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Abstract

Real-time keyword spotting (KWS) on mobile devices requires a small memory footprint,
low latency, and low computational cost. Conventional approaches such as HMM-based
KWS do not fulfill these requirements, as Viterbi decoding tends to lead to high computa-
tional cost. Therefore, this work proposes a neural network-based small-footprint flexible
KWS system appropriate for mobile devices.

Our novel KWS system is composed of three modules: the feature extraction module,
the posterior probability estimation module, and the posterior handling module. The
feature extraction module produces acoustic features from the input audio stream, while
the posterior probability estimation module generates posterior probabilities for subword
units such as phonemes and senones using various types of neural networks including feed-
forward neural networks and recurrent neural networks such as LSTM, TDNN-LSTM,
and so on. Finally, the posterior handling module calculates final confidence scores for the
predefined keywords based on the posteriors from networks.

Experiments have been performed to prove the effectiveness of this KWS approach. Exper-
imental results on neural network training show that RNNs such as LSTM, TDNN-LSTM,
etc., outperform FFNNs significantly on framewise phoneme/senone classification. Then,
the KWS system is built based on the trained networks, and the performance is evaluated
by detecting the predefined key-phrase ”okay cosa”. Evaluation results demonstrate that
this KWS system achieves lower computational cost and a smaller memory footprint com-
pared with conventional KWS approaches, and therefore makes a step towards real-time
KWS on mobile devices.
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Zusammenfassung

Das Echtzeit-Keyword-Spotting (KWS) auf Mobilgeräten erfordert einen kleinen Speicher-
bedarf, eine geringe Latenz und niedrige Rechenkosten. Konventionelle Ansätze wie HMM-
basiertes KWS erfüllen diese Anforderungen nicht, weil die Viterbi-Decodierung zu hohen
Rechenkosten führt. Daher schlägt diese Arbeit ein neuronales Netzwerk-basiertes flexibles
KWS-System vor, das für mobile Geräte geeignet ist.

Unser neuartiges KWS-System besteht aus drei Modulen: dem Merkmalsextraktionsmodul,
dem a posteriori Wahrscheinlichkeitsschätzungsmodul und dem a posteriori Wahrschein-
lichkeitshandhabungsmodul. Das Merkmalsextraktionsmodul erzeugt akustische Merkmale
aus dem Eingangs-Audiostrom, und das a posteriori Wahrscheinlichkeitsschätzungsmodul
erzeugt a posteriori Wahrscheinlichkeiten für Subworteinheiten wie Phoneme und Senone
mit verschiedenen Arten von neuronalen Netzwerken, einschließlich feed-forward neuronale
Netze und rekurrente neuronale Netze wie LSTM, TDNN-LSTM und so weiter. Schließlich
berechnet das a posteriori Wahrscheinlichkeitshandhabungsmodul endgültige Vertrauens-
werte für die vordefinierten Schlüsselwörter basierend auf den a posteriori Wahrscheinlich-
keiten aus den Netzwerken.

Es wurden Experimente durchgeführt, um die Wirksamkeit dieses KWS-Ansatzes zu be-
weisen. Experimentelle Ergebnisse für das neuronale Netzwerktraining zeigen, dass rekur-
rente neuronale Netze wie LSTM, TDNN-LSTM, etc., feed-forward neuronale Netze be-
merkenswert über die frameweise Phonem/Senon-Klassifizierung übertreffen. Dann wird
das KWS-System auf der Basis von trainierten Netzwerken aufgebaut und die Perfor-
mance wird durch die Erkennung der vordefinierten Key-Phrase ”okay cosa” ausgewertet.
Auswertungsergebnisse zeigen, dass dieses KWS-System im Vergleich zu konventionellen
KWS-Ansätzen niedrigere Rechenkosten und einen kleineren Speicherbedarf erzielt und
damit einen Schritt in Richtung Echtzeit-KWS auf Mobilgeräten macht.
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1. Introduction

1.1 Motivation

Keyword spotting (KWS), as an important branch of automatic speech recognition (ASR),
is a task aimed at detecting specific keywords in a continuous speech audio stream. Like
ASR, KWS has a wide range of applications; for instance, voice control systems utilize
KWS technology to detect whether predefined command words appear in a voice stream.
Conventional large-vocabulary continuous speech recognition (LVCSR) based KWS sys-
tems employ an ASR system to convert the human speech signal into distinct word se-
quences or rich lattices, and after that, an efficient search engine is employed to detect
the keywords in word sequences or lattices. However, unlike ASR tasks, for KWS tasks,
it is not necessary to recognize all words contained in the vocabulary within utterances.
Therefore, in order to save computing resources, the Keyword/Filler HMM-based KWS
approach only recognizes predefined keywords within utterances.

In recent times, KWS has been used on an increasing number of applications on mobile
devices. For example, the application “okay google” allows the users to waken their mobile
devices through uttering the key-phrase “okay google”. Such KWS systems are required
to run in the background and continuously deliver the detection of the selected phrase in
real-time using the limited computational resources provided by mobile devices. Therefore,
real-time KWS systems on mobile devices should fulfill the requirements of having a small
memory footprint, low latency, and low computational cost. However, conventional LVCSR
and Keyword/Filler HMM based KWS approaches do not meet these requirements, as a
great deal of computation is needed for Viterbi decoding. In 2014, a small-footprint KWS
system, also known as Deep KWS, was proposed by Chen et.al[CPH14]; this KWS system
achieves low latency and computational cost by replacing Viterbi decoding with simple
confidence calculation based on posteriors from the deep neural network (DNN). Despite
its utilization of a fast and efficient detecting algorithm, the Deep KWS retains some
disadvantages. For instance, a considerable number of training examples are needed for
each keyword; moreover, the system is not flexible, as new DNNs must be trained in order
to detect new keywords. Thus, in this work, a novel KWS approach is proposed that is
appropriate for real-time KWS on mobile devices; furthermore, our KWS system is also
able to deal with the problems inherent on the Deep KWS system.

1



2 1. Introduction

1.2 Contribution

This work proposes a novel neural network-based small-footprint flexible KWS system.
With the help of this approach, a KWS system with a small memory footprint, low latency
and low computational cost can be developed as a step towards real-time KWS on mobile
devices. This KWS approach is also flexible, as a well-trained network can be employed
to detect all kinds of keywords/key-phrases, and a large number of training examples
per keyword/key-phrase are not necessary. Sequence classification using different types
of NNs is also studied in this work. Comprehensive experiments have been carried out
to explore the classification performance of recurrent neural networks (RNN), including
LSTM, BLSTM and TDNN-LSTM. As RNNs improve the classification accuracy of feed-
forward neural networks (FFNN) to a remarkable extent, the posteriors generated by RNNs
can be also utilized in general ASR tasks.

1.3 Layout

In the next two chapters, some background knowledge about neural networks and acoustic
modeling is provided, due to the fact that our KWS approach is based on various types of
NNs and acoustic models. Chapter two briefly discusses the feed-forward neural network,
then examines recurrent neural networks, in particular bidirectional RNN and LSTM.
Chapter three briefly describes the basics of acoustic modeling, including context depen-
dent acoustic modeling. In chapter four, the problem of real-time KWS on mobile devices
and previous work in this area is discussed, at which point our novel KWS approach is
introduced. The fifth chapter documents the implementation details of our KWS system.
The experimental setup used to evaluate the KWS approach and the ensuing evaluation
results are provided in chapter six. Finally, chapter seven concludes this work and gives a
short discussion of potential further work.
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2. Neural Networks

An artificial neural network (ANN), also referred to as neural network (NN), is one of
the most important classes of machine learning algorithms. This chapter provides the
background knowledge of various kinds of neural networks. Section 2.1 first introduces
the feed-forward neural network (FFNN). After that, section 2.2 gives a brief description
of the recurrent neural network (RNN), followed by an introduction to extensions of the
RNN, namely the bidirectional RNN (BRNN) and the long short-term memory (LSTM).

2.1 Feed-Forward Neural Networks

The idea of the ANN is derived from the structure and functioning of the biological
brain[Ros61]. Like the biological brain, an ANN consists of a large number of computing
units called neurons or nodes. Moreover, neurons in the ANN are connected with each
other according to different weights. The FFNN is a class of NNs, in which the connections
of neurons are not allowed to form a circle.

2.1.1 Feed-Forward Pass

A FFNN performs a nonlinear transformation which maps the input vectors to the output
vectors. According to the universal approximation theorem[HSW89], a FFNN with a
single hidden layer has the capability to approximate any continuous function to arbitrary

Figure 2.1: Architecture of a FFNN with an input layer, two hidden layers and an output
layer. (Figure originated from [Zhu15])

3



4 2. Neural Networks

Figure 2.2: Architecture of neuron j, the neuron first computes the weighted sum of input
signals and a bias term, after applying the activation function σ the output
signal of neuron j is obtained.

accuracy. Thus, FFNNs are suitable for a variety of classification and regression tasks.
The classification or regression is performed by projecting the activations from the input
layer of the FFNN to the output layer through one or more hidden layers. This process is
also called the feed-forward pass. Neurons in the FFNN are arranged in layers as shown
in figure 2.1. Furthermore, neurons in the same layer do not have connections with each
other, they only have connections with neurons in neighboring layers.

Figure 2.2 illustrates a single neuron j in the FFNN. The neuron j receives the input signal
from input neurons in the previous layer, and generates an output signal to the output
neurons in the subsequent layer. The neuron j is connected with other neurons according
to different weights, and a higher weight corresponds to a stronger connection between
two neurons. Furthermore, xij represents the input signal from neuron i to neuron j, and
wij is the connection weight between neuron i and neuron j. The net input of neuron j is
obtained by calculating the weighted sum of all the input signals and a bias term b, namely
netj =

∑
i xij ∗ wij + b. Then the output signal of neuron j is computed: oj = σ (netj),

where σ is the activation function used to provide nonlinearity to neuron j, and the bias b
shifts the activation function horizontally.

Various activation functions have been proposed, some of the most commonly used acti-
vation functions are sigmoid(x) = 1

1+e−x , tanh(x) = ex−e−x

ex+e−x , rectified linear unit ReLU(x)
= max(0, x), etc. Recent studies show that ReLU can solve the problem of vanishing gra-
dient and result in faster learning[ZRM+13][MHN13]. Another special activation function
is the softmax function [Bri90]:

softmax(neti) =
eneti∑
o e

neto
,

which is exclusively used in the output layer to ensure that the activation of each output
neuron is positive or zero, and the sum of all the activations of the output layer is one.

For a given input vector of the FFNN, it is first placed in the input layer of the FFNN.
Each neuron in the first hidden layer is connected to all the neurons in the input layer
according to their weight matrices respectively. Then the activation of each neuron in the
first hidden layer is calculated using the formula oi = σ (neti), and the activations are also
regarded as the inputs of the second hidden layer. Similarly, the second hidden layer is also
fully connected to the first hidden layer, and the activations of the second hidden layer are
calculated in the same way. By this means, the input vector of the FFNN is propagated
forward from the input layer to the output layer. Normally the FFNN outputs a discrete
probability distribution due to the softmax activation function of the output layer.

4



2.1. Feed-Forward Neural Networks 5

2.1.2 Backpropagation Training

As mentioned in section 2.1.1, a FFNN is a universal approximator which can approx-
imate any continuous function to arbitrary accuracy. For a specific classification or re-
gression task, the FFNN is required to learn a specific function mapping input feature
vectors to targets. The initial weights of the FFNN are normally initialized with ran-
dom values drawn from a zero-mean probability distribution. Therefore, it is necessary to
adjust the weights of the FFNN, so that the FFNN can approximate the corresponding
function. This process is also called the training or learning process of neural networks,
and the error backpropagation (BP) algorithm is the dominate algorithm used to train
FFNNs[RHW88][WZ95][Wer88].

As the BP algorithm belongs to the category of supervised learning algorithms, it requires
a set of labeled training instances. For a given training instance x, the configuration of the
network weights is w, the output and target of output neuron k for training instance x are
okx and tkx respectively. Then the error or loss of the network for this training instance
can be computed with the help of different loss functions. Some of the most widely used
error functions are the sum-of-squares error function:

Ex(w) =
1

2

∑
k∈outputs

(tkx − okx)2,

and the cross-entropy error function[Bis95]:

Ex(w) = −
∑

k∈outputs
[tkx log(okx) + (1− tkx) log (1− okx)] .

Moreover, the total error of the network on the training dataset X can be calculated as
the sum of errors for all training instances:

E(w) =
∑
x∈X

Ex(w).

The goal of the BP training algorithm is to find the optimal configuration of the network
weights which minimize the error E based on the gradient descent method. In the case
of a great number of training instances, it is not efficient to update the network weights
using the gradient computed on the entire training dataset. It is, however, beneficial to
calculate the gradient using a single training instance or a mini-batch of instances, and
then update the network weights according the gradient. These variants are also known
as stochastic gradient descent (SGD) and mini-batch gradient descent (MGD) [Mit97].

The BP algorithm provides a very efficient way to calculate the gradients in neural net-
works. The core idea of the BP algorithm is to propagate the error of the network from the
output layer back through the hidden layers. In the following derivation of the BP algo-
rithm we assume the error function is the sum-of-squares error function, and the activation
function is the sigmoid function.

Given a training instance x, the error of the network is Ex, according to the gradient
descent method, the weight wij is updated:

wij ← wij − η
∂Ex

∂wij
,

5



6 2. Neural Networks

where η is the learning rate. After applying the chain rule, the partial derivative can be
expanded:

∂Ex

∂wij
=

∂Ex

∂netj

∂netj
∂wij

=
∂Ex

∂netj
xij .

For the convenience of notation, we define an error term δj = − ∂Ex
∂netj

. Again with the help

of chain rule, we obtain the error term of output neuron j :

δj = (tjx − ojx)ojx(1− ojx),

where ojx is the output signal of neuron j in the output layer and tjx is the target of neuron
j for the instance x, since

∂Ex

∂netj
=
∂Ex

∂oj

∂oj
∂netj

,

∂Ex

∂oj
= −(tjx − oj),

∂oj
∂netj

= oj(1− oj).

Furthermore, the error term of hidden neuron j can be calculated based on the neurons
which take activations of neuron j as input. We denote those downstream neurons of
neuron j by Ds(j), then the error term of hidden neuron j can be calculated:

δj = oj(1− oj)
∑

k∈Ds(j)

δkwjk,

because

∂Ex

∂netj
=

∑
k∈Ds(j)

∂Ex

∂netk

∂netk
∂netj

,

∂Ex

∂netk
= −δk,

∂netk
∂netj

=
∂netk
∂oj

∂oj
∂netj

= wjkoj(1− oj).

Finally, the weight wij can be updated: wij ← wij + ηδjxij .

2.2 Recurrent Neural Networks

In this section we introduce another important class of neural networks, which is the
recurrent neural network. We first discuss the forward pass of the RNN, followed by
the training algorithm for the RNN, namely the backpropagation through time algorithm
(BPTT). After that, the bidirectional RNN (BRNN) and the long short-term memory
(LSTM) are introduced as powerful extensions of the RNN.

6



2.2. Recurrent Neural Networks 7

Figure 2.3: Architecture of an RNN with one hidden layer, and the RNN is unfolded through
three time steps.

2.2.1 Forward Pass

Similar to the FFNN, the RNN is also composed of a number of basic computational
units, namely the neurons, and neurons in the RNN are connected with each other through
different weights. However, different from the FFNN, the RNN allows directed connections
between neurons to form cycles, since the RNN is designed to solve the problems of learning
time series data and modeling sequences of information. Figure 2.3 depicts an example of
the RNN which is composed of one hidden layer and the unfolded RNN through time as
well.

The input of the RNN is a sequence of feature vectors, xt represents the input vector at
the time step t. Moreover, the RNN has also a hidden layer, st denotes the states of the
hidden layer at the time step t, which is equivalent to the memory of the RNN. Then, st
is calculated based on the hidden states at the previous time step t-1 and the input at the
current time step t:

st = f(Uxt +Wst−1),

where f is the activation function, and W , U are the hidden-state-to-hidden-state weight
matrix and the input-to-hidden-state weight matrix. Finally, the output of the RNN at
time step t ot is obtained:

ot = softmax(V st),

where V denotes the hidden-state-to-output weight matrix. In this way, the RNN accepts
a sequence of input vectors, and generates a sequence of output vectors by calculating an
output vector at each time step.

2.2.2 Backpropagation Through Time Training

Section 2.1.2 details the BP algorithm for training FFNNs, RNNs can be trained using
the backpropagation through time algorithm (BPTT) in a quite similar way[Wer90]. The
RNN takes a feature vector sequence x1, ..., xn with the length n, and the corresponding
target label sequence t1, ..., tn as a training example.

As can be seen in figure 2.4, the recurrent hidden layers of the RNN are first unfolded n
times by sharing the same weight matrices. Initial states s0 of recurrent hidden layers are

7



8 2. Neural Networks

Figure 2.4: Backpropagation through time algorithm, the RNN is first unrolled through
time, then at each time step the error Et is calculated, and the total error for
the training sequence is E =

∑
tEt.

Figure 2.5: Architecture of a Bidirectional RNN, the hidden recurrent layer of BRNN is
composed of a forward layer and a backward layer, the training sequence is
processed separately by the forward layer and the backward layer in opposite
directions.

typically set to zeros. At each time step, the RNN computes the current hidden states
based on the current input vector and the hidden states at the previous time step, and
then generates an output vector. For example, at the time step t the RNN computes the
hidden states st using the input feature vector x1 and the hidden states st−1. Then the
RNN generates the output ot, and the error at time step t Et can be calculated based on
ot and tt.

Since the entire training vector sequence is normally regarded as a complete training exam-
ple, the total error for the training sequence is computed by accumulating errors across all
n time steps: E =

∑
tEt. Finally, the weight wij of the RNN can be updated using SGD

with the aim to minimizing the total error for the sequence: ∂E
∂wij

=
∑

t
∂Et
∂wij

. Moreover,

the standard BP algorithm is applied on the unfolded RNN sharing the weight matrices
to calculate the gradients, therefore this algorithm is also referred to as backpropagation
through time.

8



2.2. Recurrent Neural Networks 9

2.2.3 Bidirectional RNN

In many sequence classification tasks, the target at the current time step is not only
dependent on the current and past feature frames, but also on the future frames. Therefore,
it is beneficial to allow the RNN to access the future frames. As shown in figure 2.5, BRNN
is an extension of unidirectional RNN, in which each hidden recurrent layer is composed
of a forward layer and a backward layer, and these two layers are fully connected to the
same output layer[SP97].

The fundamental idea behind the BRNN is that, each training sequence is processed
separately by the forward layer and the backward layer in opposite directions. The forward
layer processes the training sequence in forward order, while the backward layer processes
the training sequence in reverse order. Then, the output of the BRNN at time step t is
calculated based on the activations of both the forward layer and the backward layer at
time step t. Therefore, at each time step the BRNN has access to the full left/right context
information of the current frame.

2.2.4 Long Short-Term Memory

In section 2.2.2, we introduce the BPTT algorithm, which can be utilized to train RNNs.
However, the problem of vanishing gradient may occur, when we train an RNN which
is unfolded through long time steps[Hoc91][HBF+01]. The LSTM was proposed to deal
with the problems of vanishing gradient and learning long-term dependencies in time series
data[HS97]. The LSTM distinguishes itself from the conventional RNN by introducing a
new type of neurons. Neurons in the LSTM utilize three gates to control the information
flow between each other, namely the input gate, the forget gate and the output gate. In
the practice, LSTM neurons are normally implemented in cells, and an LSTM cell can
contain a number of LSTM neurons.

Given the weight matrices of the LSTM cell W, U and b, the cell gates and cell states at
time step t can be updated according to the following steps[HS97]:

• Forget gate vector: ft = sigmoid(Wfxt + Ufht−1 + bf ). Forget gates control the
influence of the previous cell states on current states.

• Input gate vector: it = sigmoid(Wixt+Uiht−1+bi). Input gates control the influence
of the current information flow on current states.

• Output gate vector: ot = sigmoid(Woxt + Uoht−1 + bo). Output gates control the
influence of the current states on the activations of the LSTM cell.

• Cell state vector: ct = ft ◦ ct−1 + it ◦ tanh(Wcxt + Ucht−1 + bc). The operator ◦
represent the element-wise product.

• Output vector: ht = ot ◦ tanh(ct).

By taking advantage of three types of gates the LSTM can deal better with the problem
of vanishing gradient, which is suffered by the conventional RNN. Like the conventional
RNN, the LSTM can also be extended to bidirectional LSTM (BLSTM) in the same way
to allow the LSTM to access the future context[GS05]. Moreover, LSTMs can also be
trained using the BPTT algorithm[GS05].
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3. ASR Background

Automatic speech recognition (ASR) is a technique that allows the computer to translate
the speech signal into corresponding text through a series of algorithms. A typical ASR
system is composed of several modules, such as the preprocessing module, the language
model, the acoustic model, the lexicon, the decoder and so on. Since this work focuses on
the acoustic model, this chapter briefly provides the basic knowledge on the acoustic model.
The acoustic model can be divided into two categories, which are the context-independent
acoustic model (CI AM) and the context-dependent acoustic model (CD AM). In the next
section we first introduce the context-independent acoustic model including a concrete ap-
proach, namely the GMM-HMM acoustic model. Finally, the context-dependent acoustic
model, as well as the context dependent DNN-HMM hybrid system, is discussed in the
last section.

3.1 Context Independent Acoustic Model

The acoustic model is employed by an ASR system to estimate the conditional probability
P (A|W ) that an acoustic feature vector sequence A is generated given that the word se-
quence W is actually uttered. Acoustic features are vectors of coefficients extracted from
frames of speech signal which contain the most relevant information of speech in the fre-
quency domain. Various types of acoustic features have been proposed, for instance MFCC,
log-MEL (lMEL), PLP, etc. Normally the basic modeling units for context-independent
acoustic models are a set of phonemes, from which the pronunciations of all the words in
a vocabulary can be constructed. Then, acoustic models of words or sentences are built
based on acoustic models of phonemes.

3.1.1 GMM-HMM Acoustic Model

The GMM-HMM AM is a very successful acoustic model which combines the hidden
Markov model (HMM) and the Gaussian mixture model (GMM). At the present day, it is
still used by state-of-the-art ASR systems to generate initial alignments for the training
corpus. After that, context dependent AMs, e.g. CD DNN-HMM hybrid models, can be
trained based on initial alignments generated by CI GMM-HMM models.

The HMM is an important probability model for sequential data processing. An HMM
can be formally defined by the following four components:

• The set of HMM states: S = (s1, s2, ..., sN ).

11



12 3. ASR Background

Figure 3.1: GMM-HMM model for the phoneme /E/, the HMM has three states, i.e. b-
state, m-state and e-state, and the observation distribution of each HMM state
is modeled by a GMM. (Figure originated from [Zhu15])

• The initial state probability distribution: π = (π1, π2, ..., πN ), where πi = P (q0 = si),
and qt denotes the HMM state at time step t.

• The state transition probability matrix: A = (aij), where aij = P (qt = sj |qt−1 = si).

• The observation probability distributions: B = {bj(xt)}, where bj(xt) = P (xt|qt =
sj), and xt is the observation vector at time t.

The GMM is a continuous probability distribution represented by the weighted sum of a
set of single Gaussian components:

p (x) =
K∑
k=1

πkN (x|µk,Σk) ,

where µk denotes the mean vector of the k-th Gaussian component, Σk is the covariance
matrices of the k-th Gaussian component, and πk is the weight of Gaussian k. Mixture
weights should subject to the normalization and positivity constraints, namely

∑K
k=1 πk =

1 and 0 ≤ πm ≤ 1 for 1 ≤ m ≤ K.

The GMM-HMM system takes advantage of HMMs to deal with the problem of varying
speech rate[RJ86], and employs GMMs to model the observation distributions of HMM
states. As discussed, phonemes are the basic modeling units for acoustic modeling, and
each phoneme is modeled by a left-to-right HMM with three states, namely b-state, m-
state and e-state. Each HMM state models a stage of the uttering of a phoneme. Figure 3.1
shows an example of GMM-HMM model for the phoneme “E”. With the help of alignments
of the training data, in which each frame of acoustic feature vector is aligned to a phoneme
HMM state, we can collect a large amount of feature vectors for each phoneme HMM state.
After that, the parameters of GMM are trained for each phoneme HMM state to fit the
distribution of feature vectors, this training algorithm is also known as Viterbi training
[RT03]. In order to bootstrap the training of the CI GMM-HMM system, the training
corpus is usually equally aligned.

3.2 Context Dependent Acoustic Model

Context independent acoustic modeling discussed in the previous section builds a model
for each phoneme regardless of its right/left contexts. However, a phoneme can have com-
pletely different pronunciations, and therefore different feature vector distributions, due to
the influence of its neighboring phonemes, this effect is the so-called coarticulation[HH06].
Coarticulation is caused by the fact that people’s vocal organs change continuously when

12



3.2. Context Dependent Acoustic Model 13

they speak. Hence, context dependent acoustic modeling was proposed to handle the prob-
lem of coarticulation, and the main idea behind the CD AM is to model phonemes with
different right/left contexts separately.

A phoneme with its left and right contexts is also referred to as a polyphone. There
are different types of polyphones according to the length of the contexts which are taken
into consideration. For instance, triphone models take one phoneme in the left and right
context into consideration respectively, while for quinphones two phonemes in the left and
right context are considered. As an illustration of the polyphone model, we consider the
phoneme sequence “ABEAA”. The phoneme “E” in the center of the sequence can be either
modeled by the triphone E(B|A), or by the quinphone E(A,B|A,A).

In our German context independent acoustic models there are 42 phonemes, and therefore
425 = 130691232 possible quinphones. However, such a large number of quinphones can
result in a lack of training data for each quinphone model and the number of quinphone
models being intractable. The state tying approach, which is based on the idea of pa-
rameter sharing, is commonly used to deal with this problem. According to state tying,
e.g. decision tree based state tying [YOW94], similar polyphone HMM states are clustered
and tied to an identical observation probability distribution, and the clustered polyphone
HMM states are also known as senones. A variety of distance measures can be used to
calculate the similarity between two clusters of polyphone states, such as the entropy dis-
tance and the Euclidean distance. The CI GMM-HMM system described in section 3.1.1
can be extended to CD AMs in a simple matter by using senones as modeling units instead
of phonemes[HH93].

3.2.1 Context Dependent DNN-HMM Hybrid System

In the GMM-HMM system, the observation distributions of HMM states are estimated
using GMMs. However, the GMM as a generative model is normally surpassed by dis-
criminative models, e.g. neural networks, in classification tasks. Therefore, some studies
have been done on exploiting neural networks in the field of speech recognition. For
instance, the ANN-HMM hybrid system employs the artificial neural networks (ANN)
to estimate the joint posterior probabilities of context-independent phonemes and clus-
tered context classes given acoustic feature vectors[BMWR92]. As next we present an-
other neural network-based acoustic model, which was proposed in 2012 by Dahl et. al.
in their work[DYDA12], namely the context dependent DNN-HMM hybrid system (CD-
DNN-HMM).

The CD-DNN-HMM system differs from the traditional ANN-HMM hybrid system mainly
in two aspects. Firstly, the CD-DNN-HMM system takes advantage of the unsupervised
deep belief network (DBN) pre-training algorithm to pre-train deep neural networks before
fine-tuning networks with the supervised BP algorithm. Secondly, the CD-DNN-HMM
system utilizes DNNs to directly estimate the posterior probabilities of senones given
acoustic feature vectors, namely P (qi|x), where x is a feature vector and qi is a senone.
After that, the observation probabilities of senones can be obtained with the help of Bayes’
rule:

p (x|qi) =
P (qi|x) p (x)

P (qi)
,

where P (qi) is the priori probability of senone qi estimated from the training data, and
p(x) is the priori probability of feature vector x which is commonly set to a constant
value in practice. In this way, DNNs are able to replace GMMs to model the observation
probability distributions of senones.

13



14 3. ASR Background

Similar to the CD-DNN-HMM system, in this work, our KWS system also employs neural
networks to estimate the posterior probabilities of senones. In addition to the DNN, the
senone classification performance of various types of recurrent neural networks, e.g. LSTM,
BLSTM and TDNN-LSTM, is also explored.
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4. NN-based Small-Footprint Flexible
KWS

This chapter first briefly describes some conventional approaches to KWS. Then the prob-
lem this work attempts to solve, namely real-time KWS on mobile devices, is analyzed.
After that, one recent approach proposed to solve this problem, and the disadvantages of
this approach are discussed. Finally, our novel NN-based small-footprint flexible KWS is
introduced.

4.1 Previous Work

The aim of KWS is to detect specific keywords/key-phrases in an audio stream, and there
are several conventional KWS systems. For example, dynamic time warping (DTW) based
KWS searches for matches between a sliding window of speech signal and the template
of the keyword based on the DTW algorithm[SC78]. Large-vocabulary continuous speech
recognition (LVCSR) based KWS first utilizes a LVCSR system to transcribe the input
audio stream into text or rich lattices, then employs efficient searching algorithms to
determine the position of the keyword in the text or lattices[GAV00][MKK+07]. Another
widely used KWS approach is the Keyword/Filler HMM-based KWS; for each predefined
keyword, this approach trains an HMM on a training dataset, and a filler HMM is trained
for all non-keywords speech, noise, and silence[RRRG89][RP90][WMM91]. Both LVCSR
based KWS and Keyword-Filler HMM-based KWS utilize Viterbi search for decoding.

Nowadays, many applications on mobile devices require real-time KWS. Such KWS sys-
tems should have a small memory footprint, low latency, and low computational cost
without suffering loss of accuracy. However, the conventional KWS approaches do not
meet these requirements, because a great deal of memory and computation are needed for
Viterbi search.

4.1.1 DNN-based small-footprint KWS

In 2014, a small-footprint KWS system called Deep KWS was proposed by Chen et.al to
solve the problem of real-time KWS on mobile devices[CPH14]. This system is composed of
three modules, which are the feature extraction module, the deep neural network module,
and the posterior handling module.

The feature extraction module produces 40-dimensional acoustic feature vectors from an
audio stream using log-filterbank energies. In order to provide sufficient context infor-
mation for the current frame, 30 past frames and 10 future frames are stacked with the
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16 4. NN-based Small-Footprint Flexible KWS

current frame to form a larger feature vector. The deep neural network is used to estimate
the posterior probabilities of the entire keywords given the stacked input feature vectors.
Keywords could be items such as “okay”, “google”, and so on. Finally, the posterior han-
dling module calculates the confidence scores of keywords or key-phrases based on the
posteriors produced by the DNN. However, raw DNN posteriors are normally noisy, so it
is necessary to smooth the posteriors. The smoothed posteriors are thus taken to be the
mean of posteriors over a time window of 30 frames. Then the confidence at the j-th time
step is calculated based on smoothed posteriors using this formula:

confidence = n−1

√√√√n−1∏
i=0

max
hmax≤k≤j

pik,

where pik represents the smoothed posterior probability of word i given the features at
time step k, hmax = max {1, j − wmax + 1} and wmax is the sliding window size which is
set to 100. Hence, the confidence score is therefore the geometric mean of the maximum
posteriors of all keywords to be detected in the past 100 frames.

However, the Deep KWS system also suffers some disadvantages. Firstly, a large amount
of training data is needed to train the DNN, according to the paper[CPH14], more than
two thousand training examples for each keyword are used to train the DNN. However
for keywords which rarely appear in the natural language, it is difficult to collect enough
training data. Secondly, the output layer of the DNN is fixed, if new keywords are needed
to be detected, then a new DNN should be trained. Therefore, the Deep KWS system is not
flexible. Thirdly, Deep KWS system uses the DNN to estimate the posterior probabilities
from a sequence of feature vectors. Graves et al. state that the BLSTM and LSTM
outperform the DNN in the task of framewise phoneme classification in their work[GS05].
Hence, the LSTM is probably able to improve the KWS accuracy over DNN-based systems.

4.2 NN-based Small-Footprint Flexible KWS

The previous section reviewed various previous approaches to KWS, and this section in-
troduces this work’s novel approach to KWS. This approach aims to build a flexible KWS
system with a small footprint and high accuracy. The small footprint means that the
KWS system does not occupy much RAM memory, which is vital for a system designed
for mobile devices. Real-time capacity is also an important factor that needs to be taken
into consideration. This means the KWS system should perform computations under time
constraints in order to deliver KWS results continuously in real-time. Unlike the inflexible
Deep KWS system that utilizes the DNN to predict the posteriors for entire keywords, a
flexible KWS system is also desirable. This system should therefore be able to detect new
keywords without collecting thousands of training examples for the specific keywords or
retraining the neural network.

In order to achieve these goals, we propose a KWS system, which is composed of three
components. They are the feature extraction module, the posterior probability estimation
module and the posterior handling module. The following subsections detail these three
components of our KWS system.

4.2.1 Feature Extraction

As with the Deep KWS system, the feature extraction module is used to generate acoustic
features, i.e. 54-dimensional log-MEL features (lMEL), from the original speech signal.
As this system does not estimate the posteriors for entire words, the context window used
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is shorter than the context window used by the Deep KWS approach. Longer context
windows normally lead to better performance at the expense of computational cost and
latency; thus, as a compromise between latency and performance, 19 past frames and 7
future frames are used to provide context information for the current frame.

4.2.2 Posterior Probability Estimation

As introduced in section 3.1, the pronunciation of a word is composed of a sequence
of phonemes. In context dependent models, these phonemes are further modeled with
polyphones such as triphones or quinphones, taking their context information into consid-
eration. In practice, different polyphone HMM states are clustered and tied to an identical
distribution; these clustered polyphones states are also known as senones. Instead of us-
ing DNN to predict posteriors for entire keywords, the new KWS system therefore uses
various NNs to predict posterior probabilities for subword units, which can be phonemes
or senones.

As another improvement to the Deep KWS, which only uses FFNN for posterior probability
estimation, our KWS system also employs RNNs such as LSTM, GRU, BLSTM, and
TDNN-LSTM. The RNN is designed to solve the problems of learning time series data
and modeling sequences of information. As human speech signal is time series signal in
nature, it is therefore reasonable to use RNNs to model speech signal. In this work, the
many-to-one RNN is used to estimate the posterior probabilities of phonemes/senones.

Quinphone-based context dependent acoustic models are employed, where the quinphone
is dependent on two contiguous phonemes in its left and right context, respectively; thus, it
is helpful to allow the LSTM to access the feature frames in the future context. There are
two ways to provide the future context to the LSTM. One way is to train the LSTM with
target delay, which introduces a delay between the target senones and LSTM outputs.
The other way is to use an extension of unidirectional LSTM, i.e. bidirectional LSTM
(BLSTM), in which each hidden recurrent layer is composed of a forward LSTM layer and
a backward LSTM layer. At each time step, the BLSTM thus has access to the full right
and left context information of the current frame in the input feature sequence.

TDNN-LSTM is inspired by the time delay neural network (TDNN) proposed by Waibel
et al. [WHH+89]. As speech signals can have local dependencies across time and frequency
domains, it is beneficial to perform a convolution operation on the input acoustic feature
sequence before feeding acoustic features to an LSTM [SVSS15]. Our TDNN-LSTM em-
ploys TDNN to perform a convolution operation on acoustic features, then repacks the
outputs of TDNN to pass to the LSTM.

4.2.3 Posterior Handling

Once the posterior probabilities are calculated for each frame of the feature vector sequence,
the confidence scores of the predefined keyword/key-phrase can be computed based on the
posterior probabilities derived from the neural networks. The posterior handling module of
our KWS system employs a similar algorithm to the Deep KWS, which enables the simple
and rapid calculation of confidence scores. As the original posterior probabilities generated
by neural networks are normally noisy, before the confidence scores for the keyword/key-
phrase are computed, the NN posteriors are also smoothed by calculating the mean of
posteriors using the same formula as [CPH14]:

p̄ij =
1

j − hsmooth + 1

j∑
k=hsmooth

pik,
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18 4. NN-based Small-Footprint Flexible KWS

where pik and p̄ik are the raw posterior and smoothed posterior of phoneme i given the fea-
tures at time step k, hsmooth = max {1, j − wsmooth + 1}, and wsmooth is the size of smooth
window which is set to 30. As the pronunciation of a word consists of a phoneme sequence,
our KWS approach is based on the idea that, if the phonemes of a given keyword/key-
phrase appear in a sliding window of the frame sequence with high probabilities, then this
keyword/key-phrase also appears in the sliding window with high probability. Therefore,
the confidence score of the keyword/key-phrase at the j-th time step is calculated using
the following formula:

confidence = n−1

√√√√n−1∏
i=0

max
hmax≤k≤j

p̄ik,

where p̄ik denotes the smoothed posterior probability of phoneme i given the features at
time step k, hmax = max {1, j − wmax + 1} and the sliding window size wmax is also set
to 100. The confidence score is, therefore, the geometric mean of the maximum posteriors
for all the phonemes, which compose the keyword/key-phrase, in the past wmax = 100
frames.

The highest computational cost of our KWS system results from the evaluation of neural
networks and the calculation of confidence scores. Thus, compared with the conventional
LVCSR or HMM-based KWS approaches, it requires less computation and has low latency
due to the omission of the Viterbi search. Furthermore, unlike the Deep KWS’s use of
DNN to predict the posteriors for entire words, our KWS approach is flexible, as it is based
on the posteriors of phonemes/senones and thus independent of specific keywords. This
means that it does not require the collection of thousands of training examples for each
keyword, or retraining of the NN in order to detect new keywords. Our KWS approach
only needs less than one hundred examples for each keyword/key-phrase to calculate an
appropriate range of the confidence threshold for the keyword/key-phrase. As another
improvement to the Deep KWS approach, various NNs are explored in this work, with the
aim of achieving higher accuracy.
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5. Implementation

This chapter demonstrates the implementation details of our NN-based KWS system in
order to enable other researchers to reimplement this system. First of all, a feature ex-
traction module is necessary to realize our system, this module is used to extract acoustic
feature vectors from the speech signal. Then, in the NN training phase different types
of neural networks are trained based on the extracted features. Finally, in the NN-based
KWS phase confidence scores of predefined keywords are calculated continuously from an
audio stream with the help of the trained NNs and the feature extraction module. Figure
5.1 presents the implementation pipeline of our KWS system, and each implementation
step in the pipeline is detailed in the following sections.

5.1 Feature Extraction Module

The feature extraction module is needed for both the NN training phase and the subsequent
NN-based KWS phase. In the NN training phase, the extracted acoustic features are
used to train the NNs, while in the NN-based KWS phase, the trained NNs generate
posteriors from the acoustic feature vectors. Initially, we have a database which contains
only speech audio WAV files sampled at 16 kHz. The feature extraction module computes
54-dimensional lMEL features from the audio signal over a sliding window with the size
of 32 ms and a frame shift of 10 ms. In comparison to the Deep KWS system, which
uses 30 past frames and 10 future frames to provide context information for the current
frame, a much shorter context window is used. As this KWS system employs NNs to
calculate posteriors for phonemes or senones rather than whole words, 19 past frames and
7 future frames are estimated to provide sufficient context information for the prediction
of the phoneme or senone label of the current frame. By using a shorter context window,
computation is reduced and lower latency achieved.

In this work, the feature extraction module is implemented using the Janus Recognition
Toolkit[FGH+97] (JRTk). JRTk is a framework for general-purpose speech recognition
that was cooperatively developed by the Karlsruhe Institute of Technology and Carnegie
Mellon University. JRTk consists of a range of various functional modules that include
acoustic pre-processing, HMM based acoustic modeling with GMM-HMM, hybrid DNN-
HMM, and IBIS one-pass decoder for decoding[SMFW01]. The functional modules of JRTk
are implemented in highly optimized C code to provide maximum efficiency of program
execution. In order to offer flexible and high-level manipulation of functional modules,
JRTk also supports an object-oriented programming interface in Tool Command Language
(Tcl).
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20 5. Implementation

Figure 5.1: Implementation pipeline of our KWS system. First, in the NN training phase,
different neural networks are trained using the lMEL features extracted by the
feature extraction module from the labeled training dataset. Then, in the NN-
based KWS phase, the well-trained neural network generates the posteriors us-
ing lMEL features generated by the feature extraction module, and the posterior
handling module calculates the confidence scores based on the NN posteriors.

5.2 Neural Network Training Phase

In this work, all neural networks are trained using the deep learning frameworks Lasagne
and Pytorch. Lasagne is a lightweight framework based on Theano[BLP+12][BBB+10],
which allows users to construct and train neural networks with great ease by encapsulating
the functionality of Theano in a higher level. In January 2017, however, a novel framework,
Pytorch, was released by Facebook AI Research. Pytorch is also a fully-featured deep
learning framework, but it offers particularly strong GPU acceleration. Both frameworks
support a flexible Python interface and GPU computation based on Nvidia’s CUDA library.

The following subsections first discuss the labeling and the training data for NNs, and then
describe the architectures and the training details of the FFNN, the LSTM, the BLSTM,
and the TDNN-LSTM respectively, as we employ these different types of neural networks
for the KWS task. We use the FFNN as the baseline, and compare the performance of
the LSTM, BLSTM and TDNN-LSTM models with the FFNN.

5.2.1 Labeling and Training data

Before we start to train the NNs, the training data should be labeled, which means each
acoustic feature frame is assigned a target label. The target label set is dependent on the
acoustic model employed. In order investigate the impact of different AMs on the KWS
performance, the 42 phonemes CI AM, the 6k senones CD AM and the 18k senones CD
AM are utilized in this work. Like the feature extraction module, the labeling is also
implemented using the Janus Recognition Toolkit, and performed with the help of a well-
trained German ASR system. After the labeling of the training data, the acoustic feature
vectors are extracted from the audio WAV files, and then stored in the PFile format. Table
5.1 shows some example rows of the PFile format.

A full training dataset is normally split into two non-overlapping subsets. One subset is
used for the actual neural network training, and the weights of the network are fitted on
this subset of data through BP training. The other data subset is used for validation and
helps to avoid the problem of overfitting. During the training procedure, after each epoch,
the frame error rate of the network is measured on the validation subset, and based on
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Utterance Index Frame Index Feature Vector Class Label

0 0 [0.5, 0.6, ..., 0.9] 120

0 1 [0.3, 0.2, ..., 0.4] 34

0 2 [0.2, 0.9, ..., 0.5] 733

1 0 [0.5, 0.3, ..., 0.1] 703

Table 5.1: PFile format, feature vectors are arranged in rows.

the resulting validation error, the learning rate is adjusted until the stopping point of BP
training can be determined.

Lasagne and Pytorch operate on input data in the form of Tensor data types. Thus, it is
necessary to convert the training data stored in PFile format on the hard disk into Tensor
data types. In our experiments, training data is partitioned into 1000MB segments, which
are loaded from PFile into main memory successively. Then the training instances of
the data partition are shuffled, and each partition is iterated in mini-batches of a fixed
size. Each batch of training data, which is composed of sequences of feature vectors and
corresponding labels, is converted to Tensor variables, and passed to the neural network
training process for use by the BP algorithm.

5.2.2 FFNN

5.2.2.1 Architecture

The standard FFNN with fully connected layers introduced in section 2.1 is trained as the
baseline. The input feature vector of the FFNN is 54-dimensional lMEL features with 19
frames in the left context and 7 frames in the right context, which are 27 frames in total.
Therefore, the input layer of the FFNN has 54∗27 = 1458 neurons. The number of hidden
layers and the number of neurons in each hidden can be optimized in the experiments.
Normally, a larger FFNN offers more powerful modeling capability, however, the larger
FFNN may suffer the problem of overfitting and lead to higher latency and a larger memory
footprint in the subsequent KWS phase. For the activation function of hidden layers, we
can apply ReLU, sigmoid or tanh functions. The size of output layer corresponds to the
number of phonemes or senones of the AMs. Moreover, the output layer uses the softmax
activation function and generates the estimated posterior probability distribution over the
target phoneme or senone sets.

5.2.2.2 Training

Before starting the neural network training with the BP algorithm, there are multiple
ways to initialize the weights of NNs. For example, we can initialize the weights randomly
with values from a uniform distribution or a Gaussian distribution. In this work, the
initial weights of all NNs are sampled from uniform distributions with zero mean. After
initialization, weights of the FFNN are optimized using a variant of the BP algorithm,
namely mini-batch gradient descent (MGD), over a mini-batch with the fixed size of 256.
The aim is to minimize the cross entropy loss of the FFNN over the mini-batch.

As a momentum term can help to accelerate the training process of neural networks and
avoid sinking into local minima[PNH86], our implementation employs a variant of mo-
mentum, i.e. Nesterov momentum[Nes83]. We set the initial learning rate of the gradient
descent method to 0.01 and Nesterov momentum to 0.9. Furthermore, Newbob strategy is
employed for learning rate scheduling. After each epoch of training, we measure the frame
error rate (FER) of the FFNN on the validation dataset, and compare the current FER
with the FER of the previous epoch. Once the decrease of the FER between two epochs
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Figure 5.2: Architecture of the LSTM implemented in this work, the LSTM hidden layers
can also be replaced by GRU or BLSTM hidden layers.

drops below 0.005, the current learning rate starts to decay exponentially with a factor of
0.5. When the decrease of validation error is less than 0.0001, we terminate the network
training process.

5.2.3 LSTM and BLSTM

5.2.3.1 Architecture

In this work, the many-to-one LSTM is employed for sequence classification. This type of
LSTM accepts a sequence of input feature vectors and generates a final output prediction
for the input sequence. Figure 5.2 shows the architecture of the LSTM we implemented
in this work. In addition to the LSTM, the sequence classification performance of the
gated recurrent unit (GRU), as a variant of the LSTM, is also investigated. The GRU
is implemented in the exactly the same way as the LSTM; however, for reasons of space,
only the implementation details of LSTM are discussed in the following section.

At each time step, the LSTM takes a 54-dimensional lMEL feature vector as input, which
means the size of the input layer of the LSTM is also 54. The different modeling capacities
of LSTM are explored by varying the depth and the size of recurrent hidden layers. For
the activation function of recurrent hidden neurons, the tanh function is utilized. A fully
connected layer with softmax function is also added on top of the LSTM layers; the size
of this output layer corresponds to the number of phonemes or senones.

The whole feature sequence LSTM can access includes the current feature frame, 19 past
frames, and 7 future frames. Thus, the sequence length of input feature vectors in 27,
which is the same as the length of the input feature vector for the FFNN discussed in
the previous section. Given a sequence of input feature vectors with length 27, LSTM
generates an output vector after accepting and forward propagating each input feature
vector; thus, the length of the output sequence is also 27. The LSTM is trained with a
target delay of 7 frames by taking the outputs of LSTM at the last time step, i.e. when
the LSTM observes the 27th input feature vector, as the estimated posteriors for the input
feature sequence.

The ability of the BLSTM to do sequence classification is also exploited in this work. Each
recurrent layer of BLSTM consists of a forward LSTM layer and a backward LSTM layer;
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Newbob
Decay

Newbob
Threshold

Batch
Size

Learning
Rate

Nesterov
Momentum

Loss
Function

0.5 [0.005, 0.0001] 256 0.01 0.9 Cross Entropy

Table 5.2: MGD training hyperparameters of LSTMs, BLSTMs and GRUs.

the two layers process the input sequence and are trained independently. The forward and
backward hidden layers are concatenated to form a larger layer, and this is then connected
to the next hidden BLSTM layer or the output layer. The size of the output layer also
depends on the number of modeling units of AMs. For BLSTM, the feature sequence also
includes the current feature frame, 19 past frames, and 7 future frames. This work takes
the BLSTM output at the 20th time step, which is a combination of the forward hidden
layer output at the 20th frame and the backward hidden layer output at the 7th frame
in the reverse direction, as estimated posteriors for the input feature sequence. This also
corresponds to the left and right context information used.

5.2.3.2 Training

For simplicity, LSTM, BLSTM and, GRU are collectively called LSTM in this section.
As with FFNNs, the weights of LSTMs are also initialized with random values from a
uniform distribution with zero mean. All initial hidden states and cell states of LSTMs
are set to the constant value zero for each training instance in the batch. The input
training data of the LSTM is organized in a 3-dimensional tensor with the shape (batch
size, sequence length, input dimensionality), where the input dimensionality is 54, based
on the dimension of the lMEL features; the sequence length is 27; and the batch size is
256. The weights of LSTM are updated with each batch.

The standard backpropagation through time (BPTT) algorithm is applied to train LSTMs
to predict the phoneme or senone labels of the feature sequence. The input feature vectors
are processed in sequential order, and the cross-entropy loss for the training sequence is
computed based on the target and the output of the LSTM at the last time step. The
weights of the LSTM are optimized with the help of MGD over mini-batch of size 256.
The hyperparameters of MGD training are listed in table 5.2, and these are almost the
same as the FFNN, which allows a fair comparison among different types of NNs such as
LSTM, FFNN and TDNN-LSTM.

5.2.4 TDNN-LSTM

5.2.4.1 Architecture

The TDNN-LSTM architecture adopted in the work is modeled after the Deep Speech 2
architecture proposed in [AAA+16]. The TDNN-LSTM architecture is shown in figure
5.3. A TDNN with one or more layers forms the bottom of a TDNN-LSTM. The TDNN
accepts a 3D feature map as input with the shape (channels, height, width), where the
parameter channels refers to the number of input feature channels. In this case, only one
channel feature map, the lMEL features, is used as TDNN input; thus, the parameter
channels is always set to one in our implementation. The other two parameters, height
and width, represent the height and width dimensions of the input feature map, which
are the dimension of lMEL feature vector 54 and the length of feature vector sequence 27,
respectively.

The architecture of TDNN has several hyperparameters, including the number of TDNN
hidden layers, the size of convolution kernels, and the number of output channels of each
convolution layer. A smaller subset of the entire training dataset is used to determine
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Figure 5.3: Architecture of the TDNN-LSTM implemented in this work, the TDNN layers
form the bottom of the TDNN-LSTM, hyperparameters of TDNN layers, such
as the depth of TDNN hidden layers, the size of convolution kernels, and the
number of output channels of each convolution layer, are optimized using a
subset of the training data.

the optimal values of these hyperparameters. As an extension to the conventional TDNN,
which performs a convolution operation in the time domain with a stride of 1, the TDNN
utilized in this work performs the convolution operation across both the time domain and
the frequency domain with a stride of 2. This can decrease the required computational
effort and the number of time steps in the ensuing LSTM layers compared with using a
stride of 1. Furthermore, each TDNN layer is followed by a batch normalization layer[IS15]
and the hardtanh activation function with a minimum value 0 and a maximum value 20.

The output feature maps of the last TDNN layer are repacked and passed to the LSTM
layers. Each output channel of the TDNN layer generates an output feature map. The
features on the same column of all output feature maps are stacked to form a larger feature
vector, and the stacked feature vector is used as the input of the LSTM for one time step.
The size of the LSTM input layer is calculated using the formula:

input size = [(W − F + 2P )/S + 1] ∗ C,

where W and F denote the input feature map size and the filter size, P is the zero padding
amount, S is the stride size and C represents the number of output channels. GRU can
also be built upon TDNN in a similar manner to LSTM. Finally, the outputs of the LSTM
are fed to the fully connected output layer with the softmax function.

5.2.4.2 Training

The training data for TDNN-LSTM is organized in a 4-dimensional tensor variable with
the shape (batch size, channels, input dimensionality, sequence length), where the value of
channels is set to the constant value one; the values of batch size, and input dimensionality,
sequence length are set to 256, 54 and 27, respectively. These are the same as in the LSTM
training discussed in the previous section.
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Newbob
Decay

Newbob
Threshold

Batch
Size

Learning
Rate

Nesterov
Momentum

Loss
Function

0.5 [0.005, 0.0001] 256 0.01 0.9 Cross Entropy

Table 5.3: MGD training hyperparameters of TDNN-LSTMs.

In this work, the weights of TDNN layers and LSTM layers are jointly trained with the
BPTT algorithm. The lMEL feature maps are fed to the input layer of the TDNN-LSTM,
and then propagated through the TDNN layers. After that, the output feature maps of the
last TDNN layer are repacked and passed to the LSTM layers. Finally, the cross-entropy
loss is computed based on the target and the output of the TDNN-LSTM at the last frame.
As with FFNN and LSTM, TDNN-LSTM is optimized using MGD with a mini-batch size
of 256. Table 5.3 lists the MGD training hyperparameters of TDNN-LSTM.

5.3 NN-based KWS Phase

The previous section describes the architecture and the training procedure of different neu-
ral networks, in this section we detail our novel KWS approach using the trained NNs. We
use the key-phrase “okay cosa” as a concrete example to illustrate our KWS approach, and
show the steps to implement the KWS system detecting the key-phrase “okay cosa”. We
also use this key-phrase to evaluate the final KWS system in the subsequent experiments.
As introduced, our KWS framework consists of three modules, which are the feature ex-
traction module, the posterior probability estimation module and the posterior handling
module. We use the same feature extraction module for both the NN training phase and
the NN-based KWS phase, therefore this section only discusses the posterior probability
estimation module and the posterior handling module.

5.3.1 Posterior Probability Estimation

For each frame of feature vector, the same context window is used as in the NN training
phase; this consists of 19 frames in the left context and 7 frames in the right context. For
the FFNN, the feature vector sequence is concatenated to form a larger feature vector with
dimension 54 ∗ 27 = 1458, which is placed in the input layer of the FFNN. Activations of
the network are propagated from the input layer, through all hidden layers, to the output
layer, and the outputs of the final output layer with softmax function are the estimated
posteriors.

For LSTM, an input feature sequence is fed to the network frame by frame; at each time
step, the LSTM accepts a feature vector of dimension 54, propagates the signal in a feed-
forward fashion, and stores the values of the hidden states and hidden cells. The output
of the LSTM at the last time step is used as the estimated posteriors for the whole input
feature sequence. For BLSTM, the output at the 20th time step is used as the estimated
posteriors. The TDNN layer of the TDNN-LSTM takes a 3D feature map as input, before
the outputs of the last TDNN layer are passed to the LSTM framewise; the outputs of the
LSTM at the last frame are used as the estimations of posteriors.

The posterior probability estimation module is also implemented using the deep learning
frameworks Lasagne and Pytorch. Furthermore, this module is independent of keywords/key-
phrases to be detected, as NNs are used to estimate the posteriors for subword units like
phonemes or senones, which makes the output layer of the NN independent of keyword/key-
phrases. Therefore, the same NN can be used for posterior estimation regardless of the
keywords/key-phrases.

25



26 5. Implementation

Pronunciation Denoted by

Without
Word boundary

“O K EH K OH Z AH” O
“OH K EH K OH Z AH” OH
“O U K E I K OH Z AH” OU

With
Word boundary

“O K EH” (WB) “K OH Z AH” O WB
“OH K EH” (WB) “K OH Z AH” OH WB
“O U K E I” (WB) “K OH Z AH” OU WB

Table 5.4: Six pronunciation variants of the key-phrase “okay cosa”.

5.3.2 Posterior Handling

5.3.2.1 Pronunciation Variants

The pronunciation of the key-phrase “okay cosa” is composed of a sequence of phonemes.
In the dictionary, the word “okay” has three pronunciations, which are “O K EH”, “OH K
EH”, and “O U K E I”. The word “cosa” has one pronunciation, namely “K OH Z AH”.
Hence, the three pronunciations of the word “okay” and one pronunciation of the word
“cosa” result in three combinations of pronunciation for the phrase “okay cosa”.

Furthermore, the word boundary can also be taken in into consideration when we investi-
gate the pronunciations of key-phrases. For instance, the pronunciation of the phrase“okay
cosa” can be modeled by a sequence of continuous phonemes according to the dictionary,
e.g. “O K EH K OH Z AH”. The fourth phoneme “K” in the phoneme sequence can be
modeled by the quinphone K(K,EH|OH,Z). Due to the fact that the phrase “okay cosa”
is composed by the two words “okay” and “cosa”, it is also reasonable to take the word
boundary between these two words into consideration. In this case, the pronunciation of
the phrase is modeled by two separate phoneme sequences derived from the pronunciations
of words “okay” and “cosa”, e.g. “O K EH” (WB) “K OH Z AH”. The fourth phoneme “K”
can therefore be modeled by the quinphone HMM K<WB>(SIL<WB>|OH,Z), and “SIL”
represents silence.

Thus, there are in total six possible pronunciations of the key-phrase “okay cosa”, which
are listed in the table 5.4. For simplicity, these six pronunciations are denoted by O, OH,
OU, O WB, OH WB, and OU WB in the following chapters.

5.3.2.2 Representation Variants of Phoneme Posteriors

As introduced in section 4.2.2, the confidence score of a keyword is calculated based on
the posterior probabilities of all the phonemes which construct that keyword. There are
several different ways to model the phoneme posteriors. In a context dependent AM, a
phoneme can be represented by the b-state, m-state, or e-state of the quinphone HMM
which models this phoneme depending on its left and right contexts.

For instance, the phoneme “EH” in the pronunciation “O K EH K OH Z AH” is modeled by
the quinphone HMM EH(O,K|OH,Z) with three states, i.e. b-state, m-state, and e-state.
Therefore, given the input feature vectors, the posterior of the b-state, m-state, or e-state
of the quinphone HMM EH(O,K|OH,Z) can be regarded as the posterior of the phoneme
“EH”. In addition to the posterior of a single quinphone HMM state, the mean or maximum
of the posteriors of the three HMM states can also represent the posterior of the phoneme
“EH”. Thus, the posterior of a phoneme can be represented by the posterior of one of its
three corresponding quinphone states, or the mean or maximum of the posteriors of all
three corresponding quinphone states.

Our KWS approach employs NNs to predict the posterior probabilities of senones, i.e.
the clustered HMM states of quinphones, when a context dependent acoustic model is
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employed. With the help of the phonetic cluster tree, the senone to which a quinphone
HMM state is tied can be retrieved. Then, based on the mapping from the senone set to
the target label set used for NN training, the corresponding entry index in the NN output
vector for the quinphone state can be obtained.

5.3.2.3 Confidence Calculation

Given a sequence of posteriors generated by the NN, the posterior vectors are first smoothed
by taking the mean of posteriors over a time window of 30 frames. Then, the confidence
score of the keyword/key-phrase is calculated based on the smoothed posteriors using the
formula as introduced in section 4.2.3:

confidence = n−1

√√√√n−1∏
i=0

max
hmax≤k≤j

p̄ik,

where the phoneme posterior p̄ik can be the posterior of the b-state, m-state, or e-state
of the corresponding quinphone HMM of phoneme i, or the mean or maximum of the
posteriors of the three states.

It is important to investigate the pronunciation variants of the keyword/key-phrase to be
detected. The first step is to find the best match pronunciation and then use this fixed
pronunciation consistently for confidence calculation. Besides, for each sliding window it
is also possible to calculate the confidence scores for all pronunciation variants, and choose
the one with the maximum confidence as the final confidence for a given window.
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6. Experiments

This chapter documents the experimental setup used to evaluate our KWS approach and
also the evaluation results. We evaluate our KWS system by detecting the keyword “okay
cosa” in audio WAV files. Evaluation results are arranged in two parts, the first part
includes comprehensive experimental results on neural network training, and the second
part presents the performance of our KWS approach using the trained neural networks.
Furthermore, a website was developed to collect the evaluation data. The first section
of this chapter introduces our data collection website, followed by a description of the
experimental setup, and the last section presents the experimental results.

6.1 Data Collection

We developed a website for the collection of evaluation data, the layout of our website is
shown in figure 6.1. When the website is opened at the first time, the browser immediately
requests the access to the microphone of the computer. After the access to the microphone
is granted, website users can press the REC button in the middle of the website to start the
recording. However, there are normally about one second of delay between when the REC
button is pressed and the recording actually starts, as the microphone and the recorder
program may need time to initialize and run. Therefore, in order to avoid the problem
that we receive recordings which are truncated at the beginning, we added a recording
indicator, which is a circle, next to the REC button. The circle turns red after 1s of
button pressing indicating that the microphone and the recorder program is initialized,
and then the user can pronounce the phrase “okay cosa”.

When the user releases the REC button, the recorder ends the recording. Then the record-
ing is sent from the browser to our server immediately, and stored on the server in WAV
format. We also implement the recording playback function and voice activity detection
for the website, as problems such as wrong microphone or mixer settings can result in
recordings containing only noise. After the recording, users can play their recordings back
on the website, and decide whether to discard the recordings or not. At the bottom of
the website there is also an example of “okay cosa” pronunciation, which can be played.
Moreover, voice activity detection is implemented for this website, if a user presses the
REC button without saying anything, a window will appear indicating that no voice has
been detected.

We take advantage of HTML5 and the JavaScript library jQuery for front-end web de-
velopment. The library jQuery significantly simplifies programming with JavaScript by
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Figure 6.1: Website for data collection.

encapsulating common functionalities of JavaScript. The front-end process demonstrates
our website to users and responds to users’ requests such as starting the recording, ending
the recording and so on. The Python based framework Django is utilized for back-end
development. The recordings from the web browser are stored and processed on the back-
end server. Besides, the back-end server also gives the front-end feedbacks when no voice
is detected in the received recordings. For voice activity detection we use the WebRTC
Voice Activity Detector developed by Google.

6.2 Experimental Setup

6.2.1 Training Dataset and Test Dataset

In this work, NNs are trained and tested on a German corpus derived from Quaero training
data, along with audio data from broadcast news and the Baden-Wuerttemberg State
Parliament[KHM+14]. The training dataset for NNs contains approximately 59M frames
from 34k utterances, which total about 160 hours of audio. There are 3.5M frames (∼9.5
hours) in the validation dataset used for learning rate scheduling and determining the
endpoint of NN training. The test dataset for measuring the frame error rate of trained
NNs includes 2.7M frames (∼7.6 hours).

For the evaluation of our final KWS systems, we collected 348 positive examples containing
the key-phrase“okay cosa”from various speakers with the help of our website. Each speaker
made about ten recordings, so we have positive examples from more than thirty speakers.
For negative examples, we selected 3011 utterances which do not contain the key-phrase
“okay cosa” from the validation and test data used for NN training. Both positive and
negative datasets contain some noisy utterances.
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Truth
Test

Positive Negative

Positive True Positive False Negative

Negative False Positive True Negative

Table 6.1: Definitions of true positive, false positive, false negative and true negative.

6.2.2 Metrics

The performance of a binary classifier is normally measured using the receiver operating
characteristic curve (ROC curve). The ROC curves of different classifiers are usually
plotted in the same graph to provide a fair comparison between those classifiers. In this
work, the ROC curve is also used as the metric to measure the performance of KWS
systems.

Consider a binary classification problem, where class labels of the instances and outputs of
the classifiers are either positive (p) or negative (n). At this point, the predictions of the
classifiers have totally four possible outcomes, which are true positive (TP), false positive
(FP), true negative (TN), and false negative (FN) respectively. The definitions of the four
outcomes are listed in table 6.1.

The ROC curve of a classifier is generated by plotting the true positive rates (TPR =
TP

TP+FN ) and false positive rates (FPR = FP
FP+TN ) of the classifier at various threshold

settings. Depending on the requirements, an appropriate classifier can be chosen that
provides the best trade-off between TPR and FPR. On an ROC graph, the area under curve
(AUC) is also a useful metric, as a larger AUC implies superior classification performance.

In addition to the ROC curve, there is another effective metric employed to evaluate the
performance of the KWS system, namely the F1-score. The F1-score is defined as:

F1 = 2 ∗ precision ∗ recall
precision+ recall

,

where precision = TP
TP+FP , and recall = TP

TP+FN . It can be interpreted as the harmonic
mean of precision and recall. The harmonic mean is then multiplied by the constant two
so as to scale the F1-score to one when the values of precision and recall are both one.

6.3 Experimental Results

The following section presents and explains the experimental results of NN training, fol-
lowed by the evaluation results of the final KWS systems based on the trained NNs. As
one of our goals is to build a real-time small-footprint KWS system on mobile devices,
the size of the NN models and the time needed for confidence calculation are also critical
experimental results, alongside the accuracy.

6.3.1 Neural Network Training

The evaluation results of NN training for 6k senones CD AM are given first. These were
gained from extensive experiments on NNs for 6k senones to explore the impact of network
architectures on classification performance. After that, the final subsection presents the
evaluation results of NN training for 42 phonemes CI and 18k senones CD AMs.
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6.3.1.1 Initial Experiments

The training of LSTMs can take days or even weeks using the full training dataset; thus
a subset containing 11M frames (∼30h) from the original training dataset was selected
to create a smaller training dataset. Initial experiments were conducted on the smaller
training dataset to help select a suitable deep learning framework and to ascertain a
reasonable range of NN hyperparameters within a short time.

Different deep learning frameworks have different advantages and disadvantages respec-
tively. In the initial experiments, the frameworks Pytorch and Lasagne were used to train
the models. NNs trained using Pytorch and Lasagne achieved similar accuracies on the
validation dataset; however, Pytorch was found to be much faster than Lasagne in terms
of training LSTM. Therefore, in the subsequent experiments on training NN using all
training data, only Pytorch was used to implement the models.

In the initial experiments we also investigated the optimal ranges of NN hyperparameters
such as the learning rate, the momentum, the length of target delay and so on. Experi-
mental results show that in many cases MGD with the learning rate 0.01 and the Nesterov
momentum 0.9 can deliver the best accuracy compared with other learning rate scheduling
strategies. As discussed in section 4.2.2, target delay provides LSTM with future feature
frames, intuitively target delay of more frames can lead to better accuracy, and our experi-
mental results also matches this hypothesis. We implemented LSTMs without target delay
and with target delay of 5, 6, 7 frames, results show that target delay of more frames leads
to higher accuracy. Since more frames in the future context can result in higher latency
of our KWS system (one future frame increases 10ms of latency), we did not continue to
do experiments on more future frames, and trained LSTM with target delay of 7 frames
in all subsequent experiments.

There are some hyperparameters related to TDNN layers that are used exclusively for
TDNN-LSTM training; these include the number of TDNN layers, the kernel size, and
the number of channels in each TDNN layer. In the initial experiments, different designs
of TDNN layer were thus investigated. For instance, TDNN-LSTMs with one hidden
layer and two hidden layers were investigated. In TDNN-LSTMs with two hidden layers,
the kernel size of the first hidden layer was always larger than the kernel size of the
second hidden layer. For both architectures, different kernel sizes and different numbers
of channels were investigated. Based on the experimental results, a single hidden layer
TDNN with a kernel size (10, 5) and 32 channels can provide the best performance; thus,
the TDNN with this architecture was employed in the subsequent experiments.

6.3.1.2 Impact of Hidden Layer Size and Dropout

Once an appropriate range of NN hyperparameters had been obtained from the initial
experiments, further experiments on training NNs on the entire training dataset were
undertaken. The aim of the experiments was to study those factors that can impact the
performance of networks. One of the most influential factors is the size of the networks,
so the experiments first investigated the influence of the hidden layer size on classification
accuracy. As LSTMs with two hidden layers are able to provide sufficient modeling capacity
according to initial experiments, LSTMs with two hidden layers were trained, with the size
of the hidden layers being extended from 200 to 700. As dropout can usually improve the
generalization ability of NNs [HSK+12], the effectiveness of dropout in NN training was
also explored.

The evaluation results are showed in table 6.2. For each trained model, the model archi-
tecture, the size of the memory footprint occupied by the model, the validation error, and
the test error are shown. Four types of NNs, LSTM, GRU, TDNN-LSTM and FFNN,
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Network Architecture
Memomry

Footprint(MB)
Validation Error Test Error

LSTM
2*200 7 44.16 43.76
2*512 25 41.81 41.36
2*700 40 42.02 41.50

GRU
2*200 7 45.31 44.89
2*512 22 42.48 42.03
2*700 34 42.39 41.92

TDNN-LSTM
2*200 9 43.81 43.45
2*512 30 41.64 41.22
2*700 47 41.62 41.21

FFNN
3*300 10 50.49 50.02
3*720 25 46.23 45.80
4*1000 40 44.52 44.07

LSTM
Dropout

2*512 25 41.12 40.68
2*700 40 40.87 40.39

Table 6.2: Impact of hidden layer size and dropout.

were implemented. For each type of RNN, i.e. LSTM, GRU and TDNN-LSTM, models
were trained with three different architectures, which were all RNN architectures with two
hidden layers, but with 200, 512, and 700 nodes per layer, respectively.

The first three lines show the evaluation results of LSTMs. The LSTM with 200 nodes
per layer is the smallest LSTM; its memory footprint is about 7MB, and the test error
is 43.76%. The next LSTM has 512 nodes per layer; its footprint is 25MB, and the test
error is 41.36%, which is lower than seen for the smallest LSTM. The largest LSTM has
700 nodes per layer; however, the test error is higher than that seen for the smaller LSTM
with 512 nodes per layer. This increase in test error may be caused by the problem of
overfitting or data sparsity.

GRUs were trained with the same architectures as LSTMs. As the results show, a GRU
always has a smaller memory footprint and higher test error than the LSTM with the
same architecture. For the TDNN-LSTM, three networks were also trained with the same
architectures as LSTMs. TDNN-LSTMs need larger memory footprints due to the TDNN
layers; however, TDNN-LSTMs with 200, 512, and 700 nodes per layer have slightly lower
test errors than the LSTMs with the same architectures.

The architectures of FFNNs we investigated are different from the architectures of RNNs,
as we intended to compare the accuracy of different models with roughly the same memory
footprint. The smallest FFNN has three layers and 300 nodes per layer, its memory
footprint is 10MB, which is slightly larger than the smallest LSTM. However, its test error
is 50.02%, which is dramatically higher than the smallest LSTM. The largest FFNN shown
in the table has four layers and 1000 nodes per layer; it has roughly the same footprint as
the largest LSTM, and its test error is 44.07%. This is probably the best performance the
FFNN can achieve, as an FFNN with a larger architecture, consisting of four layers with
1600 nodes per layer, was also trained, but the test error was 44.14%, higher than the test
error of the smaller FFNN.

The last two lines shows the experimental results of LSTMs trained with dropout. We
trained two LSTMs with the dropout rate of 0.3. The smaller LSTM has two layers and
512 nodes per layer, and it has a test error of 40.68%, which is lower than the LSTM with
the same architecture trained without dropout. The larger LSTM has 700 nodes per layer,
and the test error is 40.39%, which is also lower than the LSTM with the same architecture
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Network Architecture
Memomry

Footprint(MB)
Validation Error Test Error

LSTM
2*512 25 41.81 41.36
3*512 33 41.65 41.17
4*512 41 41.49 41.03

TDNN-LSTM
2*512 30 41.64 41.22
3*512 38 40.90 40.53
4*512 46 40.63 40.18

BLSTM 2*512 57 39.98 39.47

Table 6.3: Impact of hidden layer depth and BLSTM.

trained without dropout. Therefore, according to our experimental results dropout can
improve the accuracy of LSTMs.

6.3.1.3 Impact of Hidden Layer Depth and BLSTM

There are various methods available to increase the complexity of NNs and explore their
maximum performance. For instance, the hidden layer size can be extended, the number
of hidden layers can be increased, and for RNNs, bidirectional RNN is a more delicate way
to extend the network architecture and enhance modeling capability.

Section 6.3.1.2 shows that for LSTMs with two hidden layers, the performance decreases
when we simply extend the hidden layer size from 512 to 700. However, we still have
alternative methods to increase the complexity of LSTM, e.g. LSTM with more hidden
layers and BLSTM. Table 6.3 presents the experimental results. For LSTM and TDNN-
LSTM, we trained networks with two, three and four layers, each layer has always 512
nodes. The performance of networks always gets improved, when we increase the depth of
networks. Furthermore, each TDNN-LSTM has lower test error than the LSTM with the
same architecture. BLSTM with two layers achieves the best performance of all NNs, its
test error is 39.47%, and about 2% lower than the LSTM with the same architecture.

6.3.1.4 Evaluation Time

As our aim is to build a real-time KWS system appropriate for mobile devices, the evalua-
tion time of networks is critical. Therefore, we also evaluate the LSTM and TDNN-LSTM
on a normal CPU. We selected about 33k frames from 50 utterances, which total 5.6 min-
utes, and the CPU used is Intel Core 2 Quad CPU Q9400. The evaluation time of the
smallest LSTM with two layers and 200 nodes per layer is approximately 160s. The evalu-
ation time of the smallest TDNN-LSTM with two layers and 200 nodes per layer is about
90s, which is less than the evaluation time of the smallest LSTM due to the convolution
operation with stride of 2 in the TDNN layer. Hence, for two seconds of acoustic features
the smallest LSTM needs less than one second for evaluation; this appears to meet the
real-time requirement.

6.3.1.5 NN training for 42 phonemes and 18k senones

In this work the experiments on NN training focus on NNs for 6k senones. However, it is
also meaningful to investigate the performance of NNs for other AMs such as 42 phonemes
CI AM and 18k senones CD AM. In this section, we present the results of NN training for
42 phonemes and 18k senones.

Table 6.4 lists the evaluation results of NNs for 42 phonemes. For each type of RNN, i.e.
LSTM, TDNN-LSTM and BLSTM, we trained a network with two layers and each layer
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Network Architecture
Memomry

Footprint(MB)
Validation Error Test Error

LSTM 2*512 13 22.18 22.46

BLSTM 2*512 34 21.90 22.13

TDNN-LSTM 2*512 18 22.29 22.53

FFNN 3*1000 14 26.11 26.40

Table 6.4: NNs for 42 phonemes CI AM.

Network Architecture
Memomry

Footprint(MB)
Validation Error Test Error

LSTM 2*512 48 44.89 45.57

BLSTM 2*512 104 42.52 43.28

TDNN-LSTM 2*512 54 44.77 45.45

FFNN 3*1000 83 49.42 50.18

Table 6.5: NNs for 18k senones CD AM.

has 512 nodes, respectively. The FFNN has three layers with 1000 nodes per layer, and
roughly the same memory footprint as the LSTM. The LSTM has slightly lower test error
than the TDNN-LSTM, and the BLSTM still achieves the best performance. Moreover,
all RNNs significantly outperform the FFNN.

We trained networks for 18k senones CD AM with the same architectures as for CI AM. The
evaluation results are shown in table 6.5. The test errors of the LSTM and TDNN-LSTM
models are very close, which are 45.57% and 45.45% respectively. The best performance
is still achieved by the BLSTM, its test error is more than 2% lower than the LSTM. The
senone classification accuracies of all RNNs are remarkably higher than the accuracy of
the FFNN.

6.3.1.6 Summary

In this section, a comprehensive study of sequence classification using RNNs and FFNNs is
presented. First, the experimental results of NNs for 6k senones are demonstrated. Accord-
ing to the results, the classification accuracies of RNNs such as LSTM and TDNN-LSTM
are much higher than the accuracies of FFNNs with similar architecture sizes. In addi-
tion, extending the hidden layer size of LSTMs can increase their accuracy; however when
the hidden layer size exceeds a certain threshold, the accuracy of LSTMs decreases due
to overfitting or data sparsity. The experimental results show that training LSTMs with
dropout can alleviate the problems of overfitting and data sparsity, as hidden neurons are
randomly masked out during training, and this can help to prevent the co-adaptations of
hidden neurons[HSK+12]. Other methods to increase the RNN complexity were explored,
such as RNNs with more hidden layers and BRNNs. The performance of LSTMs and
TDNN-LSTMs improves when the recurrent hidden layer depth of the networks increases,
and BLSTM achieves the best performance among all of the networks.

For the CI AM with 42 phonemes and the CD AM with 18k senones, the experimental
results of NN training are quite similar to those with the CD AM with 6k senones. The
performance of LSTMs and TDNN-LSTMs still significantly exceed FFNNs with respect
to phoneme and senone classification, and the best performance is achieved by BLSTMs.

Furthermore, due to the convolution operation with stride of 2 in both the time domain
and frequency domain, TDNN-LSTMs can reduce the evaluation time and training time
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Figure 6.2: The smallest LSTM using the
pronunciation O and five dif-
ferent phoneme posterior repre-
sentations.

Figure 6.3: The smallest LSTM using the
pronunciation O W and five
different phoneme posterior
representations.

notably compared with LSTMs. TDNN-LSTMs can also slightly increase the accuracy of
LSTMs with low memory cost.

6.3.2 Neural Network-based KWS

After NN training was complete, the KWS systems were created based on the trained NNs,
and then evaluated on the evaluation dataset. This section first presents the evaluation
results of KWS systems based on NNs for 6k senones, which are structured in three sub-
sections. In the first subsection, different representation variants of phoneme posteriors
are investigated; then, the best matched pronunciations for the key-phrase “okay cosa” are
identified; and finally, a comparison among different NNs is offered with regard to their
KWS performance. Finally, the evaluation results of KWS systems based on NNs for 42
phonemes and 18k senones are presented. As metrics we use the ROC curve and F-1 score.

6.3.2.1 Representation Variants of Phoneme Posteriors

The KWS performance of using different phoneme representations was investigated first.
As discussed in section 5.3.2.2, there are five representations of phoneme posteriors, which
are the posteriors of the single HMM states, that is, b-state, m-state, or e-state, or the
mean or maximum posteriors of the three single states.

For a fixed NN and a fixed pronunciation, the ROC curves were plotted for all five phoneme
posterior representations. Figure 6.2 shows the ROC graph of the smallest LSTM with
two layers and 200 nodes per layer using the pronunciation O. The range of the x-axis is
from 0 to 0.2, and the range of the y-axis is from 0.8 to 1. The dark blue curve, the light
blue curve, and the orange curve represent using b-state m-state, and e-state posteriors as
phoneme posteriors, respectively. The red curve and the teal curve represent using mean
and maximum state posteriors. As shown in the ROC graph, the three curves of single
states dominate the curves of the mean and max. In addition, the three curves of single
states are close to one another, and the red curve of the max has the worst performance.

Figure 6.3 depicts the ROC graph of the smallest LSTM using the pronunciation O WB.
The light blue curve of m-state has the best performance, as all other curves are beneath
the ROC curve of m-state. Different from the results of the smallest LSTM using the
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Figure 6.4: The smallest FFNN using m-
state posteriors, mean posteri-
ors and six pronunciations.

Figure 6.5: BLSTM using m-state posteri-
ors, mean posteriors and six
pronunciations.

pronunciation O, the teal curve of mean dominate the dark blue curve of b-state. However,
the red curve of max still has the worst performance.

According to experimental results, using the maximum posteriors as phoneme posteriors
always gives the worst performance. Using single state posteriors can give better perfor-
mance in many cases and using mean posteriors can provide more stable performance.
Thus, in subsequent experiments, only m-state and mean posteriors are used as phoneme
posteriors.

6.3.2.2 Pronunciation Variants

Different pronunciations of the key-phrase “okay cosa” were investigated. Section 5.3.2.1
introduces the six pronunciations of “okay cosa”, which are denoted by O, OH, OU, O WB,
OH WB, and OU WB. By asking volunteers to pronounce the phrase in the same way when
collecting the evaluation data, best matched pronunciations for all the utterances collected
were achieved. However for words or phrases uttered with different pronunciations, there
are no fixed best matched pronunciations.

The ROC curves for a fixed NN were plotted using all six pronunciations. Figure 6.4 shows
the ROC graph of the smallest FFNN with three layers and 300 nodes per layer. The solid
curves are for using m-state posteriors as phoneme posteriors, and the dotted curves are
for using mean posteriors as phoneme posteriors. The two dark blue curves belong to the
pronunciation O, and the two light blue curves to the pronunciation O WB. The dark blue
curves and light blue curves dominate other curves for both solid and dotted curves.

Figure 6.5 presents the ROC graph of the BLSTM with two layers and 512 nodes per layer.
The experimental results are quite similar to the results of the smallest FFNN. It is plain
to see that the two dark blue curves and the two light blue curves still dominate other
curves for both solid and dotted curves. The two teal curves for the pronunciation OU
and the two green curves for the pronunciation OU with word boundary, i.e. OU WB, are
obviously the worst curves for both BLSTM and the smallest FFNN.

As demonstrated, the experiments show that the pronunciations O and O WB are the
best matched pronunciations for the key-phrase “okay cosa”. Therefore, in the subsequent
experiments, only the pronunciations O and O WB were considered.
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Figure 6.6: ROC curves of six NNs for 6k
senones using mean posteriors,
the pronunciations O and O W.

Figure 6.7: F-1 scores of six NNs for 6k
senones using mean posteriors,
the pronunciations O and O W.

6.3.2.3 Comparison among Neural Networks

In the previous subsections the impact of different phoneme posterior representations and
keyword/key-phrase pronunciations on KWS performance are analyzed. This subsection
compares the KWS performance of different NNs based on the same phoneme posterior
representations and key-phrase pronunciations. According to previous experiments, we
employ mean state posteriors and m-state posteriors as phoneme posterior representations.
For each phoneme posterior representation, two pronunciations, namely O and O WB, are
used as the best matched pronunciations for the key-phrase “okay cosa”.

First of all, the performance of the smallest LSTM with two layers and 200 nodes per layer,
the smallest TDNN-LSTM with two layers and 200 nodes per layer, and the smallest FFNN
with three layers and 300 nodes per layer are evaluated, as a small memory footprint is
critical to our KWS system. Besides, we also evaluated the performances of a larger LSTM
with two layers and 512 nodes per layer, the best FFNN with four layers and 1000 nodes
per layer, and the BLSTM with two layers and 512 nodes per layer. The ROC curves of all
six NNs using mean state posteriors are presented in figure 6.6. The solid curves belong
to the pronunciation O and the dotted curves belong to the pronunciation O WB. The
two curves of the same NN are plotted in the same color, for all NNs their two curves are
very close to close to each other. Obviously, the two dark blue curves of BLSTM dominate
all other curves. The two light blue curves of the smallest TDNN-LSTM are the second
best, and the two black curves of the smallest FFNN are apparently the worst. The ROC
curves of the rest three NNs including the smallest LSTM, the best FFNN and the larger
LSTM, are very close to one another.

Figure 6.7 shows the F1-score graph of all NNs using mean state posteriors. The x-axis
represents the threshold and the y-axis represents the F1-score. All NNs achieve their
highest F1-scores at roughly the same threshold, and BLSTM still achieves the highest
F1-score among all NNs.

Figure 6.8 displays the ROC curves of all six NNs using m-state posteriors as phoneme
posteriors. The two dark blue curves of BLSTM still dominate all other curves. The
red curves of the larger LSTM and the black curves of the smallest FFNN are the worst.
The rest three NNs have similar performance. For all NNs except the larger LSTM, the
performance of using m-state posteriors is better than using mean state posteriors.
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Figure 6.8: Six NNs for 6k senones using m-state posteriors, the pronunciations O and
O W.

6.3.2.4 KWS based on 18k senones CD AM and 44 phonemes CI AM

In this subsection the evaluation results of KWS systems based on NNs for 42 phonemes
and 18k senones are demonstrated, and we use the KWS system based on the smallest
LSTM for 6k senones with two layers and 200 nodes per layer as the baseline.

Figure 6.9 shows the ROC graph of all networks for 18k senones using mean posteriors. The
red curves belong to the baseline, i.e. the smallest LSTM for 6k senones. As demonstrated
in the ROC graph, all networks for 18k senones have similar performance and outperform
the baseline notably, BLSTM for 18k senones has the best performance among all networks.

Figure 6.10 shows the ROC graph of all networks for 18k senones using m-state posteriors.
In contrast with using mean posteriors, the ROC curves of all networks for 18k senones
are beneath the red curves of the baseline. In order to investigate the KWS performance
further, we plotted the ROC graph of BLSTM for 18k senones using the pronunciation
O and all five phoneme posterior representations. As can be seen in figure 6.11, the
performance of using m-state posteriors is obviously much worse than using other phoneme
posterior representations. This is probably due to the problem of data sparsity.

Figure 6.12 depicts the ROC graph of all networks for 42 phonemes. The range of y-axis
and x-axis is from 0 to 1. As the 42 phonemes AM is context independent, the word
boundary is not modeled. For each NN for 42 phonemes, we only plot the ROC curve
using the pronunciation O. The baseline is still the red curves of the smallest LSTM for 6k
senones, which appear in the upper-left corner of the ROC graph. Evidently, the BLSTM
achieves the best performance among all networks for 42 phonemes, and the performance
of the baseline is much better than all networks for 42 phonemes.

6.3.2.5 Summary

This section first demonstrates experiments on KWS using NNs for 6k senones. The
performance of five different phoneme posterior representations were investigated, and
the results suggests that mean state posteriors can deliver more stable performance than
single state posteriors, while single state posteriors can provide better performance in
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Figure 6.9: Four NNs for 18k senones using
mean posteriors, the pronuncia-
tions O and O W.

Figure 6.10: Four NNs for 18k senones us-
ing m-state posteriors, the pro-
nunciations O and O W.

Figure 6.11: BLSTM for 18k senones using
the pronunciation O and five
phoneme posterior representa-
tions.

Figure 6.12: Four NNs for 44 phonemes
context-independent AM using
mean posteriors and the pro-
nunciation O.

many instances. Afterwards, experiments were carried out to find out the best matched
pronunciations of the key-phrase“okay cosa”. Finally, the KWS performance of six different
networks was compared based on the same phoneme posterior representations and key-
phrase pronunciations. BLSTM achieves the best performance, while the smallest FFNN
achieves the worst performance. Therefore, the KWS performance of NNs appears to be
to some extent dependent on the senone classification accuracy.

The evaluation results of NNs for 42 phonemes and 18k senones are also presented. As
has been pointed out, all networks for 18k senones outperform the baseline, which is the
smallest LSTM for 6k senones, when mean state posteriors are used; in contrast to those
for 18k senones, the smallest LSTM for 6k senones surpasses all NNs for 42 phonemes
significantly. More senones can lead to improved KWS performance; however the network
for more senones needs a larger memory footprint as a result of the larger output layer.
Therefore, NNs for 6k senones provide the best trade-off between memory footprint and
KWS performance. Further experiments on KWS using NNs for 18k senones show that
the KWS performance of NNs for 18k senones using single state posteriors, e.g. m-state
posteriors, is not stable, this is probably due to the problem of data sparsity.
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7. Conclusion

In this work, a novel NN based approach to KWS has been proposed. Compared with
conventional KWS systems, which have high computational costs due to Viterbi decoding,
this KWS system achieves a small memory footprint, low latency, and low computational
costs with high accuracy. Therefore, our KWS system is more appropriate for real-time
KWS on mobile devices than conventional KWS systems. Moreover, our novel KWS
approach also has advantages over another small footprint KWS approach, the Deep KWS.
As our KWS approach uses NNs to estimate the posteriors for subword units, that is,
phonemes or senones, rather than entire words, it is not necessary to collect a large amount
of training data for each keyword and to train new NNs if new keywords are needed to be
detected. Thus, this KWS approach is also flexible.

Furthermore, experiments on NN training demonstrate that RNNs such as LSTM, TDNN-
and BLSTM outperform FFNNs in terms of phoneme/senone classification. TDNN-LSTM
can reduce the training and evaluation time for LSTM, and also slightly improve the
classification accuracy of LSTM. Further experiments on KWS using the trained NNs
show that the small-footprint LSTM and TDNN-LSTM outperform FFNN on KWS. In
addition, it is also evident from experiments that using mean state posteriors as phoneme
posterior representation provides more stable KWS performance and that NNs for more
senones can lead to higher KWS accuracy.

7.1 Further Work

This work has proven that the novel KWS system is able to detect the key-phrase “okay
cosa” with high accuracy. It is, however, important to test the performance of the KWS
system on other keywords/key-phrases. This can be realized by simply adapting the poste-
rior handling module of the KWS system for the new keyword/key-phrase, and collecting
an evaluation dataset for the new keyword/key-phrase.

As the goal of this thesis was to build a real-time KWS system for mobile devices, in
further work, the deployment of the KWS system on mobile devices could be investigated.
In order to achieve low latency, highly-optimized C code should be written to implement
the evaluation of networks and the posterior handling module of the KWS system.

In this work, the phoneme and senone classification performance of different types of RNNs
such as LSTM, TDNN-LSTM, and BLSTM were investigated. The metric used was the
frame error rate, and experimental results show that RNNs have notably lower frame error
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rates than FFNNs. Therefore, it may be also interesting to use posteriors generated by
RNNs in general ASR tasks, and thus check whether the word error rate (WER) also
decreases as compared with the use of FFNNs.
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