prediction tasks,
but there are also test cases that perform better on one task than the other. Test
case 5 for example has a much higher F-score on the tracking task than test case
4, but their scores on the next topic prediction task are about the same. Although
a certain correlation between the scores of the tracking and next topic prediction
tasks can be observed, most of them seem to be rather unrelated to the scores for

56 5. Evaluation

the topic change prediction task. For example the top 2 scoring test cases 3 and 5 for
the tracking task obtain only one of the lower results for the topic change prediction
task. Also test case 10, which has rather average scores on the other two tasks, is
able to achieve the best F-score for the topic change prediction task. The results
for the prediction tasks seem to be influenced by the number of topic changes in the
test cases which especially yields for topic change prediction. The cross-validation
performance for each of the tasks can be found in the last row of table 5.6. Overall,
the best F-score of 0.818 is obtained for the topic change prediction task, which is
understandable since it only needs to decide between two classes. The tracking task
achieves a higher score of 0.750 compared to 0.652 for the next topic prediction task
which demonstrates that making topic predictions is indeed a more challenging task
than tracking the current topic.

More detailed results can be found in table 5.8, 5.9 and 5.10, which show the con-
fusion matrix for each of the tasks. For the multi-class tasks tracking and topic
prediction, the highest values for each of the topic labels lie on the diagonal of the
confusion matrix and most of the other matrix entries are comparably small. There
are some topics that often get mixed up for both tasks because of certain similar-
ities in the examples. For instance some of the Health examples are classified as
Personal and vice versa because Health is a topic where the speakers also talk a lot
about themselves. Hence it is probably very difficult for the models to differentiate
between these two in some cases. ComputerAndInternet and Technology are also
topics that share many similarities and thus it is possible that the models are some-
times unable to tell them apart. Other occasional mix-ups mostly also make sense,
like it is understandable that an example for Acquaintance is classified as Family
because both are topics about persons.

Figure 5.11 further provides the topic class F-scores and error rates calculated from
the confusion matrix for both multi-class tasks. It shows that in most cases, our
models are able to determine a majority of the labels for each class correctly. But
there are also topics, especially for the topic prediction task, where the error rate is
over 50%. All of these topics have only about 50 examples or less which is probably
one of the reasons for the bad performance. But there are also topics like Politics and
Language which only have 31 and 41 examples respectively, and achieve top scores
among all topic classes. On the other side, topics like Acquaintance, Work and Health
which have the most number of examples, are only able to obtain average scores.
Hence in addition to the amount of training examples, there is also a difficulty level
that influences the performance on the topic classes. While Politics and Language
are special topics where it is easy to find key words, topics like Acquaintance, Work
and Health are quite general and cover a lot of subtopics. The lowest scoring classes
ComputerAndInternet, Location and Personal are all topics that are either easily
mistaken for another or too general for the little amount of training examples.

After further investigation of the test results, we find out that except for semantically
similar topic classes, mistakes are also made right before or after a topic change for
the tracking task. This occurs because some dialog segments contain a topic change
themselves and only get one of the two topic labels assigned. In this case, the
model is not always able to choose the right one which is indeed a difficult decision.
Although the scores for the next topic prediction task are relatively high, it seems

5.8. Final Results 57

that the models are still not accurate enough when a topic change occurs. The
results for all topic changes in each of the 10 test cases is summarized in table 5.7.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
∑

Correct topic 9 10 14 7 14 15 12 13 11 7 112
Wrong topic 8 9 12 9 7 10 12 6 7 9 89
No change 10 17 21 11 19 13 15 16 23 14 159∑

27 36 47 27 40 38 39 35 41 30 360

Table 5.7: Results on topic changes for the next topic prediction task. Correct
topic means that the new topic is found correctly whereas wrong topic means that
although the change is predicted correctly, but not the new topic. No change means
that the model simply returns the topic label from the previous example. The last
row contains the overall number of topic changes for each of the test cases.

For example out of the 27 topic changes from test case 1, 9 new topics are predicted
correctly, another 8 changes are also predicted correctly but a wrong new topic is
chosen and in the last 10 cases, the model just returns the same topic label as for the
previous example. So the model is able to make correct topic predictions 33% of the
time and overall predict 63% of the changes in test case 1. The comparatively high
score for the entire test case is possible because there are not as many topic changes
as no changes which are mostly correctly predicted by the model. For the wrongly
selected new topics, the model often makes mistakes by choosing a semantically
similar topic class to the correct one. There are also many cases where the model
returns a new topic label although there is no actual topic change. But a similar
behavior can also be observed for the tracking task and it is probably because there
are several difficult example segments that the CNNs are not able to find the right
labels for. Overall, our models are able to correctly predict 31% of the new topics
and 56% of the topic changes from all 10 test cases.

The confusion matrix for the topic change prediction task in table 5.10 further
demonstrates the difficulty of the prediction task. Although it is trained to solely
predict the topic change, it is only able to return 31% of the changes correctly.
It does not achieve better results than models trained on all topic labels and this
is probably because the models are trained on many more ”same” examples than
”new” examples. In this case it can even happen that trained models only return
”same” and classify all ”new” examples wrongly. Our models still manage to predict
several ”new” examples correctly which is already a pretty good result. But as seen
previously as well, making prediction for changes in natural conversations is a much
more difficult task compared to tracking. Our results show that although not all
new topics and topic changes can be predicted correctly, the models are still able to
at least achieve accuracies of over 30%. Furthermore, the models for both prediction
tasks are mostly accurate when no topic change takes place.

58 5. Evaluation

A
cq

A
n
i

C
ar

C
lo

C
om

D
at

E
d
u

F
am

F
in

F
o
o

H
ea

H
ou

L
an

L
o
c

M
u
s

M
ov

P
er

P
ol

R
el

S
p

o
T

ec
T

ra
W

or
∑

A
cq

1
0
9

1
0

2
1

0
0

5
3

2
5

2
0

1
3

2
1

0
0

1
0

2
7

14
7

A
n
i

4
2
6

0
0

1
0

0
2

0
4

3
3

0
1

0
0

1
0

0
1

0
2

0
48

C
ar

1
0

2
1

0
0

0
0

1
1

1
1

1
0

0
0

0
1

0
0

1
0

0
1

30
C

lo
1

0
0

3
8

0
0

0
1

1
0

0
0

0
1

0
0

1
0

0
1

0
1

0
45

C
om

0
1

0
1

2
1

0
1

0
1

0
0

1
0

0
0

1
5

0
0

0
7

1
3

43
D

at
1

0
0

0
0

2
4

2
1

1
0

2
0

0
1

1
1

1
0

0
0

0
1

1
37

E
d
u

0
0

0
0

0
0

7
1

0
0

0
0

0
3

1
1

1
1

1
0

0
0

1
4

84
F

am
5

1
0

0
0

0
1

8
2

0
0

1
0

1
0

0
0

2
0

0
0

0
0

3
96

F
in

2
0

0
2

0
0

0
2

6
6

1
2

2
0

1
0

0
1

1
0

0
0

0
3

83
F

o
o

5
1

0
1

0
0

1
1

1
8
6

0
0

0
1

0
1

1
0

0
0

0
0

0
99

H
ea

3
3

0
1

0
0

1
5

0
2

8
4

1
0

0
0

3
13

0
0

0
0

0
1

11
7

H
ou

2
1

0
0

0
1

0
1

4
1

0
4
9

1
4

0
0

1
0

0
0

1
1

0
67

L
an

0
0

0
0

0
0

1
1

0
0

0
0

3
7

0
0

0
1

0
0

0
0

0
0

40
L

o
c

1
1

1
0

1
1

0
1

1
0

0
7

0
1
6

0
1

0
0

0
0

0
4

0
35

M
u
s

2
0

0
0

0
1

1
0

0
0

0
0

0
0

5
3

1
2

0
0

0
0

0
0

60
M

ov
7

1
0

0
0

2
1

0
0

1
3

1
0

0
1

8
9

6
0

0
0

0
0

2
11

4
P

er
2

0
0

0
1

0
4

2
1

0
8

0
0

0
0

1
4
9

0
0

0
1

1
4

74
P

ol
1

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
1

2
2

0
0

0
0

2
27

R
el

3
0

0
1

0
1

0
0

1
0

1
1

0
0

0
0

4
0

3
2

0
0

0
0

44
S
p

o
1

1
0

1
0

0
3

1
1

0
1

1
0

0
1

1
0

0
1

2
9

0
2

0
44

T
ec

1
0

0
0

4
0

2
0

1
0

0
0

0
0

1
1

0
0

0
1

3
4

0
2

47
T

ra
0

1
0

0
0

1
0

0
3

1
2

1
0

3
1

0
0

1
0

1
0

7
1

4
90

W
or

1
0

0
0

2
0

4
0

3
3

3
2

0
0

1
1

4
0

0
0

1
3

1
0
1

12
9

∑
15

2
38

22
47

31
31

94
10

6
89

10
2

11
6

72
42

30
63

10
4

96
25

33
35

44
90

13
8

16
00

T
ab

le
5.

8:
C

on
fu

si
on

m
at

ri
x

fo
r

th
e

tr
ac

k
in

g
ta

sk
co

n
ta

in
in

g
re

su
lt

s
fr

om
al

l
10

te
st

ca
se

s.
E

ac
h

co
lu

m
n

in
d
ic

at
es

a
p
re

d
ic

te
d

to
p
ic

la
b

el
an

d
th

e
ro

w
s

re
p
re

se
n
t

ac
tu

al
re

fe
re

n
ce

la
b

el
s.

T
op

ic
la

b
el

s
ar

e
ea

ch
ab

b
re

v
ia

te
d

b
y

th
ei

r
fi
rs

t
th

re
e

le
tt

er
s

fo
r

b
et

te
r

v
ie

w
.

T
h
e

su
m

of
ea

ch
co

lu
m

n
an

d
ro

w
ca

n
b

e
fo

u
n
d

in
th

e
la

st
co

lu
m

n
an

d
ro

w
,

re
sp

ec
ti

ve
ly

.

5.8. Final Results 59

A
cq

A
n
i

C
ar

C
lo

C
om

D
at

E
d
u

F
am

F
in

F
o
o

H
ea

H
ou

L
an

L
o
c

M
u
s

M
ov

P
er

P
ol

R
el

S
p

o
T

ec
T

ra
W

or
∑

A
cq

9
1

0
1

2
0

1
0

8
4

2
5

3
1

2
2

4
6

0
0

1
0

3
9

14
5

A
n
i

6
1
8

0
0

2
0

1
3

0
5

3
6

1
2

0
0

0
0

0
1

0
0

0
48

C
ar

4
0

1
6

1
1

0
1

0
0

0
0

1
0

1
1

0
0

0
0

0
2

1
2

31
C

lo
2

0
0

3
3

0
0

2
0

1
2

2
1

0
0

0
0

0
0

0
0

1
1

1
46

C
om

0
0

0
0

1
7

0
0

2
0

1
2

2
1

1
1

1
5

0
0

0
6

0
3

42
D

at
2

0
0

1
0

2
4

0
0

0
0

0
0

0
0

1
3

0
0

0
0

1
3

2
37

E
d
u

0
1

0
1

1
1

6
5

3
1

0
0

0
1

0
2

0
4

0
0

0
0

1
6

87
F

am
8

0
1

0
1

0
1

7
1

1
2

2
2

0
1

0
0

1
0

0
1

0
1

6
99

F
in

2
0

1
0

0
0

0
2

6
0

2
2

5
0

1
1

2
2

2
0

0
0

1
6

89
F

o
o

1
0

0
1

0
1

2
3

3
8
0

2
2

0
2

0
1

0
0

0
0

1
1

0
10

0
H

ea
7

1
0

3
0

0
2

3
2

4
8
1

2
0

0
0

3
8

0
1

1
0

1
3

12
2

H
ou

1
1

0
0

0
0

1
4

1
3

0
4
3

1
5

0
0

2
1

0
0

1
1

1
66

L
an

0
0

0
0

1
0

1
0

0
1

0
1

3
3

0
0

0
1

0
0

0
0

2
0

40
L

o
c

1
1

1
0

2
1

1
2

2
0

1
3

1
1
2

0
0

1
0

0
0

1
2

1
33

M
u
s

3
0

0
0

0
1

1
0

0
1

0
0

0
0

4
7

2
0

0
1

1
1

0
0

58
M

ov
8

1
0

0
0

1
0

1
1

1
8

1
0

0
1

8
1

6
1

0
0

1
0

3
11

5
P

er
7

0
0

0
2

0
6

2
0

0
11

0
1

1
0

5
3
4

0
0

0
1

0
3

73
P

ol
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

2
2

0
0

0
2

1
26

R
el

3
0

0
1

0
0

0
0

1
0

1
2

0
0

1
0

1
1

3
1

0
0

0
0

42
S
p

o
1

1
2

1
0

0
3

1
2

0
5

1
0

1
1

1
0

0
0

2
1

0
1

1
43

T
ec

2
0

1
0

2
1

1
2

2
1

1
1

0
0

1
0

1
0

0
0

2
3

1
5

45
T

ra
2

1
0

0
1

2
1

2
2

0
0

2
1

2
0

0
1

1
2

0
0

6
7

3
90

W
or

4
0

0
1

1
1

4
2

6
2

2
1

0
0

0
3

1
0

0
0

2
4

8
9

12
3

∑
15

5
25

23
45

31
34

93
11

1
89

10
7

12
8

79
41

31
59

10
6

75
28

35
26

41
93

14
5

16
00

T
ab

le
5.

9:
C

on
fu

si
on

m
at

ri
x

fo
r

th
e

n
ex

t
to

p
ic

p
re

d
ic

ti
on

ta
sk

co
n
ta

in
in

g
re

su
lt

s
fr

om
al

l
10

te
st

ca
se

s.
E

ac
h

co
lu

m
n

in
d
ic

at
es

a
p
re

d
ic

te
d

to
p
ic

la
b

el
an

d
th

e
ro

w
s

re
p
re

se
n
t

ac
tu

al
re

fe
re

n
ce

la
b

el
s.

T
op

ic
la

b
el

s
ar

e
ea

ch
ab

b
re

v
ia

te
d

b
y

th
ei

r
fi
rs

t
th

re
e

le
tt

er
s

fo
r

b
et

te
r

v
ie

w
.

T
h
e

su
m

of
ea

ch
co

lu
m

n
an

d
ro

w
ca

n
b

e
fo

u
n
d

in
th

e
la

st
co

lu
m

n
an

d
ro

w
,

re
sp

ec
ti

ve
ly

.

60 5. Evaluation

Same New
∑

Same 1030 210 1240
New 247 113 360∑

1277 323 1600

Table 5.10: Confusion matrix for the topic change prediction task containing results
from all 10 test cases. Each column indicates a predicted topic label and the rows
represent actual reference labels where ”same” means that the topic stays the same
and ”new” means that the topic changes to a new one. The sum of each column and
row can be found in the last column and row, respectively.

5.8. Final Results 61

0 20 40 60

27.6

25.6

48.9

51.2

26.2

15.4

53.4

29.6

19

63.6

17.5

34.8

33.6

20

32.6

28.3

25.3

35.1

59.5

28.3

48.4

62.5

37.2

21.7

21.1

27.7

34.1

27.3

18.5

33.8

21.9

11.7

54.3

7.5

26.9

28.2

13.1

20.5

14.6

15.5

35.1

51.2

15.6

30

45.8

25.9Acquaintance

Animal

Car

Clothing

Computer

Date

Education

Family

Finance

Food

Health

Housing

Language

Location

Music

Movie

Personal

Politics

Religion

Sport

Technology

Travel

Work

error rate

track topic pred

00.20.40.60.81

0.66

0.73

0.54

0.61

0.81

0.82

0.46

0.73

0.8

0.38

0.82

0.59

0.65

0.77

0.67

0.68

0.75

0.68

0.47

0.73

0.59

0.49

0.61

0.76

0.79

0.75

0.73

0.83

0.85

0.58

0.82

0.86

0.49

0.9

0.71

0.72

0.86

0.77

0.81

0.8

0.71

0.57

0.83

0.81

0.61

0.73

F-score

track topic pred

Figure 5.11: Final results for each of the topic labels evaluated on all 10 test cases.
Topic classes for both the tracking and the next topic prediction tasks are evaluated
with the F-score (left) as well as the error rate (right). Labels consisting of more
than one word are abbreviated by their first word.

62 5. Evaluation

6. Conclusion

In this work, we have described our approach to solve the tasks of topic tracking,
next topic prediction and topic change prediction in non-goal-oriented dialogs. We
have provided a formalized definition of dialog state and a detailed formulation of
the three given tasks. To solve these tasks, three different CNN architectures are em-
ployed which are the basic model, the multilayer network and the word embedding
network. The backpropagation algorithm is used to train our models and optimiza-
tion techniques like dropout, L1 and L2 regularization are further implemented to
improve the generalization ability of the models. In addition to CNNs, several word
models are trained as well which are used to convert raw words into continuous
vector representations. Since there are no labeled dialog corpora available which are
suited for our tasks, we have annotated our collected unlabeled data manually with
topic labels found during the data creation process.

Our models are evaluated thoroughly on the labeled dialog corpus which is divided
into 10 disjoint test cases. At first we discover, that the models can be trained in
a short time because a near convergence performance can already be achieved af-
ter 10 training epochs. But since continuing training can further obtain significant
improvements, it is still beneficial to train these networks until the final stopping
criteria are met. We further employ different word models to generate vector repre-
sentations for our basic model and results show that the overall performance of the
CNNs can be significantly increased by using a more accurate word model. After an
extensive evaluation of model and training hyperparameters, the optimal values for
each of these parameters are found. We also experiment with various settings for
the implemented regularization methods, but the performance gains are compara-
tively small, especially for the L1 and L2 regularizations. For dropout, only larger
networks are able to benefit from this scheme, but at the same time, we do not
have enough data to train more complex networks and hence have to be satisfied
with the small gains. The sparsity of data is also a huge problem for the multilayer
and the word embedding models. Both of them are unable to outperform the best
basic model, although they should be more powerful due to the extensions in their
architectures. We believe that with more training data, the additional parameters
of the multilayer model can be trained more effectively. Also for the word embed-
ding architecture, it is highly possible that it can outperform the basic architecture

64 6. Conclusion

given sufficient amount of training data. This can be seen through the performance
comparison of the word embedding model and the basic model which uses a word
model trained on our much smaller dialog corpus.

The final performance achieved by our CNN models is evaluated using the F-score
and for all 10 test cases. For the tracking task, our models obtain a cross-validation
score of 0.750. A score of 0.652 and 0.818 is achieved for the next topic prediction and
the topic change prediction task, respectively. Since there have been no well-known
works on topic tracking in non-goal-oriented dialogs before and the data that we
use is created by ourselves, there are no existing works to compare our results with.
But given the performance of various goal-oriented dialog state trackers, we can say
that our approach is able to obtain great results considering the high complexity
of the tasks. Especially for the tracking task, our model is fairly accurate, even
for some topic classes which are under-represented in the training data. However,
the prediction of a topic change seems to be a much more difficult task. Our topic
prediction models are only able to correctly predict 31% of the new topics and 56%
of the topic changes. Since there are less topic changes than no changes and our
models are mostly accurate when the topic does not change, the overall score for
the task is comparatively high. Despite the errors, we think that the performance of
our networks can still be considered as good. Predicting the topic in a conversation
is a task that is difficult even for human and all the more for computers. Given the
little amount of training data and the complexity of the tasks, our models are still
able to predict several new topics correctly and over half of the topic changes which
shows that CNN approaches can be effectively employed for not only tracking but
also for making predictions.

As seen in the results, the sparsity of training data is a major issue for training the
CNNs. Because of the time limit of this work, it is not possible to create a much
larger labeled dialog corpus, but for future works, it would be interesting to evalu-
ate our approach on more labeled conversations. With sufficient amount of training
data, it is possible that our multilayer and word embedding architectures can out-
perform the basic model. Other neural network architectures can be employed for
topic prediction as well, for example recurrent networks which have shown great per-
formance on various dialog state tracking tasks. Also hybrid models which combine
rule-based and neural network approaches have been successful on this field. By
considering the results of such a rule-based model, it is possible that the accuracy
of our CNNs can be further improved. Overall, there is still room for improvements
on the prediction accuracy for topic changes. This can be potentially achieved by
employing other information like using part-of-speech tagging and sentiment analy-
sis in addition to the utterances. Furthermore, since our approach only utilizes raw
dialogs which are outputs of the ASR component in a dialog system, it would be
interesting to also experiment with outputs of the SLU component.

Appendix

A. BilingBank Files

Corpus Filename Speakers (Age) Description

Miami herring01.cha Lauren (27) Two cousins in a restaurant
(eng, spa) Chloe (24)

herring02.cha Tomas (19) Telephone conversation
Miguel (21) between two friends

herring03.cha Ashley (37) Conversation in the communal
Jack (41) lounge area of an apartment

herring05.cha Noah (40) A couple at their house
Megan (41)

herring06.cha Jessica (43) A couple at their house
Nicholas (-)

herring07.cha Richard (22) Two workmates in a shopping
Sebastian (-) mall café

herring08.cha Melanie (39) A couple in their garden
Robert (42)

herring09.cha Claire (21) A couple at Florida
Luke (20) International University

herring10.cha Paige (33) Two co-workers at their
Sarah (34) workplace

herring11.cha Caleb (64) Conversation between brother
Grace (63) and sister

herring12.cha Miguel (22) Conversation at Miguel’s
Timothy (20) home

herring13.cha Leah (-) Conversation between co-
Vanessa (32) workers

herring14.cha Gabrielle (23) Conversation at Florida
Connor (20) International University

herring15.cha Brandon (-) Two friends at Florida
Evan (21) International University

66 Appendix

herring16.cha Abel (24) Conversation at Abel’s house
Ian (30)

herring17.cha Iris (25) Two friends at a café
James (-)

sastre01.cha Sofia (44) Two neighbours at Kevin’s
Kevin (57) house

sastre02.cha Ava (78) Luis and his mother at Luis’
Luis (55) place of work

sastre04.cha Emily (29) Two co-workers at their
Gianna (22) workplace

sastre06.cha Aaron (43) A couple in their living room
Alyssa (42)

sastre08.cha Paola (13) Paola and her grandmother
Audrey (63) at a friend’s house

sastre09.cha Kayla (48) Two sisters at Kayla’s
Valeria (60) workplace

sastre10.cha Jocelyn (35) Conversation between two
Jennifer (35) cousins

sastre11.cha Diego (30) Two friends at the researcher’s
Evelyn (60) house

sastre12.cha Samantha (41) Two sisters at Samantha’s
Madeline (48) house

sastre13.cha Cole (25) Conversation between friends
Elizabeth (19)

zeledon01.cha Carolina (21) Two classmates at Florida
Amelia (26) International University

zeledon02.cha Mathew (22) Two classmates at Florida
Rebecca (21) International University

zeledon03.cha Felipe (11) Two cousins at Felipe’s
Elena (19) house

zeledon04.cha Ethan (40) Two neighbors at Ethan’s
Henry (-) house

zeledon05.cha Maya (37) Conversation between two
Isabella (35) friends

zeledon06.cha Abigail (21) Two co-workers at Florida
Ella (19) International University

zeledon08.cha Marcela (45) Two neighbors at Marcela’s
Flavia (42) house

zeledon09.cha Chantal (12) Conversation between two
Gillian (9) cousins

A. BilingBank Files 67

zeledon11.cha Sean (25) Two friends at Florida
Antonio (21) International University

zeledon13.cha Ariana (18) Two friends at Florida
Avery (19) International University

zeledon14.cha Herminia (22) Two friends at Florida
Laurie (19) International University

Pilot holly.cha Alpha (46) Conversation at home
(eng, cym) Bravo (26)

Siarad davies2.cha Greta (23) Two close friends in a
(eng, cym) Gwylan (23) University meeting room

davies3.cha Tostig (15) Conversation recorded at the
Harold (13) University

davies17.cha Glain (35) Conversation between friends
Robin (31)

Table A.1: All files from the BilingBank corpora that are labeled and used as the
training dataset. These corpora are collected and transcribed at the Bangor Univer-
sity in Wales. The Miami corpus contains informal conversations between English-
Spanish bilinguals and the Pilot and the Siarad corpus are both recorded from
English-Welsh speakers.

68 Appendix

Test case Files

Test case 1 herring01.cha, herring16.cha,
sastre11.cha(1), zeledon11.cha,
davies17.cha

Test case 2 herring15.cha, sastre02.cha,
sastre12.cha, zeledon01.cha,
zeledon06.cha

Test case 3 herring06.cha, sastre08.cha,
sastre13.cha, davies2.cha

Test case 4 herring11.cha(1), sastre01.cha,
zeledon02.cha, zeledon09.cha

Test case 5 herring02.cha, herring05.cha,
herring07.cha(2), sastre04.cha,
zeledon04.cha

Test case 6 herring03.cha, herring12.cha,
herring17.cha(1), sastre06.cha,
holly.cha

Test case 7 herring08.cha, herring09.cha,
herring11.cha(2), herring17.cha(2),
sastre09.cha(1)

Test case 8 herring13.cha, sastre09.cha(2),
zeledon05.cha, zeledon08.cha

Test case 9 herring14.cha, sastre10.cha(1),
sastre11.cha(2), zeledon03.cha,
zeledon14.cha

Test case 10 herring07.cha(1), herring10.cha,
sastre10.cha(2), zeledon13.cha,
davies3.cha

Table A.2: The labeled dataset is partitioned into 10 test cases with 4 or 5 dialog
sessions each. There are a few very long conversations which are divided in half for
a better distribution of topics. This is indicated by the numbers in brackets where
(1) is the first half and (2) the second half of the dialog file.

B. Topic Labels 69

B. Topic Labels

Topic label Subtopics

Acquaintance Friend, person that the speaker knows well

AnimalAndPlant Pet, garden plant

Car Passenger car, truck

Clothing Clothes, accessory

ComputerAndInternet Computer equipment, website

DateAndTime Schedule, appointment

Education School, college, homework

Family Member of the family

Finance Budget, cost

FoodAndDrink Food, drink, restaurant

Health Health issue, medical treatment

Housing House, room, furniture

Language Characteristic of languages and words

Location Place, directions

MovieAndTV Movie, television program

Music Classic and modern music

Personal Speaker’s characteristic, mood and feeling

Politics Election, party, politician

Religion Religious belief and activity

Sport Sports, training, fitness

Technology Modern technology, electronic device

Travel Transportation, vacation spot

Work Work-related task, workplace, colleague

Table B.1: Overview of the 23 topic labels found during the labeling process. The
right column contains examples of associated subtopics which appear in the training
dataset.

70 Appendix

C. Word2vec Results

10−5 10−4 10−3 10−2
40

45

50

55

60

downsampling frequency

m
o
d
el

ac
cu

ra
cy

in
%

5 10 15 20 25 30 35 40
50

51

52

53

54

55

negative sampling size

m
o
d
el

ac
cu

ra
cy

in
%

5 10 15 20 25
40

45

50

55

60

window size

m
o
d
el

ac
cu

ra
cy

in
%

6 8 10 12 14 16 18 20
50

52

54

56

58

60

number of iterations

m
o
d
el

ac
cu

ra
cy

in
%

Figure C.1: Overall accuracy of word models trained with one varying parameter
while leaving the remaining ones at their default values. Top left shows models
which were trained with different downsampling frequency thresholds, so that words
with higher frequency in the training data are randomly downsampled. Top right
shows models trained with different number of noise words that should be drawn
for negative sampling. The models in bottom left were trained on various window
sizes which is the maximum distance between the current and the predicted word
within a sentence. Bottom right displays models trained with increasing number of
iterations over the corpus.

C. Word2vec Results 71

Category Example Accuracy

capital-common-countries Athens Greece Berlin Germany 93.3%

capital-world Abuja Nigeria Accra Ghana 83.0%

currency Argentina peso USA dollar 7.8%

city-in-state Chicago Illinois Dallas Texas 60.9%

family brother sister son daughter 91.2%

gram1-adjective-adverb calm calmly slow slowly 29.5%

gram2-opposite aware unaware clear unclear 46.0%

gram3-comparative bad worse big bigger 79.3%

gram4-superlative bad worst big biggest 77.6%

gram5-present-participle code coding debug debugging 67.2%

gram6-nation-adjective Brazil Brazilian Germany German 97.6%

gram7-past-tense falling fell going went 63.4%

gram8-plural banana bananas bird birds 84.3%

gram9-plural-verbs eat eats speak speaks 54.9%

newspapers Denver Denver Post Boston Boston Globe 100%

ice hockey Dallas Dallas Stars Boston Boston Bruins 100%

airlines Germany Lufthansa Canada Air Canada 100%

people-companies Tim Cook Apple Bill Gates Microsoft 50.0%

Table C.1: Overview of all categories from Google’s test data evaluated on the
word2vec model. The accuracy column contains results achieved by the overall best
word model trained with size = 200, alpha = 0.05, window = 8, sample = 0.0001,
negative = 25 and iter = 15.

72 Appendix

D. Parameter Performances

Batch size Track Topic pred Change pred
10 0.62 0.54 0.77
25 0.63 0.53 0.79
50 0.68 0.57 0.84

History length Track Topic pred Change pred
0 0.70 0.61 0.82
1 0.72 0.56 0.82
2 0.65 0.46 0.70

Activation function Track Topic pred Change pred
tanh 0.70 0.61 0.82
ReLu 0.66 0.61 0.83

Table D.1: Performance comparison of different values for the parameters batch size,
history length and activation function. Models for the batch size tests are trained
with size 1, 2, 3 and 4 filters, and 200 filters each. For the other two parameters, the
models consist of 300 filters with size 1, 2 and 3. The last three columns contain the
F-scores for the tracking, next topic prediction and topic change prediction tasks,
respectively.

Bibliography

[BeDFF10] A. C. Berg, J. Deng and L. Fei-Fei. Large Scale Visual Recognition
Challenge 2010, 2010.

[Bish06] C. M. Bishop. Pattern Recognition and Machine Learning. Springer.
2006.

[Blac05] G. W. Blackwood. Neural Network-based Language Model for Con-
versational Telephone Speech Recognition. Master’s Thesis, St.
Catherine’s College, Oxford, England, July 2005.

[BoRu06] D. Bohus and A. Rudnicky. A ‘K Hypotheses + Other’ Belief Up-
dating Model. In Proceedings AAAI Workshop on Statistical and
Empirical Approaches for Spoken Dialogue Systems, Boston, USA,
2006.

[CaVGB06] P. L. Callet, C. Viard-Gaudin and D. Barba. A Convolutional Neural
Network Approach for Objective Video Quality Assessment. IEEE
Transactions on Neural Networks, 17(5), September 2006, pp. 1316–
1327.

[CiMS12] D. Cireşan, U. Meier and J. Schmidhuber. Multi-column Deep Neu-
ral Networks for Image Classification. In 2012 IEEE Conference on
Computer Vision and Pattern Recognition, June 2012, pp. 3642–3649.

[CMML+11] D. Cireşan, U. Meier, J. Masci, L.Gambardella and J. Schmidhuber.
Flexible, High Performance Convolutional Neural Networks for Im-
age Classification. In International Joint Conference on Artificial
Intelligence, July 2011, pp. 1237–1242.

[CMMS12] D. Cireşan, U. Meier, J. Masci and J. Schmidhuber. Multi-column
Deep Neural Network for Traffic Sign Classification. Neural Networks,
32, 2012, pp. 333–338.

[CoWe08] R. Collobert and J. Weston. A Unified Architecture for Natural Lan-
guage Processing: Deep Neural Networks with Multitask Learning. In
Proceedings of the 25th International Conference on Machine Learn-
ing, New York, NY, USA, 2008, pp. 160–167.

[CWBK+11] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu and
P. P. Kuksa. Natural Language Processing (almost) from Scratch.
Computing Research Repository, abs/1103.0398, 2011.

74 Bibliography

[DeSt07] D. DeVault and M. Stone. Managing Ambiguities Across Utterances
in Dialogue. In Proceedings Workshop on the Semantics and Prag-
matics of Dialogue, Trento, Italy, 2007.

[DLBB16] F. Dernoncourt, J. Y. Lee, T. H. Bui and H. H. Bui. Robust Dialog
State Tracking for Large Ontologies. Computing Research Repository,
abs/1605.02130, 2016.

[DNMLe11] C. Danescu-Niculescu-Mizil and L. Lee. Chameleons in Imagined
Conversations: A New Approach to Understanding Coordination of
Linguistic Style in Dialogs. In Proceedings of the Workshop on Cog-
nitive Modeling and Computational Linguistics (ACL 2011), 2011.

[FaCl54] B. Farley and W. Clark. Simulation of Self-organizing Systems by
Digital Computer. Transactions of the IRE Professional Group on
Information Theory, 4(4), September 1954, pp. 76–84.

[Fell05] C. Fellbaum. Wordnet and Wordnets. In Encyclopedia of Language
and Linguistics, Oxford, 2005, pp. 665–670.

[GBFH14] E. Grefenstette, P. Blunsom, N. de Freitas and K. M. Hermann. A
Deep Architecture for Semantic Parsing. Computing Research Repos-
itory, abs/1404.7296, 2014.

[GlBB11] X. Glorot, A. Bordes and Y. Bengio. Deep Sparse Rectifier Neural
Networks. In Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics (AISTATS-11), 15. Journal of
Machine Learning Research - Workshop and Conference Proceedings,
2011, pp. 315–323.

[GlBe10] X. Glorot and Y. Bengio. Understanding the Difficulty of Train-
ing Deep Feedforward Neural Networks. In Aistats, 9, May 2010,
pp. 249–256.

[GoBC16] I. Goodfellow, Y. Bengio and A. Courville. Deep Learning. MIT
Press. http://www.deeplearningbook.org, 2016.

[GrSc09] A. Graves and J. Schmidhuber. Offline Handwriting Recognition with
Multidimensional Recurrent Neural Networks. In Advances in Neural
Information Processing Systems 22, Vancouver, BC, December 2009,
pp. 545–552.

[Hend15] M. Henderson. Machine Learning for Dialog State Tracking: A Re-
view. In Proceedings of The First International Workshop on Ma-
chine Learning in Spoken Language Processing, 2015.

[HeTW14a] M. Henderson, B. Thomson and J. Williams. The Second Dialog State
Tracking Challenge. In Proceedings of the SIGDIAL 2014 Conference,
2014.

[HeTW14b] M. Henderson, B. Thomson and J. Williams. The Third Dialog State
Tracking Challenge. In Proceedings IEEE Spoken Language Technol-
ogy Workshop, December 2014.

http://www.deeplearningbook.org

Bibliography 75

[HeTY13] M. Henderson, B. Thomson and S. Young. Deep Neural Network
Approach for the Dialog State Tracking Challenge. In Proceedings of
the SIGDIAL 2013 Conference, Metz, France, August 2013, pp. 467–
471.

[HeTY14a] M. Henderson, B. Thomson and S. Young. Robust Dialog State
Tracking Using Delexicalised Recurrent Neural Networks and Un-
supervised Adaptation. Proceedings IEEE Workshop on Spoken Lan-
guage Technology, 2014.

[HeTY14b] M. Henderson, B. Thomson and S. Young. Word-Based Dialog State
Tracking with Recurrent Neural Networks. In Proceedings SIGDIAL
Conference on Discourse and Dialogue, Philadelphia, USA, January
2014, pp. 292–299.

[HiNA03] R. Higashinaka, M. Nakano and K. Aikawa. Corpus-based Discourse
Understanding in Spoken Dialogue Systems. In Proceedings of the
41st Annual Meeting on Association for Computational Linguistics -
Volume 1, Stroudsburg, PA, USA, 2003, pp. 240–247.

[HSKS+12] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever and
R. Salakhutdinov. Improving Neural Networks by Preventing Co-
adaptation of Feature Detectors. Computing Research Repository,
abs/1207.0580, 2012.

[HSMD+00] R. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas and
H. S. Seung. Digital Selection and Analogue Amplification Coexist in
a Cortex-inspired Silicon Circuit. In Nature, 405, June 2000, pp. 947–
951.

[IvLa67] A. G. Ivakhnenko and V. G. Lapa. Cybernetics and Forecasting Tech-
niques. American Elsevier Pub. Co. 1967.

[JHLC+16] Y. Jang, J. Ham, B.-J. Lee, Y. Chang and K.-E. Kim. Neural Dialog
State Tracker for Large Ontologies by Attention Mechanism. Proceed-
ings IEEE Workshop on Spoken Language Technology, 2016, pp. 531–
537.

[JoZh14] R. Johnson and T. Zhang. Effective Use of Word Order for Text Cate-
gorization with Convolutional Neural Networks. Computing Research
Repository, abs/1412.1058, 2014.

[JoZh15] R. Johnson and T. Zhang. Semi-supervised Convolutional Neural
Networks for Text Categorization via Region Embedding. In Ad-
vances in Neural Information Processing Systems 28, pp. 919–927.
Curran Associates, Inc., 2015.

[JXYY13] S. Ji, W. Xu, M. Yang and K. Yu. 3D Convolutional Neural Networks
for Human Action Recognition. IEEE Transactions on Pattern Ana-
lysis and Machine Intelligence, 35(1), January 2013, pp. 221–231.

76 Bibliography

[KaGB14] N. Kalchbrenner, E. Grefenstette and P. Blunsom. A Convolutional
Neural Network for Modelling Sentences. Computing Research Repos-
itory, abs/1404.2188, 2014.

[KDBW+16a] S. Kim, L. F. D’Haro, R. E. Banchs, J. Williams and M. Hender-
son. The Fourth Dialog State Tracking Challenge. In Proceedings
International Workshop on Spoken Dialog Systems, January 2016.

[KDBW+16b] S. Kim, L. F. D’Haro, R. E. Banchs, J. Williams, M. Henderson and
K. Yoshino. The Fifth Dialog State Tracking Challenge. In Pro-
ceedings IEEE Spoken Language Technologies Workshop, December
2016.

[KiBa14] S. Kim and R. E. Banchs. Sequential Labeling for Tracking Dynamic
Dialog States. In Proceedings SIGDIAL Conference on Discourse and
Dialogue, Philadelphia, PA, U.S.A., June 2014, pp. 332–336.

[Kim14] Y. Kim. Convolutional Neural Networks for Sentence Classification.
Computing Research Repository, arXiv:1408.5882, 2014.

[KrSH12] A. Krizhevsky, I. Sutskever and G. E. Hinton. ImageNet Classifi-
cation with Deep Convolutional Neural Networks. In Advances in
Neural Information Processing Systems 25, 2012, pp. 1097–1105.

[KTSL+14] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar and
L. Fei-Fei. Large-Scale Video Classification with Convolutional Neu-
ral Networks. In IEEE Conference on Computer Vision and Pattern
Recognition, June 2014, pp. 1725–1732.

[KVLM+15] R. Kadlec, M. Vodolan, J. Libovicky, J. Macek and J. Kleindienst.
Knowledge-based Dialog State Tracking. Proceedings IEEE Work-
shop on Spoken Language Technology, April 2015, pp. 348–353.

[LaTr00] S. Larsson and D. R. Traum. Information State and Dialogue Man-
agement in the TRINDI Dialogue Move Engine Toolkit. Natural Lan-
guage Engineering, 6(3-4), September 2000, pp. 323–340.

[LBOM12] Y. LeCun, L. Bottou, G. B. Orr and K. Müller. Efficient Backprop.
In Neural Networks: Tricks of the Trade. Springer, 2012, pp. 9–48.

[LeBH15] Y. LeCun, Y. Bengio and G. Hinton. Deep Learning. In Nature, 521,
May 2015, pp. 436–444.

[LeEs13] S. Lee and M. Eskenazi. Recipe For Building Robust Spoken Dialog
State Trackers: Dialog State Tracking Challenge System Description.
In Proceedings of the SIGDIAL 2013 Conference, Metz, France, Au-
gust 2013, pp. 414–422.

[LGTB97] S. Lawrence, C. L. Giles, A. C. Tsoi and A. D. Back. Face Recogni-
tion: A Convolutional Neural Network Approach. IEEE Transactions
on Neural Networks, 8(1), 1997, pp. 98–113.

Bibliography 77

[LiCY14] M. Lin, Q. Chen and S. Yan. Network in Network. In International
Conference on Learning Representations, 2014.

[LiWu17] M. Li and J. Wu. The MSIIP System for Dialog State Tracking
Challenge 4, pp. 465–474. 2017.

[LPSP15] R. Lowe, N. Pow, I. Serban and J. Pineau. The Ubuntu Dialogue Cor-
pus: A Large Dataset for Research in Unstructured Multi-Turn Di-
alogue Systems. Computing Research Repository, arXiv:1506.08909,
July 2015.

[MacW07] B. MacWhinney. The TalkBank Project. In Creating and Digitizing
Language Corpora: Synchronic Databases, 1, 2007, pp. 163–180.

[MCCD13] T. Mikolov, K. Chen, G. Corrado and J. Dean. Efficient Estima-
tion of Word Representations in Vector Space. Computing Research
Repository, arXiv:1301.3781, 2013.

[McPi43] W. S. McCulloch and W. Pitts. A Logical Calculus of the Ideas Imma-
nent in Nervous Activity. The Bulletin of Mathematical Biophysics,
5, December 1943, pp. 115–133.

[MeBW13] A. Metallinou, D. Bohus and J. Williams. Discriminative State
Tracking for Spoken Dialog Systems. In Proceedings of the 51st An-
nual Meeting of the Association for Computational Linguistics, 2013,
pp. 466–475.

[MiPa69] M. Minsky and S. Papert. Perceptrons: An Introduction to Compu-
tational Geometry. MIT Press. 1969.

[MMMK03] M. Matsugu, K. Mori, Y. Mitari and Y. Kaneda. Subject Indepen-
dent Facial Expression Recognition with Robust Face Detection Us-
ing a Convolutional Neural Network. Neural Networks, 16(5), 2003,
pp. 555–559.

[MSCC+13] T. Mikolov, I. Sutskever, K. Chen, G. Corrado and J. Dean. Dis-
tributed Representations of Words and Phrases and their Compo-
sitionality. Advances in Neural Information Processing Systems,
arXiv:1310.4546, 2013.

[RDSK+14] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg and
L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge, 2014.

[ŘeSo10] R. Řeh̊uřek and P. Sojka. Software Framework for Topic Modelling
with Large Corpora. In Proceedings of the LREC 2010 Workshop
on New Challenges for NLP Frameworks, Valletta, Malta, May 2010,
ELRA, pp. 45–50.

[ReXY14] H. Ren, W. Xu and Y. Yan. Markovian Discriminative Modeling for
Cross-domain Dialog State Tracking. Proceedings IEEE Workshop
on Spoken Language Technology, 2014.

78 Bibliography

[RHHD56] N. Rochester, J. Holland, L. Haibt and W. Duda. Tests on a Cell
Assembly Theory of the Action of the Brain Using a Large Digital
Computer. IRE Transactions on Information Theory, 2(3), Septem-
ber 1956, pp. 80–93.

[Rose58] F. Rosenblatt. The Perceptron: A Probabilistic Model for Informa-
tion Storage and Organization in The Brain. Psychological Review,
1958, pp. 65–386.

[RuHW86] D. E. Rumelhart, G. E. Hinton and R. J. Williams. Learning Repre-
sentations by Back-propagating Errors. In Nature, 323, 1986, pp. 533–
536.

[SaGa14] C. D. Santos and M. Gatti. Deep Convolutional Neural Networks for
Sentiment Analysis of Short Texts. In 25th International Conference
on Computational Linguistics, Dublin, Ireland, August 2014, pp. 69–
78.

[SaZa14] C. D. Santos and B. Zadrozny. Learning Character-level Represen-
tations for Part-of-Speech Tagging. In Proceedings of the 31st Inter-
national Conference on Machine Learning, 32, Bejing, China, June
2014, pp. 1818–1826.

[Schm93] J. Schmidhuber. System Modeling and Optimizationn. Habilita-
tion Thesis, Technical University of Munich, Munich, Germany, April
1993.

[SCZY14a] K. Sun, L. Chen, S. Zhu and K. Yu. A Generalized Rule-based Tracker
for Dialogue State Tracking. Proceedings IEEE Workshop on Spoken
Language Technology, 2014.

[SCZY14b] K. Sun, L. Chen, S. Zhu and K. Yu. The SJTU System for Dialog
State Tracking Challenge 2. In Proceedings SIGDIAL Conference
on Discourse and Dialogue, Philadelphia, PA, U.S.A., June 2014,
pp. 318–326.

[SEZM+13] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus and Y. Le-
Cun. OverFeat: Integrated Recognition, Localization and Detec-
tion using Convolutional Networks. In Computer Vision and Pattern
Recognition, 2013.

[SHGD+14] Y. Shen, X. He, J. Gao, L. Deng and G. Mesnil. Learning Seman-
tic Representations Using Convolutional Neural Networks for Web
Search. April 2014, pp. 1725–1732.

[SHKS+14] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and
R. Salakhutdinov. Dropout: A Simple Way to Prevent Neural Net-
works from Overfitting. Journal of Machine Learning Research, 15,
2014, pp. 1929–1958.

[SiZi14a] K. Simonyan and A. Zisserman. Two-Stream Convolutional Networks
for Action Recognition in Videos. Computing Research Repository,
abs/1406.2199, 2014.

Bibliography 79

[SiZi14b] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks
for Large-scale Image Recognition. In Computer Vision and Pattern
Recognition, 2014.

[SLJS+14] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke and A. Rabinovich. Going Deeper with
Convolutions. In Computer Vision and Pattern Recognition, 2014.

[Smol86] P. Smolensky. Parallel Distributed Processing: Explorations in the
Microstructure of Cognition. pp. 194–281. MIT Press, Cambridge,
MA, USA, 1986.

[SUEY+17a] H. Shi, T. Ushio, M. Endo, K. Yamagami and N. Hori. Convolutional
Neural Networks for Multi-topic Dialog State Tracking, pp. 451–463.
2017.

[SUEY+17b] H. Shi, T. Ushio, M. Endo, K. Yamagami and N. Horii. Convolu-
tional Neural Networks for Multi-topic Dialog State Tracking. In Lec-
ture Notes in Electrical Engineering, 427. Springer Singapore, 2017,
pp. 451–463.

[SUEY+17c] H. Shi, T. Ushio, M. Endo, K. Yamagami and N. Horii. A Multichan-
nel Convolutional Neural Network For Cross-language Dialog State
Tracking. Computing Research Repository, abs/1701.06247, 2017.

[SuLW16] Y. Su, M. Li and J. Wu. The MSIIP System for Dialog State Track-
ing Challenge 5. Proceedings IEEE Workshop on Spoken Language
Technology, 2016.

[Tech15] Technology Review. The Face Detection Algorithm Set To Revolu-
tionize Image Search, February 2015.

[Thea16] Theano Development Team. Theano: A Python Framework for
Fast Computation of Mathematical Expressions. arXiv e-prints,
abs/1605.02688, May 2016.

[ToPo89] D. S. Touretzky and D. A. Pomerleau. What’s Hidden in the Hidden
Units? In BYTE, 14:8, August 1989, pp. 227–233.

[WaLe13] Z. Wang and O. Lemon. A Simple and Generic Belief Tracking Mech-
anism for the Dialog State Tracking Challenge: On the Believability
of Observed Information. In Proceedings of the SIGDIAL 2013 Con-
ference, Metz, France, August 2013, pp. 423–432.

[Werb75] P. J. Werbos. Beyond Regression: New Tools for Prediction and
Analysis in the Behavioral Sciences. Harvard University. 1975.

[WHHS+89] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano and K. J. Lang.
Phoneme Recognition Using Time-delay Neural Networks. IEEE
Transactions on Acoustics, Speech and Signal Processing, 37(3),
March 1989, pp. 328–339.

80 Bibliography

[Will13] J. Williams. Multi-Domain Learning and Generalization In Dialog
State Tracking. In Proceedings of the SIGDIAL 2013 Conference,
Metz, France, August 2013.

[Will14] J. Williams. Web-Style Ranking and SLU Combination For Dialog
State Tracking. In Proceedings of SIGDIAL, June 2014.

[WiRH16] J. Williams, A. Raux and M. Henderson. The Dialog State Tracking
Challenge Series: A Review. Dialogue and Discourse, April 2016.

[WiYo07] J. D. Williams and S. Young. Partially Observable Markov Decision
Processes for Spoken Dialog Systems. Computer Speech and Lan-
guage, 21(2), April 2007, pp. 393–422.

[WRRB13] J. D. Williams, A. Raux, D. Ramachadran and A. Black. The Dia-
log State Tracking Challenge. In Proceedings of the SIGDIAL 2013
Conference, Metz, France, August 2013.

[WuGu15] H. Wu and X. Gu. Towards Dropout Training for Convolutional
Neural Networks. Neural Networks : The Official Journal of the
International Neural Network Society, 71, July 2015, pp. 1–10.

[WXXL+15] P. Wang, J. Xu, B. Xu, C. Liu, H. Zhang, F. Wang and H. Hao. Se-
mantic Clustering and Convolutional Neural Network for Short Text
Categorization. In Association for Computational Linguistics, 2015.

[YHNN17] K. Yoshino, T. Hiraoka, G. Neubig and S. Nakamura. Dialogue State
Tracking using Long Short Term Memory Neural Networks, 2017.

[ZeFe14] M. D. Zeiler and R. Fergus. Visualizing and Understanding Convolu-
tional Networks. In European Conference on Computer Vision, 2014,
pp. 818–833.

[ZhLe15] X. Zhang and Y. LeCun. Text Understanding from Scratch. Com-
puting Research Repository, abs/1502.01710, 2015.

[ZhWa15] Y. Zhang and B. C. Wallace. A Sensitivity Analysis of (and Practi-
tioners’ Guide to) Convolutional Neural Networks for Sentence Clas-
sification. Computing Research Repository, abs/1510.03820, 2015.

[ZhZL15] X. Zhang, J. J. Zhao and Y. LeCun. Character-level Convolutional
Networks for Text Classification. Computing Research Repository,
abs/1509.01626, 2015.

	1 Introduction
	1.1 Motivation
	1.2 Overview

	2 Basics
	2.1 Neural Networks
	2.1.1 Feedforward Neural Networks
	2.1.2 Convolutional Neural Networks
	2.1.3 Network Training
	2.1.4 Optimizations
	2.1.4.1 L1 and L2 Regularization
	2.1.4.2 Dropout

	2.2 Dialog State
	2.3 Distributed Representation of Words

	3 Related Work
	3.1 CNN Applications
	3.1.1 ImageNet Classification
	3.1.2 Text Classification
	3.1.3 Other Applications

	3.2 Dialog State Tracking
	3.2.1 Dialog State Tracking Challenge
	3.2.2 Elaborate Rule-based Tracker
	3.2.3 Multichannel CNN Tracker
	3.2.4 Other Methods
	3.2.5 Discussion

	4 Convolutional Neural Networks for Topic Prediction
	4.1 Task Definition
	4.2 Data Creation
	4.3 Models
	4.3.1 Basic Model
	4.3.1.1 Model Input
	4.3.1.2 Convolutional and Pooling Layer
	4.3.1.3 Output Layer

	4.3.2 Multilayer Network
	4.3.3 Word Embedding Network

	5 Evaluation
	5.1 Data Analysis
	5.2 Evaluation Metrics
	5.3 Training Speed
	5.4 Word Model
	5.5 Hyperparameters
	5.5.1 Filter Size
	5.5.2 Number of Filters
	5.5.3 Learning Rate
	5.5.4 Other Parameters

	5.6 Regularizations
	5.7 Model Variations
	5.8 Final Results

	6 Conclusion
	Appendix
	A BilingBank Files
	B Topic Labels
	C Word2vec Results
	D Parameter Performances

	Bibliography

