
Phoneme classification and alignment
through recognition on TIMIT

Bachelor’s Thesis of

Linus Schilpp

at the Department of Informatics

Institute for Anthropomatics and Robotics

Interactive Systems Lab

Reviewer: Prof. Dr. Alexander Waibel

Second reviewer: Prof. Dr.-Ing. Tamim Asfour

Advisor: M.Sc. Christian Huber

Second advisor: M.Sc. Juan Hussain

01. July 2021 – 31. October 2021

Abstract

In this work we explore a hybrid between ANNs and DTW for phoneme alignment on the

TIMIT dataset. The idea is to use the output probabilities of a neural phoneme recognition

model together with a probability-based DTW in order to align phonemes.

For phoneme recognition we achieve 18.1% FER which is an 4.0% improvement over the state-

of-the-art.

Our alignment results in a 86.3% phoneme boundary accuracy with a 20ms tolerance.

Furthermore phoneme classi�cation based on recordings of single phonemes is being tried

resulting in an accuracy of 66.68%.

Apart from that we introduce the CyclicPlateauScheduler, a new learning rate scheduler

combining triangular cyclic learning rates with ReduceLROnPlateau.

i

Zusammenfassung

In dieser Arbeit experimentieren wir mit Machine-Learning-Modellen für phonetische Aus-

richtung von Text und Audio, die aus neuronalen Netzen und Dynamic Time Warping (DTW)

zusammengesetzt sind. Diese werden auf dem TIMIT dataset ausgewertet. Ausgabewahrschein-

lichkeiten eines neuronalen Phonemerkenners werden an einen wahrscheinlichkeitsbasierten

DTW Algorithmus übergeben, der die Phoneme ausrichtet.

Für Phonemerkennung erreichen wir eine Frame Error Rate (FER) von 18.1%, was eine Ver-

besserung um 4.0% gegenüber dem state-of-the-art ist. Unsere Ausrichtung resultiert in einer

Phonemgrenzengenauigkeit von 86.3% mit 20ms Toleranz. Desweiteren erhalten wir eine Ge-

nauigkeit von 66.7% für Phonemklassi�kation basierend auf Audioaufnahmen von einzelnen,

getrennten Phonemen. Abgesehen davon führen wir den CyclicPlateauScheduler ein, der zykli-

sche Lernraten mit der ReduceLROnPlateau Technik in einen Lernraten-Scheduler kombiniert.

ii

Contents

Abstract i

Zusammenfassung ii

1 Introduction 1

2 Fundamentals 2
2.1 Audio processing . 2

2.1.1 Waveform and spectrograms . 2

2.2 What are Arti�cial Neural Networks (ANNs)? 3

2.3 Architectures of ANNs . 3

2.3.1 Feedforward neural network (FFNN) 3

2.3.2 Time delayed neural network (TDNN) 4

2.3.3 Recurrent neural network (RNN) . 6

2.3.4 Transformer . 9

2.4 Training ANNs . 10

2.4.1 Loss function . 10

2.4.2 Gradient Descent . 11

2.4.3 Learning rate schedulers . 13

2.4.4 Dropout . 13

2.4.5 Regularization techniques . 14

2.4.6 Checkpoints . 14

2.4.7 Early Stopping . 14

2.4.8 Data augmentation techniques . 15

2.5 Dynamic Time Warping (DTW) . 17

3 The TIMIT dataset 19

4 Definitions 20
4.1 Phoneme classi�cation . 20

4.2 Phoneme recognition . 20

4.3 Phoneme alignment . 21

5 Related work 22
5.1 Phoneme classi�cation . 22

5.2 Phoneme recognition . 22

5.3 Phoneme alignment . 23

iii

Contents

6 Methods 24
6.1 Technical setup . 24

6.2 Data preprocessing . 24

6.2.1 Training, validation and test dataset 24

6.2.2 Conversion of audio waveforms to spectrograms 24

6.2.3 Phoneme folding . 25

6.3 Models . 26

6.3.1 CNN for phoneme classi�cation . 26

6.3.2 Models for phoneme recognition and alignment 27

6.4 The CyclicPlateau scheduler . 28

6.5 Phoneme alignment through recognition and probability-based DTW 29

6.5.1 Cost functions . 30

6.5.2 Weighted cross-entropy loss . 31

7 Evaluation 32
7.1 Phoneme Classi�cation with CNN . 32

7.1.1 Logmel spectrogram images . 32

7.1.2 Error analysis . 32

7.1.3 Decibel-scale spectrogram images . 34

7.2 Phoneme Recognition . 35

7.2.1 Encoder Transformer . 35

7.2.2 BiRNNs . 36

7.2.3 Error analysis . 37

7.3 Further evaluation of the best model (GRU) . 38

7.3.1 Performance analysis . 38

7.4 Summary of phoneme recognition results . 42

7.4.1 Comparison with related works . 42

7.5 Summary of phoneme alignment results . 43

7.5.1 Comparison with related work . 43

8 Conclusion 44
8.1 Future work . 44

8.1.1 Improvements on the models presented in this work 44

8.1.2 Multi-language alignment . 45

Bibliography 46

iv

List of Figures

2.1 Waveform of the sentence "The gorgeous butter�y ate a lot of nectar." 2

2.2 Spectrogram of the sentence "The gorgeous butter�y ate a lot of nectar." . . . 2

2.3 Typical architecture of a FFNN, Image by Paskari CC BY-SA 3.0 [31] 3

2.4 Original TDNN architecture, Image by [45] used with permission of the authors 4

2.5 A TDNN unit, Image by [45] used with permission of the authors 4

2.6 Typical architecture of a CNN, Image by Aphex34 CC BY-SA 4.0 [3] 5

2.7 CNN �lters and feature maps, Image by Cecbur CC BY-SA 4.0 [8] 5

2.8 Basic RNN architecture, Image by Ixnay CC BY-SA 4.0 [23] 6

2.9 Architecture of bidirectional RNNs, Image by Incfk8 CC BY-SA 4.0 [22] 6

2.10 Architecture of a LSTM cell, Image by Guillaume Chevalier CC BY-SA 4.0 [9] . 7

2.11 Architecture of a GRU unit, Image by Jeblad CC BY-SA 4.0 [24] 8

2.12 3D plot of the function � (G,~) = (0.4G + 0.5 sinG)2 + (0.4~ + 0.5 sin~)2.

Created using GeoGebra [19] . 11

2.13 Illustration of a triangular cyclic learning rate 13

2.14 MelSpectrogram of the sentence "The gorgeous butter�y ate a lot of nectar." . 15

2.15 MelSpectrogram with Pitch Shift applied . 15

2.16 MelSpectrogram with Time Stretch applied . 15

2.17 MelSpectrogram with Frequency Mask applied 16

2.18 MelSpectrogram with Time Mask applied . 16

2.19 Visualization of DTW and Euclidian Matching, Image by XantaCross CC BY-SA

3.0 [50] . 17

3.1 Di�erent �le types for a single utterance . 19

6.1 Division into training, validation and test sets 24

6.2 Distribution of phonemes in the folded training dataset of TIMIT 26

6.3 Example learning rate curve using the cyclic plateau scheduler and parameters

of 6.3.2.3 . 28

6.4 Plot of 2>BCA>>C_: for di�erent : . 30

7.1 Training and validation loss of the CNN model using logmel spectrograms . . 32

7.2 Confusion matrix of the CNN model using logmel spectrograms 33

7.3 Training and validation loss of the CNN model using db-scale spectrograms . 34

7.4 Confusion matrix of the CNN model using db-scale spectrograms 35

7.5 Training and validation loss of the Encoder Transformer model 35

7.6 Confusion matrix of the Encoder Transformer model 36

7.7 Training and validation loss of the RNN, LSTM and GRU model 36

7.8 Confusion matrix of the GRU model for phoneme recognition 37

7.9 FER of the best model (GRU) for di�erent amounts of layers and hidden sizes . 38

v

List of Figures

7.10 Alignment accuracy (< 20ms) of the best model (GRU) for di�erent amounts of

layers and hidden sizes . 39

7.11 Alignment accuracy of the best model (GRU) for higher tolerances 39

7.12 FER of the best model (GRU) for di�erent types of data augmentation 41

7.13 Alignment accuracy of the best model (GRU) for di�erent types of data aug-

mentation . 41

vi

List of Tables

6.1 Phoneme folding step 1 . 25

6.2 Phoneme folding step 2 . 25

7.1 Impact of di�erent loss weights on the alignment accuracy of the best model

(GRU) . 40

7.2 Impact of di�erent DTW cost functions on the alignment accuracy of the best

model (GRU) . 40

7.3 Impact of di�erent DTW cost functions on the alignment accuracy of the best

model (GRU) . 42

7.4 Results of phoneme recognition on the core test set, using di�erent architectures 42

7.5 Results of phoneme recognition on the core test set, compared with related work 42

7.6 Results of phoneme alignment on the full test set, using di�erent architectures 43

7.7 Results of phoneme alignment on the full test set, compared with related work 43

vii

1 Introduction

The motivation for the experiments carried out in this thesis, is to create a system, capable of

highlighting the currently spoken text segment in a transcript for a playing audio�le.

Several partially con�icting goals were aimed for:

• High accuracy: The system should be able to highlight the correct segment

• Short runtime: The system should be lightweight and fast

• Multi-language: The system should be able to highlight transcripts of multiple lan-

guages, preferably also unseen ones to a certain degree

In order to reduce dependence on a certain language, we decided to create a phoneme-based

alignment system, as this makes it less dependent on a single language than word based

systems. Our general approach to this problem is to create a phoneme recognition system,

which includes timing information and then use the output of this system in order to align the

phonemes to the transcript. Initially, we try out phoneme classi�cation based on recordings of

single phonemes. Then we evaluate Transformer and Recurrent neural network (RNN) based

models on recordings of a whole sentence. Building on that, we create a phoneme alignment

system using probability-based Dynamic Time Warping (DTW), which is then re�ned using

custom cost functions and a weighted loss, in order to increase its accuracy.

Common approaches to align phonemes are Hidden Markow Model (HMM) based approaches

and neural networks and also hybrids between them. Solely HMM based models usually do

not achieve as high accuracies as hybrids between neural networks and HMMs.

Our work is structured in the following way:

First we outline the basic neural network architectures and other techniques we build on in

chapter 2. Next we take a look at the TIMIT dataset in chapter 3.

After that we de�ne the tasks and how performance is measured in chapter 4.

Then we summarize related work in chapter 5. Subsequently we explain our models and

training methods in chapter 6 and evaluate them in chapter 7.

Finally we conclude with closing remarks in chapter 8.

1

2 Fundamentals

2.1 Audio processing

2.1.1 Waveform and spectrograms

Figure 2.1: Waveform of the sentence "The gorgeous butter�y ate a lot of nectar."

While a raw audio waveform is a graphical representation of the shape of a wave [46], it is often

advantageous to convert them into a spectrogram, which resembles the frequency mapping

in the human ear [21]. A spectrogram is a visual representation of the loudness of a signal at

di�erent frequencies over time.[47] Humans perceive the di�erence of loudness between two

pitches on a logarithmic scale compared to frequency. The mel-scale has been modeled based

on this perception and is given by the formula:

< = 2595 · ;>610(1 +
5

700

)

where< denotes the value in the mel scale and 5 is the input frequency.

An example melspectrogram is shown in 2.2. In this example the loudness is visualized by the

lightness of the color where darker colors represent low loudness and lighter colors represent

high loudness.

Figure 2.2: Spectrogram of the sentence "The gorgeous butter�y ate a lot of nectar."

2

2 Fundamentals

2.2 What are Artificial Neural Networks (ANNs)?

Arti�cial Neural Networks are "computing systems inspired by biological neural networks"

[48]. They consist of units called neurons, which are connected by edges.

A neuron receives signals from incoming edges, which are weighted by multiplying each signal

with the weight value of each respective edge. The weighted signals are then summed up, with

an additional bias term added and passed to an activation function. The activation function

�nally determines the output a neuron, which is propagated along all its outgoing edges.

In a more formal way, the output of a single neuron can be written as [30]:

f (w · G + 1)

where:

w denotes the weight matrix containing the weights of all incoming edges

G is a vector containing the incoming signal values

1 is the bias vector

f the activation function.

2.3 Architectures of ANNs

2.3.1 Feedforward neural network (FFNN)

Figure 2.3: Typical architecture of a FFNN, Image by Paskari CC BY-SA 3.0 [31]

The general architecture of a feedforward neural network is depicted in Figure 2.3.

It consists of an input layer, one or several hidden layers and an output layer. Each layer is

fully connected to its adjacent layers. Signals start propagating from the neurons in the input

layer, passing through the hidden layers to the the output layer.

3

2 Fundamentals

2.3.2 Time delayed neural network (TDNN)

Figure 2.4: Original TDNN architecture, Image by [45] used with permission of the authors

Feature extraction in neural networks is often performed using Time delayed neural networks.

They were originally introduced by Waibel et al. in [45] and operate by sliding �lter matrices

across the time axis of an input feature matrix. Inputs covered by a window are then fed into a

TDNN unit, which calculates the output for each timestep by multiplying all values with the

the corresponding weight value of the �lter matrix and then applying an activation function

on their weighted sum, as visualized in 2.5. The weight entries of the �lter matrix are the same

for each timestep, that is processed by the sliding window and are later updated using gradient

descent.

Figure 2.5: A TDNN unit, Image by [45] used with permission of the authors

4

2 Fundamentals

By using the output matrix as input feature for the next layer, a hierarchical feature extraction

can be achieved as shown in 2.4. An important advantage of TDNNs is that they are able to

extract features, while being insensitive to shifts in time [45].

2.3.2.1 Convolutional neural network (CNN)

Figure 2.6: Typical architecture of a CNN, Image by Aphex34 CC BY-SA 4.0 [3]

Convolutional neural networks are a special type of TDNN where the delay is applied on

the space instead of the time dimension. Their network architecture is inspired by biological

processes, namely the the organization of the animal visual cortex.[49] The main component

of CNNs are so-called convolutional layers, which produce their output based on a sliding

window calculation. At each window location the resulting value is obtained by performing

a component-wise multiplication of a �lter tensor and the area covered by the window and

then summing up the values and applying an activation function. This operation is called

convolution. Every �lter used, produces a new tensor called a feature map, as depicted in 2.7

Figure 2.7: CNN �lters and feature maps, Image by Cecbur CC BY-SA 4.0 [8]

In this example, the features maps (blue matrices) are being extracted from the input matrix

(large red matrix) using three �lters (small red matrices).

By combining convolutional layers with other types of layers such as pooling and fully con-

nected layers, a bottom-up hierarchical feature extraction can be achieved, as shown in 2.6

5

2 Fundamentals

2.3.3 Recurrent neural network (RNN)

Figure 2.8: Basic RNN architecture, Image by Ixnay CC BY-SA 4.0 [23]

Recurrent neural networks are "a class of neural networks, that allow previous outputs to be

used as inputs, while having hidden states"[2] An input sequence is processed in recurring

steps, consuming one input at a time. In 2.8 we see the input GC−1 (green) being passed to

hidden layers ℎC−1 (blue) whose result gives the output >C−1 (red). Additionally, a hidden state E

is is fed back to the next step The same process is repeated for the rest of the input sequence.

Several ways exist to calculate the next output >C and the next hidden state ℎC at each step. The

standard recurrent cell calculates the next hidden state ℎC and output ~C using the following

formulas [51]:

ℎC = f (,ℎℎC−1 +,GGC + 1)
~C = ℎC

where f denotes the activation function.,ℎ and,G are the weights and 1 is the bias.

2.3.3.1 Bidirectional RNN (BiRNN)

Figure 2.9: Architecture of bidirectional RNNs, Image by Incfk8 CC BY-SA 4.0 [22]

6

2 Fundamentals

Unidirectional RNNs are able to integrate information of the input sequence up to the pro-

cessed element. To be able to also integrate information of future elements of the sequence,

bidirectional RNNs (BIRNN) were introduced in [35]. The architecture of a BiRNN is visualized

in 2.9. As we can see, the input (bottom) is processed in order and reverse order (middle) and

then both outputs for each step are passed to the output layer (top)

2.3.3.2 Multilayer RNN

By passing the output sequence of an RNN into another, the depth of a RNN can be increased.

Multilayer RNNs work better on some tasks than shallower ones, even though the reason for

this is not theoretically clear.[16]

2.3.3.3 Long short-term memory (LSTM)

Figure 2.10: Architecture of a LSTM cell, Image by Guillaume Chevalier CC BY-SA 4.0 [9]

While RNNs are able to deal with varying sequence length, they are prone to the so-called

vanishing gradient problem, which happens during backpropagation (see 2.4.2.2) This happens

due to signals tending to vanish during gradient calculation [17], which e�ectively limits RNNs

to shorter sequences. In order to overcome this limitation, a mechanism to store long-term

information was introduced in [18]: The long short-term memory cell, which is capable of

storing long-term information in its cell state.

Several variations of LSTM cells exist, such as LSTM cells with forget gate and peephole

connection, which where proposed in [15]. The forget gate allows the cell to remove information

from the cell state, while the peephole allows the cell to overcome a lack of information, caused

by not having direct connections between the gates and cell state [51]. In �gure 2.10 we can

see a LSTM cell with forget gate and without peephole connection. This type of LSTM cell can

7

2 Fundamentals

be described using the following formulas [51]:

5C = f
(
,5 ℎℎC−1 +,5 GGC + 1 5

)
8C = f (,8ℎℎC−1 +,8GGC + 18)
2̃C = tanh (,2̄ℎℎC−1 +,2̄GGC + 12̄) ,
2C = 5C · 2C−1 + 8C · 2̃C
>C = f (,>ℎℎC−1 +,>GGC + 1>)
ℎC = >C · tanh (2C)

5C is the output of the layer of the forget gate (leftmost orange layer in �gure 2.10). This output

determines how much information of the cell state 2C−1 will be preserved. For instance if 5C = 0

all information will be thrown away.

8C and 2C are the outputs of the layers of the input gate (second and third orange layer in �gure

2.10), which are being used for adding information to the cell state.

Finally the the result of of the layer of the output gate (rightmost orange layer in �gure 2.10 is

being used for deciding which information will be output [51].

2.3.3.4 Gated Recurrent Unit (GRU)

Figure 2.11: Architecture of a GRU unit, Image by Jeblad CC BY-SA 4.0 [24]

Since LSTMs are computationally rather complex, a simpler architecture was proposed in [10]:

the Gated Recurrent Unit. GRUs combine the forget and input gates into a single update gate

[51]. A GRU cell can be described using the following formulas [51] and is shown in �gure 2.11.

AC = f (,AℎℎC−1 +,AGGC + 1A) ,
IC = f (,IℎℎC−1 +,IGGC + 1I)
ˆℎC = tanh

(
,¯ℎℎ (AC · ℎC−1) +,¯ℎGGC + 1I

)
ℎC = (1 − IC) · ℎC−1 + IC · ˆℎC .

8

2 Fundamentals

2.3.4 Transformer

The transformer uses an encoder-decoder structure where the encoder maps an input sequence

(G1, . . . , G=) to a sequence of continuous representations I = (I1, . . . , I=), which are then

autogressively decoded to an output sequence (~1, . . . ~<) [44].

2.3.4.1 Attention

Attention is a method that allows neural networks to focus more on certain parts of an input.

It maps a query and a set of key-value pairs to an output, by summing up the values that are

scaled by weights. The weights are calculated using a compatibility function, taking the query

and key as input [44].

2.3.4.2 Multi-Head Attention

The transformer uses an attention mechanism, allowing it to focus on di�erent representation

subspaces and positions. Di�erent representations of queries, keys and values are calculated

using linear projections that are learned. The attention is then calculated in parallel on all

projections, which are then concatenated and projected again [44]. Mathematically, this can be

described as:

MultiHead (&, ,+) = Concat (head 1, . . . , head h), $

where head i = Attention

(
&,

&

8
, ,

8 ,+,
+
8

)
and Attention (&, ,+) = so�max

(
&)
√
3:

)
+

,
&

8
∈ R3modd ×3: ,,

8 ∈ R3model ×3: ,, +
8
∈ R3model ×3E

and, $ ∈ Rℎ3E×3model

2.3.4.3 Positional encoding

Since information about the order of a sequence would be otherwise be lost, it is necessary to

add a positional encoding to the input and output embeddings, before passing them into the

the input or output stack. For the transformer model, positional encoding is calculated as:

%�(?>B,28) = sin

(
?>B/10000

28/3model

)
%�(?>B,28+1) = cos

(
?>B/10000

28/3model

)
where each position is mapped to an individual sinus function [44].

2.3.4.4 Encoder

The encoder is composed of # > 1 layers. Each layer has two sublayers. The �rst sublayer

contains a Multi-Head-Attention mechanism and the second sublayer contains a fully-connected

FFNN. The output of the Multi-Head-Attention or the output of the FFNN together with the

9

2 Fundamentals

original input to the sublayer (residual connection) produces the output of the sublayer, after

applying a layer norm [44]. This can be described by the following formula:

output = LayerNorm(G + Sublayer(G))

2.3.4.5 Decoder

The decoder is composed of" ≥ 1 layers. Its layer architecture is almost identical to an encoder

layer, except that the Multi-Head Attention in the �rst sublayer is masked and there is another

sublayer between the �rst and second sublayer. The third sublayer contains one more Multi-

Head Attention, which uses the output of the encoder stack. Like in every other sublayer, its

output is produced after applying the layer norm, as described at 2.3.4.4. Furthermore, masking

in the �rst layers Multi-Head Attention mechanism is applied, to prevent that predictions at a

certain position 8 to use outputs at positions after 8 [44].

2.4 Training ANNs

2.4.1 Loss function

In order to measure the error of a neural network and be able to reduce it, a so-called loss

function is useful. The loss function should be di�erentiable, since the algorithm for reducing

the error described at 2.4.2.2 relies on partial derivatives. Otherwise, it needs to be approximated

by a di�erentiable function.

2.4.1.1 Cross-entropy loss

For classi�cation tasks, the Cross-entropy loss function is often applied, which is given by

; (G,~) = − 1

#

#∑
==1

�∑
2=1

log

(
exp(G=,2)∑�
8=1

exp (G=,8)

)
~=,2

where G denotes the input tensor and ~ the target tensor, both of shape (#,�)
(# = sequence length,� = number of classes) containing the output and target scores of the

neural network [11].

10

2 Fundamentals

2.4.2 Gradient Descent

2.4.2.1 Gradient descent

Figure 2.12: 3D plot of the function � (G,~) = (0.4G + 0.5 sinG)2 + (0.4~ + 0.5 sin~)2.

Created using GeoGebra [19]

In order to understand gradient descent, it is useful to imagine the loss function as a 2-

dimensional surface, where the G and ~ coordinates are variables that can be changed. These

variables are the weights and biases of the neural network. Learning using gradient descent

means to tune these parameters to reduce the overall loss, which can be visually understood as

a ball rolling downhill on a error surface [30] as visualized in 2.12. Since analytically �nding

the minimum of a function dependent on many parameters would be extremely di�cult, it

is more viable to gradually approach a minimum of the function. The gradient of the loss

function is the direction of highest slope. Therefore, the negative of this gradient is direction

of highest decrease. Consequently, adding a multiple of the negative of the gradient to the

current parameter vector always reduces the loss, if it is not near a local minimum.

Near a local minimum, the updated loss may become larger again, if the learning rate is too high.

This can be compared to a ball, that has a too high velocity, racing past the local minimum and

uphill again. Additionally it is possible, that the loss converges to a suboptimal local minimum,

when the learning rate is chosen too low, which is again very easy to imagine if compared to a

ball. For reducing the impact of inappropriate learning rates, it is often useful to use adaptive

learning rate scheduling, as described at chapter 2.4.3.

Mathematically, gradient descent can be described by iteratively applying an update rule, until

a certain stop criteria is met, e.g. a minimum factor, by which the loss should decrease at every

iteration. The update rule is given by [30]:

E → E′ = E − [∇�.

11

2 Fundamentals

where:

E is the vector of parameters of the neural network

[is the learning rate

∇� is the gradient of the loss function � with respect to E , given by:

∇� ≡
(
m�

mE1

, . . . ,
m�

mE<

))
.

The gradient of the loss function can be calculated using the backprogation algorithm.

2.4.2.2 Backpropagation

As the name implies, it works by propagating the gradient of each layer in the network

backwards to the previous layer, in order to calculate the gradient in the previous layer. For a

neural network, the backpropagation algorithm can be described by following steps [30]:

1. Input: Set the corresponding activation 01
for the input layer

2. Feedforward: For each ; = 2, 3, . . . , ! compute I; = F ;0;−1 + 1; and 0; = f (I;)

3. Output error X!: Compute the vector X! = ∇0� � f′(I!).

4. Backpropagate the error: For each ; = ! − 1, ! − 2, . . . , 2

compute X; = ((F ;+1))X;+1) � f′(I;)

5. Output: The gradient of the cost function is given by
m�

mF;
9:

= 0;−1

:
X;9 and

m�

m1;
9

= X;9

where:

0; is the activation output of layer ; − 1

F ;
is a matrix containing the weights of the connections between layer ; − 1 and layer ;

1; is a vector containing the bias of the neurons in layer ;

f denotes the activation function

! is the total number of layers in the neural network

2.4.2.3 Stochastic Gradient Descent

To reduce the variance of the change in gradient at each iteration of gradient descent, the

gradient is often accumulated. A so-called minibatch is processed by the neural network and

then the parameters are updated by averaging the gradients. While traditionally large batch

sizes were aimed for in order to reduce computation, time recent work has shown that small

batch sizes often lead to a better generalization performance [29].

12

2 Fundamentals

2.4.3 Learning rate schedulers

2.4.3.1 Cyclic learning rates

Figure 2.13: Illustration of a triangular cyclic learning rate

In 2017 Smith [38] proposed and showed the e�ciency of cyclic learning rates for training neural

networks, leading not only to better classi�cation accuracy, but also often faster convergence,

than without cyclic learning rates. Instead of only reducing the learning rate over time, it is

cycled between a lower and an upper bound, as visualized in �gure 2.18. According to Smith,

the learning rate is the most important hyper-parameter to tune for training neural networks.

2.4.3.2 ReduceLROnPlateau

The idea of ReduceLROnPlateau is to reduce the learning rate, once a certain metric like

validation loss has stopped improving [33]. For instance, if the validation loss at the end of the

epoch is still larger than 14BC ∗ (1 + CℎA4Bℎ>;3), the learning rate is reduced by a certain factor.

Additionally, a patience of = epochs can be set, which only lowers the learning rate, if there

was no improvement for = epochs and several other options such as cooldown are possible

[33].

2.4.4 Dropout

Over�tting in a neural network means, that it learns the labels for the data samples by rote,

instead of gaining the ability to generalize for other unseen samples. Dropout is an e�cient

and highly adopted method, that allows dealing with this, by randomly excluding a percentage

of the units and their connections during training. This forces the network to make decisions

for each single sample, based on di�erent subsets of the weights and consequently makes it less

likely that it memorizes whole samples and therefore reduces over�tting. During evaluation,

the predictions of all these thinned networks are then averaged by using the whole network

with smaller weights [40]. The dropout rate can range from 0 to 1, which corresponds to the

percentage of random units to be dropped during training.

13

2 Fundamentals

2.4.5 Regularization techniques

If a neural network has a lot of parameters available, it may use all of them, although it may be

able to make the same predictions with much less parameters. This is because the amount of

parameters is not accounted for.

2.4.5.1 L2 regularization

A simple method to optimize the network to use less parameters is L2 regularization, which

adds the squared magnitude of the weights to the loss function, thereby making the neural

network aim for using smaller and less weights. The loss function with l2 regularization can be

expressed as [43]:

!_ (w) = !(w) + _‖w‖22
where:

!(F) is the unregularized loss function

_ is the regularization factor

2.4.5.2 Weight decay

Another method to reduce the complexity of a neural network is weight decay, which exponen-

tially decays the weights of a neural network at each step. It can be described by the formula

[28]:

) C+1 = (1 − _)) C − U∇5C () C)
where:

_ is the rate of weight decay per step

∇5C () C) is the t-th batch gradient

U is the learning rate

For the Stochastic Gradient Descent Optimizer, weight decay is equivalent to L2 regularization,

but not for other optimizers such as Adam [28]. This often leads to confusion and the belief

that these techniques are the same.

2.4.6 Checkpoints

During training, the network may perform better and then worse between subsequent epochs

in terms of a metric like validation loss, which can be for instance due to the gradient bouncing

around a local minimal. When the model is then �nally evaluated, it may perform worse than

it would have with the weights of a previous epoch, where the metric was better. Therefore, it

is useful to make a checkpoint every time when the metric improved after an epoch.

2.4.7 Early Stopping

At some point, the the gradient is so close to a local minima, that the change after a gradient

update becomes almost insigni�cant, with almost no e�ect on most metrics. In such cases,

the training can be stopped early, to avoid wasting further computantial resources, when the

network does no longer improve.

14

2 Fundamentals

2.4.8 Data augmentation techniques

Figure 2.14: MelSpectrogram of the sentence "The gorgeous butter�y ate a lot of nectar."

Data augmentation can reduce over�tting and improve the accuracy of a neural network, by

arti�cally creating a greater variety of data based on the existing samples.

2.4.8.1 Pitch Shi�

Figure 2.15: MelSpectrogram with Pitch Shift applied

By shifting the pitch of an audio�le by a random number of semitones, a larger amount of

voice levels can be created.

2.4.8.2 Time Stretch

Figure 2.16: MelSpectrogram with Time Stretch applied

15

2 Fundamentals

Stretching or shrinking the duration of an audio�le randomly can generate more diversity of

faster and slower speakers.

2.4.8.3 Frequency Mask

Figure 2.17: MelSpectrogram with Frequency Mask applied

Setting random frequencies in an audio�le spectrogram to the mean value of the spectrogram

can make the model less dependent on single frequencies and more robust to noise.

2.4.8.4 Time mask

Figure 2.18: MelSpectrogram with Time Mask applied

Setting random time steps in a spectrogram to the mean value of the spectrogram can make

the model less dependent on single points in time.

16

2 Fundamentals

2.5 Dynamic Time Warping (DTW)

Figure 2.19: Visualization of DTW and Euclidian Matching, Image by XantaCross CC BY-SA

3.0 [50]

Dynamic Time Warping is an algorithm to �nd the optimal mapping between two similiar

sequences - and . of possibly di�erent lengths. Compared to simpler methods like euclidian

matching, which simply aligns the elements of both sequences based on their index, it can map

several identical elements of one sequence to a single element of the other sequence. This is

illustrated �gure 2.19.

The algorithm works by computing the minimal cost for each possible alignment using dynamic

programming and then backtracking along the resulting accumulated cost matrix, to obtain

the best path to map the �rst sequence to the second.

The accumulated cost matrix can be calculated by the following strategy [36]:

1. First row: � (1, 9) = ∑ 9

:=1
2 (G1, ~:) , 9 ∈ [1, "].

2. First column: � (8, 1) = ∑8
:=1

2 (G: , ~1) , 8 ∈ [1, #].

3. All other elements: � (8, 9) = min{� (8 − 1, 9 − 1), � (8 − 1, 9), � (8, 9 − 1)}+
2 (G8, ~ 9) , 8 ∈ [1, #], 9 ∈ [1, "])

In pseudocode this can be expressed as [36]:

17

2 Fundamentals

Algorithm 1: �22D<D;0C43�>BC"0CA8G (-,., 2)
= ← |- |;
< ← |. |;
3CF [] ← =4F [G ×<];
3CF (0, 0) ← 0;

for 9 = 1; 9 ≤ <; 9++ do // first row

3CF (1, 9) ← 3CF (1, 9 − 1) + 2 (1, 9);
end
for 8 = 1; 8 ≤ =; 8++ do // first column

3CF (8, 1) ← 3CF (8 − 1, 1) + 2 (8, 1);
end
for 8 = 1; 8 ≤ =; 8++ do // all other elements

for 9 = 1; 9 ≤ <; 9++ do
3CF (8, 9) ← min{3CF (8 − 1, 9);3CF (8, 9 − 1);3CF (8 − 1, 9 − 1)} + 2 (8, 9);

end
end
return 3CF ;

The alignment path is then obtained by starting at the right bottom of the matrix and iteratively

choosing the immediate cell to the left and top, which has the smallest cost.

In pseudocode this can be expressed as [36]:

Algorithm 2: $?C8<0;,0A?8=6%0Cℎ(3CF)
?0Cℎ[] ← =4F 0AA0~;

8 ← =D<_A>FB (3CF);
9 ← =D<_2>;D<=B (3CF);
while (8 > 1) & (9 > 1) do

if 8 == 1 then
9 ← 9 − 1;

else if 9 == 1 then
8 ← 8 − 1;

else
if 3CF (8 − 1, 9) == min{3CF (8 − 1, 9);3CF (8, 9 − 1);3CF (8 − 1, 9 − 1)} then

8 ← 8 − 1;

else if 3CF (8, 9 − 1) == min{3CF (8 − 1, 9);3CF (8, 9 − 1);3CF (8 − 1, 9 − 1)} then
9 ← 9 − 1;

else
8 ← 8 − 1; 9 ← 9 − 1;

end
end
path.add((8, 9));

end
return ?0Cℎ;

18

3 The TIMIT dataset

The TIMIT corpus is a collection of 6300 audio recordings of 10 sentences by 630 speakers of

eight major dialects of American English.

All recordings in total amount to about 5 hours of speech.

It was designed by a joint e�ort of the Massachusetts Institute of Technology (MIT), SRI

International (SRI) and Texas Instruments, Inc. (TI).[14]

Each sentence has sentence-, word-, and phoneme-level labels containing the text and precise

timings. The respective �le types for a single utterance (here SI1242) are shown in 3.1

Figure 3.1: Di�erent �le types for a single utterance

The dataset is already divided into a training set containing 3696 sentences and a test set of

1344 sentences. Additionally a smaller core test set can extracted, which is a subset of the test

sentences including 192 utterances.

19

4 Definitions

In order to avoid confusionsm as the terms "Phoneme classi�cation" and "Phoneme recognition"

are often used interchangeably in other works, we de�ne them for our work in the following

way:

4.1 Phoneme classification

Given:
Audio�le containing a single phoneme.

Goal:
Find the correct type of phoneme.

Quality measurements:

accuracy =
correct predicted phonemes

total phonemes

4.2 Phoneme recognition

Given:
Audio�le containing a whole sentence.

Goal:
Find the correct type of phoneme at every location in time.

Quality measurements:

frame error rate (FER) = 1 − correct predicted frames

total frames

where frames are created by splitting the audio �le into multiple frames with the same duration.

phoneme error rate (PER) =
edits

total phonemes

where the number of edits is calculated using the levenshtein distance between the predicted

sequence and the target sequence.

F1 score =
tp

tp + 1

2
(fp + fn)

where C? denote true positives, 5 ? denote false positives and 5 = denote false negatives.

20

4 De�nitions

4.3 Phoneme alignment

Given:
Audio�le containing a whole sentence and the sequence of phonemes. spoken

Goal:
Find the correct start and end times for all phonemes in the audio�le.

Quality measurements:

accuracy =

(
correct predicted boundaries

total boundaries

)
· 100%

where predicted phoneme boundaries are correct, if they are less than a certain tolerance in

milliseconds away from correct phoneme boundaries.

21

5 Related work

5.1 Phoneme classification

We did not �nd any other work that classify phonemes without context.

5.2 Phoneme recognition

In order to use a phoneme recognition model for aligning phonemes, it needs to be highly

precise in the time dimension. Therefore, a low frame error rate, which includes time infor-

mation is more desirable, than a low phoneme error rate in this context. For this reason, we

only compare our work with other works, that include FER in their results. Models that are

optimized for phoneme error rate achieve PER values as low as 8.3% [5].

Arel, Itamar, et al. (2011) [4] created a system using a semi-supervised Hierarchical Deep

Recurrent Network (HDRN) and HMM. Before actually training the HDRN model for phoneme

classi�cation, it is pretrained in an unsupervised manner, to learn the general structure of

speech signals, by passing spectrograms to it. Finally a HMM-based decoding is being used, in

order to obtain the PER value. Similiar to a CNN, this approach achieves a hierarchical feature

extraction. Mel Frequency Cepstral Coe�cients (MFCCs) are being used as input features

and the 61 phonemes are folded into 39, as proposed in [26]. Frames containing the silence

phoneme were removed only from the beginning and end of the evaluated sequence. Their

approach resulted in 24.16% FER and 23.60% PER.

Song, William and Cai (2015) [39] developed a system using a CNN combination with an RNN

and Connectionist Temporal Classi�cation (CTC) loss. The CNN network predicts phonemes

framewise and its output probabilities are then used together with the CTC loss by a RNN for

decoding the phoneme sequence. Logmel spectrograms are used as input features and the 61

phonemes are merged into 39, as proposed in [26]. Frames containing the silence phoneme

were not removed from evaluation. They achieve 22.1% FER and 29.4% PER.

Shulby, Christopher Dane, et al. (2019) [37] created a system based on a HMM, CNN and

Hierarchical Tree Support Vector Machine (HTSVM). The HMM labeler may serve for phoneme

boundary detection, although its use is not made clear. The output of the HMM labeler is

then used together with a spectrogram of the audio�le in a CNN feature extractor, which then

outputs to the HTSVM. Finally the output of the HTSVM is used together with the output of

the HMM labeler for PER smoothing, which then outputs phoneme labels. MFCCs are used as

input features and the phonemes are folded, as proposed in [26].

22

5 Related work

Frames containing the silence phoneme were all removed from evaluation. Their approach

results in 28% FER and 32% PER.

5.3 Phoneme alignment

Keshet et al. (2005) [25] developed a system based on discriminative learning. For input fea-

tures they use MFCC+Δ + ΔΔ , which includes the �rst and second derivatives of the cepstral

coe�cients. Based on kernel machines and large margin classi�ers, their model learns an

alignment function, mapping speech signal, phoneme representation and target alignment into

an abstract vector space. Separating correct alignments from incorrect ones is the goal of the

alignment function. Their approach resulted in a 92.1% agreement with a 20ms tolerance.

Hosom (2009) [20] created a system based on a hybrid between ANN and HMM. They used the

Bark frequency scale, which is similiar to the mel-scale for their spectrograms and performed a

custom phoneme folding: �rst mapping to 54 phonemes and then splitting some phonemes

which results in a set of 61 phonemes. The ANN receives a context window of 5 frames to make

a probability estimation for the phoneme at this location, which is then used by the HMM.

Additionally they incorporated several other features, such as intensity discrimination and

burst detection. They achieve a 93.36% agreement with a 20ms tolerance.

Stolcke et al. (2014) [41] developed a system combining ANN and HMM. They used several

di�erent types of input features such as MFCC and Perceptual Linear Prediction (PLP) and the

phoneme folding proposed by [20]. Using HMMs to perform a forced alignment, they further

improved the alignments, by adjusting them with ANN-based boundary-correction models. By

receiving phonetic context and duration features as input, these boundary correction models

predict a better location of the boundary. Their approach resulted in a 96.8% agreement with a

20ms tolerance, which is the best result we have found.

23

6 Methods

6.1 Technical setup

All program code of our experiments is written in the programming language Python and can

be found on GitHub. The CNN model for phoneme classi�cation is hosted at:

https://github.com/sugeedarou/BA_ForcedAlignment_CNN

The Transformer and RNN models can be found at:

https://github.com/sugeedarou/BA_ForcedAlignment

For phoneme classi�cation, we use the TensorFlow machine learning library by Google.

Phoneme recognition and alignment is performed using the PyTorch machine learning library

by Facebook. We switched to PyTorch after our initial experiments, since we found it much

easier to use.

6.2 Data preprocessing

6.2.1 Training, validation and test dataset

Figure 6.1: Division into training, validation and test sets

We use the given training and test split, as provided by the dataset creators (see �gure 3) and

test on the core subset for phoneme recognition and on the full test set for alignment as in

related work. Additionally, we remove the dialect sentences (SA sentences), since they exist

in both the training and test dataset, which is recommended by the authors of TIMIT [13].

Furthermore, 5% of the training set is being used for validation purposes.

The resulting division and respective utterance count for each of the training, validation and

test sets is shown in 6.1

For our phoneme recognition and alignment models we use the whole sentence, whereas

the phoneme classi�cation model only uses the waveforms of phonemes, extracted from the

utterances.

6.2.2 Conversion of audio waveforms to spectrograms

We use a frame length of 25ms and a stride of 10ms for the FFT window.

24

https://github.com/sugeedarou/BA_ForcedAlignment_CNN
https://github.com/sugeedarou/BA_ForcedAlignment

6 Methods

6.2.3 Phoneme folding

In the TIMIT dataset, 61 di�erent phonemes are distinguished. While this is certainly useful

for phonetic research, it is almost impossible to tell apart some phonemes.

For instance voiceless closures (e.g. of p, t, k, q) sound almost the same as the silence at the

beginning and end of a recording.

Therefore, we use a two-step mapping of these similiar phonemes to a single phoneme, as

proposed by [26].

First the following, phonemes are merged into a single one, as shown in table 6.1:

Phonemes Folded phoneme
’ux’, ’uw’ ’uw’

’axr’, ’er’ ’er’

’ax-h’, ’ax’ ’ax’

’em’, ’m’ ’m’

’nx’, ’n’ ’n’

’eng’, ’ng’ ’ng’

’hv’, ’hh’ ’hh’

’pcl’, ’tcl’, ’kcl’, ’qcl’ ’cl’

’bcl’, ’dcl’, ’gcl’ ’vcl’

’h#’, ’#h’, ’pau’ ’sil’

Table 6.1: Phoneme folding step 1

Additionally, all glottal stops (symbol ’q’) are being removed. This leaves 48 phonemes, which

are being used to train a phoneme recognition model.

When the phoneme recognition model outputs phonemes, they are further merged, as shown

in table 6.2:

Phonemes Folded phoneme
’cl’, ’vcl’, ’epi’, ’sil’ ’sil’

’el’, ’l’ ’l’

’en’, ’n’ ’n’

’sh’, ’zh’ ’zh’

’ao’, ’aa’ ’aa’

’ih’, ’ix’ ’ix’

’ah’, ’ax’ ’ax’

Table 6.2: Phoneme folding step 2

Finally we have 39 phonemes, that are being used as a result of classi�cation and recognition

and also for alignment. In order to be consistent with the best reported result for FER by [39],

we decided not to remove silence frames from evaluation. The resulting distribution of all

phonemes in the training dataset without dialect sentences is shown in �gure 6.2.3.

25

6 Methods

Figure 6.2: Distribution of phonemes in the folded training dataset of TIMIT

6.3 Models

6.3.1 CNN for phoneme classification

We train the CNN model InceptionV3[42] to classify the 48 phonemes and later fold them into

39 as described at 6.2. Even though we use transfer learning, the �ne-tuning �ag in TensorFlow

is set, which unfreezes the top layers of the pretrained model and therefore allows it to use more

trainable parameters. First we train the network based on logmel spectrograms of phonemes,

extracted from the sentences. After that we train on decibel-scale spectrograms.

Training configuration:

• batch size: 32

• optimizer: Adam

• dropout: 0.5 (which achieves the strongest regularization e�ect [6])

• regularizer: L2 (regularization_factor = 10
−4

)

After training for 30 epochs, we load the model from the checkpoint which had the lowest

validation loss and evaluate it on the core test set.

26

6 Methods

6.3.2 Models for phoneme recognition and alignment

In the same way we do for phoneme classi�cation (see 6.3.1), all phoneme recognition models

are trained on 48 phonemes, which are then folded into 39 phonemes for evaluation.

We calculate the FER, F1 score and alignment accuracy of each batch and then average the

results of all batches.

6.3.2.1 Autoregressive Transformer

Initially we experimented using autoregressive transformers which was not successful. All

attempts either resulted in the model assigning the same phoneme to all frames or similiar

confusion matrices as in �gure 7.1.2. For this reason, we then tried out an encoder-only model,

as described next.

6.3.2.2 Encoder-only Transformer

Our second transformer model consists of 8 stacked transformer encoders, with 8 heads and a

feed-forward layer as decoder. We also limited the transformer context to 128 frames, which

corresponds to 128 ∗ 10<B = 1.28B , since this reduces its memory consumption and therefore

allows using more encoder layers and heads. Furthmermore we use a feed-forward-layer before

the transformer encoder layers to transform the 80 mel values of each frame into 256, which is

the input size for the encoder. Additionally the �lterbank values are divided by 4 with 2 added,

which normalizes the values into the same range as character embeddings would be.

Training configuration:

• batch size: 16

• optimizer: AdamW (weight decay coe�cient: 10
−2

)

• lr scheduler: CyclicPlateauScheduler (initial_lr=1 · 10
−4

, min_lr=10
−10

, lr_patience=0,

min_improvement_factor=0.95, lr_reduce_factor=0.5, lr_reduce_metric=’val_loss’)

• positional dropout: 0.1

• transformer dropout: 0.1

• dropout: 0.5

• early stopping: patience=10, metric=’val_loss’

We chose a lower starting learning rate than for the BiRNN model and a rather strict

<8=_8<?A>E4<4=C_5 02C>A of 0.95, since the transformer model returned a NaN (not a number)

loss, when the learning rate was too high.

6.3.2.3 BIRNNs

Several di�erent types of RNNs were trained: BiRNN, BiLSTM and BiGRU.

27

6 Methods

Training configuration:

• batch size: 16

• optimizer: AdamW (weight decay coe�cient: 10
−2

)

• lr scheduler: CyclicPlateauScheduler (initial_lr=5 · 10
−4

, min_lr=10
−10

, lr_patience=0,

min_improvement_factor=0.97, lr_reduce_factor=0.5, lr_reduce_metric=’val_loss’)

• layer count: 8

• hidden states: 512

• layer dropout: 0.2

• dropout: 0.5

• early stopping: patience=10, metric=’val_loss’

It may be unclear, why we use an additional global learning rate scheduling, even though the

optimizer Adam is adapting the learning rate for each parameter already. Loshchilov, Ilya, and

Frank Hutter did analyse the Adam optimizer in [28] and came to the conclusion, that just

being an adaptive gradient algorithm "does not rule out the possibility to substantially improve

its performance by using a global learning rate multiplier".

6.4 The CyclicPlateau scheduler

Figure 6.3: Example learning rate curve using the cyclic plateau scheduler and parameters of

6.3.2.3

Since default cyclic learning rate schedulers do not take into account if the validation loss is

still improving, we decided to create a new learning rate scheduler.

The CyclicPlateauScheduler is a combination of an epoch-wise triangular cyclic learning rate

with ReduceLROnPlateau in a single scheduler. Boundaries for the cycles are adjusted at the end

of each epoch. The upper bound is the current learning rate and the lower bound is implicitly

28

6 Methods

de�ned as a fraction of the upper bound e.g.
1

4
· D??4A_1>D=3 . In pseudocode, the triangular

policy for each step can be expressed as:

Algorithm 3: CA08=8=6_BC4? (BC4?, BC4?B_?4A_4?>2ℎ, ;A)
ℎ0; 5 _BC4?B ← BC4?B_?4A_4?>2ℎ ′38E′ 2;

;>F4A_1>D=3 ← ;>F4A_1>D=3_5 A02C8>= · ;A ;
if BC4? < ℎ0; 5 _BC4?B then // interpolate upwards triangle line

2 ← BC4?

ℎ0; 5 _BC4?B
;

;A ← ;A + 2 · (;A − ;>F4A_1>D=3);
else // interpolate downwards triangle line

2 ← BC4?−ℎ0; 5 _BC4?B

ℎ0; 5 _BC4?B
;

;A ← ;A − 2 · (;A − ;>F4A_1>D=3);
end

Boundary adjustment is done, based on the change of a certain validation metric e.g. E0;830C8>=_;>BB

and given by:

Algorithm 4: E0;830C8>=_4?>2ℎ_4=3 (<4CA82B, ;A_A43D24_<4CA82, 14BC_;A_<4CA82_E0;,

<8=_8<?A>E4_5 02C>A, A43D24_<4CA82_C>>_ℎ86ℎ_2>D=C, ;A_?0C84=24, ;A,<8=_;A)
A43D24_<4CA82_E0; ←<4CA82B [;A_A43D24_<4CA82];
if A43D24_<4CA82_E0; > 14BC_;A_<4CA82_E0; ·<8=_8<?A>E4_5 02C>A then

A43D24_<4CA82_C>>_ℎ86ℎ_2>D=C ← A43D24_<4CA82_C>>_ℎ86ℎ_2>D=C + 1;

end
if A43D24_<4CA82_E0; < 14BC_;A_<4CA82_E0; then // metric improved

14BC_;A_<4CA82_E0; ← A43D24_<4CA82_E0; ;

end
if A43D24_<4CA82_C>>_ℎ86ℎ_2>D=C > ;A_?0C84=24 then // not enough improvement

;A ← max (;A · ;A_A43D24_5 02C>A, <8=_;A);
A43D24_<4CA82_C>>_ℎ86ℎ_2>D=C ← 0;

end

The goal of this scheduler is to allow the model to slow down when approaching a good local

minimum, while avoiding getting stuck in small valleys. The slowing down is achieved using

the adjustment of learning rate boundaries and small valleys should be avoided due to the

epoch-wise triangular learning rate, which encourages exploration.

6.5 Phoneme alignment through recognition and
probability-based DTW

We take the sequence of output probabilities of a phoneme recognition model together with the

target phoneme sequence for DTW input. Then we perform a standard DTW using a custom

cost function, which takes a probability vector and a target phoneme index as input.

29

6 Methods

6.5.1 Cost functions

Let G be a vector of the probability sequence and ~ an element of the target phoneme sequence.

Then the probability ? of phoneme with index ~, (0 ≤ ~ ≤ 38) is given by ? = G [~]. Conse-

quently, cost function based on the complementary probability of the target phoneme index

can be de�ned as:

2>BC?A>1018;8C~ (G,~) = 1 − ?
A better cost function can be de�ned, by assigning low probabilities an exponentially higher

cost than high probabilities. In [7], who also apply probability-based DTW to a di�erent

problem, we found a cost function de�ned as:

2>BC4G?>=4=C80; (G,~) = e
−?

Apart from that, a series of cost functions can be de�ned as:

2>BCA>>C_: (G,~) = 1 − ?1/: , : ∈ N

For : = 1 2>BCA>>C_: is identical to 2>BC?A>1018;8C~ .

Figure 6.4: Plot of 2>BCA>>C_: for di�erent :

As we can see in �gure 6.4, 2>BCA>>C_: maps high probabilities to a similiar cost, while increasing

the relative cost beween di�erent low probabilities as : increases.

The +1 term of 2>BC?A>1018;8C~ and 2>BCA>>C_: can be omitted, since DTW is shift invariant, but we

chose to include it as it makes semantically far more sense, since the cost error should be zero,

if the probability for a certain phoneme is 100%.

30

6 Methods

6.5.2 Weighted cross-entropy loss

To optimize the phoneme recognition models for boundary detection, we use a weighted

cross-entropy loss, which conditions the model to focus more on phoneme boundaries. If frame

label at index 8 − 1 is di�erent from frame label at index 8 , then we weight the loss around these

indices for instance in the following way (50,100,100,50):

;>BB_F486ℎCB [8 − 2] = 50

;>BB_F486ℎCB [8 − 1] = 100

;>BB_F486ℎCB [8] = 100

;>BB_F486ℎCB [8 + 1] = 50

while all other weights are set to 1. Then we calculate the loss using the following formula as

proposed by [27]:

; (G,~) = − 1∑#
:=1

F:

#∑
==1

�∑
2=1

F= log

(
exp(G=,2)∑�
8=1

exp (G=,8)

)
~=,2

As we can see, the weighted cross-entropy loss is very similiar to the default cross-entropy

loss de�ned at 2.4.1.1. The averaging on the sequence length = has been replaced with an

averaging over all loss weights and the loss for every element in the sequence is multiplied by

its respective loss weight.

For phoneme recognition, it is important to classify all frames correctly and not only near

phoneme transitions. Therefore we disable loss weighting for FER measurements.

31

7 Evaluation

In this section we evaluate the performance of di�erent model architectures. We made a

wrong mathematical assumption, that has a slight impact on the measured values. Instead

of calculating the mean of all accuracies for an individual sentence, we calculated the error

over a whole batch of 16 sentences. Nevertheless, the relative error of di�erent models is still

representative. Correctly measured values are given in our �nal recognition and alignment

results.

7.1 Phoneme Classification with CNN

7.1.1 Logmel spectrogram images

On the test set the model had an accuracy of 12.77%.

Figure 7.1: Training and validation loss of the CNN model using logmel spectrograms

As we can see in �gure 7.1, the convergence of the validation loss is very unstable. While the

training loss smoothly declines, the validation loss often varies greatly from epoch to epoch.

Additionally, we can see that the training loss is lower than the validation loss on average,

which is an indicator for over�tting.

7.1.2 Error analysis

Why did the CNN model fail to classify phonemes using logmel spectrograms? Evenly random

guessing out of the 39 phonemes would result in a accuracy of
1

39
≈ 2.56%. The model had an

accuracy of 12.77% . Therefore it did not just guess randomly.

32

7 Evaluation

By looking at the confusion matrix at 7.1.2, we can see that the model takes a shortcut to

decrease its error. Instead of actually learning to classify the phonemes, it seems to label most

phonemes as either ’sil’ or ’ix’ and some also as ’b’, ’d’, ’dh’, ’dx’, ’eh’, ’n’ or ’s’, while all other

phonemes are never predicted. Comparing this to the frequency distribution at 6.2.3, we can

conclude that what the model actually learns, is to classify every input as one of the most

frequent phonemes.

Figure 7.2: Confusion matrix of the CNN model using logmel spectrograms

7.1.2.1 Not enough training data?

First one might assume, that there is not enough training data with only 3512 utterances.

However, since every utterance contains several phonemes, this amounts to 82.760 images of

the 48 phonemes and therefore 1724 images per class on average. While this is not much, it is

supposed to be su�cient for training a CNN like InceptionV3 with transfer learning.

7.1.2.2 Overfitting?

There seems to be a small tendency towards over�tting as discussed at 7.1.1. We have taken

several strategies against this beforehand, using regularization techniques as described at 6.3.1.

Nevertheless, the di�erence between training and validation loss is probably not large enough

to explain the shortcut behaviour of the network.

7.1.2.3 Bad representation of data?

Since the same model performed reasonably good using decibel-scale spectrograms as discussed

in the next section, it is very likely that we either chose the wrong parameters in our logmel

33

7 Evaluation

extraction code or the resulting spectrograms are not well suited for the CNN architecture.

Nevertheless it is an interesting case to see, what a model does to increase its accuracy, when it

cannot learn from the provided data.

7.1.3 Decibel-scale spectrogram images

On the test set the model had an accuracy of 66.68%.

Figure 7.3: Training and validation loss of the CNN model using db-scale spectrograms

We stopped the training early after 15 epochs since the model over�tted.

As we can see in �gure 7.3, the model starts to over�t from epoch 6, since the training and

validation loss start to diverge. There is also a highest point in validation loss at epoch 7, where

the model probably over�tted the most, since the training loss curves continue smoothly at

this point.

7.1.3.1 Error analysis

From the confusion matrix in �gure 7.4 we can reason that the model is able to classify the

phonemes quite well, since major confusions such as ’m’ and ’n’ or or ’s’ and ’z’ are also hard

to distinguish for humans.

34

7 Evaluation

Figure 7.4: Confusion matrix of the CNN model using db-scale spectrograms

7.2 Phoneme Recognition

7.2.1 Encoder Transformer

Figure 7.5: Training and validation loss of the Encoder Transformer model

On the core test set the model had an FER of 36.3%. The PER was also very high with 87.8%. For

the F1 score we obtained 63.7%, which is a rather mediocre value. As we can see in �gure 7.5, the

convergence of the loss curves is very fast, which is likely due to the<8=_8<?A>E4<4=C_5 02C>A

of 0.95, which leads to faster decrease of the learning rate and therefore a faster �attening of

the curve.

35

7 Evaluation

Figure 7.6: Confusion matrix of the Encoder Transformer model

7.2.1.1 Error analysis

From the confusion matrix in �gure 7.2.1, we can reason that the most common mistakes of

the model are again phonemes, that are also hard to distinguish for humans, such as ’s’ and

’z’. Another signi�cant feature is the quadratic box of high classi�cation counts in the left top

corner, which contains confusions between di�erent ’a’ sounds. These are hard to di�erentiate

for humans too. Furthermore, a vertical line of high classi�cations counts goes through the

phoneme ’sil’, which is the silence phoneme. It means that the model predicts silence, even

though the correct label would be a di�erent phoneme. The reason for this are probably mainly

glottal stops, since they are short frames of silence inside sentence which makes it rather

di�cult to localize them exactly.

7.2.2 BiRNNs

Figure 7.7: Training and validation loss of the RNN, LSTM and GRU model

36

7 Evaluation

The BiRNN achieved a FER value of 20.9%, which is state-of-the-art. Its PER and F1 values

were 28.3% and 79.9% respectively. For the BiLSTM, we obtained a FER value of 18.4%, which is

much better than the BiRNN. Its PER and F1 values were 21.9% and 81.6%. The best result was

achieved by the BiGRU with 18.2% FER, 21.0% PER and a F1 score of 81.8%.

As we can see in 7.7, all RNN models have a very similiar convergence, with BiRNN performing

slightly worse and BiLSTM and BiGRU being almost on a par. The lower performance of the

BiRNN model is likely due to it missing a mechanism, to capture long term dependencies in the

input sequence. In 7.7we can also see, that the training loss is much higher than the validation

loss, which is due to the high amount of regularization by dropout and weight decay. Overall

the loss curves converge in a very stable way, without major outliers.

7.2.3 Error analysis

Figure 7.8: Confusion matrix of the GRU model for phoneme recognition

The confusion matrix in �gure 7.8 has the same signi�cant features as the EncoderTransformer

model at 7.2.1.

7.2.3.1 Recognition vs. alignment accuracy

One might wonder why the alignment accuracy for 20ms with 86.0% is not much better than

the phoneme recognition accuracy with 100% − FER = 100% − 18.2% = 81.8%. The reason

for this is that they are using completely di�erent metrics. While we measure the accuracy

for for phoneme recognition based on the frame error rate, the accuracy for alignment is

measured based on the number of phoneme transitions, that are within the tolerance, e.g. 20ms

as explained in chapter 4.

37

7 Evaluation

7.2.3.2 10ms performance drop

Another result that stands out, is the massive drop in alignment accuracy between 10ms

and 20ms tolerance, as seen in 7.7. This does not happen to such a great degree in [25]. In

comparison to other works, they do not only use MFCCs for input features, but also their

�rst and second derivatives. Possibly these derivatives contain additional useful information,

especially with respect to phoneme transitions. Another likely reason is the fundamentally

di�erent architecture of [25], since the performance drop also happens for the other HMM+ANN

based model by [20], which is much more comparable to ours than [25].

7.3 Further evaluation of the best model (GRU)

In this section, we perform further experiments on the best model (GRU). The training con�gu-

ration was described at enumeration 6.3.2.3. Apart from that, the early stopping patience is

lowered to 3 epochs, since this has little impact on the model performance and greatly reduces

training time.

7.3.1 Performance analysis

7.3.1.1 Impact of layer count and hidden sizes

Figure 7.9: FER of the best model (GRU) for di�erent amounts of layers and hidden sizes

From �gure 7.9 we can conclude, that the amount of layers has the most impact on the FER

value of the model. A larger hidden size of 512 compared to 256 also has a great in�uence on

FER, but there is little di�erence between a hidden size of 512 and 1024. Nevertheless, we were

able to gain a slight improvement over our previous FER value, with 18.1% FER for 7 layers and

1024 hidden states. PER and F1 score were 21.2% and 81.8% respectively.

38

7 Evaluation

Figure 7.10: Alignment accuracy (< 20ms) of the best model (GRU) for di�erent amounts of

layers and hidden sizes

In �gure 7.10, we can see that the alignment accuracy also highly depends on the amount of

layers. While the model with 1024 hidden states clearly outperforms the other models for 3

layers and more, it declines again for 8 layers. A reason for this could be, that it has now too

many neurons available, so it stores some individual patterns of the data, which negatively

a�ects generalization.

Apart from tha,t the model with 6 layers and 1024 hidden states achieved an alignment accuracy

of 86.3%, which is 0.3% better than previous results. The accuracies for other tolerances were

as follows: 10ms: 49.6%, 30ms: 93.1%, 40ms: 95.8%.

7.3.1.2 Alignment accuracy for higher time tolerances

Since highlighting the spoken text segment for a playing audio�le does not be that precise in

time, it is also useful to evaluate the performance of the model for larger tolerances.

Figure 7.11: Alignment accuracy of the best model (GRU) for higher tolerances

39

7 Evaluation

In �gure 7.11, we can see that the alignment accuracy converges to almost 100% for 100ms

tolerance.

7.3.1.3 Impact of loss weights

Loss weights < 10ms < 20ms < 30ms < 40ms
4,4 46.7% 84.4% 92.3% 95.5%

20,20 48.4% 84.7% 92.0% 95.2%

50,50 48.5% 84.6% 91.9% 95.0%

100,100 49.3% 85.7% 91.9% 95.0%

2,4,4,2 46.6% 84.8% 92.6% 95.7%

10,20,20,10 48.1% 85.4% 92.9% 95.6%

20,50,50,20 48.7% 85.6% 92.8% 95.6%

50,100,100,50 48.7% 86.0% 93.1% 95.8%
1,2,4,4,2,1 46.7% 84.7% 92.5% 95.5%

5,10,20,20,10,5 48.2% 85.6% 92.9% 95.7%

10,20,50,50,20,10 48.4% 85.6% 92.9% 95.7%

20,50,100,100,50,20 48.7% 86.0% 93.1% 95.7%

Table 7.1: Impact of di�erent loss weights on the alignment accuracy of the best model (GRU)

From table 7.1, we can conclude, that the loss weights (50,100,100,50) achieve the best alignment

accuracy overall. Higher values lead to a better alignment accuracy.

7.3.1.4 Impact of cost functions for DTW

Cost function < 10ms < 20ms < 30ms < 40ms
2>BC4G?>=4=C80; 48.4% 85.6% 92.7% 95.4%

2>BC?A>1018;8C~ 48.4% 85.6% 92.7% 95.4%

2>BCA>>C_2 48.6% 85.8% 92.9% 95.6%

2>BCA>>C_5 48.7% 85.9% 93.0% 95.7%

2>BCA>>C_10 48.7% 86.0% 93.1% 95.8%
2>BCA>>C_100 48.7% 86.0% 93.1% 95.8%
2>BCA>>C_1000 48.7% 86.0% 93.1% 95.8%

Table 7.2: Impact of di�erent DTW cost functions on the alignment accuracy of the best model

(GRU)

In table 7.2, we can see that 2>BC4G?>=4=C80; and 2>BC?A>1018;8C~ both lead to the same alignment

accuracy, while 2>BCA>>C_: gives better results as : increases. This is likely due to the small

curvature of 2>BC4G?>=4=C80; between ? = 0 and ? = 1, which makes its shape very similiar to

2>BC?A>1018;8C~ . Further improvements in accuracy stagnate from : = 10.

40

7 Evaluation

7.3.1.5 Impact of data augmentation

We experimented with typical data augmentation techniques, which are described at 2.4.8. The

following parameters were chosen:

• Pitch shift: -4 semitones to 4 semitones (randomly)

• Time stretch: 80% to 120% speed (randomly)

• Frequency mask: 20 mel bins (randomly)

• Time mask: every frame with probability 10%

Figure 7.12: FER of the best model (GRU) for di�erent types of data augmentation

In �gure 7.13 we see that most data augmentation techniques increase the frame error, but time

masking decreases it slightly.

Figure 7.13: Alignment accuracy of the best model (GRU) for di�erent types of data augmenta-

tion

41

7 Evaluation

From �gure 7.13 we can conclude that our data augmentation has no positive e�ect on alignment.

All values for alignment accuracy were lower than without data augmentation.

7.3.1.6 Runtime measurement

In this subsection, we measure the average inference time of a single sentences by the model.

The GRU model, with di�erent layer counts and hidden states was evaluated on a AMD Ryzen

3700x CPU and a NVIDIA RTX 2070 Super GPU. Results are shown in table 7.3.

Layers Hidden states Time CPU (ms) Time GPU (ms)
3 256 64.3 42.0

5 512 291.9 55.7

8 1024 1898 192.9

Table 7.3: Impact of di�erent DTW cost functions on the alignment accuracy of the best model

(GRU)

7.4 Summary of phoneme recognition results

Method FER PER F1
EncoderTransformer 36.3% 87.8% 63.7%

BiRNN 20.9% 28.3% 79.1%

BiLSTM 18.4% 21.9% 81.6%

BiGRU 18.1% 21.2% 81.8%

Table 7.4: Results of phoneme recognition on the core test set, using di�erent architectures

From table 7.4, we can conclude that the optimized BiGRU model performed the best in all

metrics, while being followed by the BiLSTM model.

7.4.1 Comparison with related works

Ref Method FER PER F1
[37] CNN+HTSVM 28% 32% 63%

[4] HDRN+HMM 24.16% 23.60% -

[39] CNN+RNN+CTC 22.1% 29.4% -

Ours BiGRU 18.1% 21.2% 81.8%

Table 7.5: Results of phoneme recognition on the core test set, compared with related work

As we can see in table 7.5, the BiGRU model outperforms the compared related work in all

metrics.

42

7 Evaluation

7.5 Summary of phoneme alignment results

Model < 10ms < 20ms < 30ms < 40ms
EncoderTransformer 34.2% 72.1% 83.3% 88.7%

BiRNN 47.4% 84.2% 91.4% 94.5%

BiLSTM 47.8% 85.1% 92.3% 95.1%

BiGRU 49.6% 86.3% 93.1% 95.8%

Table 7.6: Results of phoneme alignment on the full test set, using di�erent architectures

In table 7.6, our �nal results for phoneme alignment are shown.

7.5.1 Comparison with related work

Ref Method < 10ms < 20ms < 30ms < 40ms
[25] Discr. learning 80.0% 92.3% 96.4% 98.2%
[20] HMM+ANN 48.3% 93.4% 96.8% 98.2%
[41] HMM+ANN - 96.8% - -

Ours BiGRU+DTW 49.6% 86.3% 93.1% 95.8%

Table 7.7: Results of phoneme alignment on the full test set, compared with related work

As we can see in table 7.7, the BiGRU model does not perform as good as related work for small

tolerances, but is closer to them for higher tolerances.

For 10ms, the alignment accuracy is slightly better than [20], but far below [25].

For 20ms, the accuracy is 6.0% below [25] and 10.5% below [41].

For 30ms, and 40ms the alignment gets signi�cantly better, with only 3.7% and 2.4% below the

best related work.

43

8 Conclusion

We have observed the importance of contextual information for phoneme recognition as

our RNN models performed much better than the context-free phoneme classi�cation model.

Compared to more advanced architectures these primitive RNN based architectures did achieve

a lower frame error for phoneme recognition on TIMIT all resulting in state-of-the-art FER

values between 18.1%-20.9%. This is very likely because of the higher complexity of the

advanced models making them more susceptible to over�tting on such a small dataset. While

our alignment resulting in 86.3% accuracy with 20ms tolerance did not achieve state-of-the-art

it is still comparable to what a good HMM model would achieve, whose performance usually

lies between 80%-89% [41]. Another advantage of the simple architecture is the high �exibility

which allows scaling the layers and hidden size of the RNNs to optimize for either accuracy or

runtime. Furthermore the probability-based DTW alignment and most improvements described

at 6.5 can be used in conjunction with any phoneme recognition model that outputs frame-wise

probabilies.

8.1 Future work

8.1.1 Improvements on the models presented in this work

• Replacing the GRU model with Light Gated Recurrent Units (LiGRU), as proposed in [32]

may improve recognition and alignment performance, while reducing the computational

cost

• Adding convolutional layers or a lightweight CNN before the RNN may improve accuracy,

since they are very good for feature extraction

• Combining the phoneme recognition model with a n-gram language model on phoneme

level may reduce confusions between similiar sounding phonemes, such as ’s’ and ’z’, as

it could give more context, that is not captured by the hidden state.

• Mapping to the phoneme set proposed by [20] may improve alignment accuracy, since it

may be better suited for alignment

• Replacing DTW with the approximation algorithm FastDTW [34] would further reduce

inference time, as it only has linear time and space complexity, while DTW has quadratic

complexities. Although the impact on alignment accuracy would have to be evaluated.

• Adding boundary correction models as proposed in [41] may further improve the align-

ment performance.

44

8 Conclusion

• Using Soft-DTW, as proposed in [12] as a di�erentiable loss function may also improve

the alignment performance, as it would directly optimize for alignment.

8.1.2 Multi-language alignment

To make the model applicable to multi-language alignment based on a single model we created

a phoneme based approach which could be modi�ed in future work to achieve this goal. In

practice it would be useful to adjust the phoneme set so it can deal better with various languages.

This could be achieved by mapping the phonemes to the International Phonetic Alphabet (IPA).

A mapping between TIMIT and several phonetic alphabets can be found at [1]. Reducing the

phonemes to a minimum amount that are common in most languages may be another approach.

Furthermore a dictionary that converts a transcript to a phoneme sequence would be needed

which could for instance be created by adjusting an existing phonetic dictionary to the given

phoneme set or using incremental autolabeling.

45

Bibliography

[1] [Online; accessed 21-September-2021]. url: https://www.isip.piconepress.com/

projects/switchboard/doc/education/phone_comparisons/.

[2] Afshine Amidi and Shervine. Recurrent neural networks cheatsheet star. url: https:
/ / stanford . edu / ~shervine / teaching / cs - 230 / cheatsheet - recurrent - neural -

networks.

[3] Aphex34. File:Typical cnn.png—Wikimedia Commons. https://commons.wikimedia.org/
wiki/File:Typical_cnn.png - License: https://creativecommons.org/licenses/by-

sa/4.0/legalcode. [Online; accessed 06-August-2021]. 2015.

[4] Itamar Arel et al. “Acoustic spatiotemporal modeling using deep machine learning for

robust phoneme recognition”. In: Afeka-AVIOS Speech Processing Conference. 2011.

[5] Alexei Baevski et al. “wav2vec 2.0: A framework for self-supervised learning of speech

representations”. In: arXiv preprint arXiv:2006.11477 (2020).

[6] Pierre Baldi and Peter J Sadowski. “Understanding dropout”. In: Advances in neural
information processing systems 26 (2013), pp. 2814–2822.

[7] Miguel Bautista et al. “Probability-Based Dynamic Time Warping for Gesture Recognition

on RGB-D Data”. In: vol. 7854. Nov. 2012. doi: 10.1007/978-3-642-40303-3_14.

[8] Cecbur. File:�lters in a Convolutional Neural Network.gif —Wikimedia Commons. https://
commons.wikimedia.org/wiki/File:3_filters_in_a_Convolutional_Neural_Network.

gif - License: https : / / creativecommons . org / licenses / by - sa / 4 . 0 / legalcode.

[Online; accessed 07-August-2021], converted to PNG. 2019.

[9] Guillaume Chevalier. File:The LSTM Cell.svg — Wikimedia Commons. https://commons.
wikimedia.org/wiki/File:The_LSTM_Cell.svg - License: https://creativecommons.

org/licenses/by-sa/4.0/legalcode. [Online; accessed 08-August-2021], converted to

PNG. 2018.

[10] Kyunghyun Cho et al. “Learning phrase representations using RNN encoder-decoder for

statistical machine translation”. In: arXiv preprint arXiv:1406.1078 (2014).

[11] CrossEntropyLoss - PyTorch Documentation. [Online; accessed 22-August-2021]. url:

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html.

[12] Marco Cuturi and Mathieu Blondel. “Soft-DTW: a Di�erentiable Loss Function for Time-

Series”. In: (2018). arXiv: 1703.01541 [stat.ML].

[13] J. Garofolo et al. “TIMIT Acoustic-phonetic Continuous Speech Corpus”. In: Linguistic
Data Consortium (Nov. 1992). [Online; accessed 2021-08-07].

[14] John S. Garofolo et al. TIMIT Acoustic-Phonetic continuous Speech corpus. 1993. url:

https://catalog.ldc.upenn.edu/LDC93S1.

46

https://www.isip.piconepress.com/projects/switchboard/doc/education/phone_comparisons/
https://www.isip.piconepress.com/projects/switchboard/doc/education/phone_comparisons/
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://commons.wikimedia.org/wiki/File:Typical_cnn.png
https://commons.wikimedia.org/wiki/File:Typical_cnn.png
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://doi.org/10.1007/978-3-642-40303-3_14
https://commons.wikimedia.org/wiki/File:3_filters_in_a_Convolutional_Neural_Network.gif
https://commons.wikimedia.org/wiki/File:3_filters_in_a_Convolutional_Neural_Network.gif
https://commons.wikimedia.org/wiki/File:3_filters_in_a_Convolutional_Neural_Network.gif
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://commons.wikimedia.org/wiki/File:The_LSTM_Cell.svg
https://commons.wikimedia.org/wiki/File:The_LSTM_Cell.svg
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://arxiv.org/abs/1703.01541
https://catalog.ldc.upenn.edu/LDC93S1

Bibliography

[15] Felix A Gers and Jürgen Schmidhuber. “Recurrent nets that time and count”. In: Proceed-
ings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN
2000. Neural Computing: New Challenges and Perspectives for the New Millennium. Vol. 3.

IEEE. 2000, pp. 189–194.

[16] Yoav Goldberg. “A primer on neural network models for natural language processing”.

In: Journal of Arti�cial Intelligence Research 57 (2016), pp. 345–420.

[17] Sepp Hochreiter. “The vanishing gradient problem during learning recurrent neural nets

and problem solutions”. In: International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems 6.02 (1998), pp. 107–116.

[18] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-term Memory”. In: Neural com-
putation 9 (Dec. 1997), pp. 1735–80. doi: 10.1162/neco.1997.9.8.1735.

[19] M. Hohenwarter et al. GeoGebra. http://www.geogebra.org. Dec. 2013.

[20] John-Paul Hosom. “Speaker-independent phoneme alignment using transition-dependent

states”. In: Speech Communication 51.4 (2009), pp. 352–368.

[21] Human ear - Transmission of sound within the inner ear. [Online; accessed 10-August-2021].

url: https://www.britannica.com/science/ear.

[22] Incfk8. File:Bidirectional recurrent neural network.png — Wikimedia Commons. https://
commons.wikimedia.org/wiki/File:Bidirectional_recurrent_neural_network.png

- License: https://creativecommons.org/licenses/by-sa/4.0/legalcode. [Online;

accessed 08-August-2021], converted to PNG. 2020.

[23] Ixnay. File:Recurrent neural network unfold.svg —Wikimedia Commons. https://commons.
wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg - License: https:

//creativecommons.org/licenses/by-sa/4.0/legalcode. [Online; accessed 06-August-

2021]. 2017.

[24] Jeblad. File:Gated Recurrent Unit, type 3.svg — Wikimedia Commons. https://commons.
wikimedia.org/wiki/File:Gated_Recurrent_Unit,_type_3.svg - License: https:

//creativecommons.org/licenses/by-sa/4.0/legalcode. [Online; accessed 08-August-

2021]. 2018.

[25] Joseph Keshet et al. “Phoneme alignment based on discriminative learning.” In: Jan. 2005,

pp. 2961–2964.

[26] K.-F. Lee and H.-W. Hon. “Speaker-independent phone recognition using hidden Markov

models”. In: IEEE Transactions on Acoustics, Speech, and Signal Processing 37.11 (1989),

pp. 1641–1648. doi: 10.1109/29.46546.

[27] LeviViana. How to weight the loss? - PyTorch Forums. [Online; accessed 26-August-2021].

Jan. 2020. url: https://discuss.pytorch.org/t/how-to-weight-the-loss/66372/4.

[28] Ilya Loshchilov and Frank Hutter. “Decoupled weight decay regularization”. In: arXiv
preprint arXiv:1711.05101 (2017).

[29] Dominic Masters and Carlo Luschi. “Revisiting Small Batch Training for Deep Neural

Networks”. In: (2018). arXiv: 1804.07612 [cs.LG].

47

https://doi.org/10.1162/neco.1997.9.8.1735
http://www.geogebra.org
https://www.britannica.com/science/ear
https://commons.wikimedia.org/wiki/File:Bidirectional_recurrent_neural_network.png
https://commons.wikimedia.org/wiki/File:Bidirectional_recurrent_neural_network.png
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg
https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://commons.wikimedia.org/wiki/File:Gated_Recurrent_Unit,_type_3.svg
https://commons.wikimedia.org/wiki/File:Gated_Recurrent_Unit,_type_3.svg
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://doi.org/10.1109/29.46546
https://discuss.pytorch.org/t/how-to-weight-the-loss/66372/4
https://arxiv.org/abs/1804.07612

Bibliography

[30] Michael A Nielsen. Neural networks and deep learning. Vol. 25. Determination press San

Francisco, CA, 2015.

[31] Paskari. File:Feed forward neural net.gif — Wikipedia, The Free Encyclopedia. http://

en.wikipedia.org/w/index.php?title=File%3AFeed%20forward%20neural%20net.

gif&oldid=468419692 - License: https://creativecommons.org/licenses/by-sa/3.

0/legalcode. [Online; accessed 05-August-2021], converted to PNG; modi�ed: missing

connecting lines were added. 2021.

[32] Mirco Ravanelli et al. “Light Gated Recurrent Units for Speech Recognition”. In: IEEE
Transactions on Emerging Topics in Computing 2 (Mar. 2018). doi: 10.1109/TETCI.2017.

2762739.

[33] ReduceLROnPlateau - PyTorch Documentation. [Online; accessed 29-August-2021]. url:

https : / / pytorch . org / docs / stable / generated / torch . optim . lr _ scheduler .

ReduceLROnPlateau.html.

[34] Stan Salvador and Philip Chan. “Toward accurate dynamic time warping in linear time

and space”. In: Intelligent Data Analysis 11.5 (2007), pp. 561–580.

[35] Mike Schuster and Kuldip K Paliwal. “Bidirectional recurrent neural networks”. In: IEEE
transactions on Signal Processing 45.11 (1997), pp. 2673–2681.

[36] Pavel Senin. “Dynamic time warping algorithm review”. In: Information and Computer
Science Department University of Hawaii at Manoa Honolulu, USA 855.1-23 (2008), p. 40.

[37] Christopher Dane Shulby et al. “Robust Phoneme Recognition with Little Data”. In: 8th
Symposium on Languages, Applications and Technologies (SLATE 2019). Schloss Dagstuhl-

Leibniz-Zentrum fuer Informatik. 2019.

[38] Leslie N Smith. “Cyclical learning rates for training neural networks”. In: 2017 IEEE winter
conference on applications of computer vision (WACV). IEEE. 2017, pp. 464–472.

[39] William Song and Jim Cai. “End-to-end deep neural network for automatic speech

recognition”. In: Standford CS224D Reports (2015).

[40] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks from over�t-

ting”. In: The journal of machine learning research 15.1 (2014), pp. 1929–1958.

[41] Andreas Stolcke et al. “Highly accurate phonetic segmentation using boundary correction

models and system fusion”. In: 2014 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE. 2014, pp. 5552–5556.

[42] Christian Szegedy et al. “Rethinking the Inception Architecture for Computer Vision”.

In: CoRR abs/1512.00567 (2015). arXiv: 1512.00567. url: http://arxiv.org/abs/1512.

00567.

[43] Twan Van Laarhoven. “L2 regularization versus batch and weight normalization”. In:

arXiv preprint arXiv:1706.05350 (2017).

[44] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information
processing systems. 2017, pp. 5998–6008.

[45] Alex Waibel et al. “Phoneme recognition using time-delay neural networks”. In: IEEE
transactions on acoustics, speech, and signal processing 37.3 (1989), pp. 328–339.

48

http://en.wikipedia.org/w/index.php?title=File%3AFeed%20forward%20neural%20net.gif&oldid=468419692
http://en.wikipedia.org/w/index.php?title=File%3AFeed%20forward%20neural%20net.gif&oldid=468419692
http://en.wikipedia.org/w/index.php?title=File%3AFeed%20forward%20neural%20net.gif&oldid=468419692
https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://doi.org/10.1109/TETCI.2017.2762739
https://doi.org/10.1109/TETCI.2017.2762739
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
https://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567

Bibliography

[46] Waveform. [Online; accessed 10-August-2021]. url: https://www.merriam-webster.

com/dictionary/waveform.

[47] What is A SPECTROGRAM? [Online; accessed 10-August-2021]. url: https://pnsn.org/

spectrograms/what-is-a-spectrogram.

[48] Wikipedia. Arti�cial neural network — Wikipedia, The Free Encyclopedia. http://en.

wikipedia . org / w / index . php ? title = Artificial % 20neural % 20network & oldid =

1034200791. [Online; accessed 03-August-2021]. 2021.

[49] Wikipedia. Convolutional neural network — Wikipedia, The Free Encyclopedia. http :

//en.wikipedia.org/w/index.php?title=Convolutional%20neural%20network&

oldid=1037144532. [Online; accessed 06-August-2021]. 2021.

[50] XantaCross. File:File:Euclidean vs DTW.jpgg — Wikimedia Commons. https://commons.
wikimedia.org/wiki/File:Euclidean_vs_DTW.jpg - License: https://creativecommons.

org/licenses/by-sa/3.0/legalcode. [Online; accessed 12-October-2021]. 2011.

[51] Yong Yu et al. “A Review of Recurrent Neural Networks: LSTM Cells and Network

Architectures”. In: Neural Computation 31.7 (July 2019), pp. 1235–1270. issn: 0899-7667.

doi: 10 . 1162 / neco _ a _ 01199. eprint: https : / / direct . mit . edu / neco / article -

pdf/31/7/1235/1053200/neco_a_01199.pdf. url: https://doi.org/10.1162/neco%

5C_a%5C_01199.

49

https://www.merriam-webster.com/dictionary/waveform
https://www.merriam-webster.com/dictionary/waveform
https://pnsn.org/spectrograms/what-is-a-spectrogram
https://pnsn.org/spectrograms/what-is-a-spectrogram
http://en.wikipedia.org/w/index.php?title=Artificial%20neural%20network&oldid=1034200791
http://en.wikipedia.org/w/index.php?title=Artificial%20neural%20network&oldid=1034200791
http://en.wikipedia.org/w/index.php?title=Artificial%20neural%20network&oldid=1034200791
http://en.wikipedia.org/w/index.php?title=Convolutional%20neural%20network&oldid=1037144532
http://en.wikipedia.org/w/index.php?title=Convolutional%20neural%20network&oldid=1037144532
http://en.wikipedia.org/w/index.php?title=Convolutional%20neural%20network&oldid=1037144532
https://commons.wikimedia.org/wiki/File:Euclidean_vs_DTW.jpg
https://commons.wikimedia.org/wiki/File:Euclidean_vs_DTW.jpg
https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://doi.org/10.1162/neco_a_01199
https://direct.mit.edu/neco/article-pdf/31/7/1235/1053200/neco_a_01199.pdf
https://direct.mit.edu/neco/article-pdf/31/7/1235/1053200/neco_a_01199.pdf
https://doi.org/10.1162/neco%5C_a%5C_01199
https://doi.org/10.1162/neco%5C_a%5C_01199

