
Online Neural Network-based Language
Identification

Master’s Thesis of

Daniel H. Draper

at the Department of Informatics
Institute for Anthropomatics and Robotics

Reviewer: Prof. Dr. Alexander Waibel
Second reviewer: Prof. Dr. Walter F. Tichy
Advisor: M.Sc. Markus Müller
Second advisor: Dr. Sebastian Stüker

12. December 2016 – 11. May 2017

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, 11th of May, 2017

. .
(Daniel H. Draper)

Abstract

Today, speech recognition has become ubiquitous in human machine interfaces (HMIs).
Be it voice control, speech translation or personal assistants, the speech recognition com-
ponent always relies on the source language being known beforehand. This is due to the
fact, that single-language speech recognizers perform better than multi-lingually trained
ones. Language Identi�cation (LID) could therefore improve usability and performance
of speech-based technology, without requiring any human interaction of selecting the
correct source language. Online performance, as well as speed in these HMIs is of utmost
importance, which is why we evaluate all our approaches in consideration of this aspect.

This thesis investigates a neural-network based approach to LID. Current approaches to
language identi�cation are presented and compared. The results in this thesis compare
di�erent network structures, di�erent audio preprocessing and network-post-processing.
Three di�erent data corpora are used to verify results with di�erent data sets. The best
performing neural network structure gives a relative improvement of 18% over our baseline
setup.

We also evaluate di�erent post-processing approaches to further improve classi�cation
results. We introduce our own metric of the “Out-of-Language-Error” (OLE) that measures
the “noisiness” of the �lter/net output. Overall, a basic counting �lter, a maximum-sequence
�lter and a Gauss smoothing produces the best results and could increase performance in
an online implementation.

i

Zusammenfassung

Heutzutage ist Automatische Spracherkennung (ASR) aus der Mensch-Maschinen-
Kommunikation (MMK) nicht mehr wegzudenken. Ob es Sprachkontrolle, Sprachüberset-
zung oder persönliche Assistenten auf dem Smartphone sind, der ASR Teil beruht darauf,
dass die Eingangssprache vor der Erkennung bekannt ist. Dies verbessert die Leistung
des Spracherkenners, da auf einer Sprache trainierte Spracherkenner eine geringere Feh-
lerrate haben als multilingual-trainierte. Daher kann die Sprachenidenti�zierung (LID)
in dieser MMK die Benutzerfreundlichkeit und Leistung verbessern. Somit wird keine
Aktion des Benutzers mehr erforderlich. Diese MMK ist in der heutigen Technologie immer
auf Online-Performanz und Geschwindigkeit bedacht, daher evaluieren wir alle unsere
Ansätze unter diesem Gesichtspunkt.

Diese Arbeit untersucht einen Ansatz der LID, der Neuronale Netze benutzt. Auch
stellen wir heutige Ansätze der LID der Literatur dar und vergleichen sie mit dieser Arbeit.
Wir haben verschieden Netzwerkstrukturen, verschiedene Audio-Vorverarbeitungen und
Netzwerk-Nachverarbeitungen evaluiert. Drei verschiedene Datensätze werden eingeführt
auf denen wir alle unsere Ergebnisse testen. Die Netzstruktur mit dem besten Ergebniss
resultierte in einer relativen Verbesserung von 18 % gegenüber unserem ursprünglichen
Aufbau.

Wir haben auch verschiedene Nachverarbeitungen der Neuronalen Netz-Ausgabe ver-
glichen. Hierfür führen wir unser eigene Metrik den “Out-of-Language-Error” (OLE) ein,
der das “Rauschen” der einzelnen Filter/des Netzes misst. Insgesamt produzieren ein ein-
facher Zähl�lter, ein maximal-Sequenz Filter und ein Gauß-Filter die besten Ergebnisse
und könnten die Ergebnisse eines LID Netzes in einer konkreten Implementierung stark
verbessern.

iii

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1
1.1. Motivation . 1
1.2. Overview . 2

2. RelatedWork 3
2.1. Historically . 3
2.2. Recent Approaches . 3
2.3. Similar Approaches . 4

3. Fundamentals 7
3.1. Theory of Language Identi�cation . 7
3.2. Janus Recognition Toolkit (JRTk) . 7
3.3. Neural Networks . 8

3.3.1. Setup . 8
3.3.2. Arti�cial Neuron . 8
3.3.3. A Generic Neural Network . 9
3.3.4. Network Types . 10
3.3.5. Learning . 11

4. Experimental Setup 15
4.1. Language Identity Neural Networks . 15
4.2. Tooling . 16
4.3. Euronews 2014 . 16
4.4. Lecture Data . 18
4.5. European Parliament . 18

5. Feature Preprocessing 21
5.1. Feature Retrieval . 21
5.2. Feature Description . 21
5.3. DBNF network . 22
5.4. Evaluating Input Features . 23

6. LID Network Structure 25
6.1. Baseline Setup . 25

v

Contents

6.2. Improving Network Layout . 25
6.3. Full Euronews Corpus . 27
6.4. Cross-set training . 29
6.5. Combining Lecture Data and Euronews 29
6.6. Lecture-Data-Training . 30
6.7. European Parliament . 31

7. Smoothing and Evaluation 33
7.1. Output Activations . 33
7.2. Evaluation Metric . 35

7.2.1. Out-Of-Language Error (OLE) . 35
7.3. Basic Test Filter . 37
7.4. Advanced Test Filter . 37
7.5. Di�erence Test Filter . 38
7.6. Counting Filter . 38
7.7. Sequence Filter . 39
7.8. Two-Language Setup . 39
7.9. Gaussian Smoothing Filter . 39
7.10. Speech Filter . 42
7.11. Filter Selection . 42
7.12. Lecture-Data Evaluation . 43

8. Conclusion 45
8.1. Future Work . 46

A. Appendix 53
A.1. Detailed Error rates for Filters . 53
A.2. Complete Source Code Listings . 57

vi

List of Figures

3.1. A schematic drawing of a Neuron and its parameters 9
3.2. Basic Feed-Forward fully-connected Neural Network. 10
3.3. A schematic drawing of a LSTM Unit with its gates. 11

4.1. Overview of the network architecture used to extract the Language Identity
(LID). The acoustic features (AF) are being pre-processed in a DBNF in
order to extract BNFs. These BNFs are being stacked and fed into the
second network to extract the LID. 16

6.1. Visualization of the tree-net structure. 27

7.1. Activation of output neurons for random non-speech (jingles/noise) . . . 34
7.2. Activation of output neurons for a correctly recognized Polish sample . . 34
7.3. Activation of output neurons for an incorrectly recognized English sample 34

vii

List of Tables

4.1. The Euronews corpus speaker breakdown used for most experiments with
total utterances length. 17

4.2. The Euronews corpus breakdown into the three data sets. 17
4.3. The full Euronews corpus speaker breakdown with total utterances length. 18
4.4. The Lecture Data corpus speaker breakdown with total utterances length. 19

6.1. Results of the di�erent context sizes on the Euronews corpus for the �rst
3 introduced net structures. Frame-based errors on train/validation set. . 28

6.2. Results of the di�erent net structures on the Euronews corpus. Frame-
based errors on train/validation set. 28

6.3. Comparison of the big and small Euronews data corpus. Frame-based
errors on train/validation set, as well as Sample-based Error. 29

6.4. Results of the cross-training attempts of the Euronews-trained 6-layer
tree-net with the lecture data (LD) corpus. 3 Languages (3L) are German,
English, French. 30

6.5. Results of the di�erent lecture data (LD) approaches. 3 Languages (3L) are
German, English, French. 31

6.6. Results of the di�erent European parliament (EP) approaches. 7 languages
(7L) are German, French, Italian, English, Polish, Portuguese, Spanish . . 32

7.1. Results of di�erent net structures evaluated on the Euronews DEV set. . 35
7.2. Results of the best net structure (tree-structure 6-layer) evaluated on the

Euronews DEV with only bare net output. 36
7.3. Results of the best net structure (tree-structure 6-layer) evaluated on the

Euronews DEV Set with the Basic Filter. 37
7.4. Results of the best net structure (tree-structure 6-layer) evaluated on the

Euronews DEV Set with the Advanced FILTER 38
7.5. Results of the best net structure (tree-structure 6-layer) evaluated on the

Euronews DEV Set with the Counting Window Filter 39
7.6. Results of the best net structure (tree-structure 6-layer) evaluated on only

2 languages with the 2-language �lter on the DEV set. 40
7.7. Results of the 6-layer tree-structure evaluated with di�erent Gauss �lters

on the DEV set. 41
7.8. Comparison of results of the 6-layer tree-structure evaluated on DEV set

for small samples. 41
7.9. Results of the 6-layer tree-structure evaluated on samples longer than 50

frames (500 ms) . 42

ix

List of Tables

7.10. Results of the 6-layer tree-structure evaluated with all the tried post-
�ltering approaches on both the DEV and TEST set. 42

7.11. Results of the 6-layer tree-structure evaluated on lecture data (LD) DEV
samples. 43

A.1. Results of the best net structure (tree-structure 6-layer) evaluated on the
Euronews Development Set with the Advanced small Filter. 53

A.2. Results of the best net structure (tree-structure 6-layer) evaluated on the
Euronews Development Set with the Di�erence Filter. 54

A.3. Results of the best net structure (tree-structure 6-layer) evaluated on the
Euronews Development Set with the Gaussian Filter (WS 15). 54

A.4. Results of the best net structure (tree-structure 6-layer) evaluated on the
Euronews Development Set with the Counting Filter (WS 100). 55

A.5. Results of the best net structure (tree-structure 6-layer) evaluated on the
Euronews Development Set with the Sequence Filter (WS 10) 55

A.6. Results of the best net structure (tree-structure 6-layer) evaluated on the
Euronews Development Set with the Speech/Noise Filter 56

x

1. Introduction

Language Identi�cation (LID) describes the classi�cation task of di�erentiating between
spoken speech in di�erent languages and being able to correctly classify which speech-
segments consists of which language. Neural Networks refer to Arti�cial Neural Networks
(ANNs), a Machine Learning approach to classi�cation tasks. They are employed greatly
throughout all sciences and especially in computer science and tasks concerned with the
processing of speech. This thesis proposes a low-latency, fast, and “online”, approach to
Language Identi�cation using ANNs.

The work done in this thesis uses the Janus Recognition Toolkit (JRTk) [WAWB+94],
an Automatic Speech Recognition toolkit developed in joint cooperation by the KIT and
CMU. The JRTk o�ers a tcl/tk1 script-based environment for the development of Automatic
Speech Recognition (ASR) systems, therefore source code in this thesis will consist of tcl/tk
scripts with (some) Janus-speci�c commands. The JRTk and tcl/tk are further explained in
sec. 3.2.

1.1. Motivation

ASR is used in many applications and devices today, especially in the rise of hand held
mobile devices like smartphones and tablets. It has progressed quickly in the last �ve years
and has found commercial success. Famous examples include Google’s2 “Ok, Google” and
Apple’s3 Siri. Which both include voice search[FHBM08] and a form of voice control, that
even is extensible in the case of Google and Android e.g[bAO14]. Many other applications
have emerged, including spoken language translation4, especially relevant for this thesis in
the realm of spoken language translation, in the form of the Lecture Translator[MNN+16]
.

The task of LID can be applied in all of those �elds, as the best-performing ASR is
trained on one language and therefore requires changing the trained model when the
input language changes. This requires user interaction in the form of de�ning the input
language. Robust and low-latency language identi�cation could eliminate the need for
this interaction and make the user experience more streamlined.

LID would be especially applicable in the realm of spoken language translation, as used
for example in the European Parliament where already components of ASR and Machine

1Tcl/tk: https://www.tcl.tk/
2Google: www.google.com
3Apple: www.apple.com
4IWSLT: iwslt.org

1

https://www.tcl.tk/
www.google.com
www.apple.com
iwslt.org

1. Introduction

Translation are employed and are being actively developed in the TC-STAR initiative5, e.g
as in[VMH+05], and LID would further be able to automate these translation tasks.

This thesis will focus mostly on the KIT’s Lecture Translator6 as the system trained
was implemented for it. We believe our results are generic enough to be transferable to
other applications, e.g. fully-automated European Parliament speech translations, with
few implementation-speci�c adjustments.

1.2. Overview

This thesis is set up as follows: Chapter 2 introduces related and previous work in the
realm of Language Identi�cation. Chapter 3 gives an introductory view of LID, and further
de�nes the task this thesis tries to solve. Afterwards we give preliminary theoretical
explanations and de�nitions, including an introduction to Neural Networks in Sec. 3.3.
Chapter 4 describes the experimental setup used in this thesis, including the data corpora.
Audio Preprocessing is explained in detail in chapter 5.

Chapters 6 describes our results that were accomplished by evaluation of various
network setups and layouts, e.g. the amount of hidden layers and neurons. Di�erent
smoothing mechanisms on top of the direct neuronal output layer of the network are
explained in chapter 7. This is followed by the �nal summary of our work and an outlook
on future work in chapter 8.

5TC-STAR: tcstar.org
6Lecture Translator: https://lecture-translator.kit.edu

2

tcstar.org
https://lecture-translator.kit.edu

2. RelatedWork

This chapter introduces related and previous works in the realm of Language Identi�cation
(LID) and how those approaches di�er from the ones employed in the following chapters.

2.1. Historically

As presented in [Z+96] by Zissman, Language Identi�cation has historically been the
most successful using single-language phone recognition followed by language-dependent,
interpolated n-gram language modeling (PRLM) or multiple single-language phone rec-
ognizers and language-dependent parallel phone recognition (PPRM). Zissman evaluates
PRLM and PPRM as well as the worse performing Gaussian Mixture Models (GMM) on
the Oregon Graduate Institute Multi-Language Telephone Speech Corpus (OGI) [MCO92].
In his results on the relatively limited speech corpus of only 90 minutes per language, the
PPRM perform the best with an 2-Language average error of 8 % and the GMM falling
down to an error of 23 %.

In [TCSK+02], Torres-Carrasqiullo et al. present two GMM-based approaches to LID
that use shifted-delta-cepstral (SDC) coe�cients as the feature input vectors to achieve
comparable LID (and computationally much faster) results. In opposition to PRLM and
PPRM, GMM use the acoustic content of the speech signal to classify languages. The GMM
with SDC inputs fare the same as PPRM on the CallFriend Corpus [Con96]. The same OGI
test set as [Z+96] for 10-second utterances is only about 9 % worse for GMM. However
they start being greatly outperformed by PPRM in longer 45 second utterances. GMM do
have a signi�cant lesser computational overhead [Z+96] [TCSK+02], and do not require a
priori information (phonetic transcriptions) to be available [ZB01], [Z+96] making their
research still worthwhile.

2.2. Recent Approaches

In [LML07] Li et al. used vector space modeling (VSM) in combination with the already
presented PPRM to calculate the distance between di�erent languages more easily thus
making classi�cation easier. They determine the top most occurring words in a language,
then rely on these statistics to distance languages from each other. After they apply a
language-dependent language model on top for classi�cation. A similar approach is proven
to be successful with support vector machines (SVM) in [DL08], and further substantiated

3

2. Related Work

in [ML06] where the SVM approach performs the best out of a comparison with the older
PPRM and VSM methods.

Recently with the advance of neural networks in machine learning, many di�erent ap-
proaches have been tried. In Leena et al. [LRY05] present a Feed-Forward Neural Network
that is trained using both phonotactic (syllable occurrence, co-occurrence of syllables,
unique syllables and pronunciation variations) and prosodic (rhythm and intonation of
speech) features, giving a feature vector of 33 dimensions, to recognize the language.
Leena et al. also use auto-associative neural networks and spectral similarity approaches
in [MY04] to recognize language reasonably well using only a few seconds of the speech
as input.

I-vector approaches as in [SJB+13], [DEGP+12] have also recently shown success, and
have been used in conjunction with neural networks as in [SHJ+15].

At the Interspeech 2016, Shivakumar et al. [SCG16] present an approach to Language
Identi�cation using a combination of i-vectors, probabilistic linear discriminant analysis,
SVM and and Maximum Likelihood Lexical Classi�cation to achieve an accuracy up to 76
% on 12 languages, a result comparable to our results.

2.3. Similar Approaches

Matejka et al. [MZN+14] present an approach very similar to the one introduced in this
thesis using Bottleneck Features (BNF) from an ASR trained neural network as input for
a LID neural network. Here however a much bigger train data of about 400 hours per
language is available in the RATS LID Data Corpus than was available to us, with fewer
target languages and a setup where the output of 5 neural networks is averaged, a setup
most likely occurring a higher delay than feasible in an online-setting, which is a focus
for us.

[LMGDP+14] uses Deep Neural Networks without the previous ASR net setup to identify
Language. They compare the approach to the state-of-the art i-vectors as presented above.

[KAR+16] uses DNNs to recognize di�erent Indian languages that are very similar in
nature. They use DNNs with attention in lieu of the recently successful but computational
RNNs. They evaluate di�erent net structures and with the best structure �nd and error
rate of only 8%.

Ghahabi et al. in [GBHM16] use DNNs to recognize the language of short speech samples
of below 4 seconds length. They compare their approach to GMM and i-vector systems
achieving a relative improvement of around 30 %.

In [HSW12], Heck et al. already evaluate di�erent LID systems for an eventual integra-
tion into the Lecture Translator. They evaluate PPRM and PRLM with an SVM classi�cation
backend for a Lecture Translator integration. By proposing a hybrid model combining
both PPRM and PRLM they are able to further improve upon recognition results by 5%.
They however do not evaluate a neural-network based approach as we do in our work.

4

2.3. Similar Approaches

This work is based on previous work done using LID information to extract another BNF
vector to then aid in multilingual ASR [MSW16]. More on this can be found in chapter 4.

5

3. Fundamentals

The following chapter will de�ne and explain terms and concepts used throughout this
thesis, in order to lay a sound theoretical foundation for this work.

3.1. Theory of Language Identification

Language Identi�cation or Recognition, as loosely taken from [LML13], can be formulated
in the following way: Assuming we have an audio recording of unknown source language,
we convert it into a sequence of acoustic vectors S = {s(1), s(2), . . . , s(T)}, where s(t) refers
to the frame s extracted from the audio at frame number t . If we have a set of possible
equally-probable Languages {L1,L2, . . . ,LN }, with one of the targets being a combining
class for non-target languages as to not limit the approach, Language Identi�cation is the
task of �nding the Language LO given audio sequence S , such that:

LO = argmax
I

p(S |LI) (3.1)

Using phones and phonotactic knowledge sources, a tokenizer or similar approaches before
trying to identify the language, we assume that each speech sequence can be segmented
into a sequence ϒ of phones υ which means:

LO = argmax
I

P(ϒ |LI) (3.2)

While in 3.2 we assume to know the exact phoneme sequence, in practice ϒ has to be
retrieved by selecting the most likely phone sequence from all possible sequence. Using
Viterbi Decoding on a set of phone models M we can retrieve the optimal ϒO :

ϒO = argmax
υ

P(S |υ,M) (3.3)

Combining 3.2 and 3.3 and considering all possible ϒ instead of the best hypothesis ϒO
we get:

LO = argmax
I

∑
∀ϒ

P(S |ϒ,M)P(ϒ|LI) (3.4)

3.2. Janus Recognition Toolkit (JRTk)

The Janus Recognition Toolkit (JRTk) also known as just “Janus” is a general-purpose
speech recognition toolkit developed in joint cooperation by both the Carnegie Mellon

7

3. Fundamentals

University Interactive Systems Lab and the Karlsruhe Institute of Technology Interactive
Systems Lab [LWL+97]. Part of Janus and the JRTk are a speech-to-speech translation
system, which includes Janus-SR, the speech recognition component, the main part of
Janus used in this thesis.

Developed to be �exible and extensible, the JRTk can be seen as a programmable shell
with Janus functionality being accessible through objects in the tcl/tk scripting language.
It features the IBIS decoder, that uses Hidden Markov Models for acoustic modeling in
general, although in this thesis we used a neural network as our speech recognizer to
generate the input features required by our language ID network.

This thesis makes extensive use of the JRTk’s and tcl/tk’s scripting capabilities to be able
to preprocess-process speech audio �les for further use by our experimental setup. It also
uses tcl/tk scripts and its Janus API functionality in the development of our smoothing
and evaluation scripts as can be seen in ch. 7.

3.3. Neural Networks

Arti�cial Neural Networks today are used in many di�erent �elds: from image recognition/-
face recognition in [LGTB97] to natural language processing in [CW08] and, as relevant
to this thesis, to Speech Recognition with very successful examples as in [HDY+12]. It
has also been used in the realm of Language Identi�cation, which has been described in
the previous chapter. This section will provide fundamental knowledge of how neural
networks work and how to train them, to lay the foundation for the explanations of our
experimental setup and evaluations. The information in this section is based on [HN04],
[GBC16] and [Nie15], if not otherwise sourced.

3.3.1. Setup

Neural networks are based on collections of small ”neural units“ working together in
tandem. The neuron’s behavior can be loosely linked to the brain’s axons. Each neuron
is connected with others and a neuron is ”stimulated“ by input on these connections. It
then decides on its own activation, or stimulation, by using a summation, or threshold,
function with a certain limit to decide if the neuron ”�res“. Finally its own activation is
propagated through the network to adjacent units. By changing weights and activation
thresholds in the network, its output changes, therefore the possible adjustable parameter
set Θ for a neural network includes all the weights for all neurons as well as all thresholds
for the activation functions in each neuron.

3.3.2. Artificial Neuron

An arti�cial neuron, or perceptron in its most basic form, is a mathematical function that
consists of four parameters that can be adjusted independently from each other:

8

3.3. Neural Networks

• wi the input weights for all inputs
• Σ the transfer function for summation of the weighted inputs
• φ the activation function that calculates the output value yk based on the transfer

input and the threshold
• θ the threshold which de�nes when the neuron activates.

This means an arti�cial neuron with outputyk is the function 3.5. Many of these neurons
coupled together (via the output of a neuron on a previous layer becoming the input for
one on the current layer), make an arti�cial neural network as used in this thesis. A
schematic drawing of this can be seen in �g. 3.3.2.

yk = φ(
m∑
j=0

wkjxj) − θj (3.5)

Figure 3.1.: A schematic drawing of a Neuron and its parameters

3.3.3. A Generic Neural Network

A basic neural network consists of three layers: the input, a hidden layer of neurons and
the output layer. Hereby, the output layer consists of as many neurons as classes that the
network is trying to classify against and the one with the highest activation after input
has propagated, is the classi�cation output of the net. A basic, fully-connected (referring
to the connections between neurons, so fully-connected means each neuron is connected
to each possible other neuron) net can be seen in �g. 3.2.

9

3. Fundamentals

Input Features

Hidden Layer

Output Classes

Figure 3.2.: Basic Feed-Forward fully-connected Neural Network.

3.3.4. Network Types

3.3.4.1. Feed-Forward Neural Networks

A basic (non-deep) Feed-Forward Neural Network consists of three layers: the input, a
hidden layer of neurons and the output layer. Feed-Forward refers to the fact, as opposed
to Recurrent Neural Networks, connections between the neural units are only in a forward
direction. This means that layer li , preceded by layer li−1 and followed by layer li+1, will
only have connections towards li+1 but not towards li−1.

Basic non-deep neural networks were the �rst ones employed in machine learning,
especially since computational power at the time was not good enough for the training of
multi-layered neural networks and were (erroneously) believed to have limits [MP88]

3.3.4.2. Deep Feed-Forward Neural Networks

Deep Feed-Forward Neural Networks, DNNs, the net-type most used in this thesis, refer
to networks that have more than one hidden layer between input and output, but still
feature non-cyclic connections between neurons. DNNs have a better performance than
single-hidden-layer-networks in general, but require di�erent techniques for training.

A common description of this phenomenon is, that each hidden layer increases the level
of abstraction the network can manage. E.g, in image processing, if the �rst layer recognizes
a color in a certain pixel, then the next layer can infer more abstract characteristics from
the output of the �rst layer. So, after knowing that a certain pixel is dark, the next layer
can derive that area might be the eye in a picture of a face, etc. This obviously makes more
complicated classi�cation tasks possible but also makes learning algorithms more di�cult.

10

3.3. Neural Networks

3.3.4.3. Deep Recurrent Neural Networks

Deep Recurrent Neural Networks, RNNs, refer to neural networks that are DNN’s but
backwards connections (so li can have connections both to li−1 and li+1) are allowed. This
means the network can have temporal behavior, as its performance changes dynamically
over time, when the state of neurons in later layers changes and a�ects the neurons in
preceding layers.

Long-Short-Term-Memory (LSTM) The most common RNNs are based on LSTM units,
arti�cial neurons that can remember values for a short or long duration. They thus have
an internal state that changes over time and are not only decided by a threshold as normal
arti�cial neurons are. Normally, RNNs then include LSTM blocks of multiple LSTM units.
The LSTM units then control the change of memory through “gates”. The input gate, to
control when a new value is entered into memory, the forget gate, to control if a value
remains in memory, and the output gate, which controls the calculation of the activation
of the entire block. An overview can be seen in �g. 3.3.4.3 The weights that are learned for
LSTM blocks are then used in front of the gates. That means the weight determines the
values of the memory in the block and its weighting compared to the input and therefore
the activation. RNNs are trained with a similar algorithm as introduced in the next section
for non-recurrent networks, called backpropagation through time. A detailed explanation
of this can be found in [Wer90].

Figure 3.3.: A schematic drawing of a LSTM Unit with its gates.

3.3.5. Learning

The interesting part about neural networks is their ability to learn from data and improve
their own performance. Improving performance in this case means that by adjusting the
available parameters of the neurons part of the network, we minimize a cost function that
describes the di�erence between an optimal output and the actual output.

A network can be seen as an approximation of a function f ∗. So, a network trying to
classify an input x into a class y approximates:

y = f ∗(x) (3.6)

11

3. Fundamentals

Then one run of the network with parameter set Θ gives the mapping y = f (x ;Θ) and we
are trying to minimize our cost function of C = f ∗ − f by adjusting the set of parameters
in Θ each run.

Three basic approaches exist for training a network:

• Supervised Training, where the optimal output for train data is known. This means,
the train data has been pre-classi�ed by a teacher. This is the method we use in this
thesis and it is further explained below.

• Reinforcement Training, where the optimal input for train data is not known prior to
training, but the environment gives the net feedback about its own output and good
output is reinforced while bad output is discouraged.

• Unsupervised Training, where nothing is known about the environment and the net
(often) just tries to learn the probabilistic distribution of the data.

3.3.5.1. Sampling

Data for training is generally split into three sets: the training set with a size of about
80% of the total available data, which is then used for the training, the development set
with a size of about 10% used for evaluation of the net and adjusting di�erent parameters
without “distorting” the last test set which also has a size of around 10% and is used for
�nal “clean” validation of the net performance.

Sampling for the three sets is most commonly, as in this thesis, done using Simple
Random Sampling (SRS), where each set is chosen randomly without bias, so that each
sample has the same chance to be part of any of the three sets, and furthermore any
combination of n samples has the same probability to be in any of the sets [Men13]

3.3.5.2. Supervised Training

Supervised Training refers to training where the optimal output for the training data is
known, so a classi�cation of the train data exists prior to training. This makes calculation
of the cost function as de�ned in the previous section relatively easy, as we de�ne C as
the actual di�erence in output of the current net with current parameter set Θ compared
to the teacher-de�ned classi�cation/labeling.

Mean Squared Error Function One way to calculate the di�erence between the net and
the teacher-classi�cation is by using the mean squared error, as is used in the training of
nets in this thesis. If t is the expected output, f (x ;Θ) is the actual predicted output and M
the number of output neurons/classes, we de�ne the Mean Squared Error (MSE) as:

E = 1/2
M∑
j=1
(f (x ;Θ) − t)2 (3.7)

12

3.3. Neural Networks

Stochastic Gradient Descent The goal of course is to minimize the MSE as de�ned above
by adjusting parameters for each neuron and layer (including weights to output neurons)
to change the predicted output of the net. This is done by adjusting the weights in direction
of the falling gradient for each weight.

wi+1 = wi − η∇E(f (x ;w), t) = wi − η∇1/2
M∑
j=1
(f (x ;w) − t)2 (3.8)

This method is called the Gradient Descent, with η being the learning rate, the freely
adjustable speed at which the network changes and therefore learns. As calculation of this
gradient for every sample in the training data set is expensive, a stochastic approach is
used where only a small number of samples is used each iteration to calculate the gradient,
as the relation between the change of the mean error and the value of samples is not linear.
Therefore the calculation of the Stochastic Gradient Descent (SGD) is enough to estimate
the real required parameter-changes.

Backpropagation While the SGD is used to calculate each iterative weight according to
the falling gradient, the Backpropagation algorithm is used to calculate each weight from
the total output of the net and its input. If we have neural network output vector (all
output neurons together) ti , input vector (all input dimensions together) xi and current
weights wi we can calculate wi+1 by calculating the SGD on the function w → E(w,xi),yi).

With preceding de�nitions we can summarize the training algorithm of a DNN as
follows:

1 w0 := rand()
2 do
3 f o r E a c h t r a i n− s a m p l e s
4 f (x ;wi) = n e u r a l−n e t−o u t p u t (wi , s) / / A c t u a l c a l c u l a t i o n u s i n g each

neurons o u t p u t −> Forward p a s s
5 t = p r e− c l a s s i f i c a t i o n (s)
6 E r r o r = E(f (x ;wi), t)

7 wi+1 := wi − η∇E(f (x ;w), t) = wi − η∇1/2
M∑
j=1
(f (x ;w) − t)2 / / For a l l Weights and

l a y e r s −> Backwards p a s s
8 w := wi+1
9 i f (∆E <= Thresho ld) break

10 r e t u r n Net

Listing 3.1: Pseudo Code to show the Backpropagation/SGD algorithm in Action

13

4. Experimental Setup

This chapter lays out the experimental setup used in this thesis. While Language Identi�-
cation is applicable in many di�erent scenarios, here the focus lies on trying to establish a
low-latency online approach for recognizing the spoken language in a university-lecture
environment. Because �nding a suitable test setup for online data retrieval is hard, the data
used was cut to short lengths to make an evaluation as to correctness of the recognition
possible in an ”online-like” scenario. This means that the output of the net is evaluated
after short samples of speech and therefore can be seen as indicative of online performance
of the net in the Lecture Translator. The test setup will be introduced in chapter 7

This chapter introduces our experimental setup and tooling, and gives an overview of
the used data sets.

4.1. Language Identity Neural Networks

As this thesis continues the work of [MSW16], the experimental setup stayed mostly
similar. After extraction of the audio features, as further described in Ch. 5, we get a
feature vector of 702, consisting of a combination of IMel and tonal features with a context
of 6 frames as input and CD phoneme states as targets. This was trained in the mentioned
previous work in a multilingual fashion, meaning it consists of multiple output layers, one
for each layer.

The second last layer is the bottleneck layer (referring to a layer with a much smaller
size than the previous and following one) with a size of 42. We then use the Bottleneck
activations in training for the LID Neural Network. These BNF Vectors are stacked with a
context to provide the input for the 2nd LID network, as language identity is considered to
be a long-term property of the audio data. We tried di�erent context sizes (see sec. 5.4),
choosing the most robust one. In opposition to the previous work mentioned where
another BNF layer was introduced in the LID network to reuse the BNF vector in speech
recognition tasks, we then use the output layer of the 2nd layer to determine the language
of the audio. This means the output layer consists of as many output neurons as available
languages.

�g. 4.1 gives an overview of this setup.

15

4. Experimental Setup

AF stack

DBNF

BNF stack LID

Language Identity Network

Figure 4.1.: Overview of the network architecture used to extract the Language Identity
(LID). The acoustic features (AF) are being pre-processed in a DBNF in order to
extract BNFs. These BNFs are being stacked and fed into the second network
to extract the LID.

4.2. Tooling

Many di�erent tools exist for deep learning, the most acclaimed being Tensor�ow [AAB+16],
DL4J/ND4j1 and Theano [BBB+11]. Pre-existing work on Language Identi�cation, or rather
Language Feature Vector Extraction using a LID Network in [MSW16], used a python
wrapper around Theano for training, that was developed by Jonas Gehring [Geh12]. This
thesis continues the use of this wrapper for the training of our DNNs. The basic layout of
the network used and improved upon by this thesis were input vectors from a multilingual
ASR net, further explained in sec. 5.1, which we used to generate Bottleneck Features with
966 coe�cients. The LID network introduced in the following chapters then uses these
BNF vectors to classify the audio input into a language. Di�erent Network Structures and
types (DNNs/RNNs) were used that will be further explained in Ch. 6.

As detl does not provide support for RNNs we used Lasagne 2, another wrapper around
Theano, as the framework for our RNN training.

4.3. Euronews 2014

The �rst data set used, was retrieved from Euronews 3 2014. Euronews is a TV channel
that is broadcast in 13 di�erent languages simultaneously both on TV and over the Web
and is semi-automatically transcribed. The data corpus includes 10 languages (Arabian,

1DL4J: https://deeplearning4j.org/index.html
2Lasagne: https://lasagne.readthedocs.io/en/latest/
3Euronews: http://www.Euronews.com/

16

https://deeplearning4j.org/index.html
https://lasagne.readthedocs.io/en/latest/

4.3. Euronews 2014

German, Spanish, French, Italian, Polish, Portuguese, Russian, Turkish and English) with
around 72 hours of data per language provided overall, meaning the corpus had a total
length of around 720 hours of audio data. This data was taken both from online video and
recordings of the transmissions as described in [Gre14].

For the purposes of this work we then broke this corpus down further into a more
manageable size as to make the feedback-cycle faster, while still keeping the corpus big
enough to make results comparable to performance with the full corpus. Later, we then
used the full data set to compare results between the smaller and bigger sets.

The corpus was broken down to a per-speaker-basis based on its automatic transcriptions.
From this data we took a sample of a random 10.000 speakers, while making sure the total
length of samples for each language were roughly the same. Details of this breakdown
can be seen in table 4.1.

Table 4.1.: The Euronews corpus speaker breakdown used for most experiments with total
utterances length.

Language Number of Speakers Combined Length
Arabian 1055 16.76 h
German 928 18.80 h
Spanish 932 18.78 h
French 1016 18.67 h
Italian 935 19.00 h
Polish 1229 18.30 h
Portuguese 1062 16.19 h
Russian 958 18.66 h
Turkish 957 18.61 h
English 928 18.54 h
Overall 10000 182.31 h

Table 4.2.: The Euronews corpus breakdown into the three data sets.
Set Number of Speakers Combined Length
Train 8000 149.76 h
Development 1000 19.46 h
Test 1000 19.29 h

The speaker list was then split into three smaller datasets: the train set, development
set and test set using the common Simple Random Sampling. The sizes were 80% allocated
to the train set, and 10% to each the development and test set. Table 4.2 shows the split
data for the three sets. The development set will be referred to as DEV and the test set as
TEST after this.

The complete Euronews Corpus available was much larger. This was used to con�rm
intuition that a larger data corpus leads to better results which can be seen in sec. 6.3. The
breakdown of the large corpus’ data is listed in table 4.3.

17

4. Experimental Setup

Table 4.3.: The full Euronews corpus speaker breakdown with total utterances length.
Language Number of Speakers Combined Length
Arabian 4401 51.13 h
German 4436 73.21 h
Spanish 4464 75.71 h
French 4434 68.14 h
Italian 4464 77.22 h
Polish 2625 33.15 h
Portuguese 4430 49.07 h
Russian 4418 72.23 h
Turkish 4385 70.42 h
English 4511 72.76 h
Overall 42568 643.04 h

4.4. Lecture Data

As part of the development of the KIT’s Lecture Translator, German lectures at the KIT
were recorded and annotated. This is described in [SKM+12]. This thesis then uses parts
of this German corpus as well as newer recordings done at the KIT of English lectures
with the same setup, English academic talks given at InterACT254, as well as French talks
done at the DGA’s 5 yearly academic conference on speech recognition.

This lecture data was then used in two di�erent ways: Firstly, to evaluate the 10-
Language trained Euronews-Net(s) to see how it would fare in a lecture-environment
as part of the KIT’s Lecture Translator by scaling the output down to the 3 available
languages. Secondly to train a second net and further test the �ndings about the net setup
and net evaluation, as found with the Euronews corpus.

The breakdown of speakers and length can be seen in table 4.4. As the main work was
done on the Euronews corpus this data corpus is considerably smaller and was mostly
just used as a proof-of-concept for a possible integration of a LID-Net into the Lecture
Translator.

The development set for the LD corpus consisted of 1.5h of Lecture Data per each of the
three languages with one speaker for German/English (one class’ recording) and 5 French
speakers from DGA talks.

4.5. European Parliament

As another form of evaluation, recordings of the European Parliament speeches, that are
freely available online 6 were used. The video recordings come with the simultaneous

4InterACT25: http://www.interact25.org/
5DGA: http://www.defense.gouv.fr/dga
6EU-Parliament plenary speeches: http://www.europarl.europa.eu/ep-live/en/plenary/

18

http://www.interact25.org/
http://www.defense.gouv.fr/dga
http://www.europarl.europa.eu/ep-live/en/plenary/

4.5. European Parliament

Table 4.4.: The Lecture Data corpus speaker breakdown with total utterances length.
Language Number of Speakers Combined Length
German 8 16.22 h
French 30 8.25 h
English 27 10.78 h
Overall 65 35.25 h

translations into all the o�cial languages of the EU-countries. This includes seven of
the languages also available on Euronews, namely German, English, French, Spanish,
Italian, Polish and Portuguese. We extracted the seven audio tracks embedded in the
recordings with �mpeg 7. The audio extracted is of the simultaneous translations with an
underlying audio track of the original speaker, which adds noise, but is similar in nature
to the Euronews recordings that often feature an underlying audio track in a di�erent
language.

The small corpus was used to evaluate performance of the Euronews-trained nets, as well
as improve capabilities of the networks with cross-training on top of the Euronews-nets,
of which results can be seen in the following chapter.

As each parliament discussion includes the same audio tracks, the length of all the
languages in the set is the same, with each language having 3.6 hours of data.

7�mpeg:https://ffmpeg.org/

19

https://ffmpeg.org/

5. Feature Preprocessing

This chapter deals with the feature preprocessing used to form normal speech into feature
vectors to be understood by neural networks. The setup used is based on the standard
capabilities of the Janus Recognition Toolkit. The following sections describe this Feature
Preprocessing for data as well as the �rst multilingual ASR network as introduced previ-
ously, used to create the BNF features the LID net requires. It is based on preprocessing
introduced in [MSW16]. Features produced by this preprocessing setup are then written
to “p�les” together with their labels (the target language). The p�les are then used to train
the network using detl, or, in the case of RNNs, lasagne by supervised training employing
the Stochastic Gradient Descent with Newbob scheduling.

5.1. Feature Retrieval

The audio �les available to us in the Euronews and Lecture Data corpus were recorded
using a sampling rate of 16 kHz. European Parliament data we collected ourselves were
recorded with a sample rate of 44.1 kHz. We down-sampled the data using soX1.

Full Euronews Corpus The Full Euronews Corpus, as introduced in section 4.3, had pre-
existing p�les from previous work [MSW16] that we reused. This meant that the features
in this case were completely based on 32ms windows and not a combination of 16ms and
32ms windows as for the rest of the corpora.

5.2. Feature Description

For the DBNF network as input, a combination of sound power, lMEL, fundamental
frequency variation (FFV) [LHE08], [LHE08] and pitch acoustic features [Sch99] was used.
Tonal features have shown improvements for DNNs, even with non-tonal languages as
English [MSW+13], so they were also incorporated. Lst. A.1 in the appendix shows the
complete feature extraction source code in tcl.

Using the sound power feature that is part of Janus’ standard capabilities, we added
a speech-detection feature, which identi�es speech and noise from the audio. We �rst
calculate the loд on the current sound power and then determine the weighted average
with a context of 2 frames on each side. After normalizing the resulting value between

1soX Sound eXchange: http://sox.sourceforge.net/

21

http://sox.sourceforge.net/

5. Feature Preprocessing

-0.1 and 0.5, we apply a basic threshold function: We consider everything above 0 in the
normalized spectrum as speech, and below as (non-speech) noise. We do not discard the
non-speech marked parts however, but weigh the combined feature vector less in the
resulting input vector for the neural network.

The log mel features are calculated the following way: We calculate the spectrum of
the audio waveform using the Fast Fourier Transformation on 16 ms windows, calculate
the Mel Coe�cients, apply Vocal Tract Length Normalization (VTLN) on the spectrum in
the linear domain and then multiply the Mel-Filterbank coe�cients with the normalized
coe�cients. We apply a logarithm to this to get the lMEL features.

From Janus’ standard pitch capability, calculated on 16 ms windows, we calculate the
symmetric delta coe�cients (f (t + δ) − f (t − δ) on the pitch for δ = 1, 2, 3 and the same
deltas on those results and merge to give us a coe�cients for frame t. This means we
de�ne:

f (t) := PITCH (t + 1) − PITCH (t − 1) (5.1)
д(t) := PITCH (t + 2) − PITCH (t − 2) (5.2)
h(t) := PITCH (t + 3) − PITCH (t − 3) (5.3)

Merging these we get the coe�cients:
(PITCH (t), f (t), f (t + 1) − f (t − 1),д(t),д(t + 2) −д(t − 2),h(t),h(t + 3) −h(t − 3)) (5.4)

The FFV is calculated on 32 ms windows, to then be merged with the pitch feature we just
de�ned to make up the TONE feature. lMEL coe�cients and TONE coe�cients are then
merged. See [LJ09], [LHE08]These feature vectors are stacked with a context of 6 adjacent
frames and then passed to the DBNF net as introduced in the next section.

Full Euronews Corpus The full Euronews corpus used 32 ms for all feature calculations,
so the sound power, FFT/lMEL and pitch were calculated on 32ms windows, but used the
same features aside from this.

Lecture Data/European Parliament For the other two data corpora we kept the 16ms
windows for power and lMEL, but changed the pitch to be calculated on 32 ms windows.

5.3. DBNF network

The DBNF was trained as part of [MSW16]. It is trained using the input features de�ned
in section 5.2. The targets are context-dependent phoneme states, representing a similar
setup to how an ASR neural network. The network has 6 layers of 1000 neurons each plus
a bottleneck layer of 42 neurons before the �nal output layer.

The activations of the bottleneck layer are extracted. We then apply a context of 11
frames and stack the frame itself with the context. The context is calculated using a spread
of 3. This means we only use every 3rd frame. The stacked vector is then used as the input
for the LID network on which the following chapter will elaborate.

22

5.4. Evaluating Input Features

5.4. Evaluating Input Features

Work in [MSW16] included a comparison of di�erent context spreads as stacked inputs
for the LID net of 2,3 and 6. As one of the �rst experiments on the Euronews corpus we
increased the spreads from 3 to 4 and 5 frames, while still keeping the original context
width of 11 (meaning a total context width of 44 Frames (880ms) and 55 Frames (1100ms)
respectively). This however proved not successful as performance decreased already in
the frame-based metrics and was therefore likely to also decrease in the per-sample metric
as introduced in the following chapter.

For all further experiments on Network layout and smoothing, we therefore used the
best performing context of 33, with a spread of 3 frames.

table 6.1 at the end of the next chapter shows the results for the di�erent selected spreads
with di�erent net structures, which are introduced in the following chapter.

23

6. LID Network Structure

This chapter describes the actual Language Identi�cation neural networks trained as well
as the results of di�erent network/data setups used. Most network experiments in the
network geometry, referring to the number of hidden layers as well as the layout of the
neurons in these layers, were evaluated using the Euronews corpus. Results from this
corpus were then transferred over to the other corpora, meaning that the network layout
that worked best for Euronews was then adjusted for the lecture data but otherwise the
geometry was kept intact.

6.1. Baseline Setup

The �rst experimental net setup consisted of 5 layers of denoising auto-encoders. Each
layer had 1000 nodes, aside from the input layer using the 966 feature frames that is the
input vector whose contents were described in the previous chapter, and a tanh activation
function using the mean squared error as the loss function.

The neural net was then trained using mini batches of size 2,000,000. The training was
done using a learning rate of 0.01. The pre-trained net was then retrained with a 1000
neuron to 10 coe�cient output to get to our 10 Languages as classes to classify against.
In the basic setup this was trained using a learning rate of 1 and the exit condition of a
minimum change of 0.005 / 0.0001 for the training/validation data respectively.

The beginning benchmark to improve upon was then set to the frame-based validation/-
train error of 0.23 / 0.27 respectively, while of course understanding that non-training
per-sample data would most likely have worse results at �rst than the frame-based valida-
tion error calculated on training data.

The following section describes di�erent network layouts and changes we made to the
training of the neural network and the improvements made upon our initial result.

6.2. Improving Network Layout

Di�erent network layout were tried and experimented with. This includes a 6 pre-trained
hidden layer version, as well as changes in the geometry. The di�erences in the frame-based
errors can be seen in table 6.2.

25

6. LID Network Structure

Decreasing Learning Rate Setting the learning rate of the output layer training to 0.1
instead of the default 1, gave us the �rst increase in frame-based recognition rates, im-
proving it from an error of 0.274 for the base setup to an error rate of only 0.256, giving an
improvement of almost 2%. As table 6.2 shows, the higher learning rate lead to a better
train-set result but worse validation performance, this could be an indication that the
lower learning rate stops the net from over-learning as much and increases generality.

Adding the 6th hidden layer Adding another 1000 neuron hidden layer did not lead to an
increase in recognition compared to the version using a lower learning rate and rather
gave us an decrease of about 2%, meaning an error rate of 0.275 compared to the 0.256 for
the lower learning rate version.

“Tree” net structure The biggest increase was achieved by changing the geometry of the
net from 5 layers with each 1000 neurons to one of each layer having 200 less neurons
of the previous one giving us a net de�nition of (tanh being the activation function, mse
the loss function of the mean squared error and make da the command for detl to add
another hidden layer):

’!make da 966,tanh:1000 loss=mse’ \

’!make da 1000:800’ \

’!make da 800:600’ \

’!make da 600:400’ \

’!make da 400:200’ \

This setup, with the standard output layer with 10 output neurons, improved error rates
from 0.256 down to 0.245, an improvement of 1.2 %.

Adding another 6th hidden layer onto this structure to give a net de�nition of (visualized
in �g. 6.1):

’!make da 966,tanh:1200 loss=mse’ \

’!make da 1200:1000’ \

’!make da 1000:800’ \

’!make da 800:600’ \

’!make da 600:400’ \

’!make da 400:200’ \

further improved the results, yielding an error rate of only 0.241, performing another
0.4 % better than the 5-layer tree-structure.

A possible explanation for the better performance of the tree structure could be, that
the farther the layer is removed from the input, it works on recognizing more “abstract”
patterns, and less of the more abstract classes exist than of basic patterns. E.g. the �rst
layer decides on the values of one certain frequency of the input what language is more

26

6.3. Full Euronews Corpus

Figure 6.1.: Visualization of the tree-net structure.

likely, with the second layer then taking into account a whole range of frequencies (of
which less exist) or even more abstract features to further di�erentiate.

Adding a larger number of hidden layers into this tree structure did not improve results,
as a 10-hidden-layer version with the setup of:

’!make da 966,tanh:2000 loss=mse’ \

’!make da 2000:1800’ \

’!make da 1800:1600’ \

’!make da 1600:1400’ \

’!make da 1400:1200’ \

’!make da 1200:1000’ \

’!make da 1000:800’ \

’!make da 800:600’ \

’!make da 600:400’ \

’!make da 400:200’ \

failed to perform featuring an error rate of 90 %, meaning the net was not able to classify
correctly anymore.

As deeper hidden layers will take longer/more data to train correctly (as the changes
have to propagate through the earlier layers �rst, to then a�ect the deeper layers), our
setup did most likely not include enough data for the training of these nets. Another
explanation could be the spreading of information in the input 966 features onto the 2000
neurons of the �rst hidden layer added wrong coe�cients.

Overall the tree-net with 5 layers and reduced learning rate performed the best in the
frame-based errors, featuring a relative improvement of 0.175 compared to the basic net.

6.3. Full Euronews Corpus

As introduced in sec. 4.3, a bigger Euronews data was used to further evaluate our network
structure. The net was trained with the tree-net 6-layer structure with a reduced learning
rate as introduced above. This resulted in a train error of 0.204 and a validation error of
only 0.169, an improvement of 6.9% compared to the smaller corpus with the same net
structure. However, it only improved the error in classifying each sample of the DEV set

27

6. LID Network Structure

Table 6.1.: Results of the di�erent context sizes on the Euronews corpus for the �rst 3
introduced net structures. Frame-based errors on train/validation set.
Net Structure (context) Train Error Validation Error
Basic (33) 0.226 0.285
Basic (44) 0.073 0.353
Basic (55) 0.209 0.309
6-Layers (33) 0.236 0.276
6-Layers (44) 0.192 0.326
6-Layers (55) 0.243 0.298
Reduced Learning Rate (33) 0.273 0.266
Reduced Learning Rate (44) 0.287 0.310
Reduced Learning Rate (55) 0.276 0.268
Best 0.192 0.266

Table 6.2.: Results of the di�erent net structures on the Euronews corpus. Frame-based
errors on train/validation set.

Net Structure Train Error Val. Error Rel. Impr.
Val. Error

Basic (5 layers 1000 Neurons) 0.226 0.285 -
6-Layers (1000 Neurons) 0.236 0.276 0.032
Reduced Learning Rate 0.273 0.266 0.067
Tree Structure
(5 layers 1000...200 neurons)

0.221 0.245 0.140

Tree Structure
(5 layers 1000...200 neurons)
and reduced learning rate

0.245 0.235 0.175

Tree Structure
(6 layers 1200...200 neurons)

0.211 0.242 0.151

Tree Structure (6 layers
1200...200 neurons)
and reduced learning rate

0.251 0.238 0.164

Tree Structure
(7 layers 1400...200 neurons)

0.206 0.247 0.133

Tree Structure
(10 layers 2000...200 neurons)

0.899 0.910 -

Best 0.211 0.235 0.175

(as further introduced in the next chapter) by about 4%. As the amount of train data was
tripled while the classi�cation only improved by about 4 %, this suggests that a suitable
post-net �ltering approach and net setup will have a bigger impact than the data corpus
size after a certain threshold.

28

6.4. Cross-set training

Table 6.3.: Comparison of the big and small Euronews data corpus. Frame-based errors on
train/validation set, as well as Sample-based Error.

Data Corpus Train Error Validation Error Sample Error
Small (17h/Language) 0.251 0.238 0.318
Full (70h/Language) 0.204 0.169 0.276
Change 0.047 0.069 0.042

6.4. Cross-set training

As a further experiment, we used the pre-trained nets of the stacked hidden layers of the
Euronews net and trained the output layer on top with the cross-set of Lecture-Data. This
was done by loading net-parameters from pre-training and training the �nal output layer
with the cross-set on top of them. For the �nal layer we used a low learning rate of 0.1
(1/10th of the learning rate we used in the normal setup), to make meaningful learning
possible while cross-training only the �nal layer.

As a basis for the cross-training, we loaded the tree-net 6-layer structure of the Euronews
nets, omitting the output layer. We then used the lecture data corpus to train the output
layer with only 3 output neurons. This yielded an improvement of 4.9% for the error of
the tree-net Euronews net recognizing the lecture data development set on a per-sample
basis (for which the test setup is introduced in the next chapter).

A second experiment was conducted, using the same base Euronews net, but adding 2
layers on top for the cross-training with 200 and 100 neurons respectively, instead of only
one output layer with 200:10 neurons. This further improved the Frame-based results, by
another 1.4%., and sample-based results by another 1.8%. This gives us a total improvement
of 6.7% for the cross-training compared to the base Euronews net. See tab. 6.4 for the
detailed results.

Since the Lecture Data corpus only has 3 languages, we could not evaluate the cross-
trained nets using all Euronews languages but still gave a �gure for the net results with the
Euronews corpus for English, German and French. These results are obviously much worse
than pure-Euronews-trained nets, as the two output layers have never seen Euronews
data, that while similar, is obviously still su�ciently di�erent, as the performance su�ered
by 12.1%.

6.5. Combining Lecture Data and Euronews

By combining both the lecture data and Euronews corpus, we produced improved results
that can be seen in tab 6.5. This was to be expected just from the amount of train data
almost doubling for the 3 lecture data-languages. Overall, this net produced the best
results for the lecture data corpus by a big margin of 23 %. The concatenated corpus also
produced the best results on the Euronews corpus with an increase in the error of only
0.005 compared to the non-augmented Euronews data.

29

6. LID Network Structure

Table 6.4.: Results of the cross-training attempts of the Euronews-trained 6-layer tree-net
with the lecture data (LD) corpus. 3 Languages (3L) are German, English, French.

Net Structure Euronews
(DEV)
3L Error

LD
Train Error

LD
Val. Error

LD
Sample Error

Tree-net Euronews net
w/o cross-training

0.291 - - 0.179

Tree-net Euronews net
with cross-training

0.456 0.075 0.116 0.130

Tree-net Euronews net
with cross-training 2 lay-
ers

0.413 0.073 0.102 0.112

Change (best) 0.121 - - 0.067

6.6. Lecture-Data-Training

After trying cross-training and concatenation for the lecture data corpus, we also trained
a net on the Lecture Data corpus. We continued the use of the tree-net structure as it had
proven successful with the Euronews corpus. We �rst evaluated the same 6-layer setup
with and without an adjusted learning rate. Additionally we also experimented with a
smaller, 4-layer tree-net with a structure of:

’!make da 966,tanh:800 loss=mse’ \

’!make da 800:600’ \

’!make da 600:400’ \

’!make da 400:200’ \

The 6-layer net did prove to perform better than the 4-layer one in the frame-based
metric, and surprisingly in this case, the non-adjusted learning rate version (so the standard
learning rate of 1.0) performed better than the lowered one, as the validation error of the 6-
layer-standard-lr-net was about 0.6% better than the version with the lowered learning rate
for the LD Evaluation. Overall however, the LD-Trained Net with 4 layers performed the
best on full samples, the metric that can be most related to performance in an online fashion.
This con�rms our �ndings on the Euronews corpus of a tree-net structure performing the
best for LID.

Surprisingly, the other ld-only nets did feature a better validation/train error frame-
based but failed to achieve higher accuracy in sample-evaluation in comparison with the
cross-trained versions. Possibly, this can be attributed to the fact that the lecture data
corpus overall is much smaller than the Euronews one, on which the cross-trained version
were pre-trained on, and therefore have less transferability.

table 6.5 shows a comparison of the di�erent Lecture Data experiments and a summary of
the improvements we made. Overall the best net for lecture data would be the concatenated
data corpus trained net with a sample error of only 0.65%. However, the LD-only trained

30

6.7. European Parliament

Table 6.5.: Results of the di�erent lecture data (LD) approaches. 3 Languages (3L) are
German, English, French.

Net Structure Euronews
(DEV)
3L Error

LD
Train
Error

LD
Val. Error

LD
Sample Error

Tree-net Euronews net
w/o cross-training

0.291 - - 0.179

Concatenated
Euronews/LD-trained
net

0.296 0.206 0.245 0.065

Tree-net Euronews net
with cross-training

0.456 0.075 0.116 0.130

Tree-net Euronews net
with cross-training 2 lay-
ers

0.413 0.073 0.102 0.112

LD-Trained Net 4 layers 0.438 0.076 0.109 0.088
LD-Trained-Net 6 layers 0.439 0.026 0.093 0.150
LD-Trained Net 6 layers
& lowered learning rate

0.417 0.066 0.100 0.112

Change (best) 0.005 - - 0.114

net with 4 layers and a tree-structure, is only 2.3% worse than this net, while having a
much smaller corpus size.

Intuition dictates, that the cross-trained versions would perform better on the Euronews
corpus than the ld-only trained ones, which was con�rmed by the results. However, the
di�erence in error was smaller than expected, with only 2.6% between the best-performing
LD-net and the cross-trained 2-layer net for the Euronews error.

6.7. European Parliament

As to further test the conclusions made about net-structure/cross-training we also trained
data on the small European Parliament corpus we collected. The setup was very similar to
the Lecture Data tests as introduced in the previous section. We however did not try to
concatenate the train data with the other corpora available.

The two cross-training attempts had the same setup. For the EP-only training we found
that the 6-layer tree-net structure performs worse than the base setup (5 layers with 1000
neurons each). This however could be due to the minimal data available in the EP corpus
and the fact that less layers in this case would always perform better.

Surprisingly, even though the train data available was very small, the improvements
in comparison to the Euronews net results for European Parliament speeches are still
better by 2.6%, showing that neural networks already start performing even with minimal
data available and selection of train data similar to later actual input is very important.

31

6. LID Network Structure

Table 6.6.: Results of the di�erent European parliament (EP) approaches. 7 languages (7L)
are German, French, Italian, English, Polish, Portuguese, Spanish

Net Structure Euronews
(DEV)
7L Error

EP
Train
Error

EP
Val. Error

EP
Sample Error

Tree-net Euronews net
w/o cross-training

0.297 - - 0.383

Tree-net Euronews net
with cross-training

0.676 0.230 0.292 0.456

Tree-net Euronews net
with cross-training 2 lay-
ers

0.676 0.267 0.310 0.391

EP-Trained Net 5 layers 0.679 0.155 0.333 0.357
EP-Trained Net 6 layers 0.691 0.061 0.361 0.392
Change (best) 0.379 - - 0.026

See table 6.7 for the summarized results. Overall it’s clear, that the European parliament
data is substantially di�erent from the Euronews set up as the Euronews trained net
performs worse even with cross-training than a net trained directly on the small European
Parliament corpus itself.

32

7. Smoothing and Evaluation

While frame-based error rates on the training/validation sets were already su�ciently
good from the LID networks, this of course is not a reliable indicator of real-world online
performance. Thus, we evaluated further using the development set, as introduced in
Ch. 4, of speakers whose samples were run through the LID setup (Feature Preprocessing
ch. 5, DBNF extraction ch. 5.3. LID network ch. 6) and the outputs then evaluated. The
following smoothing approaches were applied in an ”online” fashion, meaning it was made
sure they can be calculated in real time while new data is still coming in. The summarized
results are listed in tab. 7.10, 7.9 for both the DEV and TEST results. We chose to only run
the experiments on the Euronews corpus, as the 10-language-target will always have more
possible erroneous outputs and �ltering can prove to be more successful. We evaluated
di�erent net structures, however the results presented here are based on the tree-net
6-layer structure as introduced in the previous chapter. This is not necessarily the best
structure for the frame-based train error, but it gave us the best results on a sample basis.
See tab. 7.1 for a comparison of di�erent network structures.

7.1. Output Activations

First, we evaluated a few sampled manually by looking at the output. In the following
diagrams one row is equal to activation of one output neuron (bottom to top ID 0-9).
Activations are marked black for high activations and white for low activations. The
x-scale is the current frame number (with one frame being 10 ms long). As expected
activations for random noise/music as in �g. 7.1 are smooth over all the frames and do not
show any language as being predominant.

Also, for a 800 ms Polish sample, �g. 7.2 shows the output activations for a correctly
recognized sample. It is clear, that the language with ID 5 is the one being spoken in the
sample as the 5th row in the picture has the highest activations. This is equal to Polish (as
arbitrarily de�ned in the p�les writing script).

An incorrectly classi�ed sample can be seen in �g. 7.3. The language of the sample
is English (ID 9), but from frame 50 on it is being (mostly) classi�ed as Arabian (ID 0).
However, one can also see, that the activations of the network are not smooth and tend
to jump around as di�erent languages appear as the maximum in this sample, e.g. also
German (ID 1) appears to have high activations at di�erent times.

33

7. Smoothing and Evaluation

Figure 7.1.: Activation of output neurons for random non-speech (jingles/noise)

Figure 7.2.: Activation of output neurons for a correctly recognized Polish sample

Figure 7.3.: Activation of output neurons for an incorrectly recognized English sample

34

7.2. Evaluation Metric

7.2. Evaluation Metric

To have a baseline to improve upon we evaluated the bare net-output on full samples of
di�ering lengths and then tried to improve these results. See app. A.2 for the corresponding
tcl/tk code for this bare approach. It counts a sample as correctly classi�ed if the majority
of frames/�ltering steps have been classi�ed correctly. The test setup used then goes
through the entire set of samples and counts the correctly/wrongly classi�ed samples for
each language. This means that an extra amount of smoothing is included, but results
should still be su�ciently general to be able to infer properties of employed �lters, as they
all include this extra smoothing. This additional smoothing can be applied in an online
fashion by setting a su�ciently large, while still small enough to not incur delay, window
size and then counting the occurrence of outputs to give the same e�ect as used here, see
sec. 7.6 for how a windowed counting �lter works.

7.2.1. Out-Of-Language Error (OLE)

The �rst correctness metric proved to be too restrictive for �lters. As �lters might reduce
the count of the correct language while making the total number of wrong outputs less,
we present another metric to evaluate �lter e�ectiveness. We count the total number
of falsely (as in not-equal to the maximum output) classi�ed frames/output per sample
divided by the number of total frames/outputs and average them on the full development
set to see if �lters actually work in �ltering out false outputs. It can be described as a
metric for the amount of noise the net output includes. Arguably this would be even more
important in an online-fashion, as e.g. in the Lecture Translator, as wrong outputs would
be passed on to the speech recognition/translation APIs. This second metric evaluation
for well-performing �lters can be found at the end of the chapter in table 7.10.

Table 7.1.: Results of di�erent net structures evaluated on the Euronews DEV set.
Net Structure Overall Error
6-layer tree-net lr 0.1 0.318
6-layer tree-net 0.311
7-layer tree-net 0.316

The results of the bare-net evaluation for Euronews can be seen in table 7.2 for the
best performing net structure, the 6-layered-tree-structure as introduced in sec. 6.2. The
results are, as expected, worse than the frame-based training-recognition, as here the
entire (not-yet seen) samples are run through the net. Fig. 7.2.1 shows the relation of the
length of samples and the amount of correctly classi�ed samples of this length for the tree-
structure-net. It shows the intuitive results of a longer length of a sample coinciding with
a higher recognition rate through the net, as more frames can be used for the recognition
task in the context produced by the ASR BNF net. However, it is also evident that for
samples with a length of only 17 frames (≈200 ms), the net already categorizes the sample
better than guessing a language (which on average would yield a correctness of 0.1), as for
a length of 17, the net produces a correctness of 0.1896.

35

7. Smoothing and Evaluation

As one can see a length of around 100 frames (meaning a sample length of: 100 ∗
10/1000 = 1s) is su�cient to be able to recognize the language with a correctness of ≈70
%. This means online recognition of language is possible with a relatively small warm-up
time of 1 second (or around 2 seconds with a higher correctness of then well over 80 %).

0 50 100 200 300 400 5000

0.2

0.4

0.6

0.8

1

Sample length in Frames

Co
rr

ec
tn

es
s

Correctness / Sample length for 6-layer tree-structure Euronews net

Table 7.2.: Results of the best net structure (tree-structure 6-layer) evaluated on the Eu-
ronews DEV with only bare net output.

Language Error (total) Error (samples >500 ms)
Arabian 0.364 0.235
German 0.300 0.155
Spanish 0.320 0.155
French 0.300 0.138
Italian 0.326 0.174
Polish 0.267 0.111
Portuguese 0.291 0.161
Russian 0.315 0.148
Turkish 0.337 0.182
English 0.267 0.145
Overall 0.267 0.162

36

7.3. Basic Test Filter

7.3. Basic Test Filter

The �rst �lter used was basic 5-frame smoothing: It saves the value of the last direct
outputs and only outputs a language if the last 5 direct outputs have been the same.
It also includes a �ltering based on the actual output of the language ID neuron, only
counting outputs higher than an arbitrarily de�ned activation of 0.61. However this can be
disregarded, as for the vast majority of samples the maximum neuron for a certain frame
never fell underneath this threshold.

This approach requires a 5 frame (≈ 50ms) “warm-up” time, which still would make it
usable in an online environment.

Table 7.3 shows the result of the basic �lter for each language. Overall the error (for our
de�ned metric) went up by about 5 %. It did however improve results for Arabian by about
3 %, showing that the �nding of a suitable �lter that improves the overall recognition is
non-trivial, as apparently some languages will bene�t from a certain type of �lter while
another will not.

Table 7.3.: Results of the best net structure (tree-structure 6-layer) evaluated on the Eu-
ronews DEV Set with the Basic Filter.

Language Error (total)
Arabian 0.337
German 0.312
Spanish 0.331
French 0.313
Italian 0.334
Polish 0.277
Portuguese 0.310
Russian 0.322
Turkish 0.343
English 0.286
Overall 0.318

7.4. Advanced Test Filter

The advanced test �lter is based on the JRTk’s FILTER capability. It automatically takes a
de�ned amount of frames and calculates the weighted arithmetic mean with prede�ned
weights for incoming audio. First tries were done using a small �lter setup of:

filter nnFILTERSMALL nnBNF {-2 {1 2 3 2 1}}

Herein the context is 2 frames on each side of the current frame (the �rst parameter) with
weights 1, 2 , 3 , 2 , 1 for the 5 frames respectively. We also evaluated a second bigger �lter
setup of:

37

7. Smoothing and Evaluation

filter nnFILTERBIG nnBNF {-5 {1 2 3 4 5 6 5 4 3 2 1}}

In our tcl code implementation, we changed the feature to read the frames from, while
still then taking the maximum of the �lter-feature as the output. Comparison of the two
�lters can be seen in table 7.4 for evaluation on the DEV set. As compared to the bare
net output, the bigger advanced �lter o�ered a tiny improvement for some languages,
(≈0.1% for both Portuguese and English) in correctness but lost out in all other languages.
Detailed per-language results for this and the following �lters can be found in app. A.1.

Table 7.4.: Results of the best net structure (tree-structure 6-layer) evaluated on the Eu-
ronews DEV Set with the Advanced FILTER

Filter Overall Error
Small FILTER 0.313
Large FILTER 0.316

7.5. Di�erence Test Filter

As a next approach, the di�erence between the two biggest outputs was taken into account.
We �ltered the direct output by only changing from the previous output, if the di�erence
(which we implied to be how sure the net was when determining the language) was bigger
than 0.01.

Aside from the general errors with the correctness metric as already outlined in the
beginning of this chapter, we also thought one possible reason for a worse performance
of this �lter could be, that the output of the 2nd most likely neuron is not going to di�er
from the maximum output on many language pairs: E.g. French/Italian, Russian/Polish,
Italian/Portuguese, even if the net predicts one over the other as the di�erence between
the languages is also relatively “small”. E.g as presented in [CM05], the di�erence between
English and French is small as the “linguistic score” is relatively high with 2.5.

The full tcl code of this �lter can be found in the appendix . The evaluation results can
be seen in tab. 7.10

7.6. Counting Filter

This �lter included a counting of the occurrence of a certain net output in a frame-range,
and then outputting the ID of the language that was recognized the most in that frame-
range (while still then employing the same per-sample smoothing as above). The �rst try
was done using a frame-range of 10, later increased further. We listed the results of this
�lter with di�erent ranges on the DEV set in 7.5. As a further experiment we also used
overlapping windows (meaning we count the occurrence in 10 frames and the next 10
frames are not 10 frames further but starts at the 8th frame of the previous window ->
overlap of 3 frames).

38

7.7. Sequence Filter

The full code of this �lter can be found in the appendix.

Table 7.5.: Results of the best net structure (tree-structure 6-layer) evaluated on the Eu-
ronews DEV Set with the Counting Window Filter

Filter Overall Error
Counting Filter FR 10 0.313
Counting Filter FR 10, overlap 3 0.323
Counting Filter FR 50 0.316
Counting Filter FR 100 0.313
Counting Filter FR 150 0.314

7.7. Sequence Filter

This �lter included a counting of the longest sequence of a certain net output in a frame-
range, and then outputting the ID of the language that was recognized for the longest
sequence in that frame-range (while still then employing the same per-sample smoothing
as above). This decreased the OLE substantially as can be see in table 7.10, however
the �lter did increase the overall error by 8%, more than any of the other �lters, which
seems intuitive as possible noise or music interruptions in speech can easily lead to long
sequences of wrongly classi�ed frames.

The full code of this �lter can be found in the appendix.

7.8. Two-Language Setup

Table 7.6 shows the result produced by using the LID Euronews net for ten languages on
di�erent combinations of two languages (namely French/Italian and English/German). In
this case we ignore the output of the net if it doesn’t equal one of the two languages and
instead keep the previous output intact in this case. This, intuitively, gave a big boost
in the recognition rate, bringing the rate up to 85 % for the two languages combined, an
improvement of more than 10 % in correctness compared to the bare approach in sec. 7.2.

7.9. Gaussian Smoothing Filter

Gaussian �lters have shown great success in the realm of image processing in the form of
canny edge detectors. A one-dimensional Gaussian �lter returns a response that is akin to
the form of a normal distribution: To calculate the Gaussian Filter Response, one needs a
Gaussian Kernel with a window size. While in general the Gaussian �lter has an in�nite
window size, choosing a �xed window size can approximate the Gaussian well. In this

39

7. Smoothing and Evaluation

Table 7.6.: Results of the best net structure (tree-structure 6-layer) evaluated on only 2
languages with the 2-language �lter on the DEV set.

Language Error (total)
French/Italian as input only
French 0.186
Italian 0.113
Overall 0.153
German/English as input only
German 0.183
English 0.126
Overall 0.156

−3 −2 −1 0 1 2 3

0.1

0.2

0.3

x

д
(x
)

Gaussian Normal Distribution for σ = 1

discrete case σ , the standard deviation of the Gaussian, can be approximated with N the
size of the window:

σ =

√
N

2π (7.1)

With σ , the Gaussian function for point x can be calculated as:

д(x) = 1
√
2πσ
∗ e−

x2
2σ 2 (7.2)

Once the Gaussian function is calculated for the window, the convolution of the data points
with the Gaussian kernel is performed, resulting in smoothed over coe�cients of the LID
net output. The maximum smoothed coe�cient is then chosen and the corresponding
language is output, which gave us de�nite improvements over the unsmoothened net
output. In tcl the relevant code part can be seen in A.10, in which we presume the window
size to mean the number of points we take into account on both sides of the origin, while
normally this number is the window size - 1.

40

7.9. Gaussian Smoothing Filter

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.2

0.4

0.6

0.8

1
·10−2

Window position

Co
e�

ci
en

tf
or

on
e

La
ng

ua
ge

Coe�cients for Gaussian window

Convoluted
Original

We tried di�erent window sizes of which the result can be seen in tab. 7.7 on the DEV
set. As can be seen, the window size of 15 performed the best out of the di�erent window
sizes evaluated. To showcase a correct implementation �g. 7.9 shows the result of one
Gaussian convolution for a window size of 10 as a graph, as one can see it is evident that
the graph looks similar to the Gaussian kernel as graphed above and smoothing of the data
has evidently occurred. As it turns out the Gauss �lter indeed performs much better even
on the correctness-metric on small samples with a size under 50 frames (=500ms). Tab. 7.8
showcases this in comparison to the bare net output, which shows a very signi�cant
improvement of 15%.

Table 7.7.: Results of the 6-layer tree-structure evaluated with di�erent Gauss �lters on
the DEV set.

Filter Overall Error
Gaussian Filter WS 10 0.3128
Gaussian Filter WS 15 0.3125
Gaussian Filter WS 17 0.3126
Gaussian Filter WS 20 0.3130

Table 7.8.: Comparison of results of the 6-layer tree-structure evaluated on DEV set for
small samples.

Filter Overall Error (< 500 ms)
Bare Net Output 0.590
Gaussian Filter WS 15 0.439

41

7. Smoothing and Evaluation

7.10. Speech Filter

As described in Chapter 5 we extract a SPEECH feature from the input audio using the
sound power as a basis. In a further attempt to smooth output we used this to ignore any
non-speech marked frames for output-calculation. This only gave us an error of around
0.02% higher compared to the bare net output, however the �ltering e�ectiveness (OLE)
was worse than for the other �lters as can be seen in 7.10.

Table 7.9.: Results of the 6-layer tree-structure evaluated on samples longer than 50 frames
(500 ms)

Filter Error (>500 ms) on DEV
Bare Net 0.162
Counting Filter FR 10 0.178
Speech/Noise Filter 0.163

Table 7.10.: Results of the 6-layer tree-structure evaluated with all the tried post-�ltering
approaches on both the DEV and TEST set.

Filter Overall Error DEV/TEST OLE DEV/TEST
Bare Net 0.311/0.305 0.202/0.198
Advanced Filter (small) 0.318/0.312 0.185/0.181
Di�erence 0.317/0.311 0.170/0.165
Gaussian Filter (WS 15) 0.313/0.307 0.181/0.176
Counting Filter (WS 100) 0.313/0.307 0.007/0.006
Speech/Noise Filter 0.313/0.306 0.187/0.181
English/German 0.116/0.216 0.145/0.166
French/Italian 0.207/0.214 0.158/0.159
Sequence Filter (WS 10) 0.393/0.382 0.031/0.029
Best (w/o 2L, Bare) 0.313/0.306 0.007/0.006

7.11. Filter Selection

Overall we conclude, that selection of a good �lter is a non-trivial problem, as already
we saw that some �lters perform better for certain languages or setups while su�ering
for others. Overall, our net performs reasonably well with all �lters, reaching error of
less than 20 % for samples of length > 500 ms (See tab. 7.9), a delay that would still make
online-usage feasibly. On 10 target languages, using the counting �lter with a window size
of 100 (so a delay of 1 second), would arguably perform the best while still �ltering out the
maximum of wrong outputs, featuring an OLE of only 0.007, a relative improvement of
(0.202 − 0.007)/0.185 = 0.97 = 97% for the DEV set and 0.198 − 0.006)/0.198 = 0.97 = 97%
compared to the bare net output.

42

7.12. Lecture-Data Evaluation

For less delay, one could also implement the sequence �lter for a small window size of
10, which also gives us an relative improvement of (0.202 − 0.031)/0.202 = 0.85 = 85% on
the DEV and (0.198 − 0.031)/0.198 = 0.84 = 84% on the TEST set. However, this �lter is
likely to possibly change the overall output. However a combination of the sequence and
the counting �lter on smaller window sizes might be feasible.

The Gauss �lter might also be a feasible choice as it improved results for very short
samples (< 500 ms) and less jumps in the output of the Lecture Translator would be
preferable, however the computational complexity of this �lter is much higher compared
to the other �lters which might have to be taken into account in an online-environment.

Overall, in the lecture-translator environment, less target languages are likely, and
so the language-�lter for the correct amount of target languages would most likely be
su�cient. However, further �ltering on top of this will most likely decrease the amount of
wrong output.

7.12. Lecture-Data Evaluation

We added the same �ltering as for the 2-language setup, ignoring non-available languages
which improved the error by about 0.5 % for the tree-net, giving an overall error of 0.175
instead of the 0.179. See tab. 7.11

Table 7.11.: Results of the 6-layer tree-structure evaluated on lecture data (LD) DEV
samples.

Filter Error
Bare Net 0.179
3L-Filter 0.175

43

8. Conclusion

The aim of this thesis was to present an approach to Language Identi�cation (LID) in
an online-environment based on Neural Networks. We evaluated our results with three
di�erent corpora: The Euronews 2014 corpus, the Lecture Data corpus as collected from
the KIT’s lecture recordings and talks at Interact25, DGA and a small corpus we collected
of European Parliament speeches with their simultaneous translations.

Overall, we have found a feasible approach to Language Identi�cation (LID) in an online-
environment. Our setup included a DNBF net to preprocess stacked AFs. The extracted
BNFs were stacked with a context and then fed into our LID DNN. We tried DNNs in
di�erent setups and net layouts. In general, we can conclude that DNNs are a feasible
solution to the LID problem. On our Euronews corpus, for samples longer than 500ms,
we achieved an adjusted error rate of 16 % for the tree-net structure with 6 layers that
performed the best. This means usage of the net in an online-environment like the lecture
translator is feasible.

In a further step we also tried out di�erent net structures on our two other corpora: the
European Parliament speeches and Lecture Recordings. It was con�rmed that the tree-net
structure appears to fare the best to identify languages. We also found, that even with a
minimal training corpus, as in the case of European Parliament, DNNs are still a feasible
classi�cation mechanism, featuring an error of (on samples of any length), only 35 % for a
corpus of only 1.5h per language.

Afterwards we evaluated di�erent �ltering approaches to be able to smooth out our
LID net output further in an online-environment. Overall a counting �lter, sequence and
Gauss �lter appear to produce the best results. We de�ned our own metric, the Out-of-
Language Filter as to rate the “noisiness” reduction of a �lter. The counting �lter features
a relative improvement of the Out-Of-Language-Error of 97 % compared to not using a
�lter. However it would increase delay to 1.5 seconds, which might be considered too big
in an online-setting. The Gauss and sequence �lter, with a much smaller delay of only
150/100 ms respectively, would still future a big improvement however and could also be
employed to great success.

We conclude, that the usage of DNNs to recognize language proved successful. As to a
possible implementation in the Lecture Translator: the best results were achieved by using
a combination of the lecture data and Euronews corpus (section 6.5), as this provided the
best results. However, it is likely the results of a lecture-data-only net would prove to be
better with a bigger train corpus. Overall, from the results in this thesis, the usage of the
concatenated corpus and use of a selection/combination of our post-processing �lters to
further smooth data, would provide the best results. A result of an error rate of only 6.5%

45

8. Conclusion

would certainly be small enough to prove helpful in improving the Lecture Translator in a
multilingual environment.

8.1. Future Work

Future work to further improve the results and �ndings of this thesis could include:
RNNs have recently outperformed DNNs in Language Identi�cation [GDLMS+14], so

further experiments with the presented pre-/post-processing setup and RNNs instead of
DNNs could improve upon our results.

While our �ndings in regards to the network architecture and setup have been shown
to be generic enough to be applicable to three di�erent data corpora, further work should
be done to con�rm our �ndings. Especially the post-processing �ndings should be tested
on further (larger) corpora and nets.

Post-Processing in an online-environment has been found to be a non-trivial problem, as
can be seen on our two �lter metrics diverging. As post-processing is often not the content
of other works, future work could test out our results in a concrete online implementation,
including and extending the post-processing approaches presented in this thesis.

46

Bibliography

[AAB+16] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Gregory S. Corrado, Andy Davis, Je�rey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian J. Goodfellow, Andrew Harp, Geo�rey Irving,
Michael Isard, Yangqing Jia, Rafal Józefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Gor-
don Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul A. Tucker, Vincent Vanhoucke, Vijay Vasude-
van, Fernanda B. Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor�ow: Large-scale ma-
chine learning on heterogeneous distributed systems. CoRR, abs/1603.04467,
2016.

[bAO14] N. bt Aripin and M. B. Othman. Voice control of home appliances using
android. In 2014 Electrical Power, Electronics, Communicatons, Control and
Informatics Seminar (EECCIS), pages 142–146, Aug 2014.

[BBB+11] James Bergstra, Frédéric Bastien, Olivier Breuleux, Pascal Lamblin, Razvan
Pascanu, Olivier Delalleau, Guillaume Desjardins, David Warde-Farley, Ian
Goodfellow, Arnaud Bergeron, et al. Theano: Deep learning on gpus with
python. In NIPS 2011, BigLearning Workshop, Granada, Spain, volume 3.
Citeseer, 2011.

[CM05] Barry R. Chiswick and Paul W. Miller. Linguistic distance: A quantitative
measure of the distance between english and other languages. Journal of
Multilingual and Multicultural Development, 26(1):1–11, 2005.

[Con96] Linguistic Data Consortium. Callfriend corpus, 1996.
[CW08] Ronan Collobert and Jason Weston. A uni�ed architecture for natural

language processing: Deep neural networks with multitask learning. In
Proceedings of the 25th international conference on Machine learning, pages
160–167. ACM, 2008.

[DEGP+12] Luis Fernando D’haro Enríquez, Ondřej Glembek, Oldřich Plchot, Pavel
Matějka, Mehdi Sou�far, Ricardo de Córdoba Herralde, and Jan Černockỳ.
Phonotactic language recognition using i-vectors and phoneme posteri-
ogram counts. 2012.

[DL08] Yan Deng and Jia Liu. Automatic language identi�cation using support
vector machines and phonetic n-gram. In 2008 International Conference on
Audio, Language and Image Processing, pages 71–74, July 2008.

47

Bibliography

[FHBM08] A.M. Franz, M.H. Henzinger, S. Brin, and B.C. Milch. Voice interface for a
search engine, April 29 2008. US Patent 7,366,668.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[GBHM16] Omid Ghahabi, Antonio Bonafonte, Javier Hernando, and Asunción Moreno.
Deep neural networks for i-vector language identi�cation of short utter-
ances in cars. In Interspeech 2016, pages 367–371, 2016.

[GDLMS+14] Javier Gonzalez-Dominguez, Ignacio Lopez-Moreno, Haşim Sak, Joaquin
Gonzalez-Rodriguez, and Pedro J Moreno. Automatic language identi�cation
using long short-term memory recurrent neural networks. In Fifteenth
Annual Conference of the International Speech Communication Association,
2014.

[Geh12] Jonas Gehring. Training deep neural networks for bottleneck feature extraction.
2012. Karlsruhe, KIT, Pittsburgh, Carnegie Mellon Univ., Interactive Systems
Laboratories, Masterarbeit, 2012.

[Gre14] Roberto Gretter. Euronews: a multilingual benchmark for asr and lid. In
INTERSPEECH, pages 1603–1607, 2014.

[HDY+12] Geo�rey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mo-
hamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen,
Tara N Sainath, et al. Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups. IEEE Signal Process-
ing Magazine, 29(6):82–97, 2012.

[HN04] Simon Haykin and Neural Network. A comprehensive foundation. Neural
Networks, 2(2004):41, 2004.

[HSW12] M. Heck, S. Stüker, and A. Waibel. A hybrid phonotactic language identi�ca-
tion system with an svm back-end for simultaneous lecture translation. In
2012 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 4857–4860, March 2012.

[KAR+16] Mounika K.V., Sivanand Achanta, Lakshmi H. R., Suryakanth V. Gangashetty,
and Anil Kumar Vuppala. An investigation of deep neural network archi-
tectures for language recognition in indian languages. In Interspeech 2016,
pages 2930–2933, 2016.

[LGTB97] Steve Lawrence, C Lee Giles, Ah Chung Tsoi, and Andrew D Back. Face
recognition: A convolutional neural-network approach. IEEE transactions
on neural networks, 8(1):98–113, 1997.

[LHE08] Kornel Laskowski, Mattias Heldner, and Jens Edlund. The fundamental
frequency variation spectrum. Proceedings of FONETIK 2008, pages 29–32,
2008.

[LJ09] Kornel Laskowski and Qin Jin. Modeling instantaneous intonation for
speaker identi�cation using the fundamental frequency variation spectrum.

48

http://www.deeplearningbook.org

Bibliography

In Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE Interna-
tional Conference on, pages 4541–4544. IEEE, 2009.

[LMGDP+14] I. Lopez-Moreno, J. Gonzalez-Dominguez, O. Plchot, D. Martinez,
J. Gonzalez-Rodriguez, and P. Moreno. Automatic language identi�ca-
tion using deep neural networks. In 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 5337–5341, May
2014.

[LML07] H. Li, B. Ma, and C. H. Lee. A vector space modeling approach to spoken
language identi�cation. IEEE Transactions on Audio, Speech, and Language
Processing, 15(1):271–284, Jan 2007.

[LML13] H. Li, B. Ma, and K. A. Lee. Spoken language recognition: From fundamen-
tals to practice. Proceedings of the IEEE, 101(5):1136–1159, May 2013.

[LRY05] M. Leena, K. Srinivasa Rao, and B. Yegnanarayana. Neural network classi-
�ers for language identi�cation using phonotactic and prosodic features.
In Proceedings of 2005 International Conference on Intelligent Sensing and
Information Processing, 2005., pages 404–408, Jan 2005.

[LWL+97] Alon Lavie, Alex Waibel, Lori Levin, Michael Finke, Donna Gates, Marsal
Gavalda, Torsten Zeppenfeld, and Puming Zhan. Janus-iii: Speech-to-speech
translation in multiple languages. In Acoustics, Speech, and Signal Processing,
1997. ICASSP-97., 1997 IEEE International Conference on, volume 1, pages
99–102. IEEE, 1997.

[MCO92] Yeshwant K Muthusamy, Ronald A Cole, and Beatrice T Oshika. The ogi
multi-language telephone speech corpus. In ICSLP, volume 92, pages 895–
898, 1992.

[Men13] Xiangrui Meng. Scalable simple random sampling and strati�ed sampling.
In ICML (3), pages 531–539, 2013.

[ML06] Bin Ma and Haizhou Li. A comparative study of four language identi�ca-
tion systems. Computational Linguistics and Chinese Language Processing,
11(2):159–182, 2006.

[MNN+16] Markus Müller, Thai Son Nguyen, Jan Niehues, Eunah Cho, Bastian Krüger,
Thanh-Le Ha, Kevin Kilgour, Matthias Sperber, Mohammed Mediani, Sebas-
tian Stüker, and Alex Waibel. Lecture translator - speech translation frame-
work for simultaneous lecture translation. In Proceedings of the Demonstra-
tions Session, NAACL HLT 2016, The 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, San Diego California, USA, June 12-17, 2016, pages 82–86, 2016.

[MP88] Marvin Minsky and Seymour Papert. Perceptrons: an introduction to
computational geometry (expanded edition), 1988.

[MSW+13] Florian Metze, Zaid AW Sheikh, Alex Waibel, Jonas Gehring, Kevin Kilgour,
Quoc Bao Nguyen, and Van Huy Nguyen. Models of tone for tonal and
non-tonal languages. In Automatic Speech Recognition and Understanding

49

Bibliography

(ASRU), 2013 IEEE Workshop on, pages 261–266. IEEE, 2013.
[MSW16] Markus Müller, Sebastian Stüker, and Alex Waibel. Language adaptive dnns

for improved low resource speech recognition. In Proceedings of the 17th
Annual Conference of the International Speech Communication Association
(INTERSPEECH), San Francisco, USA, September 8-12 2016.

[MY04] Leena Mary and B. Yegnanarayana. Autoassociative neural network models
for language identi�cation. In International Conference on Intelligent Sensing
and Information Processing, 2004. Proceedings of, pages 317–320, 2004.

[MZN+14] Pavel Matejka, Le Zhang, Tim Ng, Harish Sri Mallidi, Ondrej Glembek, Je�
Ma, and Bing Zhang. Neural network bottleneck features for language
identi�cation. Proc. IEEE Odyssey, pages 299–304, 2014.

[Nie15] Michael A. Nielsen. Neural Networks and Deep Learning. Determination
Press, 2015. http://neuralnetworksanddeeplearning.com.

[SCG16] Prashanth Gurunath Shivakumar, Sandeep Nallan Chakravarthula, and
Panayiotis Georgiou. Multimodal fusion of multirate acoustic, prosodic,
and lexical speaker characteristics for native language identi�cation. In
Interspeech 2016, pages 2408–2412, 2016.

[Sch99] Kjell Schubert. Grundfrequenzverfolgung und deren anwendung in der
spracherkennung. Master’s thesis, Universität Karlsruhe (TH), Germany,
pages 29–32, 1999.

[SHJ+15] Yan Song, Xinhai Hong, Bing Jiang, Ruilian Cui, Ian Vince McLoughlin,
and Lirong Dai. Deep bottleneck network based i-vector representation for
language identi�cation. 2015.

[SJB+13] Y. Song, B. Jiang, Y. Bao, S. Wei, and L. R. Dai. I-vector representation
based on bottleneck features for language identi�cation. Electronics Letters,
49(24):1569–1570, November 2013.

[SKM+12] Sebastian Stüker, Florian Kraft, Christian Mohr, Teresa Herrmann, Eunah
Cho, and Alex Waibel. The kit lecture corpus for speech translation. In
LREC, pages 3409–3414, 2012.

[TCSK+02] Pedro A Torres-Carrasquillo, Elliot Singer, Mary A Kohler, Richard J Greene,
Douglas A Reynolds, and John R Deller Jr. Approaches to language identi�-
cation using gaussian mixture models and shifted delta cepstral features. In
Interspeech, 2002.

[VMH+05] David Vilar, Evgeny Matusov, Saša Hasan, Richard Zens, and Hermann
Ney. Statistical machine translation of european parliamentary speeches.
In Proceedings of MT Summit X, pages 259–266, 2005.

[WAWB+94] Monika Woszczyna, Naomi Aoki-Waibel, Finn Dag Buo, Noah Coccaro,
Keiko Horiguchi, Thomas Kemp, Alon Lavie, Arthur McNair, Thomas Polzin,
Ivica Rogina, et al. Janus 93: Towards spontaneous speech translation.
In Acoustics, Speech, and Signal Processing, 1994. ICASSP-94., 1994 IEEE

50

http://neuralnetworksanddeeplearning.com

Bibliography

International Conference on, volume 1, pages I–345. IEEE, 1994.
[Wer90] P. J. Werbos. Backpropagation through time: what it does and how to do it.

Proceedings of the IEEE, 78(10):1550–1560, Oct 1990.
[Z+96] Marc A Zissman et al. Comparison of four approaches to automatic language

identi�cation of telephone speech. IEEE Transactions on speech and audio
processing, 4(1):31, 1996.

[ZB01] Marc A Zissman and Kay M Berkling. Automatic language identi�cation.
Speech Communication, 35(1):115–124, 2001.

51

A. Appendix

In this Appendix we present images, data that did not make it into the main bodz, complete
source code listings as well as a glossary at the end.

A.1. Detailed Error rates for Filters

Table A.1.: Results of the best net structure (tree-structure 6-layer) evaluated on the Eu-
ronews Development Set with the Advanced small Filter.

Language Error (total)
Arabian 0.365
German 0.303
Spanish 0.321
French 0.304
Italian 0.327
Polish 0.270
Portuguese 0.293
Russian 0.316
Turkish 0.338
English 0.265
Overall 0.313

53

A. Appendix

Table A.2.: Results of the best net structure (tree-structure 6-layer) evaluated on the Eu-
ronews Development Set with the Di�erence Filter.

Language Error (total)
Arabian 0.367
German 0.305
Spanish 0.327
French 0.306
Italian 0.332
Polish 0.276
Portuguese 0.299
Russian 0.323
Turkish 0.341
English 0.269
Overall 0.317

Table A.3.: Results of the best net structure (tree-structure 6-layer) evaluated on the Eu-
ronews Development Set with the Gaussian Filter (WS 15).

Language Error (total)
Arabian 0.366
German 0.303
Spanish 0.321
French 0.303
Italian 0.325
Polish 0.271
Portuguese 0.292
Russian 0.315
Turkish 0.338
English 0.265
Overall 0.313

54

A.1. Detailed Error rates for Filters

Table A.4.: Results of the best net structure (tree-structure 6-layer) evaluated on the Eu-
ronews Development Set with the Counting Filter (WS 100).

Language Error (total)
Arabian 0.362
German 0.300
Spanish 0.319
French 0.302
Italian 0.330
Polish 0.270
Portuguese 0.294
Russian 0.317
Turkish 0.340
English 0.270
Overall 0.313

Table A.5.: Results of the best net structure (tree-structure 6-layer) evaluated on the Eu-
ronews Development Set with the Sequence Filter (WS 10)

Language Error (total)
Arabian 0.401
German 0.359
Spanish 0.388
French 0.368
Italian 0.427
Polish 0.346
Portuguese 0.394
Russian 0.422
Turkish 0.445
English 0.370
Overall 0.393

55

A. Appendix

Table A.6.: Results of the best net structure (tree-structure 6-layer) evaluated on the Eu-
ronews Development Set with the Speech/Noise Filter

Language Error (total)
Arabian 0.366
German 0.301
Spanish 0.320
French 0.304
Italian 0.330
Polish 0.268
Portuguese 0.295
Russian 0.315
Turkish 0.336
English 0.272
Overall 0.313

56

A.2. Complete Source Code Listings

A.2. Complete Source Code Listings

As mentioned in ch. 7, we are listing the complete source code for all the di�erent smoothing
algorithms tried here, as well as the full source code for the feature description.

1 p u t s " s t a r t f e a t D e s c "
2

3 #−−−−−−−−−−−−−−−−−speech detection−−−−−−−−−−−−−−−−−−
4 $ f e s adc2pow POWER ADC 16ms # E x t r a c t sound power
5 $ f e s a l o g POWER POWER 1 4 # Log on sound power
6 $ f e s f i l t e r POWER POWER { −2 { 1 2 3 2 1 } } # Weighted Average

with c o n t e x t o f 2
7 $ f e s n o r m a l i z e POWER POWER −min −0 . 1 −max 0 . 5 # Normal i ze
8 $ f e s t h r e s h SPEECH POWER 1 . 0 0 upper #> 0 −> Speech
9 $ f e s t h r e s h SPEECH SPEECH 0 0 lower #< 0 −> No Speech

10

11 #−−−−−−−−−−−−−−−−− mel f i l t e r bank−−−−−−−−−−−−−−−−−−
12 $ f e s spectrum FFT0 ADC 16ms
13 s e t WARP 1 . 0
14

15 # ## computing log−mel
16 # Help Check t o not a l l o c a t e mel f i l t e r b a n k c o e f f i c i e n t m a t r i x t w i c e (

w i l l l e a d t o t c l e r r o r)
17 i f { [l l e n g t h [o b j e c t s FBMatr ix matrixMEL]] ! = 1 } {
18 s e t melN 40
19 s e t p o i n t s [$ f e s : F F T 0 c o n f i g u r e −coef fN]
20 s e t r a t e [expr 1000 ∗ [$ f e s : F F T 0 c o n f i g u r e −sampl ingRate]]
21 [FBMatr ix matrixMEL] mel −N $melN −p $ p o i n t s − r a t e $ r a t e
22 }
23

24 $ f e s VTLN FFT FFT0 $WARP −mod l i n
−edge 0 . 8

25 $ f e s f i l t e r b a n k MEL FFT matrixMEL
26 $ f e s l o g lMEL MEL 1 . 0 1 . 0 # Log−Mel
27

28 # Computing Tonal f e a t u r e
29 # p i t c h
30 $ f e s p i t c h PITCH ADC 16ms
31 $ f e s d e l t a dPITCH1 PITCH −d e l t a 1
32 $ f e s d e l t a ddPITCH1 dPITCH1 −d e l t a 1
33 $ f e s d e l t a dPITCH2 PITCH −d e l t a 2
34 $ f e s d e l t a ddPITCH2 dPITCH2 −d e l t a 2
35 $ f e s d e l t a dPITCH3 PITCH −d e l t a 3
36 $ f e s d e l t a ddPITCH3 dPITCH3 −d e l t a 3
37 $ f e s merge P16 PITCH dPITCH1 ddPITCH1 dPITCH2 ddPITCH2

dPITCH3 ddPITCH3
38

39 # C a l c u l a t i n g FFV
40 $ f e s i n t o n a t i o n FFV ADCffv 32ms − t i n t 11ms − t e x t 9ms − t sep 14ms

On 32 ms Windows !
41 $ f e s merge TONE FFV P16
42

43 $ f e s merge mergedFEAT lMEL TONE

57

A. Appendix

44 $ f e s meansub FEAT mergedFEAT −a 2 −weight
SPEECH #Weigh with the Speech f e a t u r e .

45

46 $ f e s a d j a c e n t FEATSPR FEAT −d e l t a 6 #
S t a c k Contex t o f 6 f rames

Listing A.1: The feature description as used by our pre-DBNF-preprocessing

58

A.2. Complete Source Code Listings

1 proc f i l t e r { } {
2 g l o b a l t o t a l E
3 # s e t t i n g up v a r i a b l e s
4 f o r { s e t i 0 } { $ i < 1 0 } { i n c r i } {
5 s e t t o t a l M ($ i) 0
6 }
7 s e t c u r r e n t O u t p u t −1
8 # Going through whole sample frame by frame i n o u t p u t l a y e r o f nn

c a l l e d nnBNF−> can be changed t o work on c o n t i n u o u s l y incoming
d a t a e a s i l y

9 f o r { s e t i 0 } { $ i < [f e a t u r e S e t L I D frameN nnBNF] } { i n c r i } {
10 #we f i n d the c u r r e n t o u t p u t o f the ne t
11 s e t maxFrame [l i n d e x [l s o r t −d e c r e a s i n g − r e a l [f e a t u r e S e t L I D

frame nnBNF $ i]] 0]
12 s e t maxFrameID [l s e a r c h − r e a l [f e a t u r e S e t L I D frame nnBNF $ i]

$maxFrame]
13 s e t c u r r e n t O u t p u t $maxFrameID
14 # s e t t i n g t o t a l c l a s s i f i c a t i o n amounts f o r c u r r e n t sample
15 i f { $ c u r r e n t O u t p u t ! = −1 } {
16 s e t t o t a l M ($ c u r r e n t O u t p u t) [expr { [s e t t o t a l M (

$ c u r r e n t O u t p u t)] + 1 }]
17 }
18 }
19 s e t maxOvera l l −1
20 s e t maxID −1
21 s e t t o t a l N 0
22 #Now g e t the o u t p u t f o r the whole sample (smoothing over e n t i r e

sample)
23 f o r { s e t i 0 } { $ i < 1 0 } { i n c r i } {
24 i f { [s e t t o t a l M ($ i)] > $maxOvera l l } {
25 s e t maxOvera l l [s e t t o t a l M ($ i)]
26 s e t maxID $ i
27 }
28 s e t t o t a l N [expr $ t o t a l N + [s e t t o t a l M ($ i)]]
29 }
30 p u t s " t o t a l N $ t o t a l N "
31 p u t s " maxOvera l l $maxOvera l l "
32 s e t wrongN [expr $ t o t a l N − $maxOvera l l]
33 p u t s " wrongN $wrongN "
34 s e t t o t a l E [expr { (doub le ($wrongN) / $ t o t a l N) }]
35 # T o t a l E i s the OLE o f the sample
36 p u t s " t o t a l E $ t o t a l E "
37

38 # p r i n t out the t o t a l c l a s s i f i c a t i o n f o r the e n t i r e sample
39 p u t s −nonewline " O v e r a l l we have c l a s s i f i e d a s : "
40 # h e l p f u n c t i o n t o p r i n t l anguage name not i d . 0
41 p u t s [getName $maxID]
42 r e t u r n $maxID
43 }

Listing A.2: Evaluation setup to count outputs per sample and count correctness(return
value)/OLE (totalE)

59

A. Appendix

1 proc f i l t e r { } {
2 g l o b a l t o t a l E
3 f o r { s e t i 0 } { $ i < 1 0 } { i n c r i } {
4 s e t t o t a l ($ i) 0
5 }
6 s e t l a s t F r a m e I D −1
7 s e t c o u n t e r 0
8 s e t c u r r e n t O u t p u t −1
9 f o r { s e t i 0 } { $ i < [f e a t u r e S e t L I D frameN nnBNF] } { i n c r i } {

10 s e t maxFrame [l i n d e x [l s o r t −d e c r e a s i n g − r e a l [f e a t u r e S e t L I D
frame nnBNF $ i]] 0]

11 s e t maxFrameID [l s e a r c h − r e a l [f e a t u r e S e t L I D frame nnBNF $ i]
$maxFrame]

12 i f { $maxFrameID ! = $ l a s t F r a m e I D } {
13 s e t l a s t F r a m e I D $maxFrameID
14 s e t c o u n t e r 0
15 } e l s e i f { $maxFrame >= 0 . 6 1 } {
16 i n c r c o u n t e r
17 i f { $ c o u n t e r >= 5 } {
18 s e t c u r r e n t O u t p u t $maxFrameID
19 }
20 }
21 i f { $ c u r r e n t O u t p u t ! = −1 } {
22 i n c r t o t a l ($ c u r r e n t O u t p u t)
23 }
24 }
25 s e t maxOvera l l −1
26 s e t maxID −1
27 s e t t o t a l N 0
28 f o r { s e t i 0 } { $ i < 1 0 } { i n c r i } {
29 i f { $ t o t a l ($ i) > $maxOvera l l } {
30 s e t maxOvera l l $ t o t a l ($ i)
31 s e t maxID $ i
32 }
33 s e t t o t a l N [expr $ t o t a l N + [s e t t o t a l M ($ i)]]
34 }
35 s e t wrongN [expr $ t o t a l N − $maxOvera l l]
36 s e t t o t a l E [expr { (doub le ($wrongN) / $ t o t a l N) }]
37 p u t s −nonewline " O v e r a l l we have c l a s s i f i e d a s : "
38 p u t s [getName $maxID]
39 }

Listing A.3: Basic (�rst try) Filter employed to smooth/improve output

60

A.2. Complete Source Code Listings

1 proc f i l t e r { } {
2 g l o b a l t o t a l E
3

4 f o r { s e t i 0 } { $ i < 1 0 } { i n c r i } {
5 s e t t o t a l M ($ i) 0
6 }
7 s e t l a s t F r a m e I D −1
8 s e t c o u n t e r 0
9 s e t c u r r e n t O u t p u t −1

10 f o r { s e t i 0 } { $ i < [f e a t u r e S e t L I D frameN nnFILTER] } { i n c r i } {
11 s e t maxFrame [l i n d e x [l s o r t −d e c r e a s i n g − r e a l [f e a t u r e S e t L I D

frame nnFILTER $ i]] 0]
12 s e t maxFrameID [l s e a r c h − r e a l [f e a t u r e S e t L I D frame nnFILTER $ i]

$maxFrame]
13 s e t c u r r e n t O u t p u t $maxFrameID
14 i f { $ c u r r e n t O u t p u t ! = −1 } {
15

16 s e t t o t a l M ($ c u r r e n t O u t p u t) [expr { [s e t t o t a l M ($ c u r r e n t O u t p u t
)] + 1 }]

17 }
18 }
19 s e t maxOvera l l −1
20 s e t maxID −1
21 s e t t o t a l N 0
22 f o r { s e t i 0 } { $ i < 1 0 } { i n c r i } {
23 i f { [s e t t o t a l M ($ i)] > $maxOvera l l } {
24 s e t maxOvera l l [s e t t o t a l M ($ i)]
25 s e t maxID $ i
26 }
27 s e t t o t a l N [expr $ t o t a l N + [s e t t o t a l M ($ i)]]
28 }
29 p u t s " t o t a l N $ t o t a l N "
30 p u t s " maxOvera l l $maxOvera l l "
31 s e t wrongN [expr $ t o t a l N − $maxOvera l l]
32 p u t s " wrongN $wrongN "
33 s e t t o t a l E [expr { (doub le ($wrongN) / $ t o t a l N) }]
34

35 p u t s " t o t a l E $ t o t a l E "
36 p u t s −nonewline " O v e r a l l we have c l a s s i f i e d a s : "
37 p u t s [getName $maxID]
38 r e t u r n $maxID
39 }

Listing A.4: Advanced FILTER employed to smooth/improve output

61

A. Appendix

1 proc f i l t e r { } {
2 g l o b a l t o t a l E
3 f o r { s e t i 0 } { $ i < 1 0 } { i n c r i } {
4 s e t t o t a l M ($ i) 0
5 }
6 s e t l a s t F r a m e I D −1
7 s e t c o u n t e r 0
8 s e t c u r r e n t O u t p u t −1
9 f o r { s e t i 0 } { $ i < [f e a t u r e S e t L I D frameN nnBNF] } { i n c r i } {

10 s e t maxFrame [l i n d e x [l s o r t −d e c r e a s i n g − r e a l [f e a t u r e S e t L I D frame
nnBNF $ i]] 0]

11 s e t max2Frame [l i n d e x [l s o r t −d e c r e a s i n g − r e a l [f e a t u r e S e t L I D frame
nnBNF $ i]] 1]

12 s e t maxFrameID [l s e a r c h − r e a l [f e a t u r e S e t L I D frame nnBNF $ i]
$maxFrame]

13 s e t max2FrameID [l s e a r c h − r e a l [f e a t u r e S e t L I D frame nnBNF $ i]
$max2Frame]

14 i f { $maxFrameID ! = $ l a s t F r a m e I D } {
15 s e t l a s t F r a m e I D $maxFrameID
16 s e t c o u n t e r 0
17 } e l s e i f { [expr { $maxFrame − $max2Frame >= 0 . 0 1 }] } {
18 i n c r c o u n t e r
19 i f { $ c o u n t e r >= 5 } {
20 s e t c u r r e n t O u t p u t $maxFrameID
21 }
22 }
23 i f { $ c u r r e n t O u t p u t ! = −1 } {
24 s e t t o t a l M ($ c u r r e n t O u t p u t) [expr { [s e t t o t a l M (

$ c u r r e n t O u t p u t)] + 1 }]
25 }
26 }
27 s e t maxOvera l l −1
28 s e t maxID −1
29 s e t t o t a l N 0
30 f o r { s e t i 0 } { $ i < 1 0 } { i n c r i } {
31 i f { [s e t t o t a l M ($ i)] > $maxOvera l l } {
32 s e t maxOvera l l [s e t t o t a l M ($ i)]
33 s e t maxID $ i
34 }
35 s e t t o t a l N [expr $ t o t a l N + [s e t t o t a l M ($ i)]]
36

37 }
38 s e t wrongN [expr $ t o t a l N − $maxOvera l l]
39 s e t t o t a l E [expr { (doub le ($wrongN) / $ t o t a l N) }]
40 p u t s −nonewline " O v e r a l l we have c l a s s i f i e d a s : "
41 p u t s [getName $maxID]
42 r e t u r n $maxID
43 }

Listing A.5: Di�erence Filter employed to smooth/improve output

62

A.2. Complete Source Code Listings

1 proc f i l t e r { } {
2 g l o b a l t o t a l E
3 f o r { s e t i 0 } { $ i < 1 0 } { i n c r i } {
4 s e t t o t a l M ($ i) 0
5 s e t count ($ i) 0
6 }
7 s e t l a s t F r a m e I D −1
8 s e t c o u n t e r 0
9 s e t c u r r e n t O u t p u t −1

10 f o r { s e t i 0 } { $ i < [f e a t u r e S e t L I D frameN nnBNF] } { i n c r i } {
11 s e t maxFrame [l i n d e x [l s o r t −d e c r e a s i n g − r e a l [f e a t u r e S e t L I D

frame nnBNF $ i]] 0]
12 s e t maxFrameID [l s e a r c h − r e a l [f e a t u r e S e t L I D frame nnBNF $ i]

$maxFrame]
13 f o r { s e t j 0 } { $ j < 10 && $ i < [f e a t u r e S e t L I D frameN nnBNF] } {

i n c r j } {
14 s e t maxFrame [l i n d e x [l s o r t −d e c r e a s i n g − r e a l [f e a t u r e S e t L I D

frame nnBNF $ i]] 0]
15 s e t maxFrameID [l s e a r c h − r e a l [f e a t u r e S e t L I D frame nnBNF $ i]

$maxFrame]
16 s e t count ($maxFrameID) [expr { [s e t count ($maxFrameID)] + 1 }]
17 i n c r i
18 }
19 s e t maxAvg −1
20 s e t maxID −1
21 f o r { s e t k 0 } { $k < 1 0 } { i n c r k } {
22 i f { [s e t count ($k)] > $maxAvg } {
23 s e t maxAvg [s e t count ($k)]
24 s e t maxID $k
25 }
26 }
27 s e t c u r r e n t O u t p u t $maxID
28 i f { $ c u r r e n t O u t p u t ! = −1 } {
29 s e t t o t a l M ($ c u r r e n t O u t p u t) [expr { [s e t t o t a l M (

$ c u r r e n t O u t p u t)] + 1 }]
30 }
31 }
32 s e t maxOvera l l −1
33 s e t maxID −1
34 s e t t o t a l N 0
35 f o r { s e t i 0 } { $ i < 1 0 } { i n c r i } {
36 i f { [s e t t o t a l M ($ i)] > $maxOvera l l } {
37 s e t maxOvera l l [s e t t o t a l M ($ i)]
38 s e t maxID $ i
39 }
40 s e t t o t a l N [expr $ t o t a l N + [s e t t o t a l M ($ i)]]
41

42 }
43 s e t wrongN [expr $ t o t a l N − $maxOvera l l]
44 s e t t o t a l E [expr { (doub le ($wrongN) / $ t o t a l N) }]
45 p u t s −nonewline " O v e r a l l we have c l a s s i f i e d a s : "
46 p u t s [getName $maxID]
47 r e t u r n $maxID

63

A. Appendix

48 }

Listing A.6: Counting Filter employed to smooth/improve output

64

A.2. Complete Source Code Listings

1 proc f i l t e r { } {
2 g l o b a l t o t a l E
3 f o r { s e t i 0 } { $ i < 1 0 } { i n c r i } {
4 s e t t o t a l M ($ i) 0
5 }
6 s e t l a s t F r a m e I D −1
7 s e t c o u n t e r 0
8 s e t c u r r e n t O u t p u t −1
9 f o r { s e t i 0 } { $ i < [f e a t u r e S e t L I D frameN nnBNF] } { i n c r i } {

10 s e t maxFrame [l i n d e x [l s o r t −d e c r e a s i n g − r e a l [f e a t u r e S e t L I D
frame nnBNF $ i]] 0]

11 s e t maxFrameID [l s e a r c h − r e a l [f e a t u r e S e t L I D frame nnBNF $ i]
$maxFrame]

12 s e t c u r r e n t O u t p u t $maxFrameID
13 i f { $ c u r r e n t O u t p u t ! = −1 && [f e a t u r e S e t L I D frame SPEECH $ i] == "

1 . 0 0 0 0 0 0 e +00 " } {
14 s e t t o t a l M ($ c u r r e n t O u t p u t) [expr { [s e t t o t a l M ($ c u r r e n t O u t p u t

)] + 1 }]
15 s e t l a s t F r a m e I D $ c u r r e n t O u t p u t
16 } e l s e i f { $ l a s t F r a m e I D ! = −1 } {
17 s e t t o t a l M ($ l a s t F r a m e I D) [expr { [s e t t o t a l M ($ l a s t F r a m e I D)] +

1 }]
18 }
19 }
20

21 s e t maxOvera l l −1
22 s e t maxID −1
23 s e t t o t a l N 0
24 f o r { s e t i 0 } { $ i < 1 0 } { i n c r i } {
25 i f { [s e t t o t a l M ($ i)] > $maxOvera l l } {
26 s e t maxOvera l l [s e t t o t a l M ($ i)]
27 s e t maxID $ i
28 }
29 s e t t o t a l N [expr $ t o t a l N + [s e t t o t a l M ($ i)]]
30

31 }
32 s e t wrongN [expr $ t o t a l N − $maxOvera l l]
33 s e t t o t a l E [expr { (doub le ($wrongN) / $ t o t a l N) }]
34 p u t s −nonewline " O v e r a l l we have c l a s s i f i e d a s : "
35 p u t s [getName $maxID]
36 p u t s −nonewline " Length o f s a m p l e : "
37 p u t s [f e a t u r e S e t L I D frameN nnBNF]
38 r e t u r n $maxID
39 }

Listing A.7: Speech Filter employed to smooth/improve output

65

A. Appendix

1 proc f i l t e r { } {
2 g l o b a l t o t a l E
3

4 f o r { s e t i 0 } { $ i < 1 0 } { i n c r i } {
5 s e t t o t a l M ($ i) 0
6 }
7 s e t l a s t F r a m e I D −1
8 s e t c o u n t e r 0
9 s e t c u r r e n t O u t p u t −1

10 f o r { s e t i 0 } { $ i < [f e a t u r e S e t L I D frameN nnBNF] } { i n c r i } {
11 s e t maxFrame [l i n d e x [l s o r t −d e c r e a s i n g − r e a l [f e a t u r e S e t L I D frame

nnBNF $ i]] 0]
12 s e t maxFrameID [l s e a r c h − r e a l [f e a t u r e S e t L I D frame nnBNF $ i]

$maxFrame]
13 i f { $maxFrameID ! = $ l a s t F r a m e I D } {
14 i f { ($maxFrameID == 1 | | $maxFrameID == 9) } {
15 s e t l a s t F r a m e I D $maxFrameID
16 s e t c u r r e n t O u t p u t $maxFrameID
17 } e l s e i f { $ l a s t F r a m e I D == 1 | | $ l a s t F r a m e I D == 9 } {
18 s e t c u r r e n t O u t p u t $ l a s t F r a m e I D
19 }
20 } e l s e {
21 s e t c u r r e n t O u t p u t $ l a s t F r a m e I D
22 }
23

24 i f { $ c u r r e n t O u t p u t ! = −1 && ($ c u r r e n t O u t p u t == 1 | | $ c u r r e n t O u t p u t
== 9) } {

25 s e t t o t a l M ($ c u r r e n t O u t p u t) [expr { [s e t t o t a l M (
$ c u r r e n t O u t p u t)] + 1 }]

26 }
27 }
28 s e t maxOvera l l −1
29 s e t maxID −1
30 s e t t o t a l N 0
31 f o r { s e t i 0 } { $ i < 1 0 } { i n c r i } {
32 i f { [s e t t o t a l M ($ i)] > $maxOvera l l } {
33 s e t maxOvera l l [s e t t o t a l M ($ i)]
34 s e t maxID $ i
35 }
36 s e t t o t a l N [expr $ t o t a l N + [s e t t o t a l M ($ i)]]
37 }
38 p u t s " t o t a l N $ t o t a l N "
39 p u t s " maxOvera l l $maxOvera l l "
40 s e t wrongN [expr $ t o t a l N − $maxOvera l l]
41 p u t s " wrongN $wrongN "
42 i f { $ t o t a l N ! = 0 } {
43 s e t t o t a l E [expr { (doub le ($wrongN) / $ t o t a l N) }]
44 } e l s e {
45 s e t t o t a l E 1
46 }
47 p u t s " t o t a l E $ t o t a l E "
48 p u t s −nonewline " O v e r a l l we have c l a s s i f i e d a s : "
49 p u t s [getName $maxID]

66

A.2. Complete Source Code Listings

50 p u t s −nonewline " Length o f s a m p l e : "
51 p u t s [f e a t u r e S e t L I D frameN nnBNF]
52 r e t u r n $maxID
53 }

Listing A.8: 2-Language Filter (For DE/EN) employed to smooth/improve output

67

A. Appendix

1 proc getMax { } {
2 g l o b a l t o t a l E
3

4 f o r { s e t i 0 } { $ i < 1 0 } { i n c r i } {
5 s e t t o t a l M ($ i) 0
6 s e t countM ($ i) 0
7 }
8 s e t l a s t F r a m e I D −1
9 s e t c o u n t e r 0

10 s e t c u r r e n t O u t p u t −1
11 f o r { s e t i 0 } { $ i < [f e a t u r e S e t L I D frameN nnBNF] } { s e t i [expr $ i +

1 0 0] } {
12 s e t cur ID −1
13 s e t curCount 0
14 s e t c u r r e n t O u t p u t −1
15 f o r { s e t j 0 } { [expr $ i + $ j] < [f e a t u r e S e t L I D frameN nnBNF] &&

$ j < 1 0 0 } { i n c r j } {
16 s e t maxFrame [l i n d e x [l s o r t −d e c r e a s i n g − r e a l [f e a t u r e S e t L I D

frame nnBNF [expr $ i + $ j]]] 0]
17 s e t maxFrameID [l s e a r c h − r e a l [f e a t u r e S e t L I D frame nnBNF [

expr $ i + $ j]] $maxFrame]
18 i f { $maxFrameID ! = $cur ID } {
19 s e t cur ID $maxFrameID
20 s e t curCount 1
21 } e l s e i f { $maxFrameID ! = −1 } {
22 i n c r curCount
23 }
24 i f { $curCount > [s e t countM ($cur ID)] } {
25 s e t countM ($cur ID) $curCount
26 }
27 }
28

29 s e t currentMax −1
30 f o r { s e t k 0 } { $k < 1 0 } { i n c r k } {
31 i f { [s e t countM ($k)] > $currentMax } {
32 s e t currentMax [s e t countM ($k)]
33 s e t c u r r e n t O u t p u t $k
34 }
35 }
36 i f { $ c u r r e n t O u t p u t ! = −1 } {
37 s e t t o t a l M ($ c u r r e n t O u t p u t) [expr { [s e t t o t a l M ($ c u r r e n t O u t p u t

)] + 1 }]
38 }
39 }
40

41 s e t maxOvera l l −1
42 s e t maxID −1
43 s e t t o t a l N 0
44 f o r { s e t i 0 } { $ i < 1 0 } { i n c r i } {
45 i f { [s e t t o t a l M ($ i)] > $maxOvera l l } {
46 s e t maxOvera l l [s e t t o t a l M ($ i)]
47 s e t maxID $ i
48 }

68

A.2. Complete Source Code Listings

49 s e t t o t a l N [expr $ t o t a l N + [s e t t o t a l M ($ i)]]
50 }
51 p u t s " t o t a l N $ t o t a l N "
52 p u t s " maxOvera l l $maxOvera l l "
53 s e t wrongN [expr $ t o t a l N − $maxOvera l l]
54 p u t s " wrongN $wrongN "
55 s e t t o t a l E [expr { (doub le ($wrongN) / $ t o t a l N) }]
56

57 p u t s " t o t a l E $ t o t a l E "
58

59 p u t s −nonewline " O v e r a l l we have c l a s s i f i e d a s : "
60 p u t s [getName $maxID]
61 p u t s −nonewline " Length o f s a m p l e : "
62 p u t s [f e a t u r e S e t L I D frameN nnBNF]
63 r e t u r n $maxID
64 }

Listing A.9: Sequence Filter employed to smooth/improve output

69

A. Appendix

1 # Windowsize d e f i n i t i o n
2 s e t ws 5
3 s e t s igma [expr s q r t ($ws / (2 ∗ [P i]))]
4 # c a l c u l a t e gauss k e r n e l
5 f o r { s e t k 0 } { $k <= $ws } { i n c r k } {
6 s e t gauss ($k) [expr (1 / (s q r t (2 ∗ [P i]) ∗$s igma)) ∗ ([E] ∗ ∗ − (($k

∗ ∗ 2) / (2 ∗ $sigma ∗ ∗ 2)))]
7 }
8 # For each frame
9 f o r { s e t i 0 } { $ i < [f e a t u r e S e t L I D frameN nnBNF] } { i n c r i } {

10 f o r { s e t j 0 } { $ j < 1 0 } { i n c r j } {
11 s e t v a l u e s ($ j) [l i n d e x [f e a t u r e S e t L I D frame nnBNF $ i] $ j]
12 s e t curVa lue 0
13 # go from $ i − $ws t o $ i + $ws
14 f o r { s e t k [expr −$ws] } { $k < $ws } { i n c r k } {
15 # Only use the c u r r e n t v a l u e i f i t a c t u a l l y e x i s t s
16 i f { [expr $ i + $k] >= 0 && [expr $ i + $k] < [

f e a t u r e S e t L I D frameN nnBNF] } {
17 s e t cur [l i n d e x [f e a t u r e S e t L I D frame nnBNF [expr $ i

+ $k]] $ j]
18 # g e t c o r r e c t index f o r gauss k e r n e l , a s we only

c a l c u l a t e d once above f o r symmetr ic f u n c t i o n
19 i f { $k < 0 } {
20 s e t c u r I d x [expr −$k]
21 } e l s e {
22 s e t c u r I d x $k
23 }
24 # running sum o f a l l p r e v i o u s v a l u e s i n the window

c o n v o l u t e d with the g a u s s i a n k e r n e l .
25 s e t curVa lue [expr $cu rVa lue + $cur ∗ [s e t gauss (

$ c u r I d x)]]
26 }
27 }
28 # save the v a l u e f o r c u r r e n t l anguage c o e f f i c i e n t
29 s e t v a l u e s ($ j) $ cu rVa lue
30 }
31 # F ind maximum on smoothed v a l u e s
32 s e t max −1
33 s e t maxID −1
34 f o r { s e t j 0 } { $ j < 1 0 } { i n c r j } {
35 i f { [s e t v a l u e s ($ j)] > $max } {
36 s e t max [s e t v a l u e s ($ j)]
37 s e t maxID $ j
38 }
39 }
40 # S e t the o u t p u t as the Language with Max. c o e f f i c i e n t .
41 s e t c u r r e n t O u t p u t $maxID
42 }

Listing A.10: Gaussian Smoothing Filter as implemented in tcl/tk for the JRTk

70

A.2. Complete Source Code Listings

71

	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Overview

	Related Work
	Historically
	Recent Approaches
	Similar Approaches

	Fundamentals
	Theory of Language Identification
	Janus Recognition Toolkit (JRTk)
	Neural Networks
	Setup
	Artificial Neuron
	A Generic Neural Network
	Network Types
	Learning

	Experimental Setup
	Language Identity Neural Networks
	Tooling
	Euronews 2014
	Lecture Data
	European Parliament

	Feature Preprocessing
	Feature Retrieval
	Feature Description
	DBNF network
	Evaluating Input Features

	LID Network Structure
	Baseline Setup
	Improving Network Layout
	Full Euronews Corpus
	Cross-set training
	Combining Lecture Data and Euronews
	Lecture-Data-Training
	European Parliament

	Smoothing and Evaluation
	Output Activations
	Evaluation Metric
	Out-Of-Language Error (OLE)

	Basic Test Filter
	Advanced Test Filter
	Difference Test Filter
	Counting Filter
	Sequence Filter
	Two-Language Setup
	Gaussian Smoothing Filter
	Speech Filter
	Filter Selection
	Lecture-Data Evaluation

	Conclusion
	Future Work

	Appendix
	Detailed Error rates for Filters
	Complete Source Code Listings

