
FeasPar - A Feature Structure ParserLearning to Parse Spontaneous Speech
Zur Erlangung des akademischen Grades eines Doktorsder Ingenieurwissenschaften der Fakult�at f�ur Informatikder Universit�at Karlsruhe (Technische Hochschule)vorgelegteDissertationFinal version (corrected) as of September 15, 1996vonFinn Dag Bu�aus Stockholm, Schweden

Tag der m�undlichen Pr�ufung: 11. Juli 1996Erster Gutachter: Professor Dr. Alexander WaibelZweiter Gutachter: Professor Dr. Walter F. Tichy

AbstractTraditionally, automatic natural language parsing and translation have beenperformed with various symbolic approaches. Many of these have the advan-tage of a highly speci�c output formalism, allowing �ne-grained parse analysesand, therefore, very precise translations. Within the last decade, statistical andconnectionist techniques have been proposed to learn the parsing task in orderto avoid the tedious manual modeling of grammar and malformation. How tolearn a detailed output representation and how to learn to parse robustly evenill-formed input, has until now remained an open question.This thesis provides an answer to this question by presenting a connectionistparser that needs a small corpus and a minimum of hand modeling, that learns,and that is robust towards spontaneous speech and speech recognizer e�ects. Theparser delivers feature structure parses, and has a performance comparable to agood hand modeled uni�cation based parser.The connectionist parser FeasPar consists of several neural networks anda Consistency Checking Search. The number of, architecture of, and otherparameters of the neural networks are automatically derived from the trainingdata. The search �nds the combination of the neural net outputs that producesthe most probable consistent analysis.To demonstrate learnability and robustness, FeasPar is trained with tran-scribed sentences from the English Spontaneous Scheduling Task and evaluatedfor network, overall parse, and translation performance, with transcribed andspeech data. The latter contains speech recognition errors. FeasPar requiresonly minor human e�ort and performs better or comparable to a good symbolicparser developed with a 2 year, human expert e�ort. A key result is obtainedby using speech data to evaluate the JANUS speech-to-speech translation sys-tem with di�erent parsers. With FeasPar, acceptable translation performanceis 60.5 %, versus 60.8 % with a GLR* parser. FeasPar requires two weeks ofhuman labor to prepare the lexicon and 600 sentences of training data, whereasthe GLR* parser required signi�cant human expert grammar modeling.Presented in this thesis are the Chunk'n'Label Principle, showing how todivide the entire parsing tasks into several small tasks performed by neural net-works, as well as the FeasPar architecture, and various methods for networkperformance improvement. Further, a knowledge analysis and two methods forimproving the overall parsing performance are presented. Several evaluationsand comparisons with a GLR* parser, producing exactly the same output for-malism, illustrate FeasPar's advantages.

ZusammenfassungTraditionell sind automatisches Zerteilen und �Ubersetzen von nat�urlicherSprache mittels verschiedener symbolischer Ans�atze durchgef�uhrt worden. Vieledavon haben den Vorteil von einem hoch-spezi�schen Ausgabeformalismus, dersehr genaue Zerteilanalysen erm�oglicht, und deshalb sehr pr�azise �Ubersetzungenerstellt. Im Laufe des letzten Jahrzehnts, sind statistische und konnektionist-ische Techniken vorgeschlagen worden, um die Aufgabe des Zerteilers zu lernen,um das m�uhsame manuelle Modellieren von Grammatiken und deren Abweich-ungen zu vermeiden. Wie man detaillierte Ausgabeformalismen und das Lernenvon robusten Zerteilen kombinieren soll, ist bis jetzt eine o�ene Frage gewesen.Diese Arbeit liefert eine Antwort zu dieser Frage und stellt einen konnektion-istischen Zerteiler vor, der ein kleines Korpus und ein Minimum von Hand-modelierung braucht, der lernt, und der robust gegen spontangesprocheneSprache und Spracherkennungsfehler ist. Dieser Zerteiler liefert Merkmals-strukturen, und hat eine Performanz �ahnlich wie ein guter handmodellierteruni�kationsbasierter Zerteiler.Der konnektionistische Zerteiler FeasPar besteht aus mehreren neuronalenNetzen, deren Anzahl, Architektur und weitere Parameter automatisch ausden Trainingsdaten hergeleitet werden, und eine Konsistenz�uberpr�ufungssuche,die unter den Ausgaben der neuronalen Netze nach der wahrscheinlichsten,konsistenten Analyse sucht.Um Lernf�ahigkeit und Robustheit zu demonstrieren, wird FeasPar mittranskribierten englischen S�atzen aus der Dom�ane spontaner Terminabsprachetrainiert. Der Zerteiler wird auf den Ebenen des Netzwerkes, Gesamtzer-teilers, und �Ubersetzungsperformanz evaluiert. Dabei werden transkribiertenund gesprochenen Daten benutzt. Die Letzteren enthalten Spracherkennungs-fehler. FeasPar verlangt nur eine geringf�ugigen menschlischen Einsatz undhat eine Leistung, die besser oder vergleichbar mit guten symbolischen Zerteil-ern ist, die mit langj�ahrigem menschlischen Expertenwissen entwickelt wurden.Ein Schl�usselergebnis ist erreicht, wenn Sprachdaten benutzt werden, um dasSprach�ubersetzungssystem JANUS mit verschiedenen Zerteilern zu evaluieren.Mit FeasPar war die Performanz f�ur akzeptable �Ubersetzungen 60.5 % gegen60.8 % mit einem GLR*-Zerteiler. FeasPar verlangt zwei Wochen menschlich-er Arbeit, um das Lexikon und 600 S�atze als Trainingsdaten aufzubereiten,w�ahrend der GLR*-Zerteiler zwei Jahre Grammatikmodellierung von mensch-lichen Experten verlangte.Diese Arbeit stellt das \Chunk'n'Label"-Prinzip vor, das zeigt, wie dieganze Zerteileraufgabe in viele kleine Aufgaben, die von neuronalen Netzen aus-gef�uhrt werden, zerlegt wird, au�erdem die FeasPar-Architektur und mehrereMethoden f�ur die Leistungssteigerung der Netze. Ferner werden eine Wissens-analyse und zwei Methoden f�ur Steigerung der Gesamtleistung des Zerteilersvorgestellt. Mehrere Vergleiche mit GLR*-Zerteilern, die genau den gleichenAusgabeformalismus produzieren, zeigen deutlich die Vorteile von FeasPar.

Contents
1 Introduction 11.1 Natural Language Translation and Parsing 11.2 Spontaneous Speech . 21.3 The FeasPar Parser . 21.4 Performance Measurements . 51.5 Key Contributions . 51.6 Outline . 52 Related Work 72.1 Symbolic and Uni�cation Based Principles 72.1.1 Handling Extragrammatical E�ects 102.2 Statistical Principles . 112.2.1 Grammar Inference . 112.2.2 Stochastic Grammars . 122.2.3 Hidden Understanding Model (HUM) 122.2.4 Alignment . 122.2.5 Statistical Translation . 132.2.6 Example Based Translation 142.2.7 Lexical Methods . 142.3 Connectionist Principles . 152.3.1 Representation Issues . 152.3.2 Learning Symbolic Structures 162.3.3 Direct Translation . 162.3.4 Non-learning Connectionist Parsers 162.3.5 Learning Connectionist Parsers 172.4 Conclusion . 203 Experimental Environment and Measures 223.1 Experimental Environment . 223.2 CR Database and JANUS-I . 233.3 The ESST Database and JANUS-II 243.4 Performance Comparison: GLR* Parser 25i

ii CONTENTS3.4.1 PM 1: Parse Quality . 263.4.2 PM 2: Translation Quality 264 Baseline Principle and Architecture 284.1 Feature Structures . 284.2 The Chunk'n'Label Principle . 304.2.1 Theoretical Limitations 324.3 Baseline Parser Overview . 344.3.1 Lexicon . 384.3.2 Neural Architecture and Training 394.4 The Chunker . 394.4.1 Ordinal and Cardinal Numbers 394.5 Linguistic Feature Labeler . 404.5.1 Syntactic Labels . 414.5.2 Semantic Labels . 424.5.3 Representation Methods 434.5.4 Results . 434.6 The Chunk Path Task . 444.7 Neural Network Improvements 514.7.1 Initial improvements . 524.7.2 Hybrid Encoding . 524.7.3 Second Parse . 544.7.4 Statistical Microfeatures 554.7.5 Linear - Nonlinear Connectivity (LNC) 554.7.6 Selected Connection Structure (SCS) 574.7.7 Extended Context . 584.8 FeasPar Baseline Performance . 594.9 Summary . 605 Cooperative Networks 625.1 Knowledge Sources Analysis . 625.1.1 Identifying Knowledge Sources 625.2 Architecture . 635.2.1 Flat Feature Structures 645.2.2 Nested Feature Structures 675.2.3 Multiple Feature Values 695.2.4 Initialization Values . 715.3 Experiments . 715.4 Summary . 73

CONTENTS iii6 Consistency Checking Search 746.1 Knowledge Sources Analysis . 746.1.1 Global Constraints . 746.2 Architecture . 756.2.1 Search Task . 756.2.2 Search Complexity Precautions 756.3 Search Principles . 766.3.1 Search Implementation . 776.4 Improvements . 786.5 Evaluation . 836.6 Final Evaluation . 846.6.1 Results . 846.6.2 Comparison Comments 857 Evaluation 877.1 Comparison with Other Approaches 877.1.1 Comparison with Hand Modeled Grammars 877.1.2 Comparison with Connectionist Parsers 887.2 Suitability for Various Tasks . 907.3 Ease of Use for Non-Experts . 907.4 Other Advantages . 918 Conclusion 928.1 Contributions of the Thesis . 928.2 Shortcomings . 938.3 Future Work . 94A ESST Features 96Bibliography 98Lebenslauf (in German) 110

iv CONTENTS

Chapter 1Introduction1.1 Natural Language Translation and ParsingAutomatic natural language translation includes the task of parsing a sourcelanguage chunk1 and the task of generating the corresponding target languagechunk. Either of two translation principles are applied: the Transfer Principle orthe Interlingua Principle. The Transfer Principle states that the source languageanalysis A is (unfortunately) not equal to the information G that the target lan-guage generator needs. Mappings speci�c to language pairs must transfer A toG, which means that (formally) the function A ! G must be de�ned for eachpair of languages. The Interlingua Principle assumes that it is possible to de-�ne a language independent meaning representation, the so-called interlingua.Small domains with a limited set of concepts, often enable the de�nition of aninterlingua, whereas the Transfer Principle is rather applied to large domains.The Interlingua Principle requires only n parsers and n generators for a do-main with n languages, whereas the Transfer Principle needs (n � 1)2 transfercomponents additionally.This work will focus on the parsing task needed for natural language trans-lation applying the Interlingua Principle. Traditionally, parsing has been donewith various symbolic approaches, including uni�cation-based parsers. Theyhave the advantage of highly speci�c analyses and therefore very precise trans-lations. The output from any uni�cation-based parser is a feature structurevariation, e.g. LFG, GPSG, HPSG. A feature structure is a hierarchical set offeatures and values. The drawback of all symbolic approaches is the need forhand modeled grammars, which have to be adapted to speci�c languages anddomains. Especially for spoken language (as opposed to text), the major dis-advantage and di�culty for the symbolic approaches lies in building the parser:1In this context, a chunk can be one of the following: text, paragraph, dialog, utterance,sentence, clause, phrase or word. 1

2 CHAPTER 1. INTRODUCTIONit takes as input spontaneous speech, including ungrammaticality, stops, andrestarts, corrupted with speech recognition errors. The parser should output aconsistent analysis in a formalism usable for processing by other components.Approaches based on statistics or neural networks have been proposed. Theiradvantage is learnability and robustness. However, they all have one or more ofthe following disadvantages or open questions:1. Large amounts of training data (e.g. millions of sentences) are needed.2. The parser output formalism contains too few linguistic features to be usedfor further language processing, and is not guaranteed to be consistent.3. It is an open question if the parser performs satisfactory with real worlddata, because it has only been evaluated with highly regular data.4. It is not clear how well the parser as a whole performs, since no clear andquantitative statement is made about overall performance.This thesis aims at combining the strengths of symbolic and connectionistprocessing, while leaving out the drawbacks by designing, implementing, andevaluating a connectionist parser using feature structures as output formalism.1.2 Spontaneous SpeechSpontaneous speech, as opposed to read speech, contains interrupts and restarts.Furthermore, phrases with low information content occur, e.g. \let me see",\well", \i dunno", \(monday is) kind of (bad)". An example dialog from theSpontaneous Scheduling Domain is shown in Figure 1.1. The SpontaneousScheduling Domain is a negotiation situation, in which two subjects have todecide on time and place for a meeting. The subjects' calendars have conicts,so that a few suggestions have to go back and forth before �nding a time slotsuitable for both.A speech recognizer, transforming an acoustic signal into text, inevitablyproduces errors. The error rate is higher when the recognizer must accountfor sloppyness in grammar and pronunciation of spontaneous speech. Figure1.2 shows the same dialog processed by the state-of-the-art2 JANUS speechrecognizer. As we see, the latter dialog contains more malformed expressions.1.3 The FeasPar ParserIn this work, the connectionist parser FeasPar3 is presented. It parses speech,either transcribed or as delivered from a speech recognizer as shown in the pre-vious section. The parsing architecture is also robust towards irregularities suchas ungrammaticality, stops, restarts, and other spontaneous speech e�ects, as278 % word accuracy3FeasPar = Feature structure Parser

1.3. THE FEASPAR PARSER 3
Person 1:okayso you wanted to set up an appointmentyou had mentioned the ninthbut I'll be out of town from that Tuesday the ninth until Thursday the eleventhso I was thinking Monday we could meet after twoif you're availableand if not it'll have to be next week thenPerson 2:wellthen probably looks like we'll have to meet in the next weekMonday the �fteenth I'm free in the morningTuesday the sixteenth I'm free in the afternoonand Wednesday the seventeenth I'm free all dayso if you can �nd two hours in there we should be goodPerson 1:okay I'll tell you whatTuesday the sixteenth looks greatany time after twelve o'clock would be �ne with meso if you have a preference let me knowprobably between two and four would be greatPerson 2:alright I can do thatwhy don't we meet from two to four say in your o�cePerson 1:okay that's �neI'll see you thenand that's Tuesday the sixteenth from two to fourthanks Figure 1.1: Spontaneous speech dialog in transcribed form.well as speech recognition errors, without requiring explicit modeling of thesephenomena. FeasPar provides parses with high and detailed information con-tent, by utilizing feature structures as output formalism. FeasPar only needsa small corpus of sentences and their meanings represented as feature struc-tures, as well as a minimum of hand modeling (lexicon modeling and aligningthe training corpus) to learn the parsing task. Supported by a feature structure

4 CHAPTER 1. INTRODUCTION
Person 1:okaysee you want to set up an appointmentyou had lunch on the ninththat i'll be out of town from that tuesday the ninth until thursday the eleventhso i was thinking monday we can meet after twoif you're availableand if not i'd have to be next week thenPerson 2:although onwell it looks like we'll have to meett the next weekmonday the �fteenth i'm free in the morningtuesday the sixteenth i'm free in the afternoonand wednesday the seventeenth i'm free all dayso if you can �nd two hours in there we should be goodPerson 1:okay have to be out ontuesday the sixteenth looks greator any time after twelve o'clock would be �ne with meso if you've t preference let me knowprobably between two and four would be greatPerson 2:alright i can do itwhen we meet from two to four judy in your o�cePerson 1:okay that's �nei'll see you thenthe next tuesday the sixteenth from two to fourthanksFigure 1.2: Spontaneous speech dialog in speech form, i.e. processed by thestate-of-the-art JAUNS speech recognizer. Speech recognition errors are high-lighted.

speci�cation, FeasPar has a performance comparable to good hand modeledsymbolic grammars.

1.4. PERFORMANCE MEASUREMENTS 51.4 Performance MeasurementsVarious methods for learning the FeasPar task are evaluated throughout thiswork, by using real world spontaneous speech sentences. Quantitative measure-ments are performed on several levels, including network level, overall parserlevel and translation system level. The latter is conducted by running FeasParas a part of the JANUS speech-to-speech translation system. In order to avoidbiased results, four separate data sets are used for training, testing, evaluationand �nal evaluation.1.5 Key Contributions� Learning Complex Analyses: As mentioned above, the existing learn-ing parsers are incapable of learning complex analysis formalisms, whichis one important strength of symbolic parsers. FeasPar closes this discrep-ancy by demonstrating how a complex formalism such as feature structurescorresponds (Chunk'n'Label Principle) to smaller learnable tasks. FeasParalso shows how these tasks can be learned by neural networks by usingvarious connectionist techniques.� Consistency Checking Search: Running a system including severalneural networks means that the total error rate multiplies up. The more�ne-grained the analysis has to be, the more networks will potentially makewrong decisions. Previous connectionist parsers produce a core parse with-out many details, so this problem is not fatal to them. Due to FeasPar'soutput formalism complexity, this problem has to be taken seriously. Thesolution is the Consistency Check Search that not only reduces the errorrate, but also assures that the parse is consistent.� Robustness: FeasPar is the �rst learnable parser being robust towardsboth spontaneous speech and speech recognizer errors that performs aswell as good symbolic grammars written over longer time. The robustnessmust neither be explicitly modeled nor learned.1.6 OutlineIn Chapter 2, other relevant work within symbolic, statistical and connection-ist natural language processing is discussed. The next chapter describes thequantitative measures applied throughout this work and the environment, theJANUS translation system, in which they are performed. The notion of featurestructures, the Chunk'n'Label Principle, and the FeasPar baseline architectureare explained in Chapter 4, which is concluded with overall baseline evalua-tion results. The following chapter discusses which further knowledge sources

6 CHAPTER 1. INTRODUCTIONcan be exploited to increase overall performance, and suggests the CooperativeNetwork Model, which has a well explainable connectionist and statistical the-oretical base. Chapter 6 presents the Consistency Checking Search, which isan e�cient search returning the most probable consistent feature structure. Atotal evaluation of FeasPar is conducted in Chapter 7, followed by a concludingchapter.

Chapter 2Related WorkThis thesis can be seen in the context of three research areas within natural lan-guage processing (NLP): symbolic and uni�cation based NLP, statistical NLP,and connectionist NLP. Due to the amount of research in these �elds, it is onlypossible to mention work that is directly related to this thesis.Unfortunately, performance evaluation tasks and measures are hardly stan-dardized within NLP. Various principles and systems are evaluated on varioustasks, and only a few results are really comparable. In order to avoid confusion,only performance results that are comparable to results from this thesis will bequoted.Up until the last decade, NLP research dealt almost exclusively with text asinput modality. As speech recognition technology became successful, the focusof interest NLP research expanded into towards speech as input modality aswell.2.1 Symbolic and Uni�cation Based PrinciplesSymbolic and uni�cation based NLP sprung out of the combination of formallinguistic theories and arti�cial intelligence (AI) methods for symbolic process-ing. The symbolic and uni�cation based systems have the advantage of beingexplicit and explainable in their modeling, just like in other rule based AI sys-tems. Linguistic phenomena, available from numerous linguistic studies anddescriptions, can be viewed as expert knowledge and modeled as a grammar inorder to provide an NLP system. In the following, the most inuential grammartheories, parsing principles, and parsers are described.Recursive Transition Networks (RTNs) [All88a] are equivalent to ContextFree Grammars (CFGs). An RTN consists of nodes and arcs. An arc cor-responds to a terminal or non-terminal in a CFG and may refer to anothernetwork, which is executed when the arc is followed. The arc 'pop' terminates7

8 CHAPTER 2. RELATED WORKa network. Since the entire state of a parse only involves three pieces of infor-mation (current position, current node, and return points), backtracking andsearch is easy. The Phoenix parser, described later, uses RTNs.A frequently applied parsing principle is chart parsing, which utilizes a chart,an agenda, and a CFG. The chart consists of nodes and arcs, representingword boundaries and constituents, respectively. By using the CFG rules, arcsspanning over one or few nodes are connected to span over several nodes. Whenan arc spans all nodes, the parse is completed. During the parsing process,various arcs joining hypotheses must be evaluated. They are stored on a stack,called an agenda.Another popular parsing technique is case frame instantiation [WFT89,PBA93, BBMG+94, Min95]. The original caseframe theory [Fil68] builds onthe idea of deep cases, like agent, patient, location, bene�ciary or instrument.A caseframe consists of a head concept and a set of cases associated in a well-de�ned manner with the head concept. The main strength of caseframe parsingis the integration of syntactic parsing and semantic analysis.The above principles were developed in the '60 and the '70. In the '80uni�cation based grammar theories were de�ned and implemented in order toenhance the means of capturing and representing linguistic information. Animportant consequence was that parses contained more information that couldbe utilized by other NLP components.Lexical Functional Grammar (LFG) [Bre82] is a context-free phrase struc-ture grammar annotated with features. It uses uni�cation, and produces a con-stituent structure (c-structure) and a functional structure (f-structure). Thec-structure is a phrase structure tree that represents the surface structure andlinear order. The f-structure represents the underlying grammatical relations,and is a set of features, with feature values. The feature value is either atomic,a new f-structure, or a set of values. The set of atomic values corresponding toone feature, is always �nite: e.g. the feature Gender takes one of the atomicvalues fFeminine, Masculine, Neuterg. The major weaknesses of LFG is the�xed constituent order, and the di�culty in implementation.General Phrase Structure Grammar (GPSG) [GKPS85b] contains 4 parts: Atheory of feature structures, Phrase-structure (PS) rules, Metarules, and gram-matical principles. A feature structure has the same structure as an f-structure.The PS rules are split into ID rules and LP rules. The ID rules are normalcontext-free rules, but do not express the order of constituents. The LP-rulesexpress only linear precedence that are always true for the language, e.g. inGerman and English: Det < N, meaning that a determiner comes before itsnoun. This is very useful in languages without �xed word order, e.g. German[Usz86a, Usz86b, Usz87]. Metarules and grammatical principles de�ne generallanguage independent principles.Head-Driven Phrase Structure Grammar (HPSG) [PS87a] is an enhancementof GPSG. The most important extensions include typed feature structures, con-

2.1. SYMBOLIC AND UNIFICATION BASED PRINCIPLES 9junctions and disjunctions of atomic and complex feature values,1 implications,list and set descriptions, and �nally the Head-Feature Principle (HFP). Thelatter expresses that when a larger constituent is built from smaller ones, aparticular head feature becomes the head of the new constituent, and therebypasses head information through a constituent parse tree. HPSG grammarsare continuously enhanced to encounter for various linguistic phenomena, e.g.[Par92, Net92, NNP92]. HPSG grammars are also used for spoken languageprocessing [MST+92].The Phoenix parser [War91, IW93, WI95, LFG+95b, BBD+95, MGWW95,MGS+95] applies RTNs. It is used for speech understanding (ATIS 2) and trans-lation (JANUS). Translation with Phoenix works by generating target languagesentences from a parse consisting of simple slots without attributes. The ad-vantages of the simple parse formalism, RTN, are good performance for speechunderstanding and translation and that the grammar hand modeling e�ort issmaller than for uni�cation based grammars (9 months versus 2 years for GLR*).There are two main disadvantages: �rst, the translations are to a high degreepattern based standardized language and contain a low degree of variation andre�nement [WMG+96], and second, the limited expressiveness in the parse for-malism forces the grammar developer to write highly domain dependent rules.The parser has also been ported to other languages with mixed success, as lan-guages with rich morpho-syntax can only be modeled with di�culty [Rec93],since the parse formalism does not o�er attributes.A good implementation of an LFG-like parser and generator is The Gener-alized LR Parser and Generator [TC87, TMML88, Tr88], in which the parsingand generation grammars are augmented context-free grammars that are com-piled into an augmented LR table to be used by a run-time parser based onTomita's generalized LR parsing algorithm [Tom85, Tom87]. The advantage isthe speed in compilation of grammars and in run-time. The disadvantage isthe �xed constituent order as mentioned. Sikkel and Lankhorst [SL92] furtherimprove the LR parser with an algorithm allowing parallel processing, pars-ing of cyclic CFGs (not possible with Tomita's algorithm) and having a betterspace e�ciency than Tomita's algorithm. GLR grammars have been writtenfor various applications and domains, including technical manuals translation[MNC91], read speech translation [WNM+91, WJM+91, OAM+92, WJM+92]and (spontaneous) speech translation [WAWB+94]. Therefore, the GLR systemand its successors have continuously pro�ted from a large amount of experienceand expert knowledge. Phoenix and GLR* achieve similar acceptable speechtranslation performance, both for transcribed input (approximately 80 %) andspeech recognizer input (approximately 45 %)3 [Lav96b].1As a comparison, FeasPar only allows disjunctions of atomic feature values.2ATIS (Air Tra�c Information System) takes speech queries from the ight informationdomain and outputs SQL queries to a data base.3Numbers also include translation of trivial sentences, e.g. \yes", \no", \thank you", \well",\sounds good", \terri�c", \okay" etc.

10 CHAPTER 2. RELATED WORKAll symbolic and uni�cation based systems have the advantage of explicitmodels, just like other rule based AI systems. Linguistic phenomena avail-able from numerous linguistic studies and descriptions can be viewed as expertknowledge and modeled as a grammar in order to provide a NLP system. Thisis very valuable when analyzing natural language that is completely well-formedwith respect to its linguistic description, like text. All or almost all kinds ofcomplex constructs in a text can be parsed, as long as it is grammatical. Hence,symbolic and uni�cation based parsers are very successful in text parsing andunderstanding. The disadvantage of these approaches, however, lies in the e�ortspent on the development, which is very time consuming and must be performedby quali�ed computer linguists being experts in a particular grammar formalism.2.1.1 Handling Extragrammatical E�ectsFor cognitive reasons, the underlying grammar for spoken language (speech)di�ers from the one for written language (text). While writing a text, thewriter has more time to think, and can correct his language before issuing it,than a speaker has. A written sentence is normally grammatical, and it oftenhas a more complex structure. A spoken sentence is not always grammatical,sometimes it contains corrections like restarts, but it often contains a simplerstructure. These phenomena are gradual though, depending on how much timethe writer has to plan his sentence before issuing it. He may have plenty of time(less errors) or be in a hurry (more errors). A speaker may have every wordwell planned in advance, giving a speech (read speech), or decide in the verymoment of speaking what to say (spontaneous speech).Symbolic and uni�cation based systems often contain a linguistic standardgrammar or subgrammar for written language, which leads to problems withextragrammatical (malformed) input. Text has a lower degree of malformationthan speech. Certain errors are also caused by the machine interface: For text,keyboard typing errors occur, and for speech, recognition errors occur. Thelatter normally causes more errors.There are principally two ways to compensate for natural language errors:extend or change the rules (explicit modeling), and relax rules (robustness).In order to extend the grammar, the best option would be to have a completespoken language grammar produced by descriptive linguistics, just like writtenlanguage grammars almost cover wellformed written language. A few e�ortswithin descriptive linguistics move along these lines [LR90, Lan90]. In manyreal-world systems, domain speci�c rules catching spoken phenomena are foundon an empirical, sometimes unsystematical basis. Also common is to add robust-ness to the system towards speci�c extragrammatical errors or malformation ingeneral:� Speci�c Extragrammatical Errors: Carbonell and Hayes [CH83] de-scribe several extragrammatical phenomena in text and strategies for han-

2.2. STATISTICAL PRINCIPLES 11dling them. The caseframe parsers CASPAR and DYPAR-II demonstratethe integrations of many of these strategies. The paper [Wen93] shows theExtended GLR parser, suggesting the handling of six phenomena in text.� Malformation in General: Phoenix parses only those natural lan-guage chunks that make sense, and leaves the rest unanalyzed. TINA[Sen92, TSP+95] uses RTNs augmented with syntactic and semantic fea-tures and trainable arc probabilities. It is applied to speech understanding(ATIS). GLR* [LT93] utilizes a skip mechanism to skip words that preventa legal parse. The parse with the lowest number of skips is considered thebest. An island parser [CMGS91] examines speech by starting with thewords having the highest acoustic score, and incrementally include wordsto both sides during parse, and thereby creating islands of interpretablenatural language pieces. The DELPHI system [SB92, BIS92] applies afallback strategy, which is enabled if its normal chart-based uni�cationgrammar parser fails, by �rst producing a sequence of fragmentary sub-parses. They are passed to a Syntactic Combiner, and if that one fails, toa Frame Combiner. The Syntactic Combiner uses extended grammar rulestrying to re-construct a plausible parse. The Frame Combiner utilizes aset of frequently occurring slot-�lling schemes and provides a semanticinterpretation.2.2 Statistical PrinciplesStatistical methods in NLP rely mainly on information that can be extractedfrom a corpus of collected natural language. Linguistic expert knowledge is usedonly to a minor degree, forming the assumptions for a statistical model.2.2.1 Grammar InferenceThe �rst set of methods tries to infer the grammars needed from a corpora, sothat linguistic expert knowledge becomes superuous. Naumann and Schrepp[NS92] present an incremental learning algorithm used to produce a sequenceof CFGs that approximates the target grammar of the corpus. In each step, asmall set of sentences is selected and analyzed by a special parser that producespartial structural descriptions for sentences not covered by the actual grammar.The sentence that minimizes the inductive leap for the learner, is selected. Forthis sentence, several hypotheses for completing its partial structural descriptionare formulated and evaluated. The 'best' hypothesis is then used to infer a newgrammar. This process is iterated until the corpus is entirely covered by thegrammar. McCandless and Glass [MG93] start with one grammar rule pertraining sentence. In each step, similar4 words are replaced by a non-terminal.4measure: relative entropy

12 CHAPTER 2. RELATED WORKAll occurrences of these words are replaced by the non-terminal. Redundantrules are removed. The process must be terminated by a stop criteria, but theauthors do not suggest any. Jelinek et al. [JLM+94] reformulate the grammarlearning problem to learning labeling actions (right, unary, left and up) for eachnode in a parse tree. A labeling task based on statistical decision trees learnsthe labels.2.2.2 Stochastic GrammarsThe next set of methods assumes a grammar written by linguist experts, butaims at ranking the parse tree ambiguities by probability. Jelinek et al. [JJM92]present an overview of algorithms for handling probabilistic context free gram-mars (PCFG). A PCFG is a CFG where probabilities are added for every rule.The Inside algorithm and the CYK algorithm calculate the total probability ofa given sentence. The Viterbi search �nds the most probable search tree. TheInside-Outside algorithm estimates the probabilities of the rules. Corazza etal. [CMGS91] extend these algorithms to work for an island parser, where gapsmust be considered. Other work [NT87, LGQ+95, Lav96b] extend beyond onlyadding a probability per rule, by adding a probability per entry in the internalLR parsing table. Stolcke [Sto93] shows how to add probabilities to the CFGEarley parser.2.2.3 Hidden Understanding Model (HUM)The HUMmodel [MBSI94, MBB+95] consists of tree structured meaning expres-sions that are viewed as a hierarchy of Hidden Markov [Rab90] state sequencesending with the state 'exit' at every hierarchical level. The normal HiddenMarkov Model (HMM) assumption of only considering a history of length one ismade, so that the arc probabilities of the model can be trained as for an HMM.HUM is applied to the ATIS task. Although not mentioned by the authors, theHUM model seems to have strong similarities to RTN and Phoenix (also parsingthe ATIS task), where the HUM 'exit' state corresponds to the RTN 'pop' arc.2.2.4 AlignmentA few approaches try to learn from bilingual corpora what natural languagepieces (words, phrases, sentences, paragraphs) in one language L1 correspond(align) to text pieces in another language L2. Alignment is applied in statisticaltranslation [BCP+90] and for producing bilingual lexica. Kay and R�oscheisen[KR93] present an iterative algorithm for aligning words and sentences of abilingual corpus. The input to the algorithm is only the corpus and a triviallyderived table. First, a hypothesis is assumed on which sentences in text T1 alignto which sentences in text T2. Initially, only the �rst and last sentences in T1and T2 are aligned with a small number of sentences from the beginning and

2.2. STATISTICAL PRINCIPLES 13end of T2. Then pairs of words (W1, W2) are considered: each word W1 in asentence S1 in T1 is compared with every word W2 in sentences S2 in T2, whereS1 may align to S2. If the distributions of W1 and W2 are su�ciently similar,then W1 and W2 are assumed to align. Based on word alignment hypotheses,new sentence alignment hypotheses are calculated by considering how well thewords in T1 align with words in T2. Now, a new iteration step is made. Themethod is tested with a scienti�c article available in English and German.Gale and Church [GC93] do sentence alignment by assuming that longersentences in T1 align to longer sentences in T2, and that shorter sentencesin T1 align to shorter sentences in T2. A probabilistic score is assigned toeach pair of proposed sentence pairs, based on the ratio of lengths of the twosentences (in characters) and the variance of this ratio. This probabilistic scoreis used in a dynamic programming framework in order to �nd the maximumlikelihood alignment of sentences. The method is tested with the large CanadianParlament corpus in English and French. The resulting sentence alignment isused to �nd word alignments.Dagan et al. [DCG93] describe a variant of the work of Brown et al.[BCP+90] (see below), where the number of parameters is reduced in orderto enable aligning corpora that are smaller and noisier than the Canadian Par-lament corpus. The reduction is achieved by making various assumptions, suchthat every word in T2 aligns to one or zero words in T1 and that it is more likelythat the �rst word in a sentence in T1 aligns to a word near the beginning ofthe corresponding sentence in T2. Furthermore, most and least frequent words,as well as function words are excepted from the analysis. The method is appliedto induce bilingual terminology lexica from software manuals.2.2.5 Statistical TranslationAlignment can also be used for statistical machine translation [BCP+90]. Givena sentence T in the target language, one seeks the sentence S from which thetranslator produced T. The chance of error is minimized by choosing the sen-tence S that is most probable, given T. Hence, S should be chosen so thatP (S j T) is maximized. Bayes' theorem implies:P (S j T) = P (S)P (T jS)P (T)Since P(T) does not depend on S, it su�ces to �nd the S that maximizes theproduct P(S) P(TjS). The �rst factor is called the language model probability,and the second the translation probability. The latter can be calculated fromthe word alignments of the words in T and S. The language model probabilityexpresses, how the words found by alignment should be ordered to make asentence, and is implemented as an N-gram, as known from speech recognitionlanguage modeling [Jel90]. The method is tested with the Canadian Parlamentcorpus, and achieves an acceptable translation rate of 48 %.Further work by Brown et al. aims at reducing translation time by dividing

14 CHAPTER 2. RELATED WORKlong sentences [BPP+91], and increasing translation performance by statisticalword-sense disambiguation [BLM91b]. The latter works by automatically �nd-ing the binary question related to a word's context that distinguishes it the mostbetween two word senses.2.2.6 Example Based TranslationAnother method of direct translation is Example Based Translation [FI92,FSI92]. It contains two knowledge sources: �rst, a data base of translationexamples manually picked from a bilingual corpus; and second, a concept hi-erarchy, containing semantic scores. To translate a sentence, �rst a lookup isperformed in the bilingual data base to �nd similar translations. The best trans-lation is found by exchanging the di�ering words in a similar translation. Thetranslation distance is found by consulting the concept hierarchy, and calculat-ing the semantic distance of the di�ering words. The advantage of this methodis its robustness, because it uses semantic dependencies. Further, it is e�cient,since the distance calculation is fast. The drawback is the manual time e�ortin building the two knowledge sources, and that e�ciency decreases with largeknowledge bases, since the translation runs sequentially.2.2.7 Lexical MethodsAnother method of �nding similar words other than alignment is using a wordspace [Sch92]. Here, four-grams of letters are picked out of a running (newspa-per) text. By �ltering out infrequent, redundant, uninformative and the mostfrequent ones, the number of four-grams is reduced to 5000. Now, for everyword w, a context window is de�ned around every occurrence of the word, andthe four-grams in the context are viewed as a context representation for w. Thecontext representations for all occurrences are then normalized and summed upto form the word representation. More formally, if C(w) is the set of positionsin the corpus at which w occurs and if '(f) is the vector representation forfour-gram f , then the vector representation �(w) of w is de�ned as: (the dotstands for normalization)�(w) = Xi�C(w) :Xf close to i'(f) (2.1)The training material consists of 5 months of New York Times News Service.Listing nearest neighbor of the word representations, shows that words havingsimilar semantic and syntactic properties are bundled.In the paper [Sch93] a similar principle is presented, where word occurrencesare applied instead of four-grams. The collocation matrix is reduced by sin-gular value decomposition, and then a context window is examined. A sum iscalculated as in the previous paper, giving a word representation ' for a word

2.3. CONNECTIONIST PRINCIPLES 15in language L1. Another word representation '' is de�ned by using the sumof all ' in sentences where the word occurs. By using results from alignmentsbetween sentences in L1 and L2, the author shows how representations for wordin a language L2 can be found similarly. This gives representations for wordsin L1 and L2, and in addition to similarity within one language, also similaritybetween words in two languages can be found. The latter is then in principle abilingual lexicon, and can be used for translation. The method is tested withthe Canadian Parlament corpus, and the author provides plausible examples ofsimilarities.2.3 Connectionist PrinciplesConnectionist principles (neural networks) [HKP91a] allow other forms for rep-resentation of lexicon and structural information than those o�ered by symbolicprinciples. Learning, a central topic of all connectionist processing, is used inmost connectionist NLP systems, and utilizes corpora of training examples. Thelatter suggests that connectionist principles are actually a subtopic of statisticalprinciples. However, due to the similarities within connectionist principles, theyare treated as a separate topic.2.3.1 Representation IssuesConnectionist Principles allow both localist and distributed representations. Lo-calist representation means that one item or item feature is represented by theactivity of a single unit in a neural net [WP85]. Distributed representationmeans that items or item features are represented as a distributed pattern ofactivation across a number of units [HMR86]. When using localist representa-tion, the smallest semantically interpretable part of the representation is calleda microfeature [WP85]. The advantage of localist representation is its trans-parency, whereas the distributed representation is appreciated for its learnabil-ity and storage e�ciency. The FGREP [MD89b] mechanism illustrates how tolearn distributed input representations by extending the error back-propagation[RHW86] one step further than in normal back-propagation. FGREP is appliedto a small and regular corpora, and proves to possess good learning capabilities.Pollack [Pol88] implemented recursive structures, e.g. a stack, by usinga three-layer network. The input consisted of two parts: stack and element.The hidden layer represented the stack, and the output consisted of a stackand an element. The stack representation was learned in the hidden layers.The elements used normal local representation. His model is called RAAM(Recursive Auto-Associative Memory). He also presents a further example,where a RAAM learns a context free grammar.

16 CHAPTER 2. RELATED WORK2.3.2 Learning Symbolic StructuresCertain research has focused on the ability of neural networks to compute sym-bolic structures, like context free grammars, in order to provide a basis forgrammar processing. Pioneering work by Elman [Elm90, Elm91] presented anetwork architecture, later called Elman Networks. A sequence of input is pre-sented in separate time steps to the network. Its architecture consists of thenormal input, hidden, and output layers, and in addition a context layer. Thelatter is copied from the hidden layer at time t, and then fed into the hiddenlayer together with the input layer at time t+ 1. The usage for learning struc-ture in letter sequences, word boundaries and lexical structure is shown. Thenetwork learned to predict the next element in the input.Berg [Ber91] applied a mixture of RAAM and Elman networks to implementthe recursiveness of the head principle of constituents. Input consisted of contextand word, and output of speci�er, head and two complements. The error ratewas from 1 to 4%, where most errors were of lexical nature. Giles et al. [LFG95a]investigate the ability to learn to di�erentiate between a grammatical and anungrammatical sentence with respect to transitivity, given regular examples.Eight di�erent networks are tested with the task, and Elman networks learn itbest.2.3.3 Direct TranslationChrisman [Chr91] suggests combining two RAAMs into a dual-ported RAAM, sothat they share the distributed representations being learned. During learning,a sentence in language L1 is presented at the input and output of one of theRAAMs, and the corresponding sentence in language L2 is presented at theinput and output of the other RAAM. The system is evaluated with 216 possibleEnglish-Spanish sentence pairs that were generated from a vocabulary of 36English and 36 Spanish words. All sentences contain only one clause, consistingof subject, verb and predicate/object. Translation performance is 75 %. Thenumber includes only those sentences, where rephrasing into the same languagesucceeded.2.3.4 Non-learning Connectionist ParsersA few approaches suggest building parsers where the operations are performedby neural networks, and the network weights are not learned. Waltz and Pollack[WP85] present a hand-coded mutual connected network using spreading acti-vation and lateral inhibition. The parser has levels for input, lexical microfea-tures, syntactic structure, semantic and contextual information. Also includedis a hand coded lexicon, with localist representation, using microfeatures. Thepurpose is semantic disambiguation. The main claim is that di�erent kinds ofinformation are easy to integrate. In another paper [KS93] the same idea is fol-

2.3. CONNECTIONIST PRINCIPLES 17lowed, and uses four layers (Input, Lexical, Context, Syntax), a Semantic Spaceand a Memory to disambiguate sentences containing prepositional attachmentambiguities.5 Another approach is to dynamically build small networks corre-sponding to CFG rules during a parse, and connect these with inhibitory andexcitatory connections [KK93]. Wilkens and Schnelle [WS90a] suggest a mu-tual non-learning network using spreading activation and lateral inhibition todo chart parsing based on Earley's algorithm. By using localist representation,they make three spaces of units which represent parse list, computation of parselist and correct parse. In another paper [WS91, WS90b], they also introduceda mutual non-learning network applying spreading activation and lateral inhi-bition for representing feature co-occurrence restrictions as known from GPSG[GKPS85a]. Their representation of atomic feature values is similar to the onein this thesis, but they do not present how to represent structure. Henderson[Hen94] presents a neural network parser for syntactic parsing that performsthe basic operations in a uni�cation formalism. The work argues what is plau-sible from a linguistic, cognitive and biological perspective, but does not discussissues such as performance and robustness.2.3.5 Learning Connectionist ParsersMiikkulainen and Dyer [MD89a, MD91] present a three-layer network, withlearnable input and output. The network size and input and output lengths are�xed. The network module is called FGREP. A paraphrasing system is built,consisting of 4 FGREP modules. The module tasks are to map from sentence tocase roles, from case roles to scripts, and then back to case roles and sentences.Wermter and Weber [WW94, WW96] present SCREEN, a parser for spokenlanguage consisting of �ve parts, where each part consists of several modules.Each module can have a symbolic program and a neural network. The speechinterface part receives input from a speech recognizer as word hypotheses andprovides an analysis of the syntactic and semantic plausibility of the recognizedwords. The category part receives words and provides basic syntactic, basic se-mantic, abstract syntactic and abstract semantic categories. Knowledge aboutwords and phrases and their categories are received by the correction part, whichprovides knowledge about spontaneous e�ects, like repair or restart. The sub-clause part is responsible for the detection of subclause borders. Finally, thecase frame part is responsible for the overall interpretation. This part receivesknowledge about abstract and semantic categories of a phrase and provides theintegrated interpretation. The architecture is interesting because it explicitlymodels fault tolerance. The system is trained and tested on the German Re-gensburg corpus (train information), and the Time Scheduling Task (see Section3.3). Test results are only presented for �ve selected networks. They vary from72 % to 89 % (Time Scheduling Task). Unfortunately, no overall results are5Example: Susi sees Peter with the telescope.

18 CHAPTER 2. RELATED WORKgiven. Since the modules use output from other modules, the error rates mustbe assumed to multiply. Further, it is not stated how many networks thereare in total. Clearly, there are at least �ve, since results for �ve networks arepresented. Making a best-case calculation, using the quoted performance andassuming that all other networks have a perfect test performance6, would yield35 % performance. Finally, the parser output formalism is not described, so it isnot clear if the parse information is su�cient for other NLP processing modules.Since PARSEC is the most relevant work to this thesis, it is described in moredetail. The task of PARSEC [Jai89, Jai90, JW89, JW90b, JW90a, Jai91, Jai92]is to incrementally parse incoming words into a three level structure. It assumesthat the input is one sentence. It consists of six three-layer feed-forward net-works: A preprocessor that �lters alphanumeric input, two networks that splitthe input into phrases, and then phrases into clauses. The last three networkslabel the three levels (phrase, clause and the full sentence). The training setmust be labeled consistently by the modeler. All networks are classi�cation net-works, and follow the same constructive learning paradigm. The lexicon uses alocalist representation, where binary features are de�ned by the modeler. Thebinary features make up a bit vector. When a word has several meanings, thefeatures are overloaded, i.e. the corresponding bit vectors are OR'ed together.This bit vector and a unique ID binary number together make up the inputvector. The input vectors are presented one at a time to the network. Thesystem calculates the dimensions of the networks, and sets up parameter �lesfor learning.The training process is performed by programmable constructive learning,PCL. Two key concepts in PCL are hidden unit type and learning phases. ThePCL algorithm, as shown in Figure 2.1, consists of 3 nested loops. The innermostloop iterates over forward and backward propagations [RHW86]. The middleloop increases the number of connections by adding another unit to the hiddenlayer. The outermost loop increases the hidden unit type. The stop criteria forthe innermost and middle loop is that test set performance does not increaseany more. For each type of network to learn, 3 or 4 hidden unit types arespeci�ed. In general, type 0 has a low degree of connectivity, i.e. only localinformation and little or no context is taken into consideration. The modeledcontext increases with the types. The idea is to learn context-free relationsbefore context-dependent ones.PARSEC also has 3 learning phases: Phase 1 performs standard back prop-agation. Phase 2 is entered when all tokens can be learned during an epoch. InPhase 2, the learning rate is adjusted while learning. Phase 3 is entered whenonly a very few tokens remain. In Phase 3, weight modi�cations are only madefor tokens with error rates above a certain threshold. Phases and hidden unittypes are increased independently.In order to capture the time aspect of the input, a second weight velocity6This is an unrealistically good assumption.

2.3. CONNECTIONIST PRINCIPLES 19PROCEDURE PCL(NN: neural_network)VART, E: integer;U: unit of type T;performance_epoch,performance_unit: array of float;BEGINFOR each hidden unit type T = 0 TO max_unit_type(NN)FOR each hidden unit U = 0 TO infiniteBEGINcreate(U);add U to NN;FOR each epoch E = 0 TO infiniteBEGINforward_backward_propagate(NN);performance_epoch(E) = measure(NN);IF performance_epoch(E) = 100 %return;IF performance_epoch(E) < performance_epoch(E-1)break;END;performance_unit(U) = performance_epoch(E-1);IF performance_unit(U) < performance_unit(U-1)break;END;END.Figure 2.1: Programmable constructive learning (PCL) algorithm: see text forfurther explanations.is used in every node in addition to the normal weight. Velocity expresses thechange in activation of a node. Learning is time-consuming. It generally con-verges well, but depends on lexicon feature diversity, consistency in the trainingset, and not too complex mapping between input and output. The sentencelevel label, called mood, is the most di�cult to train.PARSEC is extended also to consider the intonation of a spoken sentence:The pitch contour is smoothed and normalized, and presented as a 75 unit

20 CHAPTER 2. RELATED WORKvector, hooked on to the mood label, and then trained as the other networks.Performance rises signi�cantly.PARSEC is applied to the Conference Registration Task (see Section 3.2),consisting of 204 sentences based on a 400 word lexicon. Another application isthe ATIS task [Jai91, PW92] which focuses more on semantic parsing. WhenPARSEC is integrated with JANUS-I, one problem is that PARSEC's outputcontains less information than the f-structure being used for further processing.When parsing English, this is solved by building a script-based mapper withdefaults. It is tailored to the test set. When parsing German, building themapper is only possible for the simplest sentences. The more complex morpho-syntax in German, and the fact that word disambiguation has to be done to �ndthe correct f-structure semantic concepts, makes any principally correct e�ortimpossible.PARSEC is tested in JANUS with recognition noise input on the trainingdata, after being trained in all phases 1-3. Generalization is tested after trainingphases 1-2, and looking at output without sending it through the mapper.Finally, PARSEC is tested on the spontaneous speech e�ects, ungrammati-cality, repairs, restarts and non-words, and is reported to be robust [Jai91]. How-ever, neither non-trivial examples nor performance results are given. Amongtrivial examples that PARSEC managed, was Yes, that are right. (verb disagree-ment). As the labels did not reect number, they are naturally not picky aboutinput breaking a number rule.2.4 ConclusionUni�cation-based parsers have the advantage of highly speci�c analyses andtherefore very precise translations. The drawback of all symbolic approachesis the need of hand modeled grammars, which have to be adapted to languageand domain. Further, robustness issues cause the need for extra hand modelinge�orts. Two parsers have been evaluated on the same task as FeasPar, ESST(see Section 3.3):� Phoenix has a simpler parse formalism (RTNs) than FeasPar, consistingof hierarchical slots without attributes. Phoenix has a similar accept-able translation end-to-end performance, but the simpler parse formalismcauses many standardized translations, without the variations and re�ne-ments that more expressive parse formalisms o�er. Further, the limitedformalism forces the grammar writer to introduce non-general rules, highlytargeted towards the domain [WMG+96]. The lack of attributes causesproblems when modeling languages rich in morpho-syntax, e.g. German[Rec93], whereas FeasPar is capable of learning morpho-syntactic labels.To model a Phoenix grammar also takes more time than modeling FeasPartraining data and lexicon.

2.4. CONCLUSION 21� GLR* has the advantage of a similar acceptable translation end-to-endperformance, and the same output formalism as FeasPar. Therefore, it iscompared with FeasPar throughout this thesis. The major drawback of aGLR* parser is the long grammar development time.Approaches based on statistics or neural networks have been proposed. Theiradvantage is learnability and robustness. However, they all have one or more ofthe following disadvantages or open questions:1. Large amounts of training data (e.g. millions of sentences) are needed.2. The parser output formalism contains too few linguistic features to be usedfor further language processing, and is not guaranteed to be consistent.3. It is an open question if the parser performs satisfactory with real worlddata, because it has only been evaluated with highly regular data.4. It is not clear how well the parser as a whole performs, since no clear andquantitative statement is made about overall performance.FeasPar combines ideas from the theory of feature structures used in theuni�cation-based parsers in order to form a learnable problem, which is learnedby a connectionist architecture. The latter contains elements from the PAR-SEC architecture, but provides far more information in the parser output. Theoutput consistency and performance is enhanced considerably by various neuralnetwork techniques and a search that is not present in the PARSEC system. Fi-nally, whereas PARSEC is evaluated with read speech, FeasPar's performanceis measured on spontaneous speech, which is harder to analyze.In summing up, FeasPar combines the advantages of uni�cation based ap-proaches with those of connectionist approaches, and leaves out the disadvan-tages. It delivers feature structure parses, and has a performance as good asa good hand modeled uni�cation based parser. Further, it only needs a smallcorpus and a minimum of hand modeling to learn. FeasPar is robust towardsspontaneous speech and speech recognizer e�ects.

Chapter 3Experimental Environmentand MeasuresThis work is aimed at producing not only principles and architectures thatseem plausible, but also at working well with respect to performance. Hence,the descriptions throughout the next chapters are accompanied by performancemeasurement analysis.This chapter explains the environment in which FeasPar is tested and evalu-ated, the domains and data sets being used, and �nally the performance measuremethods and their advantages and disadvantages.3.1 Experimental EnvironmentThe experimental environment for FeasPar is the JANUS[WNM+91,WJM+91, OAM+92, WJM+92, WAWB+94, GSB+95] speech-to-speech trans-lation system, as shown in Figures 3.1 and 3.2. The JANUS-I domain is theConference Registration Task (see Section 3.2 for details), whereas the JANUS-II domain is the Spontaneous Speech Task (see Section 3.3 for details). The coreof the translation system, excluding speech recognizer and synthesizer, mainlyconsists of the GLR or GLR* parser and generator system, see Section 2.1.The major architectural di�erence between the JANUS versions is that theJANUS-I parser analysis contains mainly syntactic information which have to bemapped into the semantic interlingua. The JANUS-II parser analysis containsall necessary semantic information, so that they can be used as interlinguadirectly, without the need for a mapping component. The mappers at thegeneration side are motivated analogously.22

3.2. CR DATABASE AND JANUS-I 233.2 CR Database and JANUS-IThe conference registration (CR) task consists of imaginary telephone calls to asecretary's o�ce of an international scienti�c conference. The callers ask ques-tions about hotel rooms, how to get there and request registration formulas. Allsentences are read speech, i.e. reading from a sheet of paper. This means thatthe sentences are well formed, and no spontaneous e�ects or phrases occurred.The database exists in English, German, and Japanese. This thesis uses the 12dialogs of the German database. The GLR parsers and generators of JANUS-Iacoustic signal?speech recognizer?sentence hypothesis?German GLR parser?syntactic feature structure?mapper?interlingua��������� HHHHHHHHjmapper?GLR generator L2?synthesize L2?speech in L2
mapper?GLR generator L1?synthesize L1?speech in L1Figure 3.1: JANUS-I: speech-to-speech translation of read speech in the GermanConference Registration (CR) task

24 CHAPTER 3. EXPERIMENTAL ENVIRONMENT AND MEASURESare syntax-based, so that additional mappers between syntax and semantics arenecessary.3.3 The ESST Database and JANUS-IIThe Spontaneous Scheduling Task (ESST) is a negotiation situation, in whichtwo subjects have to decide on time and place for a meeting. The subjects'calendars have conicts, so that a few suggestions have to go back and forthbefore �nding a time slot suitable for both. The database exists in English(ESST), German (GSST), Japanese (JSST) and Spanish (SSST).The GLR* translation system focuses on parsing ESST, and translating intothe other languages. Among the generators, the English generator was themost developed. However, due to the many structurally malformed sentencesin the database it is too di�cult to write syntactic parsers for ESST with theacoustic signal?speech recognizer?sentence hypothesis?English GLR* parser?ILT (interlingua) assemantic feature structure��������� HHHHHHHHjGLR* generator L2?synthesize L2?speech in L2GLR* generator L1?synthesize L1?speech in L1Figure 3.2: JANUS-II: speech-to-speech translation of spontaneous speech inthe English Spontaneous Scheduling Task

3.4. PERFORMANCE COMPARISON: GLR* PARSER 25GLR* technology. Therefore, the GLR* parsers and generators apply semanticanalysis, which is used as interlingua.The GLR* grammar and generation authors agreed on a common interlin-gua, ILT (InterLingua Transcription), so that the parse output could be usedas generator input. During the two years of GLR* parser and generator gram-mar development time, the ILT was changed and extended over 50 times (!), inorder to be as optimal for the GLR* parser and generators as possible. SinceFeasPar is trained from data labeled with ILT segments, These labels had tobe continuously manually adjusted, and the neural networks retrained when theILT was changed. After a few times, I decided to 'freeze' the ILT for myself, andtherefore conserved the ILT speci�cation and all sentences with ILTs availableby the internal JANUS-II project evaluation in March 1994. It is important torealize that FeasPar had to learn an ILT speci�cation, which was highly tunedtowards symbolic processing.In total, this work utilizes the following ESST corpora:Training Set (Set 1) : Approximately 560 sentences with corresponding ILTs(as of March 1994). Each sentence was manually chunked and alignedwith corresponding ILT parts. The set is used for training during FeasPardevelopment. All sentences are transcribed data (not speech data).Test Set (Set 2) : Approximately 65 sentences with corresponding ILTs (asof March 1994). Each sentence was manually chunked and aligned withcorresponding ILT parts. The set is used for testing during FeasPar de-velopment. All sentences are transcribed data (not speech data).Evaluation Set (Set 3) : Approximately 120 sentences with correspondingILTs (as of March 1994). are used for evaluation of the �nal FeasParbaseline version. The set exists in two versions: as speech data (withspeech recognizer errors) and as transcribed data (without speech recog-nizer errors)Final Evaluation Set (Set 4) : 99 utterances (approximately 350 sentences)without corresponding ILTs. The set is used for the �nal evaluation ofFeasPar. This set exists as speech and transcribed data.3.4 Performance Comparison: GLR* ParserTo show the learning ability of FeasPar, it is compared with the GLR* parser.Since parsing spontaneous speech is more di�cult and challenging than readspeech, FeasPar is tested with ESST. Further, ESST o�ers a good chance fortesting FeasPar with semantic features. Additionally, a few experiments arerun with the German CR task, showing that FeasPar also can learn syntacticfeatures (see Section 4.5.1).

26 CHAPTER 3. EXPERIMENTAL ENVIRONMENT AND MEASURESOn the parsing side, an ESST GLR* semantic grammar only exists for En-glish. On the generator side, a German generator was developed only throughMarch 94, while an English generator was continuously developed. The Englishgrammar and generator were developed for 2 years.3.4.1 PM 1: Parse QualityThe �rst performance measure, PM 1, expresses the parse quality. PM1 is alsocalled ILT feature accuracy and is de�ned as:Ccorr�MCcorrwhere:� M is the number of mismatches made, while checking all features in thecorrect ILTs and the suggested ILTs from the parser.� Ccorr is the number of considerations of existing features in the correctILTs.It is important to notice that this number can become negative: if a sug-gested ILT contains a feature A not present in the correct ILT, M is countedup, but Ccorr is not. The latter is only incremented if feature A occurs in thecorrect ILT.The advantage of PM 1 is that the measure is computed automatically and isindependent of human judgement. Its disadvantage is that it is only an indirectindicator for translation quality, since not all ILT features are equally importantfor the generator.3.4.2 PM 2: Translation QualityThe second performance measure, PM 2, is also called the end-to-end compari-son, expresses the quality of the translated sentences. A translated sentence isgraded as `acceptable if all relevant information is conveyed and the sentenceis natural (i.e. perfect), or slightly unnatural, but clear enough to understandthe meaning (i.e. ok). It is graded as `not acceptable' if incorrect or not allinformation is conveyed, or (with speech data only) an irrecoverable recogni-tion error occurs. Furthermore, trivial sentences, whose translations can easilybe retrieved by lookup, e.g. \yes", \no", \thank you", \well", \sounds good",\terri�c", \okay" etc., are excluded, so that only truly translated sentences arecounted.Two variants exist for PM2: PM 2E is used when the parser is coupled withthe English generator (developed for 2 years), and PM 2G, when the parser iscombined with the German generator (development stopped March 94).

3.4. PERFORMANCE COMPARISON: GLR* PARSER 27The sentence is trivial (\yes", \no",Excluded Trivial \okay" etc.) and excluded from evaluationPerfect Fluent translation with all information conveyedAcceptable OK All important information translated correctly,but translation is awkwardBad Unacceptable translationNot acceptable Irrecoverable Translation failed due to irrecoverablerecognition speech recognition error (speech data only)Table 3.1: Evaluation Grade CategoriesThe advantage of measure 2 is that translation quality is measured directly.Its disadvantage is that the grading must be done by humans, i.e. it depends onhuman judgement, and is therefore subjective. Also, grading becomes a fairlytime consuming task.

Chapter 4Baseline Principle andArchitectureBased on the general observations made about uni�cation based and connec-tionist parsers made in chapter 2, this chapter will present a parsing method andarchitecture that omit the drawbacks of other parsers, as described in Section2.4.Section 4.1 describes the feature structure formalism. In Section 4.2 thechunk'n'label principle will be introduced and motivated. The following sec-tion describes the FeasPar baseline parser architecture, which is based on thechunk'n'label principle. A more detailed description of each of the three FeasParbaseline modules is given in Sections 4.4 - 4.6. The next section focuses on thevarious neural network extensions and improvements. In the last section, the�nal FeasPar baseline performance is presented.4.1 Feature StructuresMany natural language processing components and applications use the featurestructure formalism. It can describe all kinds of linguistic information, includ-ing discourse representation, semantics, syntax, and phonetics. When featurestructures are applied in parsing, they represent the syntax or semantic analy-sis. Further, the they form the core of well-known uni�cation-based formalismse.g. LFG [KB82], GPSG [GKPS85a], and HPSG [PS87b], which all are usedfor a high number of parsers and natural language generators. Feature struc-tures are used as output formalism for FeasPar. Their syntactic properties andterminology are introduced in the following:1. A feature structure is a set of none, one or several feature pairs.28

4.1. FEATURE STRUCTURES 29((speech-act *confirm)(sentence-type *state)(frame *clarify)(topic ((frame *simple-time)(day-of-week monday)))(adverb perhaps)(clarified ((frame *simple-time)(day-of-week monday)(day 27))))Figure 4.1: Feature structure with the meaning \by monday i assume you meanmonday the twenty seventh"2. A feature pair, e.g. (frame *clarify) , consists of a feature, e.g. frameor topic, and a feature value.3. A feature value is either:(a) an atomic value, e.g. *clarify1or:(b) a complex value4. A complex value is a feature structure.Throughout this work, examples of a certain kind of feature structures, ILTs,are presented. The following example intends to give the reader an intuitiveunderstanding of the information contained in an ILT. The following sentencecorresponds to the feature structure shown in Figure 4.1:\by monday i assume you mean monday the twenty seventh2"The semantic of the ILT in Figure 4.1 is explained briey in the following:� (speech-act *confirm): The sentence con�rms (and not denies or re-quests) a statement.� (sentence-type *state): The sentence is a statement (not a questionor command).1In the ILT speci�cation, atomic values have an asterisk '*', and some do not. FeasPar byno means distinguishes between values with or without '*'. The examples in this work includeasterisks where appropriate only in order to follow the ILT speci�cation in every detail.2All natural language examples throughout the thesis are spontaneous speech examples,and therefore presented without orthographic notation, e.g. upper case letters, commas andpunctuation.

30 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTURE� frame: At each level in a feature structure the feature frame has oneand only one value. *clarify means that an unclarity is clari�ed.*simple-time indicates a time expression.� clarified: The information being clari�ed is given as the value ofclarified.� topic expresses the semantic topic or focus being emphasized in the sen-tence.� (adverb perhaps): An adverbial expressing uncertainty is present.� (day 27): The time expression contains the 27th day of a month.� (day-of-week monday): The weekday monday is part of the time expres-sion.ILT features and atomic values are listed in Appendix A for completeness.4.2 The Chunk'n'Label PrincipleIn contrast to the standard feature structure de�nition of Section 4.1, an al-ternative view-point is to look at a feature structure as a tree of nodes andbranches.3 Each node is annotated with a set of zero, one, or several atomicfeature pairs. The branches are annotated with complex features, so-called pathelements. Each complex feature corresponds to one path element. Next, eachbranch is allowed to have zero, one, or several path elements. Atomic featurepairs belonging to the same branches, have the same path to all other branches.It is assumed that there exists sentence, clause, phrase and word chunks.Then, when comparing a sentence4 with its feature structure, it appears thatthere is a correspondence between parts of the feature structure, and speci�cchunks of the sentence. In the example feature structure of Figure 4.1, thefollowing observations about feature pairs and paths apply:� feature pairs: corresponds to:(day 27) \the twenty seventh"((frame *simple-time)(day-of-week monday)(day 27)) \monday the twenty seventh"3This assumes that structure sharing is not possible, see Section 4.2.1.4The chunk'n'label principle can easily be applied to larger parts of natural language, likee.g. an entire spoken utterance.

4.2. THE CHUNK'N'LABEL PRINCIPLE 31� paths: the complex value of the feature topic corresponds to the chunk\by monday", and the complex value of the feature clarified correspondsto \you mean monday the twenty seventh". Therefore, these chunks shouldbe annotated with the paths topic and clarified, respectively.Finally, a correspondence between chunks and nodes is de�ned, yielding atree with four levels. Note that since each branch may be annotated with morethan one path element, the corresponding feature structure can easily have anesting deeper than four.Ci := '(' Q ; Ci = chunk, i = 1..4, Q = pathP ; P = atomic feature pairsC+i+1 ')' ; Ci+1 = subchunkC5 := w ; single word of input sentence (terminal)Q := '[' [e('/'e)�] ']' ; e = path element (terminal)P := � j '(' A+ ')' ; A = one atomic feature pairA := '(' f v ')' ; f = feature, v = atomic value (terminals)Figure 4.2: Chunk parse: Syntax and meaning.Manually aligning the sentence with parts of the feature structure, gives achunk parse. The underlying syntax and meaning is explained in Figure 4.2.An example is shown in Figure 4.3. A few comments apply to chunk parses:� The sentence is hierarchically split into chunks.� Feature pairs are listed with their corresponding chunk.� Paths are shown in square brackets, and express how a chunk relates toits parent chunk. Paths may contain more than one element. This allowsseveral nesting levels in the corresponding feature structure.Once having obtained the information in Figure 4.3, producing a featurestructure is straight forward, using the algorithm of Figure 4.4 on Page 33.Summing up and formalizing, the following principle, the Chunk'n'label prin-ciple, is introduced:1. Split the incoming sentence into hierarchical chunks, see Figure 4.6.2. Label each chunk with feature pairs and feature paths, see Figure 4.8.3. Convert this into a feature structure (see Figure 4.9 for an example),using the algorithm of Figure 4.4.The algorithm traverses the chunk parse in a top-down manner, and builds

32 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTURE([]((speech-act *confirm)(sentence-type *state)(frame *clarify))([] ([topic]((frame *simple-time))([] by)([]((day-of-week monday)) monday))([] ([] i))([]((adverb perhaps))([] assume)))([clarified]([] ([] you))([] ([] mean))([]((frame *simple-time))([]((day-of-week monday)) monday)([] the)([]((day 27)) ([rego] twenty seventh)))))Figure 4.3: Chunk parse: Sentence aligned with its feature structure (see textfor explanation).up a feature structure for a chunk from its path elements, atomic feature pairs,and subchunks.4.2.1 Theoretical LimitationsThe chunk'n'label principle has a few theoretical limitations compared with thefeature structure formalisms commonly used in uni�cation-based parsing, e.g.[GKPS85a]. These are discussed in the following.DepthWith the chunk'n'label principle, the feature structure has a maximum nestingdepth. One could expect the maximal nesting depth to cause limitations. How-ever, these limitations are only theoretical, because very deep nesting is hardlyneeded in practice for spoken language. Due to the ability to model paths ofmore than length 1, no nesting depth problems occurred while modeling over600 sentences from ESST.

4.2. THE CHUNK'N'LABEL PRINCIPLE 33FUNCTION start_convert(top_level_chunk: chunk): feature_structureVARS: feature_structure;C: chunk;BEGINS := the_empty_feature_structure;convert(S,top_level_chunk);return(S);END;PROCEDURE convert(VAR S: feature_structure;C: chunk);VARE : path_element;S' : feature_structure;C' : chunk;P,T : feature pair;BEGINQ := chunk_path(C);FOR each E in QBEGINS' := the_empty_feature_structure;T := feature_structure(E,S');insert T in S;S := S';END;FOR P in C ; process atomic feature pairsinsert P in S;FOR each C' in C ; process subchunksconvert(S,C);END;Figure 4.4: Top-down algorithm for converting a parse to a feature structureStructure SharingMany uni�cation formalisms allow feature values to be shared: In an examplefrom [PS87b], p.32, subject and verb both have 3rd person-singular-feminine,

34 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTUREe.g. verb agreement, and they therefore have this information shared:((subject (agreement [1] ((person 3rd)(number singular)(gender feminine))))(predicate (agreement [1])))The chunk'n'label principle does not incorporate any mechanism for struc-ture sharing. The information can of course be represented in duplicated form.All work with ESST and ILT empirically showed that there is no need for struc-ture sharing. This observation suggests that for semantic analysis, structuresharing is statistically insigni�cant, even if its existence is theoretically present.
Handmodeling? ?lexicon
?

chunk parsesAutomatic TrainingSet-Up
? ?

...

... ?
number andinterpretation ofnetworks for each network:� starting architecture� architecture hiddentypes� training dataAutomatic Training(parallel for each network)?FeasPar's architecture for run modeFigure 4.5: FeasPar's architecture for learn mode4.3 Baseline Parser OverviewThe chunk'n'label principle is the basis for the design and implementation ofthe FeasPar parser. This section describes the parser in overview, and the three

4.3. BASELINE PARSER OVERVIEW 35
\i have a meeting till twelve"?3 segmentation NNs o ChunkerPPPPPPPPPPPq@@@@R����	 �����������) wordchunks:phrasechunk:clausechunk:sentencechunk:

? ? ? ?
ihaveameetingtilltwelve LFLCRFsentencechunkfeature NNs+sentencechunks pathNNs

clausechunkfeature NNs+clausechunks pathNNs
phrasechunkfeature NNs+phrasechunks pathNNs

wordchunkfeature NNs+wordchunks pathNNs
9=;9=;PPPPPPPPPPPq@@@@R ����	 �����������)chunk parse (as shown in Figure 4.8)?Converter?feature structure (ILT)Figure 4.6: FeasPar's architecture for run mode. The Converter module variesamong the di�erent versions. In the baseline version, the algorithm in Figure4.4 is applied, in Chapter 5, the Cooperative Networks, and in Chapter 6, theConsistency Checking Search.

36 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTURE(((speech-act *state-constraint)(sentence-type *state))(((frame *booked))(((frame =*i))(i))((have))(((frame =*meeting))(((speci�er inde�nite)) a)(meeting))(((frame *simple-time)(../frame *interval)(../incl-excl inclusive))(till)(((hour =12)) ([regc] twelve)))))Figure 4.7: Chunked and labeled sentence (labels shown in boldface)([]((speech-act *state-constraint)(sentence-type *state))([]((frame *booked))([who]((frame =*i))([] i))([]([] have))([what]((frame =*meeting))([]((speci�er inde�nite)) a)([] meeting))([when/end]((frame *simple-time)(../frame *interval)(../incl-excl inclusive))([] till)([]((hour =12)) ([regc] twelve)))))Figure 4.8: Chunk parse (chunk paths shown in boldface)next sections its three main modules in more detail.According to the chunk'n'label principle, a sentence can be chunked, and itschunks can be labeled with feature pairs and paths. This gives a chunk parse (as

4.3. BASELINE PARSER OVERVIEW 37((speech-act *state-constraint)(sentence-type *state)(frame *booked)(who ((frame *i)))(what ((frame *meeting)(specifier indefinite)))(when ((incl-excl inclusive)(frame *interval)(end ((frame *simple-time)(hour 12))))))Figure 4.9: Feature structure parsein Figure 4.3), which can be converted into a feature structure by the algorithmin Figure 4.4. Hence, the hard problem is to produce a chunk parse. FeasParuses neural networks to learn to produce chunk parses. It has two modes: learnmode and run mode. In learn mode, manually modeled chunk parses are splitinto several separate training sets; one per neural network. Then, the networksare trained independently of each other, allowing for parallel training on severalCPU's, see Figure 4.5 on Page 34. In run mode, the input sentence is processedthrough all networks, giving a chunk parse, which is passed on to the convertingalgorithm shown in Figure 4.4. The architecture and an example run is shownin Figure 4.6 on Page 35, which will both be explained in the following. FeasParconsists of several neural networks[HKP91a]. These can be grouped into threefunctional modules:1. The Chunker2. The Linguistic Feature Labeler (LFL)3. The Chunk Path Finder (CRF)The Chunker splits an input sentence into chunks. It consists of three neu-ral networks. The �rst network �nds numbers. They are classi�ed as beingordinal or cardinal numbers, and are presented as words to the following net-works. The next network groups words together to phrases. The third networkgroups phrases together into clauses. In total, there are four levels of chunks:word/number, phrase, clause and sentence.The Linguistic Feature Labeler attaches features and atomic feature values(if applicable) to these chunks. A feature normally only occurs at a certainchunk level. During parsing, a neural network assigns values to features. Theneural network is tailored to decide on a particular feature at a particular chunk

38 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTURElevel. This specialization is there to prevent the learning task from becomingtoo complex. At each chunk level there are several features, each of them beingassigned one or zero atomic feature value. Since there are many features, eachchunk may get no, one or several pairs of features and atomic values. For theLFL, two di�erent representations are suggested. These will be discussed ingreater detail in Section 4.5.3. A special atomic feature value is called lexicalfeature value. It is indicated by '=' and means that the neural network onlydetects the occurrence of a value, whereas the value itself is found by a lexiconlookup. The lexical feature values are a true hybrid mechanism, where symbolicknowledge is included when the neural network signals so. Furthermore, featuresmay be marked as up-features (e.g. ../incl-excl in Figure 4.7 and 4.8 onPage 36). An up-feature is propagated up to its parent branch when buildingthe feature structure (see Figure 4.9).The Chunk Path Finder determines how a chunk relates to its parent chunkand consists of one network per chunk level and chunk path element.The following example illustrates in detail how the three parts work. Theparser gets the English sentence:\i have a meeting till twelve"The Chunker segments the sentence before passing it to the Linguistic Fea-ture Labeler, which adds semantic labels (see Figure 4.7 on Page 36). TheChunk Path Finder then adds paths, where appropriate, and we get the com-plete parse as shown in Figure 4.8 on Page 36. Finally, processing it by thealgorithm in Figure 4.4 on Page 33, gives the feature structure as shown inFigure 4.9.For simplicity, this example assumes that all networks perform perfectly. Theconverter in Figure 4.4 only considers the output with the highest activation forevery network. How to consider all outputs will the topic of chapter 5 and 6.4.3.1 LexiconFeasPar uses a full word form lexicon.5 The lexicon consists of two parts6: �rst,a syntactic and semantic microfeature [Sha91] vector per word, and second,lexical feature values.Syntactic and semantic microfeatures are represented for each word as a vec-tor of binary values. These vectors are used as input to the neural networks.As the neural networks learn their tasks based on the microfeatures, and notbased on distinct words, adding new words using the same microfeatures is easyand does not degrade generalization performance. The number and selection ofmicrofeatures are domain dependent and must be made manually. For CR and5This means that for example the word forms \be", \is", \are", and \been" are separatelexicon entries, even if they all have the word root \be" in common.6The lexicon is later extended with a third part, statistical microfeatures, see Section 4.7.4.

4.4. THE CHUNKER 39ESST, the lexicon contains domain independent syntactic and domain depen-dent semantic microfeatures. To manually model a 600 word ESST vocabularyrequires 3 full days.Lexical feature values are stored in look-up tables, which are accessed whenthe Linguistic Feature Labeler indicates a lexical feature value. These tablesare generated automatically from the training data, and can easily be extendedby hand for more generality and new words. An automatic ambiguity checkerwarns if similar words or phrases map to ambiguous lexical feature values.4.3.2 Neural Architecture and TrainingAll neural networks have one hidden layer, and are conventional feed-forwardnetworks. The learning is done with standard back-propagation [RHW86,HKP91b], combined with the constructive learning algorithm PCL [Jai91] (seeSection 2.3.5), where learning starts using a small context, which is increasedlater in the learning process. This causes local dependencies to be learned �rst.Generalization performance is increased by sparse connectivity. This connec-tion principle is based on the microfeatures in the lexicon that are relevant to aparticular network. The Chunker networks are only connected to the syntacticmicrofeatures, because chunking is a syntactic task. With ESST, the LinguisticFeature Labeler and Chunk Path Finder networks are connected only to thesemantic microfeatures, and to relevant statistical microfeatures7. All connec-tivity setup is automatic.4.4 The ChunkerThe Chunker is almost identical to the �rst three PARSEC [Jai91] modules,Preprocessor, Phrase Module, and Clause Mapping Module. One extension tothe Chunker is described in this section.4.4.1 Ordinal and Cardinal NumbersIn PARSEC's preprocessor module, alphanumeric strings are detected. How-ever, no distinction is made between cardinal and ordinal number, e.g. \three"and \third". For a task like ESST, however, this distinction is important, whichshould be obvious from the following example:\I'm free at three on the third"Here, \third" indicates the third day of the month, whereas \three" indicatesthree o'clock.The Chunker uses an extended preprocessor output representation, consist-ing of three values: 'number', 'ordinal number', and 'cardinal number': 'Num-ber' is used for \twenty" in \twenty nine" or \twenty ninth". 'Ordinal number' is7Explained in Section 4.7.4

40 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTURE
butanyafternoontwentyninththirtiethor�rstafterthreeisgood

�! HIDDEN UNITS �!
r r rr r rr r rw r rr w rr w rr r rr w rr r rr r wr r rr r r
?number?ordinal number?cardinal number

Figure 4.10: New preprocessor representation.used for \ninth" in \twenty ninth" or \ninth". Finally, 'Cardinal number' is usedfor \nine" in \twenty nine" or \nine". A complete example sentence is illustratedin Figure 4.10.
4.5 Linguistic Feature LabelerThis section will discuss two aspects of the Linguistic Feature Labeler: plau-sibility for di�erent kinds of parsing and representation. In order to test theplausability for FeasPar for both syntactic and semantic parsing, two di�erentLinguistic Feature Labelers (LFL) are trained, one for German, yielding syn-tactic labels, and one for English, computing semantic labels. For syntacticanalysis, German is chosen as a challenging example language, because of itsrelatively complicated morpho-syntax. This makes it a more interesting taskthan English syntax would have been.

4.5. LINGUISTIC FEATURE LABELER 41(((form passive) (tense present)(mood ind) (agr sing 3)) ;features of verb clause 1(falls)((case nom) (agr sing 3) (gender masculine)) ihr artikel) ;features of NP 1akzeptiert)(wird))(((form active)(tense future) (mood ind) (agr plu 1)) ;features of verb clause 2(werden)(((case nom) (agr plu 1)) wir) ;features of NP 2(((case dat) (agr pol 2)) ihnen) ;features of NP 3(auch)(((case acc) (agr plu 3) (gender neuter)) spezielle formulare) ;features of NP 4(((case acc) (agr sing 3) (gender masculine)) f�ur ihren artikel) ;features of PP 1(zusenden)) Figure 4.11: Syntactic labels (labels shown in boldface)4.5.1 Syntactic LabelsOne Chunker and an LFL are trained with the German CR task.8 The followingsentence will illustrate how parsing works (see also Figure 4.11):\falls ihr artikel akzeptiert wird werden wir ihnen auch spezielle formulare f�ur ihren artikel zusenden"(\if your article accepted is will we you also special forms for your article send")\If your article is accepted, we will also send you special forms for your article."First, the original sentence is chopped up into chunks. These chunks arepassed to the Linguistic Feature Labeler. In this example, the Linguistic FeatureLabeler faces the problem that \wird", word form of \werden", and \werden"itself have two distinct meanings (passive and future), in addition to beingdi�erent word forms. For example, the tense feature depends both on meaningand word form. Figure 4.11 shows a parse. The feature pairs are emphasized.For completeness, Table 4.1 on Page 42 shows the features from the CR corpus,along with their meanings and value ranges.8The GLR translation system for the German CR task is syntax-based. The morpho-syntactic labels used and learned by the LFL are exactly those used by the GLR translationsystem.

42 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTUREfeature type Feature name feature valuescase nominative, accusative, dative, genitivephrase agreement 1st singular, .., 3rd plural, 2nd politefeatures gender feminine, masculine, neuterform active, passiveclause tense present, past, perfect, pluperfect, futurefeatures mood indicative, subjunctive, in�nitiveagreement 1st singular, .., 3rd plural, 2nd politeTable 4.1: Syntactic labels used in German CR task4.5.2 Semantic LabelsIn order to test plausibility also for semantic labels, another Chunker and LFLis trained with ESST9 to form a parser. The following sentence serves as anexample for how the parser works:\Can you meet in the morning"Here the Chunker also segments the sentence before passing it to the LFL,which adds semantic labels, as shown in Figure 4.12. The complete list ofsemantic features is shown in Appendix A.(((frame *free))((can))(((frame *you))(you))((meet))(((frame *special-time))(in)(((speci�er de�nite)) the)(((time-of-day =morning)) morning)))Figure 4.12: Semantic labels (labels shown in boldface)9The GLR* translation system for ESST is semantics-based. The semantic labels used andlearned by the LFL are exactly those used by the GLR* translation system.

4.5. LINGUISTIC FEATURE LABELER 434.5.3 Representation MethodsTwo di�erent neural network representations for the Linguistic Feature Labelerare suggested:1. Common network representation: A network represents all features for achunk type, so that for example all phrase chunk features are representedby one network together, and all clause chunk features in another.2. Separate network representation: A network represents only one feature.syntactic features semantic features1. common 2. separate 1. common 2. separatenetwork network network networkFeature type representation representation representation representationword features n/a n/a 97.6 % n/aphrase features 93.1 % 88.8 % 94.6 % 96.1 %clause features 86.7 % 85.8 % 85.6 % n/aTotal average 89.4 % 87.3 % 92.6 % 96.1 %Table 4.2: Syntactic and semantic features' test set performance comparison4.5.4 ResultsThis subsection discuss the test set results in the Tables 4.2 on Page 43, 4.3 onPage 44, 4.11 on Page 59, and 4.13 on Page 61 in respect to di�erent kinds ofparsing tasks and representation methods.Syntactic and semantic parsing tasks are well mastered. The parser haslearned features in German, which has with a rich and complex morpho-syntax.One word has many word forms, and each word form has many meanings. Thisis a very interesting problem, because the mapping from word forms to featuresis not trivial. Among the features, distinction can be made between simpleand complex features: simple features, like gender, depend on one word only,and the task for them is only �nding the correct feature within a word meaning.Complex features, like tense and agreement also have to combine several wordsthat all have several meanings. For example, \werden", which has three distinctmeanings, or nouns like \Artikel", which are the same in singular and plural inGerman. In spite of these di�culties, the LFL generalizes well. The experimentswith English sentences and semantic features further con�rm that the approachis suited for other kinds of features and languages. Further, all results showa tendency that features corresponding to smaller constituents are easier to

44 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTUREFeature type Feature namecase 91.2 %phrase agreement 94.3 %features gender 93.8 %Average 93.1 %form 91.1 %tense 91.4 %clause mood 83.9 %features agreement 80.4 %Average 86.7 %Total average 89.4 %Table 4.3: Test set performance on the Linguistic Feature Labeler for syntacticfeatures from the German CR task, broken down by features.learn than those corresponding to larger ones. This tendency is seen for boththe morpho-syntactic and the semantic features. The tendency is stronger forthe semantic features, due to the lexical feature values, which are often usedfor semantic features, especially for those corresponding to small constituents.Lexical feature values are not used for the experiments with morpho-syntacticfeatures described here.The two representation methods have di�erent advantages and disadvan-tages. Common network representation have the advantage of co-operation,i.e. potentially, correlations between features are exploited. Evidence for thisis that total average performance for syntactic features is better with commonnetwork representation than with the separate one. Further, overall trainingtime is shorter, and the overall network size is smaller. The separate networkrepresentation bene�ts from specialization. Each network is dedicated to onetask only and can concentrate on that one. This is demonstrated by the resultsof the semantic features. The co-operation gain is hardly present for seman-tic features, since they do not correlate as much as syntactic features do: e.g.exclaim and day have nothing to do with each other, whereas case and genderhave a strong correlation. As a consequence, the separate modules approach isincluded in the baseline version of the ESST parser.4.6 The Chunk Path TaskThe Chunk Path Task determines the paths of all chunks. Each chunk pathelement at each chunk level is represented by a neural network. By choosingthe right representation of feature structures as chunk paths, the learning prob-

4.6. THE CHUNK PATH TASK 45((speech-act *suggest)(sentence-type *directive)(frame *schedule)(what ((frame *it)))(when ((frame *time-list)(connective -)(items (*MULTIPLE*((frame *simple-time)(day 8))((frame *interval)(incl-excl inclusive)(start ((frame *simple-time)(hour 8)))(end ((frame *simple-time)(hour 10))))))))(conjunction then))Figure 4.13: ILT for \then let +s plan it for then on the eighth eight to ten".lem complexity is reduced considerably. This will be shown in this section bycomparing two representation methods, brute force modeling and tree modeling.As mentioned in Section 4.1, a chunk path may contain more than one ele-ment, in order to allow nesting depth. An example is the chunk path when/endin Figure 4.9 on Page 37. However, some feature structures have paths contain-ing the path element items, e.g. the ILT in Figure 4.13. Since ILT models timescheduling, many time expressions appear in this style. The question is, whatis the best modeling for such paths.A brute force modeling, gives a training pattern as shown in Figure 4.14 onPage 46,10 containing e.g. the chunk path when/items/1/start, where itemsand 1 seem necessary to determine the exact position of the atomic feature pairsof the chunk. This modeling has the problem that the chunk path of a chunkdepends highly on the appearance of similar chunks in its context, and verylittle on the chunk content. This is apparent in Figure 4.13: only because both\on the eighth" and \eight to ten" appear in the same sentence, there is an extrastep of depth containing (frame *time-list).A more consistent labeling paradigm, the tree modeling, models the chunksas if they appeared alone, and how sibling chunks relate to each other, i.e.10The feature pair (frame *interval) is not modeled explicitly, because it is alwaystriggered by the feature incl-excl. The same thing applies for (frame *time-list) and(connective -), which are due to [items]

46 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTURE([]((speech-act *suggest)(sentence-type *directive))([] ([]((conjunction =then))([] then))([] ([] let))([] ([] +s))([]((frame =*schedule))([] plan))([what]((frame =*it))([] it))([when/items/1]((frame *simple-time))([] for)([] then)([] on)([] the)([]((day =8)) ([rego] eighth)))([when/items/2/start]((../incl-excl inclusive)(frame *simple-time))([]((hour =8)) ([regc] eight)))([when/items/2/end]((frame *simple-time))([] to)([]((hour =10)) ([regc] ten)))))Figure 4.14: Brute force modeling: training example for the sentence \then let+s plan it for then on the eighth eight to ten." Notice the usage of when/items/1and when/items/2ignoring the items and 1 path elements, and model how to incrementally builda structure from separate paths. Figure 4.15 on Page 47 shows an examplefor how to model a training sentence. The idea behind the tree modeling isillustrated in Figures 4.16- 4.18: The chunks are viewed as loose tree branchesthat are incrementally added to form a tree: The �rst branch (\on the eighth")is created as normal, i.e. as if it were the only chunk with the path when. Thesecond branch (\eight") is also labeled as if it were the only chunk with the pathwhen, with the additional control information new. The latter means that thisbranch should be merged as a new when branch.The merge result is shown in the left part of Figure 4.17. Further in thesame �gure, a third branch (\to ten") is also labeled as if it were the only chunk

4.6. THE CHUNK PATH TASK 47([]((speech-act *suggest)(sentence-type *directive))([] ([]((conjunction =then))([] then))([] ([] let))([] ([] +s))([]((frame =*schedule))([] plan))([what]((frame =*it))([] it))([when]((frame *simple-time))([] for)([] then)([] on)([] the)([]((day =8)) ([rego] eighth)))([new/when/start]((../incl-excl inclusive)(frame *simple-time))([]((hour =8)) ([regc] eight)))([same/when/end]((frame *simple-time))([] to)([]((hour =10)) ([regc] ten)))))Figure 4.15: Tree modeling: training example for the sentence \then let +s planit for then on the eighth eight to ten". Notice the usage of when, new/when/start,and same/when/end, and compare with Figure 4.16 - 4.18.with the path [when], with the control information same. The latter means thata new branch should not be created, but that it is added to the same branchthat was most recently added. The �nal result is shown in Figure 4.18, whichis structurally equivalent to the entire [when] branch of the ILT in Figure 4.13on Page 45.In more general terms, a chunk is labeled regardless of its neighbour chunksas if they were standalones, with the addition of control information that ex-presses how to merge with the last chunk having the same chunk path element(e.g. when).However, the control information new or same is not su�cient for an unambi-gious speci�cation, as the following example will show: In Figure 4.19 on Page

48 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTURE
add

eight

[when]

for then on the eighth

[when/start]

control: new

Figure 4.16: Tree modeling of chunk paths:Left: a standalone [when] chunkRight: another standalone [when] chunk to be merged
[when]

[start]

[when]

to ten

add

for then on the eighth eight

[when/end]

control: same

Figure 4.17: Tree modeling of chunk paths:Left: result of merging the two �rst [when] chunksRight: a third standalone [when] chunk to be merged

4.6. THE CHUNK PATH TASK 49
[end][start]

[when] [when]

for then on the eighth eight to tenFigure 4.18: Tree modeling of chunk paths:Result of merging all three [when] chunks50 the parser must add the chunk first as a new branch to the parse tree.However, this is ambiguous, because it is not clear if the new branch shouldbe a neighbor to all other branches, as in Figure 4.20 on Page 50, or if thereshould be a split of the previous branch, as in Figure 4.21 on Page 51. For thispurpose, a control bit representing neighbor or split is necessary.Summing up, two control bits new or same and neighbor or split for everychunk path element are in principle necessary. However, for many chunk pathelements, this control information is superuous, and receives a `don't care' valueduring training. In the back-propagation algorithm, target errors calculatedfrom `don't care' values are not back-propagated.

50 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTURE

twenty ninth thirtieth first

add

[when] [when] [when]

control: new

Figure 4.19: Tree modeling of chunk paths:Ambiguous merging of the third branch.
[when]

[when]

[when]

twenty ninth thirtieth firstFigure 4.20: Tree modeling of chunk paths:The third branch was included with neighbor.

4.7. NEURAL NETWORK IMPROVEMENTS 51

[when][when] [when]

twenty ninth thirtieth firstFigure 4.21: Tree modeling of chunk paths:The third branch was included with split.4.7 Neural Network ImprovementsThis section describes various improvements that have the potential of increasinge�ciency and performance of the separate neural networks. By considering thenumber of networks, it is clear that the Linguistic Feature Labeler networksfor word chunks and phrase chunks (LFLWP) are especially important for tworeasons:1. Number of Networks: The LFLWP networks make up 2/3 of all net-works (29 out of 44).2. Usage: For each analysis, there are more lower level chunks than upperlevel chunks. The LFLWP networks are applied more often than othernetworks. Hence, low performance in one LFLWP network would damagethe �nal parse more than low performance in a non-LFLWP network.Therefore, most extensions are tested on LFLWP networks. Some of themethods did not give any performance increase with ESST, but might increaseperformance on other tasks. One of the methods, hybrid encoding, in a reducedvariant, EGREP, has been very successful (see Section 2.3.5).

52 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTURE4.7.1 Initial improvementsFor practical reasons, neural network type of PARSEC [Jai91] is used as astarting point for the implementation. Reduction of memory usage and speedup of the training and parsing process is achieved by the following technicalchanges to the PARSEC software:� No Replication of Networks: PARSEC replicates its networks whenbuilding a run time system after training, instead reusing networks withvarying parameters. This replication has two disadvantages: Firstly, cer-tain �xed architectural limits are introduced, e.g. constraining how manyphrases could occur in a sentence. Secondly, memory is allocated exces-sively. FeasPar reuses networks by running them with varying parameters,thus eliminating these architectural constraints and reducing memory de-mand.� Skipping Unneccessary Unit Calculations: For various reasons, e.gsmall context during early training phases, not all neural network unitsoutputs are connected to other input units. Hence, the calculation ofthese outputs is not strictly necessary. Not calculating these unconnectedunits brings a speed up during early training of up to a factor of 5 (di�ersfor various modules). In FeasPar, unconnected units are tracked, andexcluded from calculation.� No Incremental Presentation of Words: The input sentence is fedinto PARSEC word by word, calculating all networks several times duringthis incremental feeding. The idea behind it is robustness for deletion andinsertion of words. In FeasPar, all words are presented at once, so thatthe networks only must be run once.� Non-Recursive (normal) Units: PARSEC contains a recursive unittype, where the new output calculation of a unit is a function also includ-ing the old unit output. This is motivated by the need to hold unit outputvalues during the incremental presentation of words. In FeasPar, recur-siveness is removed. Because non-recursive units have simpler derivatesthan recursive units, complexity is reduced and computation speed im-proved.The implementation of the last two points causes LFL performance to in-crease slightly (see Table 4.4), and training and run times to decrease by a factorof 5 to 10, depending on sentence length.4.7.2 Hybrid EncodingSince neural networks have learning capabilities, one promising idea is to learnthe lexicon as well, instead of having to model it by hand. This idea was �rst

4.7. NEURAL NETWORK IMPROVEMENTS 53Incremental presentation presenting alland recursive units words simultaneouslyFeature type Feature name (PARSEC style) and non-recursive unitscase 91.2 % 94.3%phrase agreement 94.3 % 95.8%features gender 93.8 % 94.8%Average 93.1 % 95.0 %form 91.1 % 92.9%tense 91.4 % 84.0%clause mood 83.9 % 91.1%features agreement 80.4 % 78.6 %Average 86.7 % 86.7 %Total average 89.4 % 90.2 %Table 4.4: Gain of presenting input words simultaneously and using non-recursive units. Test set results on syntactic features from the German CRtask.presented by Miikkulainen [MD89b], as described in Section 2.3.5. A furtheradvantage is that a learned lexicon can contain lexical knowledge that the humanmodeler does not perceive. On the other hand, one can argue that if certainlexical knowledge is obvious, it would be easy to model manually. The timee�ort for lexicon modeling is only a few days for a limited domain.Based on these ideas, a hybrid encoding of the lexicon is suggested. Themanually lexicon is expanded with one unit, which may be learned. Whenlearning is done, and still the behavior is not perfect another one is added etc.Hence, the new units are added constructively. Since learning of the di�erentnetworks occurs in parallel, the extra bits that a network trains should be visibleonly to that network (the �rst p bits remain equal for all networks, as these arethe hand modeled microfeatures). If assuming n networks, the word input ofnetwork k will have the format:hand modeled microfeatures| {z }p bits learned microfeatures| {z }lk bitswhere p is a constant determined before learning. lk is 0 during the mainphase of the learning, and then incremented until the network has learned per-fectly.This approach had never been tried before. Miikkulainen's FGREP [MD89b]has a �xed number of units in the lexicon that are all learnable. Hybrid encodinghas two advantages over this: a) Learning goes faster when providing linguisticinformation. b) The number of learnable units needed are as low as possible.

54 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTUREFor new words, the p bits are de�ned as described in Section 4.3.1. For thelk bits, a simple solution is to set them to the 0-vector. A better solution is toadopt values from similar words.Without hybrid encoding With hybrid encodingtrain 92.8 % 93.2 %test 91.1 % 90.0 %Table 4.5: Results with/without hybrid encodingExperiments with hybrid encoding on the phrase chunking module of ESSTgive the results as shown in Table 4.5. They clearly indicate that hybrid en-coding reduces performance. In the opinion of the author, the reason is lack ofdata and lack of regularity in data. Miikkulainen's sentences are highly regular,and the ESST data are very irregular. Because the approach also adds furthercomplexity, it is not included in the �nal FeasPar baseline version for ESST.4.7.3 Second ParseThe parse method described in Section 4.3 is a �rst parse, because each Lin-guistic Feature Labeler or Chunker network only has the sentence as input anddecides based only on word input, without knowing the results of other classi-fying networks. Since the features are not independent, it would make sense tolet di�erent network decisions inuence each other. The second parse approachenables this. First, a parse is produced as described in Section 4.3. The �rstparse is then presented together with the word input when the networks are runa second time. The �rst parse is presented as input during the second parse inthe following manner:N is a Linguistic Feature Labeler network or a Chunk Path Finder of chunkC. Then all parse results for all super- and subchunks of C are input to N .In Table 4.6 results are shown for ESST semantic features at the phraselevel. Test set performance is measured by the average over all features. Alsoincluded is the total MSE (Mean Square Error), which is a good indicator forhow good the correct and incorrect learning patterns are.test results Without Second Parse With Second ParseAverage phrase feature 96.1 % 95.9 %MSE 0.210342 0.212359Table 4.6: Results with/without Second Parse

4.7. NEURAL NETWORK IMPROVEMENTS 55The results clearly indicate that second parse reduces performance. In theopinion of the author, this is due to the high number of parameters to learn.Since the approach also adds further complexity (more networks), it is notincluded in the �nal FeasPar baseline version for ESST.4.7.4 Statistical MicrofeaturesStatistical microfeatures are represented for each word as a vector of continuousvalues vstat. These microfeatures, each of them representing a feature pair (fv),are extracted automatically. For every feature value at a certain chunk level, ifthere exists a word such that, given this word in the training data, the featurevalue occurs in more than 50 % of the cases, i.e:9word w: #(in chunk c feature f has value v ^word w occurs in chunk c)#w > 0:5 ^#w > 1One continuous microfeature value vstat for a word w is set automatically tothe percentage of feature value occurrence given that word w, i.e:vstatw;f;v = #(in chunk c feature f has value v ^word w occurs chunk c)#wIn Table 4.7 results with ESST semantic features at the phrase level areshown. Test set performance is measured as average over all features. Alsoincluded is the total MSE (Mean Square Error).test results Without stat microfeatures With stat microfeaturesaverage feature 95.3 % 95.9 %MSE 0.231392 0.227669Table 4.7: Results with/without statistical microfeaturesThe results clearly indicate that statistical microfeatures increase perfor-mance. Therefore, it is included in the �nal FeasPar baseline version for ESST.4.7.5 Linear - Nonlinear Connectivity (LNC)The LNC idea is an extension of PARSEC's PCL idea: The principle of learningtypes with small context �rst, and extend the context in later types, is extendedin the dimension `linearity $ nonlinearity'. Certain tasks are easy enoughto be learned with linear connections (neural networks without hidden layer),and actually learn better than with nonlinear connections (neural network withhidden layer), due to the lower number of parameters. Therefore, to everynonlinear type in the learning process, a linear one with the same context is

56 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTURE

input layer

hidden layer

output layer

 context

(full connectivity)

nonev1 v2 v3

(full connectivity)

Figure 4.22: Without SCS: Output layer and hidden layer are fully connectedconstructed. The learning process starts with a learning type that adds linearconnections with a certain context context1. In the next learning type, nonlinearconnections with the same context context1 are added. Then the context isincreased to context2, and the learning type contains linear connections withcontext2 are added. In the next learning type, nonlinear connections with thesame context context2 are added, and so on.test results Without LNC With LNCframe 97.0 % 100 %MSE 0.017471 0.003620Table 4.8: Results with/without LNCIn Table 4.8 results are shown for ESST semantic feature frame for wordlevel chunk. Test set performance is measured as average over all features. Alsoincluded is the total MSE (Mean Square Error). The results clearly indicatethat LNC increases performance. Therefore, it is included in the �nal FeasParbaseline version for ESST.

4.7. NEURAL NETWORK IMPROVEMENTS 57

 context

(full connectivity)

nonev1 v2 v3

input layer

hidden layer

output layer

Figure 4.23: Selected connection structure (SCS): Output layer and hidden layerconnected in a selective mannertest results Without SCS With SCSfeature name all non-none-values all non-none-valuesframe 100.0 % 100 % 100.0 % 100 %minute 98.9 % 0 % 100.0 % 100 %month 99.4 % 0 % 100.0 % 100 %am-pm 100.0 % 100 % 100.0 % 100 %hour 98.4 % 75 % 99.8 % 97 %name 98.2 % 25 % 98.0 % 42 %speci�er 96.6 % 35 % 97.4 % 50 %Table 4.9: Selected connection structure (SCS) performance4.7.6 Selected Connection Structure (SCS)Most Linguistic Feature Labeler networks for word chunks and phrase chunks(LFLWP) are uneven classi�cation problems. This means that only 97% to 98%of the classi�cations should give the value none (i.e. no feature value for thisfeature), and the remaining 2 to 3 % should result in a normal feature value.Therefore, while analyzing performance, if focus is set on these 2 to 3%

58 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTUREof normal feature values (non-none values), performance is signi�cantly worsethan for all values (see column 1 and 2 in Table 4.9). In the current networkconnectivity, there is full connectivity between the outputs (representing fea-ture values) and the hidden layer (see Figure 4.22 on Page 56). This meansthat the hidden units are not specially dedicated to any particular part of theclassi�cation problem.The idea of SCS is to dedicate hidden units to parts of the classi�cationproblem. The hidden unit i only has the task to decide if the ith feature valueis present (output unit i high) or not (output unit low), (see Figure 4.23 onPage 57).Table 4.9 shows results for a few example ESST semantic features for wordlevel chunk. The results clearly indicate that SCS increases performance. There-fore, it is included in the �nal FeasPar baseline version for ESST.4.7.7 Extended ContextFinally, the context growth in the learning types mentioned in Section 4.7.5 isexpanded. This means that the learning process can go on beyond points whereit could run out of learning types, if extended context would not be included.If performance continues to increase, it is a true gain. If not, an earlier networkwith better performance is chosen as the optimal architecture, and the only lossis training time. No extra performance comparison tests with extended contextare presented here, since the networks in best case pro�t from it, and in worstcase, get the same performance as without it. Extended context is included inthe �nal FeasPar baseline version for ESST.feature type module name MSE performanceclauses, level 0 0.030038 97.0 %chunk phrases, level 0 0.033886 78.2 %paths phrases, level 1 0.002185 97.1 %words, level 0 0.002902 99.8 %chunking reg 0.000307 100.0 %networks phrase 0.039171 91.2 %clause 0.026379 94.1 %Table 4.10: Final baseline FeasPar for ESST: Test data set performance onchunk path and chunking networks

4.8. FEASPAR BASELINE PERFORMANCE 594.8 FeasPar Baseline PerformanceA complete version of FeasPar, including the Chunker, Linguistic Feature La-beler, and the Chunk Path Finder is trained for ESST. In total, this meansrunning training processes for 44 di�erent networks. The test set results for all44 networks are shown in Tables 4.13 on Page 61 and 4.10 on Page 58. Singlenetwork results are shown for completeness. This version of FeasPar is in laterchapters referred to a the (�nal) FeasPar baseline version for ESST.To see the cumulative performance increase of the extensions in Section 4.7,syntactic features semantic featurescommon separate common separate separateFeature type modules modules modules modules modules�nalbaselineword features n/a n/a 97.6 % n/a 99.6 %phrase features 93.1 % 88.8 % 94.6 % 96.1 % 96.9 %clause features 84.0 % 85.8 % 85.6 % n/a 92.5 %Total average 88.6 % 87.3 % 92.6 % n/a 96.3 %Table 4.11: Syntactic and semantic features' test set performance comparison.PM 1:data set precision normaltest 63.4% 45.2%evaluation 58.3% 33.8%Explanations:� `normal' is the measure de�ned in Sec-tion 3.4.1.� `precision' is the measure as de�ned inSection 3.4.1, but allows extra featuresand/or feature values in the output,without counting these as wrong. `Preci-sion' is a weaker criterion than `normal'.Table 4.12: ILT feature accuracy on ILT in ESST

60 CHAPTER 4. BASELINE PRINCIPLE AND ARCHITECTUREthe Linguistic Feature Labeler results are contrasted with the initial results inTable 4.11 on Page 59. It is apparent that performance increases signi�cantly.Finally, the parser is run as a whole to produce feature structures (ILT).FeasPar parses two di�erent data sets. First, the test set used throughout thischapter. Second, an unseen evaluation set. Both data sets include correctILTs. The results on the evaluation set are signi�cantly worse than on the testset. This is not very surprising. It shows that development has been targetedtowards the test set. Also, we see that the ILT performance is considerably lowerthan the individual networks' performance. This is due to the multiplication ofindividual network errors.4.9 SummaryThis chapter presented the chunk'n'label principle for mapping natural languageinto feature structures. The FeasPar parser baseline version was introduced. Itconsists of several back-propagation neural networks. New methods for improv-ing the performance of these networks were presented and tested. The �nalbaseline evaluation shows that each neural network performs well or very well,but that the total parse result (ILT feature accuracy) is not satisfactory.

4.9. SUMMARY 61feature type feature name MSE performanceam-pm 0.004702 100.0 %day 0.005742 100.0 %day-of-week 0.006374 99.4 %exclaim 0.001386 100.0 %�rst-name 0.001292 99.8 %frame 0.001480 100.0 %hour 0.000547 100.0 %last-name 0.000888 100.0 %word minute 0.001468 100.0 %features month 0.001806 100.0 %name 0.014036 98.0 %period 0.005075 99.4 %quantity 0.002295 99.8 %speci�er 0.017490 97.4 %time-of-day 0.003022 100.0 %title 0.001695 100.0 %unit 0.000819 100.0 %Average 99.6 %../frame 0.000540 100.0 %../incl-excl 0.003584 98.2 %adverb 0.039457 93.8 %attitude 0.010799 98.5 %babble 0.005375 99.4 %phrase conjunction 0.010376 98.8 %features connective 0.000130 100.0 %degree 0.014352 96.8 %frame 0.110836 79.1 %name 0.005887 100.0 %speci�er 0.018327 96.2 %type 0.001837 100.0 %Average 96.9 %adverb 0.000572 100.0 %conjunction 0.014241 98.5 %clause degree 0.000569 100.0 %features type 0.028168 95.5 %frame 0.204309 68.7 %Average 92.5 %frame 0.064294 92.5 %sentence sentence-type 0.099496 79.1 %features speech-act 0.246514 49.3 %Average 73.6 %Table 4.13: Final baseline FeasPar for ESST: Test set performance on LinguisticFeature Labeler for semantic features.

Chapter 5Cooperative NetworksIn this chapter, another neural framework for �nding the best feature structureis presented. The idea is to couple results from the baseline architecture, andcombine them with information about how features occurred together.This chapter �rst gives an analysis of the knowledge sources available (Sec-tion 5.1). Then the suggested architecture is presented and discussed in Section5.2, followed by the presentation of results and conclusions from that.5.1 Knowledge Sources AnalysisIn various systems of di�erent nature (cognitive and non-cognitive), the systembuilders combine di�erent kinds of knowledge sources. The combination of dif-ferent knowledge sources is being referred to as the mixture of experts principle.This principle often has a positive impact on performance. An intuitiveexplanation for this is a comparison with the human decision making process:the more knowledge or facts that are available, the better the quality of thedecisions.When using this principle, the key tasks are to identify the knowledgesources, to model them, and to combine them. The latter two tasks are hard,and depend on the kind of knowledge sources.5.1.1 Identifying Knowledge SourcesThe three knowledge sources in the baseline version are:1. The Input Sentence Text to be Analyzed. This is the most obviousknowledge source for any natural language understanding system.2. The Mapping From Input Words to Feature Pairs. This knowl-edge source is provided to FeasPar as examples, and the baseline neuralnetworks learn the mapping. 62

5.2. ARCHITECTURE 633. The Lexicon. The lexicon provides the word representation that thelearning task needs.However, as the results in Section 4.8 show, these knowledge sources arenot su�cient to give a good performance. Therefore the following additionalknowledge sources are taken into consideration:4. Logical Consistency of feature pairs: It is important to understand thatonly certain feature combinations make sense. For the JANUS ILT, thisinformation is already available as an ILT speci�cation document, whichis a context free grammar (see Figure 5.1 for an example rule). A programcomputes which feature pair combinations are consistent or not, based onthe grammar.5. Statistical Consistency of feature pairs: Additionally, frequencies offeature combinations can be computed based on the training material.See Table 5.1.(<SIMPLE-TIME> = ((frame *simple-time)(minute [NUMBER-VALUE])(hour [NUMBER-VALUE])(day [NUMBER-VALUE])(month [NUMBER-VALUE])(day-of-week [DAY-OF-WEEK])(time-of-day [TIME-OF-DAY])(am-pm [AM-PM])(speci�er [SPECIFIER])))Figure 5.1: ILT speci�cation example rulea1 a2 #(a1�s ^ a2�s) #(a2�s) #(a1�s^a2�s)#(a2�s)(frame *simple-time) (day-of-week =) 174 174 1.00(day-of-week =) (frame *simple-time) 174 510 0.34Table 5.1: Statistical consistency5.2 ArchitectureA new neural network architecture called cooperative networks for exploiting theconsistency information is suggested.

64 CHAPTER 5. COOPERATIVE NETWORKS
A

A

A

A

A

S

1
2

3

4

5

Figure 5.2: Example at cooperative networkThis architecture is explained in this section, which successively describesthe various cases that must be considered. For clarity, a complete cooperativenetwork hierarchy for a real ILT is provided in Figure 5.5, which includes allcases, and shows how they are used. The simplest case is discussed �rst: A atfeature structure, containing only atomic feature pairs.5.2.1 Flat Feature StructuresThe basic idea is to have a node for every possible feature pair, and connectevery node with every other node (see example network in Figure 5.2 and thenetwork S in Figure 5.5). The consistency information is expressed as weightedconnections between those nodes. The nodes take as initial activation the base-line architecture output. When updating the node activations iteratively, theywill inuence each other. Nodes connected with positive weights, will exciteeach other, whereas nodes with negative weights will inhibit each other. Thechange of activations will converge towards zero over time. By reading out thenodes with high1 activations, the feature structure is obtained. This intuitiveexplanation can be formalized. Assume a network S with the following proper-ties: A � S (5.1)1If the value range is [d,e], then a value v is high if v > d+e2

5.2. ARCHITECTURE 65oa := �(� inputa) (5.2)wa;x = #(a�sany ^ x�sany)#(x�sany) (5.3)inputa := Xx6=a^X�Swa;xox (5.4)where:� #(P) is the number of times that event P occurred in the training data.� a is an atomic feature pair.� A is a node representing a.� s is the upper most level of a feature structure.� S a network representing s.� sany runs through all feature structures of the training set.� x is any (atomic or complex) potential feature pair of s.� X is a node representing x.� � = 1T is a constant. T is called the temperature.� �(x) = 11+e�x is the sigmoid function.Hop�eld InterpretationThe cooperative network model has a strong resemblance of Hop�eld networkmodels [HKP91c]: It consists of a connected network, whose nodes get initialactivations being almost correct. Iteration of the network calculations 5.2 and5.4 leads to a correct feature structure. In Hop�eld networks, the nodes getinitial activations corresponding to an almost correct picture. Iteration of thenetwork leads to a correct picture.Both the cooperative model and the Hop�eld model have two knowledgesources: The almost correct answer, i.e. initial activations, and knowledge aboutcorrect answers, i.e. the connection weights. In both models, the weights arecalculated from training patterns. The two models di�er in three aspects:1. Cooperative networks use continuous values, whereas Hop�eld networksuse discrete values.

66 CHAPTER 5. COOPERATIVE NETWORKS2. The Hop�eld connection weights are symmetrical, whereas cooperativeones are not. The reason for the latter, is that one feature may triggeranother, but not vice versa. This information would get lost if weightswere symmetrical.3. The cooperative model includes a temperature T . With high tempera-tures, the change in input required to ip2 the activation, is very small.With low temperatures, it takes a lot to ip the activation. To cool o�the temperature while iterating, is a good way to promote convergence,as known from Boltzman machines [HS86].Statistical InterpretationA cooperative network can also be given a statistical interpretation. A unit'soutput activation is viewed as the probability of an atomic feature value. Theconnection weight corresponds to the conditional probability. The total input isviewed as a sum of probability conjunctions. The recalculated output activationrepresents an estimate for the probability of an atomic feature value.An estimate for P (xi) is calculated instead of P (xi) itself for the followingreason: Feature pairs are highly dependent on each other. This means thatassumptions of an independent event cannot be made. Hence, an accurateprobabilistic calculation for P (xi) would lead to highly complex expressions thatcannot be calculated. The probabilistic calculations would contain events whereone feature depends on several other features. These events are too complexto be quanti�ed by the information contained in a limited training data set.Therefore, the statistical model only takes into account events involving one ortwo feature values, and constructs an estimate based on those events.A formal de�nition of the statistical interpretation is:P (xi jW) = oi (5.5)P (xi j xj ;W) = P (xi j xj) = 1kj wi;j (commented below) (5.6)P (xixj j W) = P (xi j xj ;W)P (xj jW) = 1kj wi;joj (5.7)inputi = Xj 6=i^xj�S kjP (xixj jW) (5.8)P̂ (xi jW) := �(� inputi) (5.9)where:2To ip, here means that the output of the �(x) function changes from the upper end ofthe value scale to the lower end, or vice versa.

5.2. ARCHITECTURE 67� W represents the input words w1...wn.� P̂ (xi j W) is an estimate for P (xi j W), made by a linear combination ofprobabilities. The � function ensures that the value ranges from 0 to 1.� kj are constants, so that the probability criteria is ful�lled:Pj P (xi j xj) =Pj 6=i 1kjwi;j = 1Note that the assumption was made:P (xi j xj ;W) = P (xi j xj) (5.10)This means that:P (xi j xj ;W) = P (xi j xj) = 1kj wi;j = 1kj #(i�sany ^ j�sany)#(j�sany) (5.11)The assumption is introduced for simplicity, since there would not be enoughdata available to calculate the frequencies in respect to W , which would be theexpression: #(xi�sany^xj�sany^W)#(xj�sany^W) . The Hidden-Markov-Model [Rab90] assump-tion, where only the last state of a sequence of states is considered, is a similarassumption.5.2.2 Nested Feature StructuresSo far, feature structures consisting only of atomic feature pairs have been dis-cussed. However, since a feature structure contains substructures, these struc-tures must all be represented somehow. A simple extension within the frame-work is to let every structure and substructure be represented by a network, andlet a complex feature be represented by a node that is a member of both net-works (see example network in Figure 5.3 and the networks S and C1 in Figure5.5). The node takes activations from both nets as input, and contributes to theinput of all other nodes of both nets. Formally, this amounts to the followingextensions:Assume:1. A complex feature pair (f cj), with feature f and complex value cj .2. (f cj) is part of feature structure s.3. Consequently, cj is a substructure of s (follows from 1. and 2.).Then let:4. a node Q(f cj) represent (f cj).

68 CHAPTER 5. COOPERATIVE NETWORKS
A

1

5
A

A
4

A
2

A

A

A

A
6

7

8

9

S C
1

Q
(f c)

1

Figure 5.3: Example complex value cooperative network5. a network S represent s.6. a network Cj represent cj . Q(f cj) is called the parent node of Cj .7. Q(f cj) � S ^ Q(f cj) � Cj .In total, there is an interaction of two e�ects: On one side, in each networkthe nodes will adjust to each other. This means the complex feature nodeQ(f cj)will get a high or low activation, i.e. the other nodes in S will 'tell' the complexfeature node Q(f cj) whether it '�ts in' in S or not. Further, the activation octhen inuences the nodes in Cj , so that if oc is high, node representing relevantfeatures in Cj gets high, and vice versa. On the other side, the nodes in Cj willinuence oc, i.e. they will 'tell' the complex feature node Q(f cj) whether it �tsas parent for Cj . Formally, this means that the cooperative network model isextended with the following formulas:input(f cj) := Xx6=(f cj)^X�Sw(f cj);xox + Xx6=(f cj)^X�Cw0(f cj);xox (5.12)w(f cj);x = #((f cany)�sany ^ x�sany)#(x�sany) (5.13)w0(f cj);x = #(x�cany ^ (f cany)�sany)#(x�sany) (5.14)

5.2. ARCHITECTURE 69
1

(f c)

A
9

A
6

A
7

A
8

C
1

A
1

5
A

A
4

A
2

1

S

Q

C
2

.

.

Figure 5.4: Example multiple complex value cooperative network5.2.3 Multiple Feature ValuesFeatures normally take one value. However, sometimes, they take two or more.These values may be either all atomic or all complex.3 This section shows howto �t multiple featur values into the frame work.multiple atomic values are simply handled by letting e.g. the feature pair(f1 a1;1) be represented by another node than (f1 a1;2). All equations arethen valid also for these two nodes.multiple complex values of the feature f are represented by one node Qc innetwork S, and one network Ci per complex value ci (see example networkin Figure 5.4 and the networks C11 and C12 in Figure 5.5). Node Q(f cj)is member of S and all Ci. To avoid dominance from all Ci versus S ininuence on oc, the average, rather than the sum, of the impacts from allCi are used:input(f c) := Xx6=c^X�Swc;xox+ 1n (Xx6=c^X�C1w0c;xox+ ::+ Xx6=c^X�Cnw0c;xox)(5.15)3Both types of values never occur together.

70 CHAPTER 5. COOPERATIVE NETWORKS

what

when

frame *schedule

speech-act *suggest
sentence-type *directive

frame *it

frame *simple-time

frame *simple-time
end

start

hour 10

day 8

hour 8

frame *simple-time

incl-excl inclusive

frame *interval

S

C

C

C

CC

11

12

111 112

2

Figure 5.5: Real example cooperative network for the ILT in Figure 4.13

5.3. EXPERIMENTS 715.2.4 Initialization ValuesAnother topic is how to initialize the oa and oc values. In principle, they shouldbe initialized with the results from the baseline parser, as presented in the lastchapter. The baseline architecture yields activations for atomic feature pairs(the Linguistic Feature Labeler networks) and for chunk paths (the Chunk PathFinder). The suggested way to combine these activations is to multiply theactivations of each path element and the atomic feature value activation. Theproduct is normalized with respect to the number of factors in the product bytaking the nth root, because various path segment combinations may lead tothe same path.Formally, the cooperative model is extended with the formulas:Initial activation for atomic feature pair node A in network N :oinita := mvuutobaselinepath0;0 ::obaselinepath0;k0 ::obaselinepathl;0 ::opathl;kl obaselinea| {z }m factors (5.16)Initial activation for complex feature pair node C in network N :oinitc := mvuutobaselinepath0;0 ::obaselinepath0;k0 ::obaselinepathl;0 ::opathl;kl| {z }m factors (5.17)where:� obaselinea , is the neural network output activation for the atomic featurevalue v of the network for the feature f in the Linguistic Feature Labeler,i.e the feature pair a = (f v).� obaselinepathi;j are the activations for the chunk path segments values.path0;0::pathk;lk together make up the path for N referred to the uppermost network.� N is a network at any level, including the upper most network.5.3 ExperimentsThe �rst implemented version of the cooperative network model has the follow-ing disadvantages:1. All units are asymptotically drawn towards zero. The reason for this isthat many activations and weights have values in the lower half of theirrange. The range is initially [0; 1]. Experiments with other value rangesshowed that the most promising is [�1; 1] for both activations and weights.

72 CHAPTER 5. COOPERATIVE NETWORKS2. Some nodes representing the same feature pair, beloging to di�erent net-works, due to di�erent paths, become activations being all high. Since theinterpretation of the paths is that only one of them is correct, only one ofthese feature pair nodes should get high activation. Therefore, inhibitoryglobal constraint weights are introduced.3. When the activations get stable in sensible value ranges, it turns out thatactivations stabilize at values very far from the initial values, i.e. thatthe networks stabilize into feature structures that have very little to dowith the feature structures from the baseline version. Therefore, in laterimplementations, oinitx may also impact the activation calculation in lateriterations.PM 1:System precision normalLR 69.5% 51.6%FeasPar baseline 58.3% 33.8%FeasPar cooperative networks, experiment 0 23.3% -26%FeasPar cooperative networks, experiment 39 66.8% -42%FeasPar cooperative networks, experiment 44 43.2% -81%Explanations:� `normal' is the measure de�ned in Section 3.4.1.� `precision' is the measure as de�ned in Section 3.4.1, but allows extra features and/orfeature values in the output, without counting these as wrong. `Precision' is a weakercriterion than `normal'.Parameter settings:# zo zw winit wo omin wmin wincons �path �stop Tstart Tdecay0 -1.0 -1.0 1.0 1.0 10�5 0.05 �102 10 10�5 1.0 0.939 -1.0 -1.0 1.0 0.0 10�5 0.05 �104 100 10�2 1.0 0.9544 -1.0 -1.0 1.0 0.0 10�5 0.05 �102 100 10�2 1.0 0.95Figure 5.6: Cooperative networks resultsTherefore, the second implemented version additionally contains these pa-rameters:� zo, output zero point. The output value range is [zo; 1]

5.4. SUMMARY 73� zw, weight zero point. The weight value range is [zw; 1]� winit, init weighting, and wo, output weighting. Equation 5.2 is replacedby: oa := �(�(winitoinita + woinputa)) (5.18)� omin: if oa < omin then the node Qa is not created in the network torepresent A.� wmin: if Xi and Xj are consistent, but wi;j < wmin then wi;j := wmin� wincons, inconsistent weight. If Xi and Xj are inconsistent, then wi;j :=wj;i := wincons� �path, path factor. In order to strengthen the signi�cance of structure, theoutput of a node, Qc for complex feature value (see 5.2.2), is multipliedby �path before being used as input activation in the sums in Equations5.4 and 5.12.� �stop. Stop criteria for the iterations: If the sum of output changes is lessthan �stop, then these networks are assumed to have reached stability.� Tstart. Starting value for T .� Tdecay Decay factor for T : Tt+1 = TtTdecayMost parameter combinations cause one or more problems: most units getsaturated at the top or bottom of the value range; or the activations end uposcillating instead of stabilizing. The most successful parameter combinations4and their experimental results on the entire evaluation set are shown in Table5.6.5.4 SummaryThe results clearly state that cooperative networks do not give the desired per-formance compared to the baseline version, given the ESST task and data.However, since the method is theoretically sound, and has strong parallels toother successful models, e.g. the Hop�eld model, it may provide good resultswith other tasks. In the opinion of the author, the cooperative network modelrequires more data to work well, like other statistically motivated models do[BCP+90, BLM91a, BPP+91].Though, for tasks with little training data as in ESST, the cooperative net-works do not work well, and other methods must be used for improving theperformance. A method more successful for ESST is presented in the nextchapter.4In total 45 combinations were tested.

Chapter 6Consistency CheckingSearchIn the previous chapter, the knowledge analysis shows that there are more knowl-edge sources available than those that are used in the baseline system. However,it is also shown that cooperative networks do not provide the desired perfor-mance increase. This chapter presents another method for adding the extraknowledge source that leads to a substantial performance increase.6.1 Knowledge Sources AnalysisAs already stated in Section 5.1, the baseline parser of chapter 4 should beenhanced with consistency information. The complete parse depends on manyneural networks. Most networks have a certain error rate; only a few networksare perfect. When building complete feature structures, these network errorsmultiply up, resulting in not only that many feature structures are erroneous,but also inconsistent and making no sense. A search algorithm compensatesfor this. It is based on two main information sources: �rst, probabilities thatoriginate from the network output activations; second, a formal feature struc-ture speci�cation, stating what combination of feature pairs is consistent. Thisspeci�cation is already available as an interlingua speci�cation document (seeSection 5.1).6.1.1 Global ConstraintsAdditionally, a few other ILT constraints must be considered. that are notmodeled in the interlingua speci�cation document. They are called global1constraints, and include three types:1The term global is used for reasons explained in Section 6.3.74

6.2. ARCHITECTURE 751. Frame Constraint: An ILT is a feature structure, where at each branchthe feature frame has one and only one value.2. Up-Features (see Section 4.3) as e.g. ../incl-excl may not appear atthe top most branch, because no parent branch is available.3. Compulsory Constraints: Not only a feature pair F1 may appearwith another feature pair F2, but that F1 must appear with F2, i.e. insome sense, F1 triggers F2. An example is (frame *simple-time) and(day-of-week =). The frequencies in the right-most column of Table 5.1suggest that (day-of-week =) triggers (frame *simple-time).6.2 Architecture6.2.1 Search TaskIn combining the network output and the constraints, the search �nds the fea-ture structure with the highest probability, under the given constraints beingconsistent. The outputs of each neural network are normalized to give a prob-abilistic interpretation. Then they are sorted by probability. They can now beviewed as an N-best list. Hence, the search input is one N-best list per network.To combine these N-best lists hierarchically to build an N-best list of featurestructures, forms the search task.6.2.2 Search Complexity PrecautionsThe ESST baseline version of FeasPar had 37 Linguistic Feature Labeler Net-works and 4 Chunk Path networks. Each network has up to 15 di�erent outputvalues. It is crucial to keep complexity and search times low. Therefore, thefollowing principles and constructs are applied:Hierarchy of Feature Structure Fragments: A feature structure is assem-bled using partial feature structures. These are called fragments. Thehierarchy corresponds to the chuck hierarchy and in what sequence thefragments are put together to form a complete feature structure (see thealgorithm in Figure 4.4).Agendas: Agendas (one per fragment) are used to direct the search, so thatalways the most probable of the unexamined combination is examined�rst.Lazy Evaluation: The Lazy Evaluation delays the expensive calculations offragments and agenda as long as possible. This is extremely important toreduce search time.

76 CHAPTER 6. CONSISTENCY CHECKING SEARCH6.3 Search Principlesagenda: 1.item: logP1 h elementsz }| {fragment part1;1 fragment part1;2 fragment part1;h2.item: logP2 fragment part2;1 fragment part2;2 fragment part2;n.fragment for chunktype=n: h elementsz }| {chunk pathtype=n i chunk featuretype=n i chunktype=n+1 0 chunktype=n+1 jfragment for chunktype=n path i: segment 0 segment jtype=nfragment for chunktype=n features i: featuretype=n 0 featuretype=n ktype=nExamples:fragment for chunktype=n: when((frame *simple-time) () () (time-of-day *morning)fragment for chunktype=n path i: when(()fragment for chunktype=n features i: () () (frame *simple-time) () ()Figure 6.1: Agenda and fragments. Double framed fragment parts indi-cates another fragment. Single framed fragment parts indicates neural networkoutput.When building a feature structure, the search uses structures as shown in Figure6.1: For the partial feature structure of every chunk, it de�nes an N-best list offragments. The fragment parts correspond to chunk path, chunk features, andsubchunks.Example: The fragment example for chunktype=n in Figure 6.1 correspondsto the chunk:([when]((frame *special-time))([] in)([] the)([]((time-of-day =morning)) morning))Building a fragment is an expensive operation. In order to build fragmentsas few times as possible, an agenda is used in parallel to each fragment list.

6.3. SEARCH PRINCIPLES 77Agenda calculations are much cheaper than fragment calculations. The agendaand fragment interact as follows:The agenda keeps hold of possible fragment con�gurations. It is sorted bylog probability. Upon a request for a new fragment, the next con�guration isfetched from the agenda, and the fragment is built. If during fragment build-ing, an inconsistency is detected, the building operation is abandoned, and thenext element on the agenda is used as con�guration. Then a new fragment isbuilt. This continues until a complete consistent fragment has been built. Thisfragment is then stored in the N-best list of its chunk, and returned.During building, fragment parts must be fetched. These are mostly frag-ments themselves (e.g. in Figure 6.1 fragment for chunk pathtype=n i). If thisfragment part has already been calculated during the search, it is already avail-able in the N-best list. If not, a request for a new fragment is made.The agenda itself is expanded as little as possible: When a new agenda itemhas been accessed, those candidate agenda items that may follow immediatelyare inserted in the agenda. This avoids an combinatorial explosion, but ensuresthat no con�guration is left out, or tried too late, with respect to logP (thelogarithmic probability).The consistent constraints mentioned above, are derived as follows: A featurestructure formalism contains rules that express in which context what featurepairs may appear. Prior to the parsing process, the program statically calculatesfor every combination of two feature pairs, if the two feature pairs may occurtogether or not. This information is consulted during fragment building, asmentioned above.Global constraints (see Section 6.1.1) can only be tested on the completefeature structure. When the search returns a complete feature structure for theupper most chunk, the global constraints are tested on the feature structure. Ifa test fails, the search is continued, until a complete feature structure satisfyingall global constraints have been found.Even if all possible care is taken to speed up the search, the worst-case searchis too long. To prevent this, the search is broken o� at a certain depth, and thesearch is repeated, this time allowing one inconsistency. If this search gets toodeep, two inconsistencies are allowed, and so on.6.3.1 Search ImplementationIn the following, the search algorithm will be explained in more detail. Its coreconsists of three interacting procedures: (See also Figure 6.2 - 6.5.)get fragment: This procedure produces the feature structure fragment cor-responding to a chunk. Calculation is only started if the fragment hasnot previously been computed, otherwise the corresponding item from theN-best list is returned. Before the fragment is calculated, all immediatesucceeding agenda elements are calculated and inserted in the agenda. A

78 CHAPTER 6. CONSISTENCY CHECKING SEARCHcheck is also made to the search depth to prevent search time from gettingtoo long.get subfragment: This procedure is called to increase the agenda: The call(in get fragment) is made in a loop. In this loop, for the subchunks ofthe currently examined chunk, each subchunk is examined one elementdeeper in its N-best list, the so-called new list element. The notion ofsubchunk includes chunk paths, chunk features, as well as three subchunks.get subfragment therefore has two purposes. First, the feature structurefragment corresponding to a subchunk is fetched. Second, the agenda isexpanded by the new list element. This ensures two things: one, thatthe agenda is expanded as late as possible, e.g. only one step in eachdirection (subchunk) from the current agenda position; and two, that itsnot generated too late, after it should have been evaluated. The latter istrue, because any agenda element N is generated when a agenda elementO is calculated, where O di�ers from N by one list element, and thereforeO is more probable than N , and N should therefore be evaluated after O.get subfragment lazy: Perform a lazy evaluation of the subfragment, bymaking a look-up in the respective N-best list.6.4 ImprovementsThe following improvements are added to FeasPar in order to gain performance:Rescoring and N-best: Since the Consistency Checking Search in principlecan deliver an N-best list of resulting ILTs, the potential for rescoring (i.e.not using neural network generated probabilities, but some other measurefor choosing the number one ILT candidate) was examined. In an initialexperiment, the PM1 calculation program is changed, so that it calculatesPM1 for the best 20 ILTs for every sentence, and picks the one with fewesterrors for summing up. This gives an error reduction to about the half2.The only remaining (non-trivial) problem is to �nd a rescoring that wouldpick a better number one alternative than the neural network probabilitydoes. A few di�erent scores have been tried without success. Therefore,the rescoring and N-best principle is not used in the �nal ConsistencyChecking Search version.Allowing Multiple Equal Feature Pairs: Occasionally, when building afragment during a search, more than one subfragment contains the same2In that early Consistency Checking Search version, PM1 using �rst-best, is 54.4 %, andusing N-best 76.9 %

6.4. IMPROVEMENTS 79typedef struct CHUNK_STRUCT{struct FRAGMENT_LIST_STRUCT *attr_fragment_list;struct FRAGMENT_LIST_STRUCT *path_fragment_list;struct CHUNK_STRUCT *subchunks;int n_subchunks; /* the *total* number of subchunks is *//* 'n_subchunks+2', since *//* number of 'subchunks' is n_subchunks */struct FRAGMENT_LIST_STRUCT *fragment_list;} CHUNK;typedef struct FRAGMENT_LIST_STRUCT{struct FRAGMENT_STRUCT *fragments;int n_fragments;struct AGENDA_STRUCT *top; /* agenda top */struct AGENDA_STRUCT *calc; /* currently calculated element */} FRAGMENT_LIST;typedef struct AGENDA_STRUCT{int *subfragment_n_best;double logP;} AGENDA;typedef struct FRAGMENT_STRUCT{double logP;struct FEATURE_PAIR_STRUCT *feature_pairs;} FRAGMENT;Figure 6.2: Search algorithm: data types. See the following �gures for usage.Only relevant information is shown for clarity.feature pair, i.e. more than one chunk is responsible for adding a par-ticular feature pair at a particular feature structure branch. This occurseven if it is not supposed to happen, according to the principles of thehand modeled alignment. The earlier Consistency Checker Search doesnot accept this, and requires that one and only one instance of a featurepair is produced for a particular branch. A later version allows multiplefeature pair instances.Sloppy Lexical Feature Value: As described in Section 4.3 and Section4.3.1, FeasPar uses lexical feature values. These are collected from the

80 CHAPTER 6. CONSISTENCY CHECKING SEARCHFRAGMENT *get_fragment(CHUNK *chunk, int n_best){ FRAGMENT **fragment;int i, j;AGENDA *next_calc;/* if fragment has already been calculated,get old result by looking up in table */if (n_best <= chunk->fragment_list->n_fragments-1){(*fragment) = &(chunk->fragment_list->fragments[n_best]);return(*fragment); }elsewhile (1){if (chunk->fragment_list->top != NULL){for (i=0; i<chunk->n_subchunks+2; i++){j = chunk->fragment_list->calc->subfragment_n_best[i];/* get subfragment and produce new agenda element,and extend agenda */get_subfragment(chunk,i,j+1); }/* get next agenda element */next_calc = next_agenda_e(chunk->fragment_list->calc);if (next_calc == NULL) return(NULL);chunk->fragment_list->calc = next_calc;}if (break_search(chunk->fragment_list)){printf("QUIT DUE TO DEEP SEARCH \n");return(NULL); }/* evaluate (eager) next fragment, and return if legal */if ((calculate_fragment(chunk,fragment)) &&((check_global_constraints(fragment)))){save_fragment(fragment,chunk->fragment_list);return(*fragment); }}}return(NULL);}Figure 6.3: Search algorithm: get fragment. See text for further explanation.

6.4. IMPROVEMENTS 81FRAGMENT *get_subfragment_lazy(CHUNK *chunk, int i, int j){ FRAGMENT_LIST *fragment_list;if (i == chunk->n_subchunks)fragment_list = chunk->attr_fragment_list;else if (i == chunk->n_subchunks+1)fragment_list = chunk->path_fragment_list;elsefragment_list = chunk->subchunks[i].fragment_list;if (fragment_list->n_fragments <= j) return(NULL);else return(&(fragment_list->fragments[j]));}Figure 6.4: Search algorithm: get fragment lazy. See text for further explana-tion. training data and stored in the lexicon. However, due to incompletenessor speech recognizer errors, a situation may arise, where a natural lan-guage chunk is not being stored in the lexical feature value lookup table.In many cases however, a similar chunk may be present, and could beused. An example will clarify this:Assume that in the lexical feature value table, only the phrase chunk\out of town" is stored, with the lexical feature value *out-of-town forthe frame feature. Now, the phrase chunk \out of the town" causes theframe feature network output value for lexical feature values to have thevalue act = 0:85. However, since \out of the town" is not stored in thelexical feature value lookup table, instead of failing, the sloppy mechanismcompares with table entries, computes the di�erence, diff 3 as well asstoring the table value, *out-of-town. A new activation value actsloppy =act � kdiff is calculated and used instead of the original act in furtherprocessing. (0 < k < 1 is an empirical constant. 0.9 works well.) Then,the alternatives are sorted by increasing diff , so that in the example, thetop most alternative value for frame is *out-of-town with actsloppy =3The di�erence measure, diff , is the same as used when calculating word accuracy ina speech recognizer, i.e. the minimal number of insertions, deletions and substitutions stepsneeded to change one string to the other.

82 CHAPTER 6. CONSISTENCY CHECKING SEARCHvoid get_subfragment(CHUNK *chunk, int i, int j){ FRAGMENT *fragment,*old_fragment;AGENDA *new_agenda;if (i == chunk->n_subchunks)fragment = get_attr_fragment(chunk,j);else if (i == chunk->n_subchunks+1)fragment = get_path_fragment(chunk,j);elsefragment = get_fragment(&chunk->subchunks[i],j);if (fragment == NULL) return;new_agenda = copy_agenda(chunk->fragment_list->calc,chunk->n_subchunks+2);old_fragment =get_subfragment_lazy(chunk,i,new_agenda->subfragment_n_best[i]);new_agenda->logP = new_agenda->logP - old_fragment->logP+ fragment->logP;new_agenda->subfragment_n_best[i] = j;insert_in_agenda(new_agenda,chunk->fragment_list->top,chunk->n_subchunks+2);}Figure 6.5: Search algorithm: get subfragment. See text for further explanation.0:85 � 0:9 = 0:765Remodeling of (frame *busy) and (frame *free): Initial experimentswith the performance measure 2 shows that a high error rate is due toconfusions between (frame *busy) and (frame *free). These were dur-ing manual labeling of the training data mostly aligned with the clausechunks. The corresponding network has quite a high error rate. How-ever, since these features can easily be remodeled and aligned with one ormore phrase chunks, this was done. The retraining then only involved twonetworks (for the frame feature for clause and phrase chunks).

6.5. EVALUATION 83Constraint Relaxation: One important problem with the search algorithm isthat sometimes (1 % to 3 % of the analyses), the search takes too long, 4and therefore has to be broken o�. This is due to the worst case scenario,where all combinations must be searched to �nd a consistent con�guration.To escape from in�nite searches, is the purpose of the following breakstrategy: If a fragment N-best list exceeds a �xed large number, e.g. 5000,then the search is stopped, and an empty ILT is returned as a parse result.However, since it is better to get a suboptimal analysis than no analysisat all, a constraint relaxation mechanism is added: If a search is brokeno�, then a new search is made, where one constraint may be relaxed. Ifthis does not give any parse result, then two inconsistencies are allowedetc. (A maximum number of inconsistencies, e.g. 7, is there to preventin�niteness.)6.5 EvaluationFeasPar is compared with a hand modeled GLR* parser. The hand modelinge�ort for FeasPar is 2 weeks. The hand modeling e�ort for the GLR* parser is4 months. All performance measures are described in Section 3.4. The parsersare evaluated with the evaluation set (Set 3). Results are shown in Figure 6.1.FeasPar FeasPar GLR* parser(with Search) (without Search) (4 months)PM1 - T 71.8 % 33.8 % 51.6 %FeasPar GLR* Parser(with Search) (4 months)PM1 - T 71.8 % 51.6 %PM1 - S 52.3 % 30.3 %PM2E - T 74 % 63 %PM2E - S 49 % 28 %PM3G - T 49 % 42 %PM2G - S 36 % 17 %Table 6.1: Comparing FeasPar with a GLR* parser hand modeled for 4 months(Evaluation set (Set 3), S=speech data, T=transcribed data).As one can see, FeasPar with Consistency Checking Search is better than theGLR* parser in all six comparison performance measurements that are made.4In normal cases (97 % to 99 % of the analyses), the search takes 1 to 3 seconds. In theremaining few cases, the search can run for 10 minutes without completing.

84 CHAPTER 6. CONSISTENCY CHECKING SEARCH6.6 Final EvaluationAt last, a �nal evaluation on a new, �nal evaluation set (Set 4) is made. Thepurpose is threefold:1. To make sure that search development has not been tuned towards the�rst evaluation set (Set 3).2. Run a comparison with the newest GLR* grammar, that has been devel-oped for 2 years5.3. Examine if insertion of new words into the lexicon reduces performance.Set 4 contains 60 words not covered by the Sets 1-3. These words areadded manually as new words to the lexicon before performing the �nalevaluation. Each new word is de�ned by copying and modifying featuresof similar words. The process of extending the lexicon with the 60 wordstakes approximately 4 hours.FeasPar with Search GLR* Parser - 2 yearsindependent independentgrading (my grading) grading (my grading)PM2E - T 75.1 % (75.7 %) 78.6 % (78.6 %)PM2E - S 60.5 % (63.5 %) 60.8 % (61.5 %)Table 6.2: Comparing FeasPar (old ILT) with a GLR* parser (new ILT) devel-oped over 2 years. (Final evaluation set (Set 4), S=speech data, T=transcribeddata)6.6.1 ResultsAll output was graded by an independent person, a student whose native lan-guage is English and not involved in any parser research or development, andthe author. Grading results are shown in Figure 6.2. By referring back to thepurposes of this comparison, one sees that:1. When comparing Table 6.2 with 6.1, one can see that for FeasPar, PM2E-T is practically the same: 75.1 % (75.7 %) vs. 74 %. This shows that thedevelopment of the search is not based on information contained in theevaluation set (Set 3). Further, one can see that for FeasPar, PM2E-S isbetter in the latter comparison. This is due to the ESST speech recognizerimprovement from March 94 to September 95.5To be totally correct: almost 2 years, that is 22 months.

6.6. FINAL EVALUATION 852. Further, from Figure 6.2 one sees that for speech data, which is the sit-uation for being used in an actual speech-to-speech translation system,FeasPar and the GLR* parser have practically the same performance.3. Adding the new words caused no reduction of performance (refer to point1 above). This shows that the system generalizes well also in respect tonew words.6.6.2 Comparison CommentsFor completeness, this subsection explains some considerations that had to bemade for running the �nal comparison.FeasPar is trained with the March 94 ILT version (in the following calledthe old ILT), whereas the newest GLR* grammar uses the September 95 ILTversion (in the following called the new ILT), being changed over 50 times (!)since March 94. 6 Therefore, some steps are taken to avoid comparisons thatwould be biased towards FeasPar:Not Correcting for GLR*'s ILT Performance Advantage: Because theGLR* grammar had a more sophisticated ILT, its translation performance(English-to-English) would of course be better than if it would have usedthe old ILT. This ILT performance advantage is estimated by the GLR*author to be slightly more than 10 % [Lav96a]. Note that the numbers inTable 6.2 are not corrected due to this, in order not to favor FeasPar.German Generator: The German generator was only developed until theMarch 94 evaluation. This means that it knows all constructs of theold ILT, but has problems with the September 95 ILT. This means thatit would generate well from FeasPar's output, but not so well from the 2year GLR* parser's output (new ILT), meaning a comparison would be infavor of FeasPar. Therefore, no English-to-German translations are run,and hence, the performance measure 2G is not made.English Generator: The English generator knows the new ILT, so it can copewith both the output of the 2 year GLR* parser (new ILT), and the outputof FeasPar (old ILT). The English generator is still able to cope with theold ILT, because during generator development, constructs were mainlyadded, but not removed. If certain constructs were removed, it couldmean a performance decrease for FeasPar, but by no means a performanceincrease.Sentence Break Finding: In the GLR* system for parsing speech data, sym-bolic preprocessing which looks for pauses and silences, splits the utter-ances into sentences. Since FeasPar is trained with sentences, the utter-6Due to time constraints, FeasPar was not retrained on the newest ILT version.

86 CHAPTER 6. CONSISTENCY CHECKING SEARCHances are run through this preprocessing to divide them into sentencesbefore presenting them to FeasPar.Further, the �nal evaluation set does not include ILTs, only natural language.Hence, performance measure 1 cannot not be made. As a conclusion, onlyperformance measure 2E can be made.The GLR* parser output was produced in an internal GLR* project evalu-ation at Carnegie Mellon University July 15 1995.Due to the skip part of the GLR* parser system, the speech data translationsare several times split into smaller natural language pieces. In order to favor theGLR* parser, these pieces are graded individually, so that e.g. a sentence splitup into 2 pieces, where 1 pieces are acceptable and 1 piece are non-acceptable,this is counted as 1 acceptable and 1 non-acceptable (piece) translations, andnot as 1 (sentence) non-acceptable. Therefore, for speech data, 374 pieces aregraded for the GLR* parser, and only 348 for FeasPar.

Chapter 7EvaluationThis chapter contains an overall evaluation of this thesis. First, a comparisonwith other approaches is described. The usefulness for various tasks and the easefor non-experts to build a parser are then explained. Finally, other advantagesare discussed.7.1 Comparison with Other ApproachesThis section will compare FeasPar with hand modeled grammars and connec-tionist systems. For clarity, the comparison only includes systems evaluated onsimilar tasks as FeasPar.7.1.1 Comparison with Hand Modeled GrammarsSymbolic parsers with hand modeled grammars have the advantage of highperformance. Further, many symbolic parsers yield a parse output formalismallowing �ne-grained descriptions of the analysis.The GLR* parser, based on Tomita's e�cient parsing algorithm, uses an uni-�cation engine and a hand model parsing grammar. Several GLR grammars,syntactic and semantic, both for text and speech, have been written over theyears. Much work has been invested to successfully improve its robustness forusage with speech and especially spontaneous speech. The GLR* parser pos-sesses a very powerful output formalism, feature structures, which are applied(in variants) in all uni�cation based parsers and have been shown to be expres-sive enough to model all types of linguistic information, ranging from phoneticsto discourse modeling.For the GLR* grammars for the English Spontaneous Speech Task (ESST),two samples of the grammar were selected: The �rst after 4 months of develop-ment, and the second after two years of development. In order to test not only87

88 CHAPTER 7. EVALUATIONparse performance, but also translation performance, a GLR* generation gram-mar for English and one for German are added to get a complete translationsystem.Compared with the GLR* grammar developed for 4 months, FeasPar has abetter performance both in the parse performance (PM1) as well as in perfor-mance for acceptable translations into English (PM2E) and German (PM2G).This applies both for transcribed and speech input (see Figure 6.1), using theevaluation set (Set 3, see Section 3.3 on page 25).On the unseen, �nal evaluation set (Set 4), FeasPar has a similar performance(60.5 % versus 60.8 %) as the GLR* grammar developed for 2 years, whenmeasuring the performance for acceptable translations into English (PM2E)with speech input. For transcribed input, i.e. input not processed by the speechrecognizer, the GLR* grammar performs slightly better than FeasPar (78.6 %versus 75.1 %)1.A performance comparison for German is not provided, because it would bepositively biased towards FeasPar for technical reasons. Since the �nal evalua-tion set used for performance tests, did not include correct parser output (ILTs),it is also not possible to measure parse performance.The RTN based Phoenix parser, whose grammar was developed over 9months, has a similar performance. However, FeasPar has a richer parse for-malism than Phoenix, since RTNs do not include attributes.Summing up, FeasPar has a better or equal performance as hand modeledgrammars that have been developed for months or years, whereas FeasPar itselfonly needs 2 weeks of hand modeled information.7.1.2 Comparison with Connectionist ParsersThe main advantages of connectionist parsers are robustness and learningcapabilities. PARSEC is the parser that is closest related to FeasPar. PAR-SEC was evaluated with read speech, whereas FeasPar is evaluated with spon-taneous speech. A direct performance comparison is therefore not possible.PARSEC's output formalism contains three (architecturally �xed) levels withone label per level, and no attributes (see example in Figure 7.1). FeasPar's out-put formalism has no architecturally �xed maximum levels and allows several(not architecturally �xed) features, with atomic or complex values (see exam-ple in Figure 7.2). The architectural, connectionist and learning principles thatare successfully applied in PARSEC, proved to be insu�cient for the parsingtask of FeasPar, and are therefore supplemented in this work. PARSEC re-quired a highly domain speci�c mapper to work within a translation system,whereas FeasPar outputs interlingua directly. Further, PARSEC only deliv-1For technical reasons, these comparison were made in disfavor of FeasPar. FeasPar'sperformance would have been 10 % (estimated) better if measured under equal conditions,see Section 6.2.2

7.1. COMPARISON WITH OTHER APPROACHES 89([statement]([clause]([misc] then)([iaux] let+s)([action] plan)([patient] it)([time] for then)([mod-1] on the eighth)([mod-1] eight)([mod-1] to ten)))Figure 7.1: PARSEC parse for \then let+s plan it for then on the eighth eight toten". ((speech-act *suggest)(sentence-type *directive)(frame *schedule)(what ((frame *it)))(when ((frame *time-list)(connective -)(items (*MULTIPLE*((frame *simple-time)(day 8))((frame *interval)(incl-excl inclusive)(start ((frame *simple-time)(hour 8)))(end ((frame *simple-time)(hour 10))))))))(conjunction then))Figure 7.2: FeasPar parse for \then let +s plan it for then on the eighth eight toten".ers one parse hypothesis, whereas FeasPar can deliver an N-best-list of parsehypotheses ranked by probabilities.SCREEN performs a syntactic and semantic analysis of spontaneous speech.Time Scheduling Task evaluation results are only given for some submodules,and not for the overall system. My best-case estimate yields an overall perfor-

90 CHAPTER 7. EVALUATIONmance of at most 35 % (see Section 2.3.5 on page 17) on the Time SchedulingTask. In comparison, FeasPar has a performance of 60.5 %. It is not de�ned asto what kind of output formalism SCREEN has, and not discussed or describedhow to apply it to other NLP system components, e.g. a generator. In contrast,FeasPar has well known and highly descriptive parse output formalism. It isclearly shown in this thesis that integration with a generation grammar for atarget language is trivial.7.2 Suitability for Various TasksThis thesis gives clear evidence for the successful application of FeasPar asa semantic parser, extracting the semantic meaning (ESST). Additionally, asyntactic labeling task for German is well mastered (CR). Since German isknown for its complex morpho-syntax, this shows that FeasPar is also suitedfor syntax parsing tasks. Further, it suggests that FeasPar's architecture islanguage independent.Feature structures as representation formalism play a dominant role withinclassical computational linguistics, due to its powerful means of representing alltypes of linguistic information. This expressiveness is a major reason for thepopularity of uni�cation based grammars. FeasPar utilizes feature structuresas parse output formalism, allowing for complex analysis descriptions with highinformation content. FeasPar makes no architectural constraints whether onthe number of features nor on the depth in the structures. Both are learnedfrom the domain training examples. Hence, this thesis suggests that FeasPar isapplicable to various domains and various analysis needs.FeasPar is easily integrated to other NLP components, due to its standardinput (sentence hypothesis) and its standard output (feature structure). JANUSexempli�es this integration, where the speech recognizer feeds FeasPar, whichagain can feed a target language generator directly.7.3 Ease of Use for Non-ExpertsSince the trend in NLP has been going from general, domain-independent sys-tems to specialized systems targeted towards a special domain, the importanceof portability has grown. The central issue is the time required to develop anNLP system for a new domain. To parse (often) malformed input is a hard task.Grammar development is often the most time consuming task in building a totalnatural language understanding or translation system. When developing parsegrammars, in theory, one needs a domain independent kernel, and a domain spe-ci�c part, enabling reuse of the kernel in new domains. In practice, however, forvarious reasons, like the need to reduce parse ambiguities, the entire parse gram-mar is developed from scratch, requiring a lot of time from a grammar writer

7.4. OTHER ADVANTAGES 91expert. Further, experience from the JANUS project also shows that much timeis spent by grammar writers and generator writers to adjust their common in-terface, the interlingua, so that grammar and generator development tasks aremade as easy as possible. With FeasPar, the person in charge of the parser avoidsthese time consuming human processes: neither grammar theory understandingnor time for grammar development are required. Further, no agreements withgeneration grammar developers and interlingua adjustments are necessary. Theonly requirements are passive language competence, i.e. knowing the languagejust well enough to understand the semantics of various parts of a sentence, andan understanding of what various interlingua parts mean. For a person withthis knowledge it will take two weeks to do the hand modeling e�ort, which in-cludes modeling a lexicon and aligning training sentences with the ILTs, whichare available from the generator grammar developers. They have to agree on aninterlingua and a hand produced set of interlingua examples for the purpose oftheir own work. Also, their work is made easier as they do not have to considerthe needs of the parse grammar developers in interlingua design. Further, thenumber of training sentences needed for FeasPar's learning process is small, onlyapproximately 630 for ESST. This contributes to keeping the human e�ort low.Automatic architecture set-up takes care of the division and distribution ofthe parsing task over several neural networks. FeasPar generates training dataand all necessary architectural parameters, both for training and for run-time.7.4 Other AdvantagesThe automatic architecture set-up typically splits the parse task into many net-works (for ESST: 44 networks). Fortunately, these can be trained independentlyof each other without any need of communication between the training processes,allowing for parallel training on separate CPUs. In run-time, parallel parsingis in principle possible2. As soon as the three Chunker networks are done, theinput for all remaining networks is �xed. Hence, the remaining networks couldbe run in parallel on separate CPU's, and then the results could be collected onone machine, which performs the search.Another spin-o� result from the generator grammar development is the inter-lingua speci�cation. FeasPar uses it in its e�cient Consistency Checking Search,so that it is guaranteed that the parse is consistent, and does not cause unex-pected problems for the generators. Surprisingly, consistency checking is notavailable in any of the symbolic or connectionist parsers known to the author.FeasPar delivers a probability score along with the parse, based on the neuralnetwork activations. The search guarantees that the valid parse with the highestprobability is delivered as a result. FeasPar experiments show that it is possibleto produce N-best lists of valid parses, ranked by probability, and that theirevaluation could increase the parse performance (see Section 6.4).2This is not implemented, but the implementation is substantially easy.

Chapter 8ConclusionThis chapter will sum up the thesis by describing contributions, shortcomingsand future work.8.1 Contributions of the ThesisThis thesis claims that it is possible to build a neural net based parser thathas a performance similar to a good hand modeled uni�cation based parser.The presented parser delivers feature structure parses, needs a small corpusand a minimum of hand modeling, learns, and is robust towards spontaneousspeech and speech recognizer e�ects. This section will in short discuss thesecharacteristics.1. High Performance - Low Cost: By evaluating FeasPar with JANUS, itwas shown that FeasPar achieves similar performance as a good uni�cationgrammar (GLR*) and a good RTN grammar (Phoenix) without requiringtedious grammar development. FeasPar required only 2 weeks for trainingdata and lexicon preparations, compared with 2 years for GLR* and 9months for Phoenix.2. Learning to Parse Spontaneous Speech: FeasPar is the �rst learningparser clearly stating generalization results on a spontaneous speech task.13. Robustness to Spontaneous Speech and Speech Recognizer Er-rors: FeasPar is the �rst parser being robust towards both spontaneous1Jain presents results for PARSEC evaluated for read speech. These include generalizationresults for transcribed data and training results for speech data. Wermter and Weber presentresults for SCREEN evaluated with spontaneous speech data, but only at module level, notas overall performance. 92

8.2. SHORTCOMINGS 93speech e�ects and speech recognizer errors, without needing explicit ar-chitectural or hand modeled constructs2 for this. Also, the training setcontains no speech recognizer error examples. All these types of malforma-tion are tolerantly handled by the FeasPar networks and the ConsistencyChecking Search.4. Dividing Feature Structure into Smaller, Learnable Problems:The Chunk'n'Label principle introduced in this thesis demonstrates howa feature structure can be reformulated as a tree, how feature pairs andpaths are de�ned, and aligned to the natural language chunks. Further,it is shown how the separate neural networks are de�ned with their out-put representations, their training data, and the lexicon. Finally, it isdemonstrated how the interaction of the networks work in run time.5. Various Learning Techniques: The learning techniques applied inPARSEC are insu�cient for the more complex task of FeasPar, and aretherefore supplemented with the LNC, SCS, and extended context con-nectivity principles as well as with statistical microfeatures in the lexicon.They all positively inuence learning performance. Two other techniques(hybrid encoding and 2nd parse) have a negative inuence on the ESSTlearning performance, due to the little and highly irregular training data.With larger training data, these might be valuable.6. Consistency Checking Search: To my knowledge, no other parser per-forms a consistency check of its parsing result. Four advantages are o�eredby the Consistency Checking Search processing: �rst, FeasPar only out-puts valid parses, and thereby guarantees other NLP components (thetarget language generators in JANUS) that their input ful�lls the for-malism de�nition; second, the parse performance increases considerably,since obviously wrong parses are sorted out; third, a parse probabilityis returned along with the parse; and fourth, an N-best list ranked withprobabilities may be returned as parse result, allowing NLP components,e.g. discourse analyzers, to apply further constraints.8.2 ShortcomingsThe FeasPar's lexicon contains no lexical disambiguation, so that words likeschedule are represented both as a verb and as a noun, and this ambiguousrepresentation is presented to the networks. They must apply the correct in-terpretation and produce the right feature structure information, meaning that2Symbolic parsers contain grammar modules and grammar-independent modules dedicatedfor robustness handling. The connectionist parser SCREEN contains modules specialized forvarious repair tasks.

94 CHAPTER 8. CONCLUSIONthe networks must be robust towards ambiguities too. The connectionist repre-sentation of lexical ambiguities is modeled by setting all features that are validin one or more interpretations. Especially English contains many lexically am-biguous words, since verb and noun forms are often identical. This is clearlyillustrated by parsing the sentence \time ies like an arrow". Even if the Fea-sPar evaluation performance is good for the English Spontaneous Speech Task,the performance might be even better if the networks do not have to be robusttowards lexically ambiguous input.8.3 Future WorkCertain aspects of FeasPar could be further investigated and expanded. Sug-gestions for future work will be discussed in this section.� Implementing Parallel Network Processing for Parse Mode: Cur-rently, an average sentence takes about 7 sec to parse, from which morethan four �fth of the time is spent on running neural networks. 3 Sincemost of these neural networks can run independently of each other, onecould let these be processed in parallel on several CPU's.� Implementing Utterances as Input instead of Sentences: The cur-rent FeasPar implementation takes separate sentences as input. One ut-terance contains several sentences. To make it work with utterances, thereare two options; �rst, integrate the GLR* sentence breaker with FeasPar,since the breaker is currently an external preprocessor when utterancesare to be parsed by FeasPar; or second, introduce another chunk leveland learn sentence breaks, which means extending FeasPar with one morechunker network and utterance feature networks.� Performance Improvement Through Rescoring : Currently, Fea-sPar is able to produce N-best lists of valid parses ranked by probability.An initial experiment shows a potential for reducing the parse error rate tothe half, if a rescoring would rank the N-best candidates di�erently. Oneimportant, so far unused knowledge source to draw on for an alternativecriterion, could be the statistical consistency, discussed in Section 5.1.1.� More Training Data: In general, more training data normally increasesevaluation performance. In FeasPar, the increase may be especially large,since more training data would probably also enable a positive perfor-mance contribution from the cooperative networks, hybrid encoding andsecond parse.� Lattice or N-best Hypothesis Parsing: FeasPar currently only uti-lizes the speech recognizer hypothesis with the highest score from acoustics3When using one CPU on an Alpha Server 2100 4/275, 512 MB RAM

8.3. FUTURE WORK 95and language modeling. It would be interesting to parse several hypothe-ses, either as N-best lists or as speech lattices. The �rst is trivial to im-plement, the second is not. However, analyzing several hypotheses causesparse time to rise signi�cantly.� Integration of Acoustic Scores: Since the speech recognizer produces ascore for a speech hypothesis, it would be valuable to utilize it in FeasPar,either as part of the input sentence, or as a mixture with the probabilityscore of every feature structure.

Appendix AESST FeaturesThe ESST feature that FeasPar learns:no. Feature name Feature values0 speech-act *opening *address *suggest *accept *acknowledge*state-constraint *reject *con�rm *request-response *closing*a�rm *negate *request-suggestion *con�rm-time1 sentence-type *�xed-expression *names *state *query-if*directive *query-ref *fragment2 frame *greet *hello *address *person-name *schedule *we *meeting*special-time *length *respond *booked *i *something *simple-time*interval *meet *you *clarify *class *considering *interject*adverb *busy *time-list *how *that *free *it *restaurant-name*thank *seminar *out-of-town *babble *settled *let-me-check*see-you *exclaim *return *what *relative-time *apologize*calendar *takecare *city-name *length-list *inform *know*conference-room *bye *event-list *needed *wait *appointment*here *look-forward *haveanice *undesired *check *lunch *pro*they *tennis *event-time3 type (COMPLEX VALUES)4 �rst-name (open class)5 attitude *should *possible *desired *needed *how-about *undesired *shall6 who (COMPLEX VALUES)7 speci�er inde�nite sometime de�nite next 2 plural at-least that anytimebrunch all-range late following perhaps what approximate couple earlythis only another other even any the-rest-of most-member more-thanall-member a-lot except 3 also �rst full both-of either-of thirdright most-range negative8 what (COMPLEX VALUES)9 name (open class) 96

97no. Feature name Feature values10 when (COMPLEX VALUES)11 unit hour week12 quantity 2 1 couple how-many 1.5 short-time how-long 2.513 how-long (COMPLEX VALUES)14 type a�rmative yes no negative i-dont-know15 degree weak normal superlative strong16 adverb babble perhaps actually really only if-possible again generally alsoalready just right-now completely still unfortunately sort-of after-allsurely always barely de�nitely17 day-of-week (open class)18 topic (COMPLEX VALUES)19 incl-excl inclusive exclusive20 hour (open class)21 start (COMPLEX VALUES)22 end (COMPLEX VALUES)23 time-of-day morning afternoon evening24 whose (COMPLEX VALUES)25 day (open class)26 clari�ed (COMPLEX VALUES)27 conjunction so therefore and then because if but or unless28 connective - and or eor between29 items (COMPLEX VALUES)30 am-pm pm am31 minute (open class)32 month (open class)33 where (COMPLEX VALUES)34 with-whom (COMPLEX VALUES)35 babble lets-see well36 why (COMPLEX VALUES)37 exclaim geez gee goodness my god38 length (COMPLEX VALUES)39 direction +40 origin (COMPLEX VALUES)41 to-whom (COMPLEX VALUES)42 of (COMPLEX VALUES)43 title (open class)44 last-name (open class)45 period day46 from (COMPLEX VALUES)47 event (COMPLEX VALUES)

Bibliography[All88a] J. Allen. Basic Parsing Techniques. In [All88b], chapter 2. TheBenjamin/Cummings Publishing Company, Inc., 1988.[All88b] J. Allen. Natural Language Understanding. The Ben-jamin/Cummings Publishing Company, Inc., 1988.[BBD+95] Samuel Bayer, Erica Bernstein, David Du�, Lynette Hirschman,Susann LuperFoy, and Margot Peet. Spoken Language Under-standing: Report on the MITRE Spoken Language System. InProceedings of ARPA Spoken Language Systems Technology Work-shop, 1995.[BBMG+94] S. K. Bennacef, H. Bonneau-Maynard, J. L. Gauvain, L. Lamel,and W. Minker. A Spoken Language System For Information Re-trieval. In Proceedings of the International Conference on SpokenLanguage Processing - ICSLP, Yokohama, sept 1994.[BCP+90] Peter F. Brown, John Cocke, Stephen A. Della Pietra, VincentJ. Della Pietra, Fredrick Jelinek John D. La�erty, Robert L. Mer-cer, and Paul S. Roossin. A Statistical Approach To MachineTranslation. Computational Linguistics, 16(2):79{85, June 1990.[Ber91] George Berg. Learning Recursive Phrase Structure: Combiningthe Strengths of PDP and X-Bar Syntax. Technical report TR91-5, Dept. of Computer Science, University at Albany, State Uni-versity of New York, 1991.[BIS92] Robert Bobrow, Robert Inria, and David Stallard. Syntac-tic/Semantic Coupling in the BBN DELPHIi System. In Proceed-ings of ARPA Spoken Language Systems Technology Workshop,1992.[BLM91a] Peter F. Brown, Jennifer C. Lai, and Robert L. Mercer. Align-ing Sentences In Parallel Corpora. In Proceedings 29th AnnualMeeting of the Association for Computational Linguistics, pages169{176, Berkeley,CA, 1991.98

BIBLIOGRAPHY 99[BLM91b] Peter F. Brown, Jennifer C. Lai, and Robert L. Mercer. Word-sense Disambiguation Using Statistical Methods. In Proceedings29th Annual Meeting of the Association for Computational Lin-guistics, pages 264{270, Berkeley,CA, 1991.[BPP+91] Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra,Robert L. Mercer, and Surya Mohanty. Dividing and ConqueringLong sentences in a Translation System. Technical report, IBMThomas J. Watson Research Center, Yorktown Heights, NY, 1991.[BPW94] Finn Dag Bu�, Thomas Polzin, and Alex Waibel. Learning Com-plex Output Representations In Connectionist Parsing of Spo-ken Languages. In International Conference on Acoustics, Speech& Signal Processing, pages 365{368, vol. 1, Adelaide, Australia,April 1994. IEEE.[Bre82] J. Bresnan, editor. The Mental Representation of GrammaticalRelations. The MIT Press, Cambridge, MA, 1982.[Bu�92] Finn Dag Bu�. A Learnable Connectionist Parser that OutputsFeature Structures. Ph.D proposal, Fakult�at f�ur Informatik, Uni-versit�at Karlsruhe, Germany, November 1992.[BW96a] Finn Dag Bu� and Alex Waibel. FeasPar - A Feature StructureParser Learning to Parse Spoken Language. In Proceedings of theInternational Conference on Computational Linguistics, August1996.[BW96b] Finn Dag Bu� and Alex Waibel. Learning To Parse SpontaneousSpeech. In Proceedings of the International Conference on SpokenLanguage Processing, October 1996.[BW96c] Finn Dag Bu� and Alex Waibel. Search in a Learnable SpokenLanguage Parser. In Proceedings of the 12th European Conferenceon Arti�cial Intelligence, August 1996.[CH83] Jaime G. Carbonell and Philip J. Hayes. Recovery Strategies forParsing Extragrammatical Language. American Journal of Com-putational Linguistics, 9(3-4):123{146, 1983.[Chr91] Lonnie Chrisman. Learning Recursive Distributed Representa-tions for Holistic Computation. Connection Science, 3(4):345{366,1991.[CMGS91] Anna Corazza, Renato De Mori, Roberto Gretter, and GiorgioSatta. Computation of Probabilities for an Island-Driven Parser.IEEE Transactions on Pattern Analysis and Machine Intelligence,13(9):936{950, 1991.

100 BIBLIOGRAPHY[DCG93] Ido Dagan, Kenneth W. Church, and William A. Gale. RobustBilingual Word Alignment for Machine Aided Translation. In Pro-ceedings of the Workshop on Very Large Corpora at ACL, 1993.[Elm90] J. L. Elman. Finding Structure in Time. Cognitive Science,14:179{211, 1990.[Elm91] Je�rey L. Elman. Distributed Representations, Simple RecurrentNetworks, and Grammatical Structure. Machine Learning, pages195{225, 1991.[ER68] E.Bach and R.Harms, editors. Universals in Linguistic Theory.Holt, Rinehart and Winston, New York, 1968.[FI92] Osamu Furuse and Hitoshi Iida. Cooperation between Transferand Analysis in Example-Based Framework. In Proceedings ofCOLING, 1992.[Fil68] Charles J. Fillmore. The case for case. In [ER68], pages 1{88.Holt, Rinehart and Winston, New York, 1968.[FSI92] Osamu Furuse, Eiichiro Sumita, and Hitoshi Iida. Building Trans-fer Knowledge from a Bilingual Spoken-Dialogue Corpus. ACL,13(5), 1992.[GC93] William A. Gale and Kenneth W. Church. A Program for Align-ing Sentences in Bilingual Corpora. Computational linguistics,19(1):75{91, 1993.[GKPS85a] G. Gazdar, E. Klein, G. K. Pullum, and I. A. Sag. A theory ofsyntactic features. In [GKPS85b], chapter 2. Blackwell Publishing,Oxford, England and Harvard University Press, Cambridge, MA,USA, 1985.[GKPS85b] G. Gazdar, E. Klein, G. K. Pullum, and I. A. Sag. GeneralizedPhrase Structure Grammar. Blackwell Publishing, Oxford, Eng-land and Harvard University Press, Cambridge, MA, USA, 1985.[GSB+95] P. Geutner, B. Suhm, F. D. Bu�, T. Kemp, L. May�eld, A. E. Mc-Nair, I. Rogina, T. Schultz, T. Sloboda, W. Ward, M. Woszczyna,and A. Waibel. Integrating Di�erent Learning Approaches intoa Multilingual Spoken Language Translation System. In Work-shop on New Approaches to Learning for Natural Language Pro-cessing, International Joint Conference on Arti�cial Intelligence,Montreal, Canada, August 1995.[Hen94] James B. Henderson. Description Based Parsing in a Connection-ist Network. PhD thesis, University of Pennsylvania, 1994.

BIBLIOGRAPHY 101[HKP91a] John Hertz, Anders Krogh, and Richard G. Palmer. Introductionto the Theory of Neural Computation. Addison-Wesley, 1991.[HKP91b] John Hertz, Anders Krogh, and Richard G. Palmer. Multi-LayerNetworks. In [HKP91a], chapter 6. Addison-Wesley, 1991.[HKP91c] John Hertz, Anders Krogh, and Richard G. Palmer. The Hop�eldModel. In [HKP91a], chapter 2. Addison-Wesley, 1991.[HMR86] Geo�rey E. Hinton, J. L. McClelland, and David E. Rumelhart.Distributed Representations. In [RMtPrg86]. The MIT Press,1986.[HS86] G. E. Hinton and T. J. Sejnowski. Learning and Relearning inBoltzmann Machines. In [RMtPrg86]. The MIT Press, 1986.[IW93] Sunil Issar and Wayne Ward. CMU's robust spoken languageunderstanding system. In Proceedings of Eurospeech, 1993.[Jai89] Ajay Jain. A Connectionst Architecture for Sequential SymbolicDomains. Technical report, School of Computer Science, CarnegieMellon University, Pitt. PA, USA, 1989.[Jai90] Ajay Jain. Parsing Complex Sentences with Stuctured Connec-tionist Networks. In Je�rey Elman, editor, Neural Computation3, pages 110{120. MIT, School of Computer Science, CarnegieMellon University, Pitt. PA, USA, 1990.[Jai91] Ajay N. Jain. A Connectionist Learning Architecture for Pars-ing Spoken Language. PhD thesis, School of Computer Science,Carnegie Mellon University, Dec 1991.[Jai92] Ajay N. Jain. Generalization Performance in PARSEC - AStructured Connectionist Parsing Architecture. In J.E.Moddy,S.J.Hanson, and R.P.Lippman, editors, Advances in Neural Infor-mation Processing Systems 4. Morgan Kaufmann Pub., 1992.[Jel90] F. Jelinek. Self-Organized Language Modeling For Speech Recog-nition. In Alex Waibel and Kai-Fu Lee, editors, Readings in SpeechRecognition. Morgan Kaufmann, San Mateo, CA, USA, 1990.[JJM92] F. Jelinek, J.D.La�erty, and R.L. Mercer. Basic Methods of Prob-abilistic Context Free Grammars. In P.Laface and R. De Mori,editors, Speech Recognition and Understanding. Recent Advances,pages 345{360, Berlin Heidelberg, 1992. NATO ASI Series, VolF.75, Springer-Verlag.

102 BIBLIOGRAPHY[JLM+94] F. Jelinek, J. La�erty, D. Magerman, L. R. Mercer, A. Rat-naparkhi, and S. Roukos. Decision Tree Parsing Using a Hid-den Derivation Model. In Proceedings ARPA Workshop on Hu-man Language Technology, pages 260{265, Princeton, New Jersey,March 1994.[JW89] Ajay Jain and Alex Waibel. A Connectionist Parser Aimed atSpoken Language. Technical report, School of Computer Science,Carnegie Mellon University, Pitt. PA, USA, august 1989.[JW90a] Ajay Jain and Alex Waibel. Incremental Parsing by Modular Re-current Connectionist Networks. In D.S. Touretzky, editor, Ad-vances in Neural Information Processing Systems 2. Morgan Kauf-mann, San Mateo, CA, USA, Computer Science, Carnegie MellonUniversity, Pitt. PA, USA, 1990.[JW90b] Ajay Jain and Alex Waibel. Robust Connectionst Parser of SpokenLanguage. In Proceedings of the IEEE International Conferenceon Acoustics, Speech and Signal Processing. School of ComputerScience, Carnegie Mellon University, Pitt. PA, USA, 1990.[KB82] R. Kaplan and J. Bresnan. Lexical-Functional Grammar: A For-mal Sysytem for Grammatical Representation. In [Bre82], pages173{281. The MIT Press, Cambridge, MA, 1982.[KK93] Christel Kemke and Habibatou Kone. INCOPA - An IncrementalConnectionist Parser. In Proceedings of Would Congress on NeuralNetworks, pages 41{44, Portland, Oregon, 1993.[KR93] Martin Kay and Martin R�oscheisen. Text-Translation Alignment.Computational linguistics, 19(1):120{142, 1993.[KS93] Christel Kemke and Christoph Schommer. PAPADUES - Par-allel Parsing of Ambiguous Sentences. In Proceedings of WouldCongress on Neural Networks, pages 79{82, Portland, Oregon,1993.[Lan90] Hagen Langer. Syntaktische Normalisierung gesprochenerSprache. Arbeitsbericht nr.23, DFG-Forschergruppe Koh�arenz,Fakult�at f�ur Linguistik und Literaturwissenschaft der Universit�atBielefeld, 1990.[Lav96a] A. Lavie. personal communication. e-mail, Jan 1996.[Lav96b] Alon Lavie. GLR*: A Robust Focused Parser for SpontaneouslySpoken Language. PhD thesis, CMU, to appear 1996.

BIBLIOGRAPHY 103[LFG95a] Steve Lawrence, Sandiway Fong, and C. Lee Giles. On the Ap-plicability of Neural Network and Machine Learning Method-ologies to Natural Language Processing. In Workshop on NewApproaches to Learning for Natural Language Processing, Inter-national Joint Conference on Arti�cial Intelligence (IJCAI-95),Montreal, Canada, August 1995.[LFG+95b] Bruce Lund, William M. Fischer, John S. Garofolo, David S. Pal-lett, Mark Przybocki, and R. Allen Wilkinson. A Spoken NaturalLanguage Interface To Libraries. In Proceedings of ARPA SpokenLanguage Systems Technology Workshop, 1995.[LGQ+95] Lori Levin, Oren Glickman, Yan Qu, Donna Gates, Alon Lavie,Carolyn P. Rose, Carol Van Ess-Dykema, and Alex Waibel. UsingContext in Machine Translation of Spoken Language. In Proceed-ings of Theoretical and Methodological Issues in Machine Trans-lation, 1995.[LR90] Sebastian Lisken and Hannes Rieser. Ein inkrementeller Parser zurAnalyse von simulierten Reparaturen ("repairs"). Arbeitsberichtnr. 29, DFG-Forschergruppe Koh�arenz, Fakult�at f�ur Linguistikund Literaturwissenschaft der Universit�at Bielefeld, 1990.[LT93] A. Lavie and M. Tomita. GLR* - An E�cient Noise-skippingParsing Algorithm for Context-free Grammars. In Proceedingsof Third International Workshop on Parsing Technologies, pages123{134, 1993.[MBB+95] S. Miller, M. Bates, R. Bobrow, R. Ingria, J. Makhoul, andR. Schwarz. Recent Progress in Hidden Understanding Models(HUM). In Proceedings of the ARPA Spoken Language SystemsTechnology Workshop, 1995.[MBSI94] S. Miller, R. Bobrow, R. Schwarz, and R. Ingria. StatisticalLanguage Processing Using Hidden Understanding Models. InProceedings of the ARPA Spoken Language Systems TechnologyWorkshop, 1994.[MD89a] R. Miikkulainen and M. Dyer. A Modular Neural Network Ar-chitecture for Sequential Paraphrasing of Script-Based Stories. InProceedings of the International Joint Conference on Neural Net-works. IEEE, 1989.[MD89b] R. Miikkulainen and M. Dyer. Encoding Input/Output Repre-sentations in Connectionist Cognitive Systems. In D.S.Touretzky,G.E.Hinton, and T.J.Sejnowski, editors, Proceedings of the 1988

104 BIBLIOGRAPHYConnectionist Models Summer School. Morgan Kaufmann Pub-lishers, Los Altos, CA, 1989.[MD91] R. Miikkulainen and M. Dyer. Natural Language Processing WithModular PDP Networks and Distributed Lexicon. Cognitive Sci-ence, 15:343{399, 1991.[MG93] M. McCandless and J. R. Glass. Decision Tree Parsing Using aHidden Derivation Model. In Proceedings ARPA Workshop onHuman Language Technology, pages 981{984, 1993.[MGS+95] L. May�eld, M. Gavalda, Y-H. Seo, B. Suhm, W. Ward, andA. Waibel. Parsing Real Input in JANUS: A Concept-Based Ap-proach to Spoken Language Translation. In Proceedings of TMI,Leuven, 1995.[MGWW95] L. May�eld, M. Gavalda, W. Ward, and A. Waibel. Concept-Based Speech Translation. In ICASSP 95, pages 97{100. IEEE,1995.[Min95] Wolfgang Minker. An English Version of the LIMSi L'ATIS Sys-tem. Technical Report Notes et documents LIMSI No. 95-12,Laboratoire d'Informatique pour la Mecanique et les Sciences del'Ingenieur, LIMSI - CNRS, apr 1995.[MNC91] Teruko Mitamura, Eric H. Nyberg, and Jaime G. Carbonell. AnE�cient Interlingua Translation System for Multilingual Docu-ment Production. In Proceedings of the Machine Translation Sum-mit III, Washington DC, july 1991.[MST+92] Tsuyoshi Morimoto, Masami Suzuki, Toshiyuki Takezawa,Gen'ichiro Kikui, Masaaki Nagata, and Mutsuko Tomokiyo. ASpoken Language Translation System: SL-TRANS2. In Proceed-ings of COLING-92, pages 1048{1052. ATR Intepreting TelephonyResearch Laboratories, Aug. 23-28. 1992.[Net92] Klaus Netter. On Non-Head Non-Movement. In Proceedings ofKonvens 92, pages 218{227. Springer-Verlag, Berlin Heidelberg,1992.[NNP92] John Nerbonne, Klaus Netter, and Carl Pollard. German Gram-mar in HPSG. In CSLI Lecture Notes. Chicago, 1992.[NS92] Sven Naumann and J�urgen Schrepp. An empirical approach tosyntax learning. In G�unther G�otz, editor, Proceedings of KON-VENS92, pages 209{217. Gesellschaft f�ur Informatik, Springer-Verlag, Oct 1992.

BIBLIOGRAPHY 105[NT87] See-Kiong Ng and Masaru Tomita. Probabilistic LR Parsing forGeneral Context-free Grammars. Technical report, Center for Ma-chine Translation, CMU, 5000 Forbes Ave., Pittsburgh, PA 15213USA, 1987.[OAM+92] Louise Osterholtz, Charles Augustine, Artur McNair, IvicaRogina, Hiroaki Saito, Tilo Sloboda, Joe Tebelskis, and AlexWaibel. Testing Generality In JANUS: A Multi-Lingual SpeechTranslation System. In Proceedings of ICASSP. IEEE, 1992.[Par92] M. Paritong. Constituent Coordination in HPSG. In Proceedingsof Konvens 92, pages 228{237. Springer-Verlag, Berlin Heidelberg,1992.[PBA93] Lutz Prechelt, Finn Dag Bu�, and Rolf Adams. TransportableNatural Language Interfaces for Taxonomic Knowledge Represen-tation Systems. In Conference on Arti�cial Intelligence Applica-tions, Orlando, Florida, March 1993. IEEE.[Pol88] J. B. Pollack. Recursive Auto-Associative Memory: DevisingCompositional Distributed Representations. In Proceedings of theTenth Annual Conference of the Cognitive Science Society., Hills-dale, NJ, 1988. Lawrence Erlbaum.[PS87a] C. Pollard and I. Sag. An Information-Based Syntax and Seman-tics. CSLI Lecture Notes No.13, 1987.[PS87b] C. Pollard and I. Sag. Formal Foundations. In [PS87a], chapter 2.CSLI Lecture Notes No.13, 1987.[PW92] T. S. Polzin and A. Waibel. Learning the ATIS-Task. Technicalreport, Carnegie Mellon University, 1992.[Rab90] L. R. Rabiner. A Tutorial on Hidden Markov Models and Se-lected Applications in Speech Recognition, 1989. In Alex Waibeland Kai-Fu Lee, editors, Readings in Speech Recognition. MorganKaufmann, San Mateo, CA, USA, 1990.[Rec93] Christine Reck. Robustes Parsen von Dialogen mit semantischenGrammatiken. Studieanarbeit, Fakult�at f�ur Informatik, Univer-sit�at Karlsruhe, Germany, Jan 1993.[RHW86] David E. Rumelhart, Geo�rey E. Hinton, and Ronald J.Williams. Learning representations by back-propagating errors.In [RMtPrg86]. The MIT Press, 1986.

106 BIBLIOGRAPHY[RMtPrg86] David Rumelhart, James L. McClland, and the PDP researchgroup, editors. Parallel Distributed Processing. The MIT Press,1986.[SB92] David Stallard and Robert Bobrow. Fragment Processing in theDELPHI System. In Proceedings of ARPA Spoken Language Sys-tems Technology Workshop, 1992.[Sch92] Hinrich Sch�utze. Word Space. In J.E.Moody, S.J.Hanson, andR.P.Lippman, editors, Advances in Neural Information ProcessingSystems 4. Morgan Kaufmann Publishers, 1992.[Sch93] Hinrich Sch�utze. Translation by Confusion. In Spring Symposiumon Machine Translation. AAAI, 1993.[Sen92] Stephanie Sene�. TINA: A Natural Language System for SpokenLanguage Applications. Computational linguistics, 18(1), 1992.[Sha91] Noel E Sharkey. Connectionist Representation Techniques. Tech-nical Report R 217, Centre for Connection Science, Departmentof Computer Science, University of Exeter, 1991.[SL92] K. Sikkel and M. Lankhorst. A Parallel Bottom-Up Tomita Parser.In Proceedings of Konvens 92, pages 238{247. Springer-Verlag,Berlin Heidelberg, 1992.[Sto93] Andreas Stolcke. An E�cient Probabilistic Context-Free ParsingAlgorithm that Computes Pre�x Probabilities. Technical ReportTR-93-065, ICSI, Berkeley, CA, 1993.[TC87] M. Tomita and J. Carbonell. The Universal Parser Architec-ture for Knowledge-Based Machine Translation. Technical reportCMU-CMT-87-101, Center for Machine Translation, CMU, 5000Forbes Ave., Pittsburgh, PA 15213 USA, 1987.[TMML88] M. Tomita(ed.), Teruko Mitamura, Hiroyuki Musha, and MarionLee. The Generalized LR Parser/Compiler Version 8.1: User'sGuide. Technical report CMU-CMT-88-MEMO, Center for Ma-chine Translation, CMU, 1988.[Tom85] M. Tomita. E�cient Parsing for Natural Language: A Fast Algo-rithm for Practical Systems. Kluwer Academic Publishers, Boston,MA, 1985.[Tom87] Masaru Tomita. An E�cient Augmented-Context-Free ParsingAlgorithm. Computational Linguistics, 13(1-2):31{46, 1987.

BIBLIOGRAPHY 107[Tr88] M. Tomita and Eric H. Nyberg 3rd. Generation Kit and Transfor-mation Kit Version 3.2: User's Manual. Technical report CMU-CMT-88-MEMO, Center for Machine Translation, CMU, 1988.[TSP+95] Dinesh Tummala, Stephanie Sene�, Douglas Paul, Cli�ord Wein-stein, and Dennis Yang. CCLINC: System Architechure and Con-cept Demonstration of Speech-to-Speech Translation for Limited-Domain Multilingual Applications. In Proceedings of ARPA Spo-ken Language Systems Technology Workshop, 1995.[Usz86a] Hans Uszkoreit. Constraints on Order. Technical Report CSLI-86-46, Center for the Study of Language and Information, LelandStanford Junior University, january 1986.[Usz86b] Hans Uszkoreit. Linear Precedence in Discontinuous Constituents:Complex Fronting in German. Technical Report CSLI-86-47, Cen-ter for the Study of Language and Information, Leland StanfordJunior University, january 1986.[Usz87] Hans Uszkoreit. Word order and constituent structure in German.Center for the study of language and information, CSLI/Stanford,Ventura Hall, Stanford, CA 94305, 1987.[War91] Wayne Ward. Understanding Spontaneous Speech: The PhoenixSystem. In ICASSP 91, pages 365{367. IEEE, 1991.[WAWB+94] M. Woszczyna, N. Aoki-Waibel, F. D. Bu�, N. Coccaro,K. Horiguchi, T. Kemp, A. Lavie, A. McNair, T. Polzin, I. Rogina,C.P. Rose, T. Schultz, B. Suhm, M. Tomita, and A. Waibel.JANUS 93: Towards Spontaneous Speech Translation. In Interna-tional Conference on Acoustics, Speech & Signal Processing, pages345{348, vol. 1, Adelaide, Australia, April 1994. IEEE.[WBB+94] A. Waibel, U. Bodenhausen, F. D. Bu�, N. Coccaro, H. Hild,T.S. Polzin, and B. Suhm. Connectionist Modules in a Multi-Lingual Speech Translation System. In International Conferenceon Neural Information Processing (ICONIP), Seoul, Korea, Oc-tober 1994. IEEE.[Wen93] Fuliang Weng. Handling Syntactic Extra-Grammaticality. In Pro-ceedings of Third International Workshop on Parsing Technolo-gies, pages 319{331, 1993.[WFT89] Lars Holter Walter F. Tichy, Rolf Adams. NLH/E: A NaturalLanguage Help System. In Proceedings of the 11th InternationalConference on Software Engineering, 1989.

108 BIBLIOGRAPHY[WI95] Wayne Ward and Sunil Issar. The CMU ATIS System. In Proceed-ings of ARPA Spoken Language Systems Technology Workshop,1995.[WJM+91] Alex Waibel, Ajay Jain, Arthur McNair, Joe Tebelskis, HiroakiSaito, and Alexander G. Hauptmann. JANUS: A Speech-to-Speech Translation System Using Connectionist and SymbolicProcessing Strategies. In ICASSP. IEEE, 1991.[WJM+92] Alex Waibel, Ajay Jain, Arthur McNair, Joe Tebelskis, LouiseOsterholtz, Hiroaki Saito, Otto Schmidbauer, Tilo Sloboda, andMonika Woszczyna. JANUS: Speech-to-Speech Translation UsingConnectionist and Non-Connectionist Techniques. In J.E.Moody,S.J.Hanson, and R.P.Lippman, editors, Advances in Neural In-formation Processing Systems 4. Morgan Kaufmann Publishers,1992.[WMG+96] Monika Woszczyna, Laura May�eld, Marsal Gavalda, MatthiasDenecke, Christine Reck, and Andreas Eisele. personal communi-cation, 1993-96.[WNM+91] Alex Waibel, Ajay N.Jain, Arthur E. McNair, Hiroaki Saito,Alexander G. Hauptmann, and Joe Tebelskis. JANUS: A Speech-To-Speech Translation System Using Connectionist And Sym-bolic Processing Strategies. In Proceedings of the IEEE Inter-national Conference on Acoustics, Speech, and Signal Processing,May 1991.[WP85] D. Waltz and J. Pollack. Massively parallell parsing: A stronglyinteractive model of natural language interpretation. CognitiveScience, 9, 1985.[WS90a] Rolf Wilkens and Helmut Schnelle. A connectionist parser forcontext-free phrase structure grammars. In G. Dor�ner, edi-tor, Konnektionismus in Arti�cial Intelligence und Kognitions-forschung. Springer, Sept 1990.[WS90b] Rolf Wilkens and Helmut Schnelle. KonnektionistischeRepr�asentation von grammatischem Wissen. 1990.[WS91] Rolf Wilkens and Helmut Schnelle. Representation of Principlesand Parameters in a Connectionist Network. 1991.[WW94] Stefan Wermter and Volker Weber. Learning Fault-tolerantSpreech Parsing with SCREEN. In Proceedings of Twelfth Na-tional Conference on Arti�cial Intelligence, Seattle, 1994.

BIBLIOGRAPHY 109[WW96] Stefan Wermter and Volker Weber. SCREEN: Learning a FlatSyntactic and Semantic Spoken Language Analysis using Arti�-cial Neural Networks. Journal of Arti�cial Intelligence Research,submitted, 1996.

LebenslaufGeboren: 22. Juni 1966 in Stockholm, SchwedenStaatsangeh�origkeit: NorwegischSchulausbildung:08/1973 - 06/1982 Grundschule, Asker, Norwegen08/1982 - 06/1985 Gymnasium, B�rum, Norwegen07/1985 - 07/1986 Wehrdienst, NorwegenUniversit�atsausbildung:09/1986 - 03/1991 Studium der Informatik an der Norwegischen TechnischenHochschule (NTH), Trondheim, Norwegen;Abschlu�: Sivilingeni�r (Diplom-Informatiker)Studienaufenthalte im Ausland:08/1989 - 06/1990 Technische Hochschule Link�oping, Schweden10/1990 - 03/1991 Universit�at Karlsruhe (TH), Institut f�ur Programm-strukturen und Datenorganisation, Lehrstuhl Prof. Dr. TichyDiplomarbeitPraktische T�atigkeiten:10/1984 - 06/1989 Customizing und Support, Kellydata, Norwegen09/1987 - 05/1989 Tutor, NTH, Norwegen06/1989 - 08/1989 Hotline-Support, Hewlett-Packard, Norwegen06/1990 - 08/1990 Entwickler, Hewlett-Packard, Palo Alto, CA, USA09/1991 - 12/1992 Stipendiat/Wissenschaftlicher Mitarbeiter, Institut f�urProgrammstrukturen und Datenorganisation,Lehrstuhl Prof Dr. Tichy, Universit�at Karlsruhe (TH)01/1993 - 06/1996 Stipendiat/Wissenschaftlicher Mitarbeiter, Institut f�ur Logik,Komplexit�at und Deduktionssysteme, Lehrstuhl Prof. Dr. Waibel,Universit�at Karlsruhe (TH)seit 03/1996 Entwicklungskoordinator HR-Norwegen, SAP AG, Walldorf
110

