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AbstractIn recent years, researchers have established the viability of so called hybrid NN/HMMlarge vocabulary, speaker independent continuous speech recognition systems, where neu-ral networks (NN) are used for the estimation of acoustic emission probabilities for hiddenMarkov models (HMM) which provide statistical temporal modeling. Work in this direc-tion is based on a proof, that neural networks can be trained to estimate posterior classprobabilities. Advantages of the hybrid approach over traditional mixture of Gaussiansbased systems include discriminative training, fewer parameters, contextual inputs andfaster sentence decoding.However, hybrid systems usually have training times that are orders of magnitudehigher than those observed in traditional systems. This is largely due to the costly,gradient-based error-backpropagation learning algorithm applied to very large neural net-works, which often requires the use of specialized parallel hardware.This thesis examines how a hybrid NN/HMM system can bene�t from the use of mod-ular and hierarchical neural networks such as the hierarchical mixtures of experts (HME)architecture. Based on a powerful statistical framework, it is shown that modularity andthe principle of divide-and-conquer applied to neural network learning reduces trainingtimes signi�cantly. We developed a hybrid speech recognition system based on modu-lar neural networks and the state-of-the-art continuous density HMM speech recognizerJANUS. The system is evaluated on the English Spontaneous Scheduling Task (ESST), a2400 word spontaneous speech database.We developed an adaptive tree growing algorithm for the hierarchical mixtures ofexperts, which is shown to yield better usage of the parameters of the architecture thana pre-determined topology. We also explored alternative parameterizations of expert andgating networks based on Gaussian classi�ers, which allow even faster training becauseof near-optimal initialization techniques. Finally, we enhanced our originally contextindependent hybrid speech recognizer to model polyphonic contexts, adopting decisiontree clustered context classes from a Gaussian mixtures system.
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Chapter 1IntroductionSpeech is the natural form of communication for humans. We are using it excessively inour everyday life without noticing the complexity of this form of communication. Speechproduction is a highly nonlinear process that is strongly inuenced by factors such asregional dialects, age, gender and emotional state. Speech perception is even more com-plex, since it involves a high degree of variability through additional background noise,di�erent room acoustics and/or transmission characteristics in case of telephone lines.Despite this immense variability, we are able to use this form of communication even inadverse environments such as noisy parties. In fact, speech is the �rst and most naturalway of communication, that we humans learn in the very beginning of our life.In contrast, communicating with a computer requires knowledge about how to usea mouse and a keyboard and how to interpret textual messages appearing in lots ofdi�erent windows. Most people would prefer to use speech when dealing with machinesand computers. Some applications such as information systems over telephone lines evenrequire this form of communication. There are lots of other applications where the usershands are busy doing other things and speech is the only reasonable input modality.Think about computers in cars and airplanes.Therefore, there has been a large amount of research in automatic speech recogni-tion, understanding and translation since the early 1950's. Although researchers havedemonstrated impressive results with state-of-the-art hidden Markov model based sys-tems, today's speech recognition technology is still far away from being competitive withhuman skills. Current speech recognition systems perform very well in very speci�c andlimited domains. Applying such systems to new domains usually leads to unacceptablylow performance.Automatic speech recognition has to be considered far from being a solved problemand further improvement may require new insights and the exploration of new paradigms.The question is, what makes humans so good in perceiving, recognizing and understandingspeech? Unfortunately we are also far away from understanding the cognitive processesnecessary to answer this question. What we do know is, that information processing11



12 CHAPTER 1. INTRODUCTIONin the human brain di�ers completely from the way this is done in traditional comput-ers. The human brain features billions of small processing elements (neurons) that areinterconnected in complex ways and are operating in parallel.Researchers attempt to simulate this kind of information processing in a very simpli�edway in form of arti�cial neural networks. Despite their simplicity, these networks havebeen applied succesfully to static pattern recognition, very often improving performanceover traditional methods. They have also been used for the recognition of speech sounds,though it is still an open question how to apply them to temporal modeling necessaryfor continuous speech recognition. Since neural networks are very e�ective models forthe discrimination of speech sounds, researchers started to build hybrid systems thatcombine the advantages of neural networks and hidden Markov models by replacing theusual parametric density modeling by discriminative arti�cial neural networks. Suchsystems have recently began to be competitive and sometimes superior to traditionalspeech recognition systems.Mostly, neural networks are designed with parallel processing elements in mind, butimplemented on standard serial computers. Also, they are considered to be one bigmonolithic entity that is trained and tested as a unit. This renders the learning processcomputationally very expensive and takes orders of magnitude longer than training tra-ditional density estimators for speech recognition. Recently, modular and hierarchicallyorganized neural networks have been studied extensively in the neural network and ma-chine learning community (e.g. Meta-Pi networks [18], Hierarchical Mixtures of Experts[26],[27]). In these networks, the overall recognition task is divided among several smallsub-networks, so called experts. The experts decisions are integrated in a hierarchical way,yielding the overall network output. Training times for such mixtures of experts systemsare usually much smaller than those for traditional monolithic neural networks.In this thesis, we investigate modular neural networks for hybrid continuous speechrecognition systems, showing that modularity on the network level is a well �tting conceptfor e�cient and highly accurate neural network based speech recognition.The thesis is organized as follows: Chapter 2 gives a short overview of traditionalneural networks and their statistical interpretation. Chapter 3 reviews basic concepts instatistical continuous speech recognition and the extension to NN/HMM hybrid speechrecognition. Chapter 4 introduces the hierarchical mixture of experts architecture andlearning algorithms for this modular neural network. Chapter 5 gives a novel constructivealgorithm for automatically growing a hierarchical network that improves performanceover static hierarchies. Chapter 6 discusses how to model context dependent phones inhybrid NN/HMM systems and chapter 7 considers alternative parameterizations for sub-networks in hierarchical mixtures of experts and discusses advantages. Finally, chapter 8evaluates a hybrid NN/HMM system based on hierarchical modular neural networks andthe JANUS HMM speech recognizer that was developed as part of this thesis. Chapter 9presents conclusions and discusses enhancements in future work.



Chapter 2Neural NetworksThis chapter will briey review common neural network architectures as far as they areimportant for the remainder of this thesis. It �nishes with an important section on therelationships between neural networks and statistical models.2.1 IntroductionArti�cial neural networks are a wide class of exible nonlinear regression and classi�-cation models. They consist of a (sometimes large) number of processing nodes, calledneurons, which are simple linear or nonlinear computing elements. These elements areinterconnected in a variety of ways and often organized in layers. Fig. 2.1 shows a basicprocessing node or neuron.
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xNx1Figure 2.1: Processing element (neuron) in neural networks13



14 CHAPTER 2. NEURAL NETWORKSIt consists of an activation function z = net(x1; : : : ; xN ) : RN ! R and a (possibly)non-linear output function f(z) : R ! R. The most common used activation functionsare net(x1; : : : ; xN) = NXi=1wixinet(x1; : : : ; xN) = NXi=1(xi � wi)2Choices for the output function f are the identity, the sigmoid or the softmax functionf(z) = z f(z) = 11 + exp(�z) f(zi) = exp(zi)Pnk=1 exp(zk)for a layer of n neurons. Associated with each neuron is a weight vector w =(w1; : : : ; wN). Sometimes, an additional bias weight w0 with a �xed input value of 1is used in order to extent the model from linear to a�ne transformations. Learningalgorithms for neural networks estimate these weights (mostly) iteratively, in order tominimize a given error function of the outputs.The most simple neural network architecture is a perceptron which may consist of justone neuron. It can be trained to discriminate between linearly separable classes using thesigmoid or softmax non-linearity as output function. However, for more complex discrim-ination or approximation tasks, networks with multiple layers of neurons are necessary.The next two sections describe the most commonly used neural network architectures forcomplex tasks and their learning algorithms.2.2 Multi Layer PerceptronsA multi layer perceptron (MLP) consists of several layers of neurons with full intercon-nections between neurons in adjacent layers (additional interconnections between non-adjacent layers are called shortcut connections). Fig. 2.2 depicts the structure of such anarchitecture. Input data is presented to the network at the input layer, which containsno processing nodes. It serves only as a data source for the following hidden layer(s).Finally, the networks output is computed by neurons in the output layer. The activationfunction of all neurons is the inner product between input and weight vectors. Only theactivation of nodes in the input and output layers is directly observable. The nodes inhidden layers compute internal representations of the data.MLP's are useful for supervised pattern recognition where the task is to learn a map-ping between inputs x and outputs t given a set of training examplesT = f(x1; t1); : : : ; (xN; tN)g
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Input Layer

Output Layer

Hidden Layer

Figure 2.2: Multi Layer Perceptron (MLP)In the training phase, the weights of an MLP are usually updated by an iterativelearning algorithm called error backpropagation. After this procedure converges, the MLPcan be used to map new (unseen) patterns.The error-backpropagation learning algorithm is based on the chain rule for derivativesof continuous functions. The algorithm consists of a forward pass, in which training ex-amples x are presented to the network and activations of output neurons y are computed.This is followed by a backpropagation step which updates the weights of neurons usingthe gradient of an error function such as the mean squared error or the cross entropybetween network outputs y and given target outputs t.For example, using the mean squared error E = 0:5PtPi(y(t)i � t(t)i )2 and the sigmoidoutput function f(yi) = 1=(1+ exp(�zi)) with zi = Pj wijhj where hj are the activationsof the hidden layer, the gradient with respect to the weights of neurons in the outputlayer wij is @E@wij = Xt (y(t)i � t(t)i )y(t)i (1� y(t)i )h(t)j= Xt �(t)i h(t)jThus, weights in the output layer can be updated as follows in order to minimize the



16 CHAPTER 2. NEURAL NETWORKSerror function: w(m+1)ij = w(m)ij � �Xt �(t)i h(t)jThe derivative of the error function with respect to weights in the hidden layer wjkcan be computed using the chain rule which yields@E@wjk = Xt Xi (�(t)i wij)h(t)j (1� h(t)j )x(t)k= Xt �(t)j x(t)kThis leads to the following update rule for weights in the hidden layer:w(m+1)jk = w(m)jk � �Xt �(t)j x(t)kIt is easy to generalize the backpropagation algorithm to networks with more than onehidden layer of neurons. It should be noted that there are lots of extensions of the basic al-gorithm such as an additional momentum term which aim at improving convergence speedand �nal performance. Nevertheless, the backpropagation algorithm is computationallyvery expensive, especially for large MLP's.It can be shown that MLP's with at least one hidden layer can approximate anycontinuous function to any desired degree of accuracy, if there are enough hidden neuronsavailable (this property is called universal function approximation). Thus, MLP's with onehidden layer are su�cient, although additional hidden layers may improve performanceover single hidden layer networks with an equal number of neurons through increasedmodel complexity.2.3 Radial Basis Function networksIn Radial Basis Function networks (RBF), the hidden layer neurons compute radial basisfunctions of the inputs, similar to kernel functions in kernel regression. RBF networksconsist of input, one hidden and output layer. The activation function of hidden neuronscomputes the Euclidean or Mahalanobis distance d between input and weight vectors.Usually, the output function of hidden layer neurons ishi = exp(�d22 )The output layer neuron's activation function is the same as the one used for MLP's,the inner product of input and weight vector (with an additional bias input). The RBF



2.3. RADIAL BASIS FUNCTION NETWORKS 17

Layer

Linear Output

Input Layer

Radial Basis
Function

Layer

Figure 2.3: Radial Basis Function (RBF) networknetwork is mostly used for regression with a linear output layer although it is also possibleto use it for classi�cation with a sigmoid or softmax output layer.Fig. 2.3 shows the structure of a RBF network. RBF hidden neurons are often calledlocalized receptive �elds because of the special form of their activation function. Sometimesthe outputs of the hidden layer neurons are normalized to sum up to one as in kernelregression.Training of RBF networks proceeds in two steps:1. RBF estimation for hidden neurons Input feature vectors are clustered accord-ing to the desired number of hidden neurons using a procedure such as k-means,LBG or neural gas. This results in a set of RBF centers. If the model assumesa bandwidth, variance vector or covariance matrix for the hidden neurons, theseparameters may be estimated using the data within each cluster.2. Linear Least Squares for output weight matrix Once the parameters of thehidden neurons are computed, they remain �xed and the estimation of the weightsof the (linear) output neurons reduces to a linear least squares problem which canbe solved by the standard matrix inversion algorithm.RBF networks can be trained much faster than MLP's, but it was shown that kernelmethods such as RBF networks tend to require larger sample sizes to achieve the sameperformance, especially in high dimensional feature spaces.



18 CHAPTER 2. NEURAL NETWORKS2.4 Statistical InterpretationNeural networks and statistical models are not competing methodologies for data analysis.There is considerable overlap between the two �elds. Statistical methodology is directlyapplicable to most neural network models, resulting in more e�cient parameter estima-tion and optimization (learning) algorithms. Additionally, statistical methods providediagnostic tools such as con�dence intervals and hypothesis testing which are missing inthe �eld of neural networks.Recently, statisticians published works which established ties between statistics andneural networks, sometimes showing the equivalence of statistical and neural networkmodels. Sarle [48] shows relationships between many neural networks and statisticalmodels and translates the jargons in the two �elds. Ripley [47] provides a very interestingoverview of the similarities of neural networks and statistical models.2.4.1 PerceptronsA perceptron with a linear output function computes a linear combination of the inputfeatures. It is nothing else but a linear regression model that can be �t most e�cientlyby linear least squares.In case the output function is nonlinear, a perceptron is a generalized linear model(GLIM) with the exception that for a perceptron, the nonlinearity is mostly chosen adhoc, while the nonlinearity of a GLIM is �xed, once a probabilistic model of the outputsgiven the inputs is chosen. GLIM's are �tted by maximum likelihood methods for avariety of distributions of the exponential family. For multiway classi�cation, one usuallyassumes a multinomial (Poisson) density model, which forces the use of the softmaxnonlinearity as output function for the GLIM/perceptron. It is considerably more e�ectiveto use maximum likelihood �tting than mean square error minimization to estimate theparameters of a perceptron. This fact is important for modular neural networks withsimple perceptron-like processing elements, such as the architecture that we will introducelater in this thesis.2.4.2 Multi Layer PerceptronsLike a perceptron, a MLP has counterparts in statistics as well, depending on the numberof hidden layers and the number of neurons in the hidden layers. Sarle [48] categorizesMLP's into the following three groups:� Small number of hidden neurons. MLP can be considered as a parametricmodel such as polynomial regression.� Moderate number of hidden neurons. MLP can be considered a quasi-parametricmodel similar to projection pursuit regression.



2.4. STATISTICAL INTERPRETATION 19� Large number of hidden neurons, possibly increasing with the sample size.MLP can be considered as a nonparametric sieve.It is this smooth transition between parametric and nonparametric models that ren-ders MLP's especially useful. The error-backpropagation learning algorithm for MLP'sis iterative, slow and requires the careful adaptation of various learning parameters suchas the learning rate and the momentum factor by trial and error. Since MLP's performmultivariate multiple nonlinear regression, its parameters may be estimated much more ef-�ciently using nonlinear optimization algorithms such as those used for projection pursuitmodels.2.4.3 Unsupervised LearningUnsupervised learning for neural networks consists in extracting useful features from theinput data and eliminating redundancy, without having any target or output vectorsassociated with each input vector. From a statistical point of view, things are di�erent.The goal in most forms of unsupervised learning is to estimate feature variables fromwhich the observed data can be predicted. In this formulation, the observed data isconsidered to be both input and target of the learning process.Unsupervised Hebbian learning for a one layer linear network, for example, is identicalto principal component analysis, which provides the optimal transformation matrix. Thisfact is well-known from statistical theory and many variations of Hebbian learning consistof ine�cient approximations of principal component analysis.
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Chapter 3Hybrid Speech RecognitionThis chapter will �rst review the basic concepts of today's state-of-the-art speech recog-nition technology based on hidden Markov models. It will then discuss advantages anddrawbacks and shortcomings of this approach which motivate hybrid speech recognitionsystems. The term hybrid speech recognition systems is now widely used for systems thattry to bring together the best of two worlds: Statistical time alignment by hidden Markovmodels and discriminative observation probability estimation by neural networks insteadof by means of parametric multimodal distributions. We will briey discuss two suchsystems, one based on the multi layer perceptron (MLP) and one based on recurrentneural networks (RNN), as they are currently being investigated by researchers in thespeech community. Finally, we will discuss problems observed with large monolithic neu-ral networks as used in practical implementations of hybrid speech recognition systems,motivating the exploration of modular and hierarchical neural networks for hybrid speechrecognition.3.1 Speech RecognitionThis section gives a quick overview of current hidden Markov model (HMM) based speechrecognition technology as it is used in almost all current state-of-the-art speech recognitionsystems. Readers already familiar with these concepts may want to skip to the nextsection.3.1.1 OverviewFig. 3.1 shows the basic setup of a speech recognition system revealing all its majorcomponents.Input to the system is a sampled waveform of the audio signal as recorded by a micro-phone. Note that the room characteristics, the kind of microphone and A/D transducers21
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Acoustic Modeling

Decoder/Search

Feature Extraction
Preprocessing

Language Model

HypothesisFigure 3.1: Overview: Automatic Speech Recognitionthat are used to record the audio signal can have a severe e�ect on the speech represen-tation and recognition. Recently, large e�orts have been put into developing so calledrobust systems, which tolerate di�erent kinds of microphones, room characteristics andnoise conditions in the prepocessing stage. This stage is sometimes called feature extrac-tion or front-end. It computes a sequence of features, mostly derived from spectral orcepstral representations of speech, which are more suitable for the following stages thanthe raw speech waveform. The acoustic modeling stage models a set of speech sounds byhidden Markov models and (mostly) continuous parametric distributions. For any givenobservation at any time step, the acoustic modeling stage provides local probabilities foreach of the modeled atomic sound units. These local scores are then used in a dynamicprogramming search (decoder) stage, to determine the most likely sequence of words, giventhe acoustics. Additional information about prior probabilities of sequences of words issupplied to the decoder by the language model. We will now go into some details, con-cerning the basic blocks of a speech recognizer, but we can not provide an exhaustive



3.1. SPEECH RECOGNITION 23overview of this �eld. See [52],[32],[51] for additional information.3.1.2 PreprocessingSpeech signals have been observed to have stationary properties over periods no longerthan about 20ms. Therefore, most speech recognition frond-ends use a sliding windowof between 5ms-20ms to extract a vector of features from the speech waveform. Suchvectors are called frames and are typically extracted at a rate of about 100Hz. Theultimate preprocessing stage should generate a representation of the speech signal, that (1)compresses the speech signal as far as possible, without loosing any information necessaryfor the recognition afterwards and (2) facilitates discrimination between di�erent speechsounds. Fig. 3.2 shows the sequence of operations usually applied to the speech waveformin order to compute spectral or cepstral features.
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Figure 3.2: Preprocessing for Speech RecognitionThe speech signal is multiplied with a window function, then a discrete Fourier trans-form (DFT) and the power spectrum is computed. The cepstrum is computed by applyingthe logarithm and an inverse discrete Fourier Transform (IDFT) to the spectrum. Often,additional steps such as the following are applied:� CMN (cepstral mean normalization) The idea behind this technique is, thatthe observed audio signal is a linear superimposition of speech and noise, which ispreserved in the cepstral domain. By subtracting the cepstral mean over a wholeutterance, the additive stationary parts of the cepstrum are removed.� LDA (linear discriminant analysis) This technique has proven very useful toreduce the dimensionality of feature vectors. It applies a linear transformation thatminimizes intra-class distance while maximizing inter-class distance. Dimensional-ity reduction is achieved by dropping coe�cients in the resulting feature vectorsaccording to their signi�cance. Often, multiple frames are concatenated prior to theapplication of LDA to include contextual information to the resulting features.� VTLN (vocal tract length normalization) Di�erent speakers have di�erentvocal tract lengths. Di�erent vocal tract lengths imply di�erent pitch and for-mant frequencies for di�erent speakers. This is usually compensated by a linear orpiecewise-linear warping of the frequency axis in the spectrum based on statisticsof formant frequencies.



24 CHAPTER 3. HYBRID SPEECH RECOGNITION� PLP (perceptual linear prediction) Performs several psychophysically basedspectral transformations. It is based on the all-pole �lter model used in LinearPredictive Analysis (LPA).3.1.3 Hidden Markov ModelsHMMs model a sequence of observations (in our case a sequence of feature vectors) asa piecewise stationary process. A discrete HMM is a stochastic �nite state automatonA = fS;A;B; �g with a set of stationary states S, a transition probability matrix A, aemission probability matrix B and a set of initial state probabilities �. Usually, speechrecognition systems use strictly left to right HMMs to model words, sylables, phonemesor sub-phonetic units. Often, words are modeled as a sequence of phonemes, which inturn are modeled as a sequence of HMM states. Fig. 3.3 shows the topology of a typicalphoneme HMM.
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Figure 3.3: Hidden Markov Model topology for phonemesDi�erent states in a phonetic HMM model di�erent stationary acoustic sounds at thebeginning, middle and end of a phoneme. Viewing the HMM as a generative model, theterm 'hidden' becomes clearer. HMMs consist of two concurrent stoachastic processes.One is the un-observable sequence of states that models the temporal structure of speech,the other is the observable sequence of emitted output symbols in each state, modelingthe the locally stationary character of speech sounds. There are three problems arising,when using HMMs to model sequences of observations:Evaluation What is the probability that a given HMM generated a given sequence ofobservations.Decoding Given a sequence of observations and a HMM, what is the most likely se-quence of states through the HMM that lead to the generation of the observations.Parameter estimationGiven a HMM and a set of observation sequences to be modeledby this HMM, how can we adapt the parameters (emission and transition probabilitydistributions) of the model to maximize the likelihood of generation.



3.1. SPEECH RECOGNITION 25All of the above three problems have very e�cient solutions in form of special casesof dynamic programming algorithms. For instance, the evaluation problem occurs inisolated word recognition where we want to score di�erent word HMMs according to theirlikelihood. It can be solved using the Forward algorithm. The decoding problem occursin continuous speech recognition where we are seeking the most probable path through avery large HMM consisting of all possible sequences of basic sound units. Once we foundthis path, we can derive the most probable sequence of phonemes or words. The decodingproblem can be solved using the Viterbi algorithm. Fig. 3.4 shows a typical trellis diagramwith the optimal path as a Viterbi algorithm would produce it. The diagram also showsall possible state transitions at one speci�c time point.
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timeFigure 3.4: State trellis and the Viterbi algorithmThe last problem, also called the training problem, can be solved by the Forward-Backward or Baum-Welch algorithm, which is essentially a version of the Expectation-Maximization (EM) [10] algorithm. In the case of left-right HMMs with a constant smallnumber of transitions in each state, all three algorithms have a computational complexityof only O(NT ), where N is the number of states in the HMM and T is the number ofobservations.3.1.4 Acoustic ModelingToday's state-of-the-art speech recognition systems use parametric multimodal probabil-ity densities to model continuous observations instead of discrete observations as required



26 CHAPTER 3. HYBRID SPEECH RECOGNITIONin the standard HMM. It was shown empirically, that such systems yield better perfor-mance than systems based on vector-quantization derived discrete observation symbols.Continuous densities are mostly modeled by mixtures of Gaussians, since it was shownthat these mixture models can approximate any kind of distribution, given enough datato estimate its parameters reliably. In a continuous density HMM, the probability ofobservation vector x in a state si is modeled byp(xjsi) = NXj=1 cijNij(x) with Nij(x) = 1q(2�)dj�ijj expf�12(x��ij)T��1ij (x��ij)gThe Forward-Backward algorithm can be extended to continuous density observationswhich yields update formulas for the parameters cij (mixture weights), �ij (means) and�ij (covariance matrices).If there is not enough training data to estimate a separate mixture of Gaussians foreach state of large HMMs, one can share parameters among di�erent states, so that theyuse the same set of Gaussians but with di�erent mixture weights. This form of parametertying is known as semi-continuous density modeling (SCHMM). For example, there isa special case of this kind of modeling, called phonetically tied semi-continuous densitymodeling (PTSCHMM) where all the states of a phonetic HMM share the same set ofGaussian densities. Other forms of parameter sharing include state clustering and/ordecision tree clustering.Another issue is the modeling of context-dependency on the HMM level. It was shown(see for example [32]) that the explicit modeling of phonemes in di�erent contexts bydi�erent HMMs yields a vast improvement over context-independent systems. Currentsystems model biphone, triphone or even polyphone contexts to account for the variabilityof speech sounds in di�erent contexts. Since the average number of monophones used ina typical system ranges around 50, n-phone contexts would require the modeling of 50ndi�erent acoustic models. This clearly is not feasible in practice, especially since manycontexts occur rarely or even never in a given training corpus. The solution to thisproblem is the use of decision tree's with a set of phonetic context questions to clusterthe polyphonic contexts into a reasonably small set of context classes, which are thenmodelled by separate HMM's. See [44] for an introduction to decision trees.3.1.5 Decoding/SearchThe decoder is the essential recognition part of a speech recognizer. It uses locally com-puted emission probabilities to �nd the most likely sequence of words in a dynamic pro-gramming fashion. Typical large-vocabulary continuous-speech recognition tasks todayinvolve a vocabulary of 20k to 50k words. Additionally, context-dependent modelingyields over 10k of context-dependent phoneme models. Clearly, the standard Viterbi al-gorithm for �nding the most likely sequence of HMM states is not applicable without



3.1. SPEECH RECOGNITION 27modi�cations, because of the combinatorical explosion of the size of the search space.Therefore, most decoders are organized in a multi-pass strategy, applying more detailedmodels in succesive passes with restricted search spaces. Most decoders are based oneither time-synchronous Viterbi beam search or stack decoding, which is essentially anA� search.Viterbi beam search is a modi�ed Viterbi algorithm, where active states are prunedat each time step, based on either their cummulative score or on their ranking in a listsorted by cummulative score. This way, only a very limited number of state, phone andword transitions (50-200) are considered at each time step. A disadvantage of the Viterbibeam search is the time-synchronous left-to-right mode of operation which may lead torecognition errors because a lot of hypotheses are being pruned away based on just thebeginning part of the actual utterance although the remaining part may suggest to keepthe hypotheses.A stack decoder is a non time-synchronous search algorithm, comparing incompletepaths of di�erent lengths by means of a likelihood function that estimates the probabilityof the most likely remaining paths. The basic data structure used in this kind of search isa stack which contains a sorted list of active incomplete paths together with their score.At each iteration of the search, the top entry is examined and all possible extensions ofthe associated incomplete path are evaluated and inserted in the stack. The accuracy ofthis algorithm clearly depends on the size of the stack. Often, a stack decoder is used asa second search pass, following a Viterbi beam search that restricts the search space andprovides estimates of probabilities of partial paths.Other important search techniques, especially in the case of large vocabularies, includethe organization of the pronunciation lexicon in form of a phonetic pre�x tree. Since manywords start with the same sequence of phonemes, the storage requirements can be reducedsigni�cantly using this approach.Usually the output of the decoder is not only a single best scored hypothesis for agiven utterance, but a list of the �rst n-best hypotheses or a word graph (word lattice)which can be subject to further processing.3.1.6 Language ModelingThe task of automatic speech recognition is to �nd the most probable word sequence wgiven a sequence of acoustic observations x, which is the maximum posterior sentenceprobability. According to Bayes rule, it can be decomposed intomaxi p(wijx) = maxi p(xjwi)P (wi)p(x)The denominator can be neglected since it is constant for all wi and p(xjwi) is com-puted by the acoustic model. It remains to provide a means for estimating prior sentenceprobabilities P (wi). These probabilities are computed by the language model and can be



28 CHAPTER 3. HYBRID SPEECH RECOGNITIONused in the decoder and/or in subsequent rescoring passes based on n-best lists or wordgraphs.We will not go into much detail here and only describe the very basics of languagemodeling, that is, statistical n-gram modeling. The basic assumption here, is that proba-bilities of words in a sentence are only depending on the previous n� 1 words. The priorprobability of a given sentence can then be factored as follows:P (w) = mYk=1P (wkjwk�1; : : : ; w1) � mYk=1P (wkjwk�1; : : : ; wk�n+1)In case of a bigram model, we have to estimate probabilities p(wkjwk�1), in case ofa trigram model, we have to estimate probabilities p(wkjwk�1; wk�2). This can be doneby scanning large text corpora and counting occurances of word pairs or word triples,respectively. Since many trigrams that may be encountered in a test sentence do notoccur in even the largest text corpora, we have to use a smoothing technique whichavoids word probabilities of zero. The standard procedure here is to use a weighted sumof unigram, bigram and trigram probabilities where the weights are determined by analgorithm called deleted interpolation. Despite the simplicity of this approach, it wasproven to work very well for large vocabulary continuous speech recognition.3.2 DiscussionThis section discusses advantages and drawbacks of the traditional HMM based speechrecognition systems, as they have been described in the previous sections.Advantages:� Rich mathematical framework HMM's are based on a exible statistical theorywhich allows to build even large systems consistently.� E�cient learning and decoding algorithms These algorithms handle sequencesof observations probabilistically and they do not require an explicit hand segmen-tation in terms of the basic speech units. They can be implemented very e�cientlyeven for very large systems.� Easy integration of multiple knowledge sources Di�erent levels of constraints(e.g. phonological and syntacical) can be incorporated within the HMM frameworkas long as these are expressed in the same in terms of the same statistical formalism.Disadvantages:



3.3. HYBRID SPEECH RECOGNITION 29� Poor discrimination Estimation of the parameters of HMM's is based on likeli-hood maximization. This means, only correct models receive training information,incorrect models do not get any feedback.� 1st order Markov assumption Current observations and state transitions aredepending only on the previous state { all other history is neglected.� Independence assumptions Consecutive feature vectors are assumed to be sta-tistically independent.� Require distributional assumptions For example, modeling acoustic observa-tions by mixture of Gaussians with diagonal covariance matrices requires uncorre-lated feature coe�cients, which is not the case.� Assumption that speech is a piecewise stationary process All representa-tional power goes into the modeling of stationary parts of speech, although it isknown that speech should rather be modeled as a sequence of transitions or trajec-tories in the feature space. This is somehow alleviated by incorporating delta anddelta delta features into the process of feature generation.� Assumption of exponential state duration distributions This assumption isan integral part of 1st order HMM's. It can only be circumvent by applying explicitstate duration modeling, that is, imposing external duration distributions such as agamma distribution.� Maximum likelihood based This is a disadvantage because maximum likelihoodestimation always relies on the correctness of the models which is simply not truein the case of speech recognition.� Complexity All of the above disadvantages require additonal modi�cations andenhancements of the basic HMM technology that lead to complex heuristics basedsystems.3.3 Hybrid Speech RecognitionHybrid speech recognition systems try to attack some of the disadvantages of traditionalHMM's while still adhering to the general statistical formalism. In particular, since thesemethods use neural networks as emission probability esimators, training is based on pos-terior class probabilities instead of maximum likelihood. Neural network classi�ers arediscriminative in nature and do not impose constraints such as uncorrelated feature coef-�cients although they are not free of distributional assumptions as shown in the previouschapter.



30 CHAPTER 3. HYBRID SPEECH RECOGNITION3.3.1 Neural Networks as Statistical EstimatorsIt was shown that neural networks such as MLP's can be trained to compute estimatesof the posterior class probabilities p(!ijx), given an input vector. HMM's require thecomputation of likelihoods p(x; qi) for hypothesized states qi. Fortunately, we can applyBayes rule to convert posteriors into scaled likelihoods that can then be used as observationprobabilities: p(xjqi) = cp(qijx)P (qi)In the above equation, P (qi) is the prior probability of state qi and the neural networkmust be trained to produce estimates of posterior state probabilities p(qijx). This means,we need to train a neural network which has as many output nodes as there are HMMstates. We can compute scaled likelihoods by dividing the network outputs by the priorstate probabilities.It should be noted that in theory, HMM's could also be trained using local posteriorprobabilities as emission probabilities. In [2], an iterative procedure based on the EMalgorithm is used to compute local estimates of posterior class probabilities which canbe used as 'soft' targets for neural networks. This approach aims at optimizing theglobal posterior probability for the sequence of word models, instead of maximizing thelikelihood.To keep the number of states low enough to train a large neural networks in a rea-sonable amount of time, most researchers �rst experimented with context-independentHMM systems with one-state phonemic HMM's. In this case, the number of HMM statesequals the number of phonemes and the neural network estimates posterior phonemeprobabilities. The extension of this technique to context-dependent modeling is possibleby factoring context-dependent posteriors and using multiple neural networks to estimatecontext-dependent observation probabilities. This will be described in detail in a separatechapter (6).3.3.2 Training IssuesIn order to train a neural network such that the resulting outputs estimate posterior classprobabilities, we need to generate target vectors for each frame. When training the net-work on 1-out-of-N targets, an explicit segmentation in form of class-labels for each frameis necessary. Usually these labels are generated by an existing HMM speech recognizerfor the given task. For any given training utterance, there is a sentence transcriptionavailable. This transcription is used to build a sentence HMM model by concatenatingthe HMM's of the corresponding word models, which in turn, are build by concatenatingsubword-unit HMM models with respect to the word pronunciation dictionary. Once aHMM model for the complete utterance is built, we can do a forced Viterbi alignment



3.4. EXAMPLES OF HYBRID SYSTEMS 31using the existing recognizer, which gives us the most probable sequence of states throughthe HMM, given the sequence of acoustic observations. Thus, we have generated statelabels for each frame of the utterance. Once a neural network is su�ciently trained onthese targets, using the performance on an independent cross validation set as a mea-sure of generalization, new targets can be computed by recomputing the forced Viterbialignment using the neural network to compute emission probabilities. This proceduremay continue in an iterative manner. Alternatively, the Forward-Backward instead of theViterbi alignment algorithm may be used which will result in soft targets.3.4 Examples of Hybrid SystemsThis section will briey describe two current hybrid systems that have been succesfullyused for continuous speech recognition. One is based on large multi layer perceptrons(MLP), the other uses recurrent neural networks (RNN).3.4.1 A MLP based HybridResearchers at the International Computer Science Institute (ICSI) in Berkeley have de-veloped a hybrid speech recognition system that uses large multi layer perceptrons (MLP)to estimate posterior class probabilities. Fig. 3.5 shows an example of such a network.
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Figure 3.5: ICSI's multi layer perceptron topologyThe network is trained by stochastic gradient error backpropagation using the RingArray Processor (RAP), a parallel computer needed to keep training times in a reasonable



32 CHAPTER 3. HYBRID SPEECH RECOGNITIONrange (days and not weeks). To reduce training times even further, the network wasinitialized by training on a hand-labeled phonetic database (TIMIT) before training it onthe larger target task.3.4.2 A RNN based HybridThe group at Cambridge University Engineering Department (CUED) has developed ahybrid connectionist/HMM speech recognition system called ABBOT [21], which usesrecurrent neural networks to compute emission probabilities. The network is depicted inFig. 3.6. It uses a set of state units that have recurrent connections from their outputsback to their inputs (these units also have connections to the input nodes). State unitsand input nodes are connected to the output layer.
Delay

recurrent layeroutput layer

input feature vectors

y(t-4) r(t+1)

r(t)x(t)

Time

Figure 3.6: Cambridge recurrent neural networkThe network is trained using backpropagation through time. This training method iscomputationally very expensive, researchers in Cambridge report training times of severaldays on a dedicated parallel computer. Also, due to potential instabilities inherent in arecurrent systems, training seems to require careful adjustment of learning parameters.The system has fewer parameters than a competitive mixture-of-Gaussian system whichyields a faster decoding stage. Recently, the system was augmented to incorporate smallneural networks to model context classes. This context-dependent system achieved thelowest reported error rate on the 1995 SQUALE continuous speech recognition evaluation3.6.



3.5. PROBLEMS 333.5 ProblemsAll of today's existing hybrid speech recognition systems require special parallel hardwareto be able to train the neural networks in a reasonable amount of time. Also, theyrequire the choice of lots of parameters such as the learning rate, momentum factor orbatch size. Although it was shown that large monolithic neural networks can do anexcellent job in the computation of emission probabilities, they are mostly consideredas 'black boxes'. Because of the lack of understanding how the networks perform theclassi�cation task, network weights are usually intialized with small random numberswhich requires lots of iterations of backpropagation for the weights to converge. Mixturesof Gaussians based recognizers bene�t from powerful initialization methods like k-meansalgorithm. Parameters for such systems usually converge within only 2-5 iterations ofForward-Backward training.The major drawback of hybrid systems, however, is the ine�ciency of gradient basedtraining algorithms. Sizes of speech databases and neural networks in hybrid recognizershave gradually increased and will increase even further over the next years. Trainingtimes for such networks could become prohibitive, even with fast hardware.
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Chapter 4Hierarchical Mixtures of ExpertsThis chapter introduces Hierarchical Mixtures of Experts as a modular and hierarchicalneural network for supervised learning. It closely follows the presentation by Jordanand Jacobs [27], yet focussing on classi�cation instead of regression. The underlyingstatistical model will be discussed in detail, in order to motivate the presentation of ane�ective learning method for the architecture { the EM algorithm.4.1 IntroductionThe Hierarchical Mixture of Experts for the purpose of classi�cation is a direct competitorto other, non-modular and non-hierarchical neural network classi�ers such as the MultiLayer Perceptrons or the Radial Basis Function Networks, which have proven to be verypowerful and general classi�ers and function approximators. Therefore, the reader mayask questions like: Why do we need a modular, hierarchical network if we already havepowerful methods for classi�cation and regression? What are the drawbacks of traditionalneural networks and other monolithic classi�ers that lead to the development of modularand hierarchical architectures?Fig. 4.1 shows a particular situation, where a modular approach to, in this case,function approximation yields signi�cantly better results than traditional methods. Thefunction to be approximated is piecewise linear with a discontinuity at x = 0. Clearly,the best way to approximate this kind of function is to split the task into two subregions,and apply standard linear regression to the data in each of the regions. This leads tothe least possible number of parameters and the best approximation possible. The �gurealso shows a typical approximation obtained by an MLP or a higher order polynomialinterpolation scheme. These methods usually produce smooth approximation surfaces notable to capture discontinuities like the one in our example. Even worse, the discontinuityleads to oscillations in the overall approximation surface that can only be reduced byusing a larger number of parameters { which in turn leads to an unnecessarily increasedmodel complexity. 35
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Figure 4.1: Learning to approximate a discontinuous function
Another major drawback of traditional neural networks is the complexity of theirtraining algorithms, mostly based on gradient descent methods. This kind of trainingalgorithm is slow and tedious, requiring the user to set various algorithmic parameters bytrial and error. Training of large MLPs on very large databases (which is the case in hybridspeech recognition) requires such a large amount of CPU cycles, that even when usingparallel implementations of backpropagation on dedicated hardware, researchers reporttraining times of several days. This renders the analysis and optimization of learningparameters very time consuming, if at all possible.It should be noted, that recent work in statistics has shown similarities between neuralnetworks and statistical models such as generalized linear models, maximum redundancyanalysis, projection pursuit and cluster analysis, that allow the application of much moree�cient statistical learning/estimation techniques to the training of MLPs. In fact, itwas shown, that an MLP with one hidden layer is essentially the same as the projectionpursuit model, except that a MLP uses a predetermined functional form for the activationfunction in the hidden layer. Parameters of such a model can be estimated more e�cientlyby general purpose nonlinear modeling or optimization programs.The remainder of this chapter will introduce a modular, hierarchical architecture forsupervised learning that tackles all the discussed problems of standard neural networks.



4.1. INTRODUCTION 374.1.1 ArchitectureThe Hierarchical Mixture of Experts architecture consists of relatively simple (i.e. onelayer) gating and expert networks, organized in a tree structure as shown in Fig. 4.2.The basic principle behind this structure is the well known technique called divide-and-conquer. Algorithms of this kind solve complex problems by dividing it into simplerproblems for which solutions can be obtained very easily. These partial solutions are thenintegrated to yield an overall solution to the whole problem. In the Hierarchical Mixturesof Experts architecture, the leaves of the tree represent expert networks, which act assimple local problem solvers. Their output is hierarchically combined by so called gatingnetworks at the internal nodes of the tree to form the overall solution. To be more speci�c,the architecture has to learn an input-output mapping y = f(x) based on a set of trainingsamples T = f(xi;yi); i = 0; : : : ; Ng. The expert networks as well as the gating networksreceive the input vectors xi with the di�erence that the gating networks use the input tocompute con�dence values for the outputs of their children, whereas the expert networksuse the input to generate an estimate of the desired output value.
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Figure 4.2: Hierarchical Mixtures of Experts ArchitectureThere are existing similar tree-structured divide-and-conquer models in statistics,



38 CHAPTER 4. HIERARCHICAL MIXTURES OF EXPERTSnamely CART by Breiman et. al. [6], MARS of Friedman [15] and ID3 by Quinlan[44]. However, these algorithms solve function approximation or classi�cation problemsby explicitly dividing the input space into subregions, such that only one single 'expert'is contributing to the overall output of the model. Caused by these 'hard-splits' of theinput space, CART, MARS and ID3 tend to be variance-increasing, especially in the caseof high-dimensional input spaces, where data is very sparsely distributed. In contrast,the gating networks in an HME are capable of computing soft splits of the input space,allowing input data to lie simultaneously in multiple regions. In this case, many expertscontribute to the overall output which has a variance-decreasing e�ect.All the expert networks in the HME tree realize linear mappings between the inputand the output space with an additional output non-linearity. One can also interpretthe experts as single layer perceptrons. In the case of multiway classi�cation, the non-linearity is generally chosen to be the softmax function, whereas in the case of regressionthe non-linearity is the identity and the experts are strictly linear. The selection ofthe non-linearity depends on the probabilistic interpretation of the model and will beexplained in the following section.Consider the two-layer, binary branching HME in Fig. 4.2. Each of the expert networks(i; j) produces its output �ij from the input x according to:�ij = f(Uijx)where Uij is a weight matrix and f is the output non-linearity. The input vector xis considered to have an additional constant coordinate value of 1:0 to allow for networkbiases.The gating networks are also generalized linear. Since they perform multiway classi-�cation among the experts, the non-linearity is chosen to be the softmax non-linearity.The output values gi of the top-level gating network are computed according to:gi = exp(�i)Pk exp(�k) with �i = vTi xDue to the special form of the softmax non-linearity, the gi are positive and sum up toone for each input vector x. They can be interpreted as the local conditional probability,that an input vector x lies in the region of the associated children node. The lower levelgating networks compute their output activations similar to the top-level gating network:gjji = exp(�ij)Pk exp(�ik) with �ij = vTijxThe output activations of the expert networks are weighted by the gating networksoutput activations as they proceed up the tree to form the overall output vector. Specif-ically, the output at the i-th internal node in the second layer of the tree is
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�i =Xj gjji�ijand the output at the top level (root node) is� =Xi gi�iSince both the expert and the gating networks compute their activations as a functionof the input x, the overall output of the architecture is a nonlinear function of the input(even in the case of linear experts). Furthermore, di�erent input spaces may be usedfor gating and expert networks. In the case of speech recognition, the gating networksmight be supplied with additional input features, e.g. speaking rate, in order to facilitatediscrimination between di�erent sounds.4.1.2 Probabilistic InterpretationThe architecture is best understood as a generative probabilistic decision tree. Observabledata is assumed to be generated by the model in the following way: For each input vectorx, the output values computed by the gating networks are interpreted as the multinomialprobabilities of selecting one of the children nodes. Starting at the root node, a particularsequence of decisions is made based on the probability distributions imposed by the gatingnetworks. This process eventually ends in a terminal node of the tree containing a speci�cexpert network. This expert network computes a linear activation muij using its weightmatrix. The vectormuij is considered to be the mean of a probability density that modelsthe generation of output vectors.The gating networks parameterization corresponds to a multinomial logit probabilitymodel, which is a special case of a Generalized Linear Model (GLIM) [34]. That is, gatingnetwork outputs are assumed to follow a multinomial densityP (y1; : : : ; yn) = m!(y1!) : : : (yn!)py11 : : : pynnwhere the pi are the multinomial probabilities associated with the di�erent classes(in this case the children nodes) and m = Pni=1 yi is generally taken to equal one forclassi�cation problems.The probability density for the expert networks is assumed to be a member of theexponential family of densities. In the case of regression, the probabilistic component isgenerally chosen to be the Gaussian densityP (yjx; �) = 1(2�)n=2Qi �i expf�12Xi (xi � �i)2�2i g



40 CHAPTER 4. HIERARCHICAL MIXTURES OF EXPERTSwhereas in the case of multiway classi�cation, the expert's probability density functionis the same as for the gating networks, with the di�erence, that the gating networksdiscriminate between children nodes and the expert networks discriminate between outputclasses.Given these assumptions, the total probability of generating the output y from theinput x can be given in form of a hierarchical mixture model:P (yjx; �) =Xi gi(x;vi)Xj gjji(x;vij)P (yjx; �ij)In this notation, � contains both the gating network's parameters vi; vij and the ex-pert's parameters �ij.4.1.3 Posterior ProbabilitiesIn order to develop learning algorithms for the hierarchy, we need to introduce posteriornode and posterior branch probabilities. Consider the training of a given HME architec-ture, where we explicitely know the desired output vector y for each input vector x. Inthis context, we consider the gating probabilities gi and gjji to be prior branch probabili-ties, since they are computed based on the input vector x alone, without any knowledgeabout the target output vector y. Using both the input and output vectors, posteriorbranch probabilities can be de�ned for the gating networks:hi = giPj gjjiPij(y)Pi giPj gjjiPij(y) hjji = gjjiPij(y)Pj gjjiPij(y)Based on these conditional posterior probabilities, we can compute unconditional nodeprobabilities for each node in the tree by multiplying all the conditional posterior branchprobabilities along the path from the root node to the node in question. This way, wecan assign a posterior probability to each of the expert networks too:hij = hihjji = gigjjiPij(y)Pi giPj gjjiPij(y)hij is interpreted as the probability that expert network (i; j) has generated the ob-served data pair (x;y). Note, that posterior probabilities are not available during testing,where we do not have any knowledge about the target output vector y. They are exclu-sively needed for the derivation of learning algorithms.4.2 Gradient Ascent LearningSince we assume that the HME realizes a probabilistic generative model of our data, wecan de�ne the likelihood of our model given a training set T = f(xi;yi); i = 0; : : : ; Ng



4.2. GRADIENT ASCENT LEARNING 41and treat the learning problem as a maximum likelihood problem. This kind of learningalgorithm for HMEs was introduced by Jordan and Jacobs [26]. The derivation of thislearning algorithm is fairly straight forward and it can be realized both as an on-line anda batch learning method.4.2.1 The LikelihoodIt is common to use the log of the likelihood instead of the likelihood itself, which convertsthe product of probabilities to a sum:l(�;X ) = Xt logP (y(t)jx(t); �)= Xt logXi giXj gjjiP (y(t)jx(t); �ij)In order to derive an update algorithm for the gating network and expert networkparameters, we need the derivatives of the log likelihood with respect to the gating andexpert parameters, respectively. For the top-level gating network, we obtain@l(�;X )@vk = Xt Pi(@gi=@vk)Pj gjjiP (y(t)jx(t); �ij)Pi giPj gjjiP (y(t)jx(t); �ij)= Xt Pi gi(�ik � gk)Pj gjjiP (y(t)jx(t); �ij)Pi giPj gjjiP (y(t)jx(t); �ij) x(t)= Xt gkPj gjjiP (y(t)jx(t); �ij)� gkPi giPj gjjiP (y(t)jx(t); �ij)Pi giPj gjjiP (y(t)jx(t); �ij) x(t)= Xt (hk � gk)x(t)where we have used the derivative of the softmax function@gi@vk = gi(�ik � gk)Similarly, it can be shown that the derivative of the likelihood with respect to thesecond layer gating networks is@l(�;X )@vkl =Xt hk(hljk � gljk)x(t)Since we are interested in the set of parameters that maximise the log likelihood ofthe observed data given the model, we perform gradient ascent in weight space using



42 CHAPTER 4. HIERARCHICAL MIXTURES OF EXPERTSthe likelihood gradients and a learning factor � to update the parameters of the gatingnetworks: v(k+1)i = v(k)i + �Xt (hi � gi)x(t)v(k+1)ij = v(k)ij + �Xt hi(hjji � gjji)x(t)The above learning rule suggests an update after the presentation of the completetraining set. Instead of computing the real gradients of the log likelihood over the wholetraining set, we could also use a variant, called stochastic gradient update, which updatesthe parameters each time a �xed number m of training samples have been presented tothe architecture. This form of parameter update is usually called on-line learning andleads to faster convergence.It remains to derive parameter update rules for the expert networks. Depending onthe chosen probability density model for the expert networks, we obtain di�erent updaterules. Therefore we have to distinguish between regression and classi�cation tasks andderive the di�erent update algorithms in the next two sections.4.2.2 Expert Parameter Updates for RegressionWhen the HME is used for function approximation, the underlying probability densityis assumed to be Gaussian. To simplify the derivation of the update rule, we assume aunit variance Gaussian density, although update rules for Gaussians with full covariancematrices exist too. The gradient of the log likelihood with respect to the (k; l)-th expertis @l(�;X )@�kl = Xt gkgljk(@P (y(t)jx(t); �kl)=@�kl)Pi giPj gjjiP (y(t)jx(t); �ij)= Xt hkl(y(t) � �(t))x(t)Twhich leads to the gradient update rule for expert parameters�(k+1)ij = �(k)ij + �Xt hij(y(t) � �(t))x(t)TNote, that the above learning rule updates the whole weight matrix at once. If thehierarchy is capable of learning a given approximation problem perfectly, the di�erencesbetween the target vectors y(t) and the HME's linear predictions �(t) will eventuallyconverge to zero. The gradient of the log likelihood will vanish and the updates willbecome zero.



4.3. EM LEARNING 434.2.3 Expert Parameter Updates for Classi�cationThe objective of this thesis is to apply modular neural networks in a hybrid speech recog-nition environment. Therefore, we are mainly interested in the use of HMEs as classi�ersand posterior class probability estimators. In the case of classi�cation, the same kind ofprobability density applies to the expert and the gating networks, since they both per-form multiway classi�cation. However, for training a classi�er, we usually have a dataset with 'hard' targets. That means, there is a class label associated with each inputvector x. Using a 1-out-of-N encoding of class labels, the multinomial probability densitydegenerates as followsP (t1; : : : ; tn) = m!(t1!) : : : (tn!)�t11 : : : �tnn = �01 : : : �1c : : : �0n = �cHere, the �i are the output values of the classi�er and the ti are the target values foreach class (which are zero for all but one class). �c stands for the output value associatedwith the correct target class. Using this simpli�ed probability model, we obtain thederivative of the log likelihood with respect to the weight vector of node m in expertnetwork (k; l) @l(�;X )@�klm = Xt gkgljk(@P (y(t)jx(t); �kl)=@�klm)Pi giPj gjjiP (y(t)jx(t); �ij)= Xt gkgljk(@�(t)klc=@�klm)Pi giPj gjjiP (y(t)jx(t); �ij)= Xt hkl(�cm � �klm)x(t)= Xt;c=mhkl(1� �klm)x(t) � Xt;c6=mhkl�klmx(t)which leads to the following expert network parameter update rule�(k+1)ijm = �(k)ijm + �� Xt;c=mhij(1� �ijm)x(t) � Xt;c6=mhij�ijmx(t)�Again, the update formulas can either be used in on-line or in batch mode. Wewill postpone the evaluation of the gradient ascent learning rule until after the next twosections, where we will derive a more e�cient learning algorithm for the HME architecture.4.3 EM LearningThe Expectation Maximization (EM) algorithm of Dempster et. al. [10] is a general tech-nique for maximum likelihood estimation. It is mainly applied to unsupervised learning,



44 CHAPTER 4. HIERARCHICAL MIXTURES OF EXPERTSi.e. clustering and mixture density estimation. The most popular application of EM tounsupervised learning in the context of speech recognition is the Baum-Welch or Forward-Backward algorithm that solves the learning problem for Hidden Markov Models. TheEM algorithm is a very powerful iterative algorithm for maximum likelihod problems in-volving missing data. For example, in speech recognition, the Baum-Welch Reestimationusually converges in only 2-5 iterations. There is no reason, why the EM frameworkshould not be applicable to supervised learning problems like the HME learning as well.4.3.1 General EM AlgorithmThe iterative EM algorithm is composed of two steps. The E-step (Expectation) de�nesa new likelihood function in each iteration, that is maximised during the M-step (Max-imization). Often, E- and M-step are combined in a single undivisible algorithm, butfor theoretical purposes we will distinguish between the two steps. If the M-step onlyincreases the likelihood instead of maximizing it in each step, the algorithm is called Gen-eralized Expectation Maximization (GEM). The learning algorithm for the Boltzmannmachine, for example, is essentially a GEM algorithm.In order to apply the EM algorithm to a new domain, a set of 'missing' or 'unknown'variables have to be de�ned, that would simplify the optimization of the log likelihood, ifthey were known. We then distinguish between the incomplete-data log likelihood l(�;X)over the observable dataX and the complete-data log likelihood lc(�;Y) over the extendeddataY = X[Z which includes the set of missing variables Z. It is important to note, thatthe complete-data log likelihood is a random variable because the set of missing variablesare unknown.The EM algorithm aims at increasing an estimation of the complete-data log likelihoodas follows. Using the observed data and the current model, the E-step �rst computes theexpected value of the complete-data log likelihood:Q(�; �(k)) = E[lc(�;Y)jX ]The superscript k refers to the parameters at the k-th iteration of the algorithm. TheE-step yields a deterministic function Q of the parameters of the model. The M-stepmaximizes the Q-function with respect to the model's parameters:�(k+1) = argmax� Q(�; �(k)The process iterates by looping over E- and M-step until the maximization yields nofurther improvement. The EM algorithm guarantees to compute parameter estimates thatincrease the Q-function in each iteration. The Q-function, however, is just the expectedvalue of the complete-data log likelihood. Our goal is to maximize the incomplete-datalog likelihood. Dempster et. al. addressed this issue and proved that an increase in theQ-function always implies an increase in the incomplete-data log likelihood:
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Q(�; �(k+1)) � Q(�; �(k)) =) l(�(k+1);X ) � l(�(k);X )That means, the original likelihood l(�;X ) increases monotonically with every itera-tion, converging to a local minimum.4.3.2 Applying EM to the HMEApplication of EM to the HME architecture involves the de�nition of 'missing' variablesthat facilitate the optimization of the log likelihood. Let zi; i = 1; : : : ; n be a set of binaryindicator variables for the top-level gating network, and let zjji; i; j = 1; : : : ; n be a set ofbinary indicator variables for the second layer gating networks. For any given input vectorx exactly one of the zis is one, all the others are zero. Similarily, given the zi, exactlyone of the zjji is one, all the others are zero. The zis and zjjis have an interpretation asthe (unknown) decisions corresponding to the probability model. An instantiation of thezis and zjjis corresponds to a speci�c path from the root node of the tree to one of theleaves, determining the expert responsible for data generation. Note, however, that thezis and zjjis are not known and must be treated as random variables. If they were known,the maximum likelihood problem for the HME would decouple into a set of independentmaximum likelihood problems for each of the gating and expert networks. Although thezis and zjjis are unknown, we can specify a complete-data log likelihood probability modelthat links them to the observable data and allows for the application of the EM algorithm:lc(�;Y) = logYt Yi Yj g(t)i g(t)jjiPij(y(t))z(t)ij= Xt Xi Xj z(t)ij logfg(t)i g(t)jjiPij(y(t))g= Xt Xi Xj z(t)ij flog g(t)i + log g(t)jji + logPij(y(t))gThe above complete-data log likelihood is much easier to maximize than the cor-responding incomplete-data log likelihood, because we managed to bring the logarithminside the summation.One can prove easily that the posterior probabilities hi, hjji and hij can be used asthe expected values for the unknown indicator variables zi, zjji and zij, respectively (see[26] for a proof). Using this fact, we can de�ne the Q-function for the E-step of the EMalgorithm: Q(�; �(k)) =Xt Xi Xj h(t)ij flog g(t)i + log g(t)jji + logPij(y(t))g



46 CHAPTER 4. HIERARCHICAL MIXTURES OF EXPERTSThe M-step requires the maximization of the Q-function with respect to the model'sparameters. We now see the bene�ts of applying EM, since the maximization decouplesinto a set of separate maximum likelihood problems that may be solved independentlyduring the M-step: v(k+1)i = argmaxvi Xt Xl h(t)l log g(t)lv(k+1)jji = argmaxvjji Xt Xl h(t)l Xm h(t)mjl log g(t)mjl�(k+1)ij = argmax�ij Xt h(t)ij logPij(y(t))Since we are mainly interested in the HME as a classi�er, we will restrict the derivationof solutions for the above maximum likelihood problems to this case, assuming a multi-nomial (Poisson) density as the probabilitiy model for the expert as well as the gatingnetworks. Under these assumptions, the log likelihood equation for the expert and gatingnetwork's parameters are weighted log likelihoods for a special case of a Generalized Lin-ear Model (GLIM), namely a multinomial logit model. For the top-level gating networks,we have to maximize the cross-entropy between the posterior branching probabilities hland the branching (prior) probabilities gl. For the second level gating networks, we haveto maximize the cross-entropy between the posterior branching probabilities hmjl and thebranching (prior) probabilities gmjl, weighted by the posterior probability hl of the gatingnode itself. In deeper trees, the weight for the cross-entropy is simply the product ofposterior branching probabilities along the path from the root node to the gating node inquestion. Finally, the maximization problem for the expert networks involves maximizingthe cross-entropy between the expert's posterior probability and the output at the nodeof the actual correct class. Since all of the above maximization problems are based onlikelihoods for generalized linear models, we can apply an algorithm called IterativelyReweighted Least Squares (IRLS) [34] that solves such likelihood problems.4.3.3 Iteratively Reweighted Least Squares (IRLS)Applying the EM algorithm to the HME architecture requires the computation of posteriorprobabilities hi, hjji and hij for each input vector x in the E-step, and the maximizationof independent maximum likelihood problems for GLIMs in the M-step. This process isiteratively repeated until no further improvement can be obtained. This section describesthe IRLS algorithm that can be used to solve the maximization problems within the M-step. The IRLS algorithm is a special case of the Fisher scoring method [12]. In orderto maximize the log likelihood l(�;X ) with respect to the parameter vector �, the Fisherscoring method updates � according to
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�(k+1) = �(k) � (E "@l(�(k);X )@�@�T #)�1 @l(�(k);X )@�This equation strongly resembles the Newton-Raphson equation with the notable dif-ference that in the Fisher scoring method, the Hessian is replaced by the expected valueof the Hessian. Besides the fact, that the expected value of the Hessian is often easier tocompute, there are statistical reasons for prefering it over the actual Hessian.We will now derive the IRLS algorithm for the special case of a multinomial GLIM.The multinomial density is a member of the exponential families of distributions which isan important class of distributions in statistics. It can be rewritten in the following form:P (y1; : : : ; yn) = m!(y1!) : : : (yn!)py11 : : : pynn= exp(log m!(y1!) : : : (yn!) + nXi=1 yi log pi)= exp(log m!(y1!) : : : (yn!) + n�1Xi=1 yi log pipn + n log pn)where we have used the constraint that the pi sum up to one to express pn as pn =1�Pn�1i=1 pi. Comparing this form of the multinomial density with the general form of adensity of the exponential familyP (y; �;�) = exp((�y � b(�))� + c(y;�))with the natural parameter � and the dispersion parameter �, we can de�ne the naturalparameter � to be the vector of �is:�i = log pipn= log pi1�Pn�1i=1 pi= log8<:pi0@1 + n�1Xj=1 exp(�j)1A9=;This equation can be inverted to yieldpi = exp(�i)1 +Pn�1j=1 exp(�j)= exp(�i)Pnj=1 exp(�j)



48 CHAPTER 4. HIERARCHICAL MIXTURES OF EXPERTSwhich is the 'softmax' function that we have assumed as the non-linearity for the gatingand expert networks. By parameterizing the multinomial probability density in terms ofthe natural parameter �, we have forced the choice of the network's output non-linearityto be the softmax function. The softmax function is refered to as the canonical link tothe multinomial distribution. Other choices of the output probability density result indi�erent canonical links, for example, assuming a Bernoulli density yields the standardsigmoid function as the canonical link function.Having justi�ed the choice of the output non-linearity, we now proceed in the derivationof the IRLS update equations. First we de�ne the function b implicit as the integral ofthe softmax function:�(t)i = @b@�i = exp(�(t)i )Pj exp(�(t)j ) with �(t)i = �iTx(t)We can now compute the terms necessary for the Fisher scoring equation, that is, weneed the likelihood and the �rst and second derivatives of the likelihood of a multinomialGLIM: l(�;X ) = Xt Xk ��kTx(t)y(t)k � b(�Tk x(t))�+ log m!(y1!) : : : (yn!)@l(�;X )@�i = Xt Xk  �kiy(t)k � @b(�Tk x(t))@�i !x(t)@l(�;X )@�i@�Tj = Xt Xk @b(�Tk x(t))@�i@�Tj x(t)x(t)TFinally, by assembling all these equations into the Fisher scoring update function, weobtain the following IRLS algorithm for multinomial GLIMs:�(k+1)i = �(k)i + �XTWiX��1XTWieiwhere Wi is a diagonal matrix with diagonal elementsw(t)i =Xk h�(t)k (�ki � �(t)i )iand ei is the vector of scalars e(t)i :e(t)i = y(t)i � �(t)iThe weight matrices Wi and the vectors ei change from iteration to iteration becausethey depend on the weight vectors �i. The above update equation is essentially a solution



4.4. LEAST SQUARES AND HEURISTICS 49to a weighted least squares problem. In our case, we need to extend the IRLS algorithmbecause we have additional �xed observation weights imposed by the gating networks.This can easily be done by multiplying the �xed observation weights with the iterativelyvarying weight matricesWi, which leads to an iteratively reweighted weighted least squaresalgorithm. Applying this algorithm to the HME architecture yields the following trainingmethod:1. Expectation Step:Compute posterior branching/node probabilities h(t)i , h(t)jji and h(t)ij for each data pair(x(t);y(t)) of the training set.2. Maximization Step:(a) Inner loop for experts:For each expert network, solve an IRLS problem with observations (x(t);y(t))and observation weights h(t)ij .(b) Inner loop for top-level gates:For each top-level gating network, solve an IRLS problem with observations(x(t); h(t)i ).(c) Inner loop for second-level gates:For each second-level gating network, solve a weighted IRLS problem withobservations (x(t); h(t)jji) and observation weights h(t)i .3. Iterate EM steps using the updated parameter values.This EM algorithm, though being quite e�ective, needs an iterative procedure in theM-step, while posterior probabilities need to be stored temporarily. This is not feasiblewhen dealing with large data sets, as is the case in speech recognition. Therefore, we areinterested in a version of the EM algorithm, that allows to solve the maximization stepsin one pass. There are two ways of achieving this. The �rst one is, to relax the constraintof maximization in the M-step and derive a Generalized EM algorithm (GEM) that onlyguarantees to increase the log-likelihoods during the M-step. The other way is to useleast squares �tting instead of likelihood maximization together with heuristics to derivea practically useful learning algorithm, which we will do in the next section.4.4 Least Squares and HeuristicsRecall the three maximization problems derived from the Q-function and which we wantto solve in a one-pass algorithm:



50 CHAPTER 4. HIERARCHICAL MIXTURES OF EXPERTS
v(k+1)i = argmaxvi Xt Xl h(t)l log g(t)lv(k+1)jji = argmaxvjji Xt Xl h(t)l Xm h(t)mjl log g(t)mjl�(k+1)ij = argmax�ij Xt h(t)ij logPij(y(t))Computing the derivatives of the log likelihoods with respect to the parameters vi,vjji and �ijk respectively, and setting them to zero yields:Xt nh(t)i � g(t)i ox(t) = 0Xt nh(t)i �h(t)jji � g(t)jji�ox(t) = 0Xt nh(t)ij �t(t)k � �(t)ijk�ox(t) = 0In the above equations, one can think of the posteriors as being targets for the gatingand expert network outputs. As mentioned before, the posteriors are estimates of theunknown indicator variables which would be the correct targets, if they were known. Byinverting the softmax non-linearity at the outputs of gating and expert networks, we cancompute targets for the linear predictors which, in turn, can be used for standard leastsquares �tting. Inverting the softmax functionyi = exp(xi)Pj exp(xj) yields xi = log yi + logXj exp(xj) = log yi + CThe second term is constant for all xi and constant terms common to all xis disappearwhen the softmax function is applied. Therefore, we can use the log yis as targets for thelinear predictors. In the case of the gating networks we obtain the following one-pass leastsquares solutions to the maximization problem:vi = (XTX)�1Xevjji = (XTWX)�1XW fwith e = (logh(1)i ; : : : ; logh(N)i ), f = (logh(1)jji ; : : : ; log h(N)jji ), W = I(h(1)i ; : : : ; h(N)i ).However, trying to compute targets for the linear predictors of the expert networks,we face the problem of having to compute the log of zero since all but one coe�cient of thetarget vectors are zero. The heuristic here is, to use targets ti out of f�; 1g instead of the



4.5. HME FOR VOWEL CLASSIFICATION 51usual f0; 1g. In practice, the value of � is subject to optimization, but small values around1e� 3 have proven to work well. Thus, the least squares problem for expert networks issolvable as before: �ijk = (XTWX)�1XWewith e = (log t(1)k ; : : : ; log t(N)k ) and W = I(h(1)ij ; : : : ; h(N)ij ). Using standard (weighted)least squares, we were able to derive an e�ective EM algorithm with a one-pass M-step,suitable for large hierarchies and large data sets. During training, we have to computeposterior probabilities and accumulate the weighted input vectors into the least squaresmatrices and vectors. After one iteration, a single matrix inversion for each expert/gatingnetwork and a matrix-vector multiplication yields new parameter estimates. In the re-minder of this chapter, we will evaluate the EM algorithm and the gradient ascent al-gorithm in terms of accuracy, generalization and convergence speed on a relatively smalltask. We will also compare the HME with a multi layer perceptron (MLP) trained byerror-backpropagation. The integration of HME's into a hybrid speech recognition frame-work will be evaluated later in a separate chapter.4.5 HME for Vowel Classi�cationWe will demonstrate the properties of the HME architecture and its learning algorithmson Peterson and Barneys vowel classi�cation data set [42]. We chose this dataset becauseit is non-arti�cial, speech recognition related and relatively small, allowing to exploreand analyze the space of learning parameters. Another advantage of this dataset is itslow dimensionality. We can easily reduce the originally four-dimensional feature vectorsto two-dimensional feature vectors, which allows us to draw certain properties of theclass�ers in a two dimensional coordinate system. We think that this kind of analysisprovides deeper insight and better understanding of the way, the HME works.4.5.1 The Data SetThe data set consists of 1520 four dimensional feature vectors. The feature coe�cientsare the formant frequencies F0,F1,F2 and F3. The data set contains an equal numberof training vectors for each of the following 10 American English vowels (uniform priordistribution). IY IH EH AE AH AA AO UH UW ERWe did not preprocess the data in any way, except that we normalized each of thefour formant frequencies in the data set independently to the range [0; 1]. Fig. 4.3 showsthe complete data set in the normalized (F1,F2) feature space.
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Figure 4.3: Peterson & Barneys vowel classi�cation data set x =F1, y =F2Syrdal and Gopal [50] performed classi�cation on this dataset using a quantitativeperceptual model of human vowel recognition. They reported classi�cation rates between82.3% and 85.9% for their classi�er based on bark scale di�erences and linear discriminantanalysis (LDA). Human listeners achieved an average classi�cation rate of 94.4% whenhearing the original recordings of the vowels.4.5.2 ResultsFig. 4.4 shows the evolution of the likelihood on the training data and the mean squareerror and the classi�cation error on the test data for a GLIM a MLP and di�erent HMEarchitectures (branching factor 2, depth 1,2 and 3). The HME's were trained with acombination of the Least Squares heuristic to EM and the gradient ascent algorithm. Wefound, that the Least Squares heuristic converges very fast (faster than the gradient basedtraining) but is not able to achieve the same performance.
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54 CHAPTER 4. HIERARCHICAL MIXTURES OF EXPERTSTherefore, we used LS for the �rst few iterations before switching to GA, which gavethe best results. The MLP was trained with on-line stochastic gradient error backprop-agation with a learning rate of 0:1 (optimized by several trials). The training runs wereperformed on 4-dimensional feature vectors. Comparing classi�er performances with re-spect to the classi�cation error rate, one can see that a simple GLIM is competitive withboth a 2-layer MLP with 24 hidden units and the di�erent HME architectures. However,the evolution of the likelihood and mean square error show that MLP and HME's are ableto learn the data better. Several things deserve to be mentioned:� MLP and HME's achieve roughly the same performance� Convergence is much faster for the HME's due to the EM algorithm� Di�erent HME architectures do not vary signi�cantly in the case of the vowel data.Fig. 4.5 shows the class boundaries imposed on a 2-dimensional feature space (F1,F2)by an HME (depth 3,branching factor 2) and an MLP (24 hidden units), respectively.

Figure 4.5: Class boundaries obtained by HME (left) and MLP (right)HME and MLP were trained until convergence on the 2-dimensional feature. Theplots in Fig. 4.5 were computed by sampling the interval [0; 1]2, coloring the class withhighest output activation in di�erent shades of gray. The MLP seems to prefer non-linear curvy class boundaries, whereas the HME imposes almost linear ones. It seemsthat the HME discovers that the task does not need a soft collaboration between experts,therefore partitioning the input space into disjunct segments, which are classi�er by the(generalized) linear experts.



4.5. HME FOR VOWEL CLASSIFICATION 55Fig.4.6 shows the evolution of the activation regions of the experts while training thearchitecture. The plots are sampled in the same region [0; 1]2 as before, coloring the expertwith the highest cummulative gating probability in di�erent shades of gray. Obviously,as the training proceeds, the HME shuts o� 5 of its 8 experts completely. A combinationof 3 experts seems to be enough to solve the given task. This again means, that a lot ofparameters in the HME tree are rendered useless in this speci�c application.
Figure 4.6: Evolution of expert's regions of activation (after 1,2,3,4 and 9 iterations,respectively)Since we do not know in advance, how many experts are su�cient to solve a givenproblem adequately, we can only guess and use an architecture that is likely to containmore experts than needed. This approach to model selection is clearly a waste of parame-ters. The next chapter addresses this problem by presenting a constructive method whichiteratively grows an HME architecture that uses its parameters more e�ectively.



56 CHAPTER 4. HIERARCHICAL MIXTURES OF EXPERTS



Chapter 5Constructive Methods
5.1 MotivationOne of the essential problems with the HME approach, as with other neural architectures,is model selection. Applying HME's to a classi�cation or regression problem requires thechoice of structural parameters such as the tree depth and the branching factor. As withother architectures, the problem of model selection is mostly solved in a rather simpleway. Architectures of di�erent size are trained and their performances are comparedon an independent test set to select the one, that generalizes best. This approach iscomputationally very expensive especially when dealing with large data sets.Better solutions to selecting model sizes are constructive and/or pruning methods.Constructive methods iteratively generate larger models starting from a very small one.For example, Fahlman's cascade correlation algorithm realizes such a constructive methodfor a special multi-layered network. The basic idea in all growing algorithms is to usesome criterion on the training data to select the locally best expansion out of the set of allpossible expansions to adaptively generate an architecture that �ts the data better thanits static counterpart.Pruning methods, on the other hand, use the opposite strategy: A large (possiblyoversized) architecture is evaluated to detect obsolete or ine�ective parts which thenare removed before the architecture is re-trained. This process can also be repeatediteratively using the performance on an independent test set as the stopping criterion.Computationally, pruning methods have the disadvantage of repeatedly requiring thetraining of unnecessarily large architectures.Because of the inherent tree structure of the HME, it is very appealing to derive agrowing algorithm for this architecture. The machine learning literature o�ers a widevariety of growing algorithms for classi�cation and decision trees [44], [45], [6]. Unfor-tunately, these algorithms require the evaluation of the gain of all possible node splits,using (mostly) entropy or likelihood based criterions, to eventually realize the best splitand discard all the others. Waterhouse and Robinson [56] presented such an algorithm57



58 CHAPTER 5. CONSTRUCTIVE METHODSfor the HME architecture. They evaluated their growing algorithm on a relatively smalldata set. In the case of very large speech data sets, their approach is no longer applicablein a reasonable amount of time. We therefore developed a di�erent growing algorithm forthe HME architecture which imposes very little overhead and which is applicable in ourdomain.5.2 AlgorithmsWe distinguish between tree growing and tree pruning, although both techniques areusually applied simultaneously, in order to achieve faster learning and recognition passes.5.2.1 Adaptive Tree GrowingIn order to grow an HME, we have to de�ne an evaluation criterion to score the expertsperformance on the training data, which in turn will allow us to select the worst expert tobe split into a new subtree, providing additional parameters which can help to overcomethe errors made by this expert.Viewing the HME as a probabilistic model of the observed data, we partition the inputdependent likelihood of data generation using the expert selection probabilities providedby the gating networksl(�;X ) = Xt logP (y(t)jx(t);�) =Xt Xk gk logPk(y(t)jx(t);�k)= Xk Xt log[Pk(y(t)jx(t);�k)]gk =Xk lk(�k;X )where the gk are the products of the gating probabilities along the path from the rootnode to the k-th expert, that is, gk is the probability that expert k is responsible forgenerating the observed data (note, that the gk sum up to one). The expert-dependentscaled likelihoods lk(�;X ) can be used as a measure for the performance of an expertwithin its region of responsibility. We use this measure as the basis of our tree growingalgorithm:1. Initialize and train a simple HME consisting of only one gate and several experts.2. Compute the expert-dependent scaled likelihoods lk(�;X ) for each expert in oneadditional pass through the training data.3. Find the expert k with minimum lk and expand the tree, replacing the expert by anew gate with random weights and new experts that copy the weights from the oldexpert with additional small random perturberations.



5.3. EXPERIMENTS 594. Train the architecture to a local minimum of the classi�cation error using a cross-validation set.5. Continue with step (2) until desired tree size is reached.The number of tree growing phases may either be pre-determined, or based on dif-ference in the likelihoods before and after splitting a node. In contrast to the growingalgorithm in [56], our algorithm does not hypothesize all possible node splits, but deter-mines the expansion node(s) directly, which is much faster, especially when dealing withlarge hierarchies.5.2.2 PruningFurthermore, we implemented a path pruning technique similar to the one proposed in[56], which speeds up training and testing times signi�cantly. During the recursive depth-�rst traversal of the tree (needed for forward evaluation, posterior probability computationand accumulation of node statistics) a path is pruned temporarily if the current node'sprobability of activation falls below a certain threshold. Additionally, we also prune sub-trees permanently, if the sum of a node's activation probabilities over the whole trainingset falls below a certain threshold. This technique is consistent with the growing algo-rithm and helps prevent instabilities and singularities in the parameter updates, sincenodes that accumulate too little training information will be pruned away, without beingconsidered for a parameter update.Temporarily pruning branches of the HME tree can speed up training and testingtimes considerably, although this will most likely lead to an increase in error rate. Wewill present results of experiments with di�erent pruning thresholds and their impacton the performance of an HME system. For speech recognition applications, a meansfor trading o� accuracy against speed is very appealing, especially for demo systems,where the system's reaction time is more important than its performance (although animprovement in both directions is desirable, of course). We will therefore also examinethe e�ect of HME pruning on speech recognition performance.5.3 ExperimentsWe evaluate the tree growing and pruning algorithms on the Peterson & Barney vowelclassi�cation task, comparing the resulting HME's with standard pre-determined HMEarchitectures.5.3.1 Tree GrowingWe compare a standard binary tree HME (depth 3) containing 8 experts with an adap-tively grown binary HME with the same number of experts. Fig. 5.1 and Fig. 5.2 show



60 CHAPTER 5. CONSTRUCTIVE METHODSthe evolution of the classi�cation rate and log-likelihood during training. The standardHME achieves it's �nal performance after 9 iterations, the growing HME is able to achievethe same performance after 8 iterations, at this time consisting of only 3 experts. This isconsistent with our earlier observations.
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Figure 5.1: Classi�cation rate for standard and growing HMEThe bumpiness of the curves for the growing HME are due to the node splitting, thatwas done after every 4 iterations. Each time a node is being split, two new experts areintroduced and initalized by the splitting candidate's parameters with small additionalrandom perturberations. This causes an initial decrease in both classi�cation rate andlog-likelihood which is soon redeemed by the power of additional parameters.One of the motivations for the growing algorithm was the desire to use the availableparameters e�ectively. Fig. 5.3 and Fig. 5.4 compare the two architectures in this respect.They show the �nal topologies together with histograms at each internal node, approx-imating the distributions of gating probabilities over the test set. The histogram treesshould be interpreted as follows:� A sharp peak at the left or right side of a histogram indicates that one of the twochildren nodes is shut o� by the corresponding gate.� Peaks both at the left and the right side of a histogram indicate a more or less hardsplit of the input space by the corresponding gate.� A peak in the middle of the histogram indicates that the corresponding gate makesuse of soft splits of the input space.
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Figure 5.2: Log-likelihood for standard and growing HMEAs one can see in Fig. 5.3, only 4 of the 8 experts can contribute to the overall outputof the hierarchy, the remaining 4 experts are 'pinched-o�' almost completely.Fig. 5.4 shows the same histogram tree for the grown architecture. Here, almost allexperts contribute to the overall output. The criterion for splitting nodes during thegrowing phase implicitely guarantees this because the splitting score is weighted by theexperts activation. An expert that is hardly ever active will never be split into a newsubtree which is exactly what we want.Fig. 5.5 and Fig. 5.6 compare the regions of activation for each of the 8 experts inboth architectures. Each plot was obtained by sampling the expert's activation (productof gating probabilities along the path from root to expert node) in the region [0; 1]2. Whitecolor indicates high activation, whereas black color indicates low activation.5.3.2 PruningFig. 5.7 shows the e�ect of di�erent pruning factors during training on the �nal classi�ca-tion performance. In this experiment we chose the 2-dimensional feature space, consistingof F1 and F2, because the di�erence between a GLIM and an HME in terms of classi�ca-tion performance is much more obvious. The HME consists of 8 experts, organized in abinary tree of depth 3. A pruning value of 0:0 corresponds to no pruning at all, while ata value of almost 1:0 only the most probable expert is evaluated.
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Figure 5.3: Histogram tree for a standard HME

Figure 5.4: Histogram tree for a grown HME
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Figure 5.5: Expert activations for standard HME

Figure 5.6: Expert activations for grown HMESince the test set is relatively small, measuring the classi�cation error after only onetraining run is not very representative, because di�erent initial weights inuence the �nalperformance. Therefore, we computed mean and standard deviation of the classi�cationerror rate over 20 training runs, for each setting of the pruning factor. The lowest clas-si�cation error rate over a maximum of 30 iterations was computed and used in eachtraining run, although most of the training runs converged in less than 8 iterations. Fi-nally, Fig. 5.8 shows the impact of pruning during the testing of an HME. This time, theHME was trained without pruning. Di�erent pruning thresholds were applied during thecomputation of the mean square error on the test set. We chose the MSE instead of theclassi�cation rate, since the test set is too small to give signi�cant results with respectto the classi�cation error rate (and because GLIM and HME performances are relativelyclose).
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Chapter 6Context ModelingIt is well known from traditional HMM based speech recognizers, that the modeling ofphonetic context improves recognition accuracy signi�cantly over context-independentmonophone models. Incorporating context models into a connectionist hybrid HMM sys-tem is also expected to boost performance, but it requires a di�erent approach, sincethe computation of class likelihoods is not distributed among separate estimators, butis performed by computing class posteriors using one big neural network. This chapterintroduces posterior factoring as a technique to model phonetic contexts within a hy-brid connectionist speech recognizer and presents a parametric clustering algorithm thatcreates decision tree clustered polyphone contexts.6.1 Phonetic Context ModelingIn a system with n monophones, modeling of context windows of width d would requirethe estimation of models for nd classes, which is not feasible in practice (n � 50; d > 3).Usually, phonetic contexts are hierarchically clustered according to a distance measure be-tween two parametric distributions. The most popular example are generalized triphones[32]. Systems that use this kind of modeling cluster the set of all possible/observedmonophone triples (� 125000) into a set of about 5000� 10000 models. This approach,however, considers only the left and right neighbors of a monophone. More recently,systems have emerged, that cluster broader contexts, so called polyphones. Whateverthe actual context modeling is, once a set of reasonable context classes is computed, itremains to estimate likelihoods for each of these classes.A mixture of Gaussians based context-independent (CI) HMM system can be aug-mented to a context-dependent (CD) one fairly simple, since each class is modeled bya separate multivariate Gaussian mixture and density estimation of one context class isindependent of all the other classes. As far as the acoustic modeling is concerned, it onlyrequires a much larger set of mixture densities, the underlying mathematical frameworkdoes not restrict the number of modeled classes.65



66 CHAPTER 6. CONTEXT MODELINGAugmenting a CI connectionist hybrid HMM system to model context classes, we arefacing some di�culties, since scaled class likelihoods are computed out of class posteriors,which in turn are computed by one single neural network. This works well for a CI systemwith only about 50 classes, but it is computationally not feasible to model a set of over1000 context classes by one single neural network, which would require over 1000 outputneurons. Also, such a network would compute posteriors for all of the context classes ineach frame, although most of them will never be used by the decoder. Training such abig network is potentially troublesome and would require too many training epochs to beapplicable to speech domains with large training datasets.6.2 Factoring PosteriorsFortunately, posteriors for context dependent classes can be modeled by multiple neuralnetworks, each of which containing only a small number of output neurons. Using Bayes'rule and standard rules for conditional probabilities, the context-dependent monophonelikelihood p(xjcj; !i) for monophone !i and context class cj, which is required by theHMM, can be factored in separate terms, depending on the state topology.6.2.1 Single State TopologiesIn a system where each context class is modeled by a single HMM state, the emissionprobability (likelihood) to be estimated in each frame is p(xjcj; !i). Using Bayes' rule,this is equal to p(xjcj; !i) = p(cj; !ijx)p(x)P (cj; !i)The above equation can be factored as follows using the standard rule for conditionalprobabilities p(xjcj; !i) = p(cj; !ijx)p(x)P (cj; !i)= p(cjj!i;x)P (cjj!i) p(!ijx)P (!i) p(x)As usual, p(x) can be neglected since it is equal for all context classes cj and allmonophones !i given a particular frame x, hence it will not a�ect the decisions made inthe decoder because the < relation is invariant to addition of constants.The remaining terms in the numerators are posteriors, which can be approximatedby neural nets, while the terms in the denominators are prior probabilities which can beestimated based on the frequencies of classes in the training set.



6.2. FACTORING POSTERIORS 67The posteriors p(!ijx) are conditioned on the input feature vector x only and can beapproximated by a neural network which discriminates between all the monophones inthe system.The posteriors p(cjj!i;x) are conditioned on the input feature vector and on one ofthe monophones !i. One way of estimating these probabilities, which �ts neatly in thescheme of a modular neural network system, is to train separate context expert networksfor each of the monophones. The context expert for monophone !i would be a networkwhich approximates the posteriors pi(cjjx) for all the context classes of monophone !i.Fig. 6.1 gives an overview of a context dependent connectionist hybrid system forsingle state topologies.
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Figure 6.1: Overview: single state topology hybrid context dependent system



68 CHAPTER 6. CONTEXT MODELING6.2.2 Multi State TopologiesGenerally, acoustic models are made up of multiple states in a left-right or Bakis HMMmodel, to account for temporal variations in the modeled speech sound. Today's state-of-the-art recognizers use mostly 3-state and 5-state left-right HMMs. First, consider acontext independent hybrid connectionist HMM system. There are two ways to modelmulti-state topologies in such a system: The �rst one is, to treat all the state's of allmonophone models as one big pool, and train a neural network to discriminate betweenall of them. This approach requires s � n output nodes for n monophones using s-statemodels. Instead, we can adhere to the concept of modularity and factor the posteriorclass probability further.A multi-state HMM model requires the computation of the state, monophone andcontext dependent likelihood p(xjcj; !i; sk), where sk is the HMM state, cj is the contextclass and !i is the monophone. Applying Bayes' rule and proceeding as in the case ofsingle state models, we obtain:p(xjcj; !i; sk) = p(cj; !i; skjx)p(x)P (cj; !i; sk)= p(cj; !ijsk;x)P (cj; !ijsk) p(skjx)P (sk) p(x)= p(cjj!i; sk;x)P (cjj!i; sk) p(!ijsk;x)P (!ijsk) p(skjx)P (sk) p(x)All the terms in the denominators are again prior probabilities, which we can estimateby relative frequencies. The frame probability p(x) can be dropped, when seeking themodel with maximum likelihood. It remains to compute the posteriors in the numerators.Starting from the right side, the posteriors p(skjx) can be computed by a single neuralnetwork, discriminating between the states in a s-state HMM topology. Therefore, wecall this network a state discriminating network (SDN).The posteriors p(!ijsk;x) are conditioned on the HMM state and the input frameand can be computed by a set of s networks, one for each HMM state. These networksdiscriminate between the monophones !i, given a particular HMM state sk. The networkfor state sk computes pk(!ijx).The posteriors p(cjj!i; sk;x) are conditioned on the input frame x, the HMM state skand the monophone !i. They can be computed by a matrix of networks consisting of stimes n networks (s is the number of states, n is the number of monophones). Each ofthese networks discriminates between all the context classes of a speci�c monophone in aspeci�c state. The network for state sk and monophone !i therefore computes pki(cjjx).Fig. 6.2 gives an overview of a context dependent connectionist hybrid system for multistate topologies.
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Figure 6.2: Overview: multi state topology hybrid context dependent systemThe networks depicted in Fig. 6.1 and Fig. 6.2 look like single layer perceptrons, butthey are meant to represent arbitrary posterior probability estimators. Computation ofa speci�c context dependent likelihood p(xjcj; !i; sk) requires the evaluation of three net-works: The state discriminating network (SDN), one of the monophone expert networksand one of the context expert networks. Note, that the context-dependent hybrid connec-tionist system can easily be switched back to context-independent (CI) mode by turningo� the context expert networks, a feature not available in mixture-of-Gaussians basedsystems.6.2.3 Related WorkThe modeling of context dependent likelihoods as presented in this thesis most closelyresembles the work in [30] and [31], with the noteable di�erence, that we have generalizedcontext-dependent posteriors to multi-state HMM models.



70 CHAPTER 6. CONTEXT MODELINGThere are other ways of factoring a conditional posterior probability. For instance,one could decompose the conditional likelihood for a one-state HMM model as follows:p(xjcj; !i) = p(cj; !ijx)p(x)P (cj; !i)= p(!ijcj;x)P (!ijcj) p(cjjx)P (cj) p(x)In this case, context speci�c networks are trained to discriminate between the mono-phones !i, given a speci�c context class cj. Every context speci�c network performs asimpler task than a context-independent network. This approach is adopted by SRI [13].However, it is less attractive to us, because of the following two reasons: (1) One can notswitch between CI and CD mode and (2) discriminating between monophones in a speci�ccontext can lead to poor posterior estimates, when some monophones occur rarely or notat all in this context. Furthermore, as we will see in the next chapter, our approach offactoring posteriors allows to make use of the same context clustering trees that are usedin mixture-of-Gaussian based HMM systems.Yet another approach was adopted by Bourlard and Morgan at ICSI [3]. Their methodfactors the posterior phone-in-context probability in the same way as we presented it.However, their system uses only one MLP to estimate context posteriors instead of a setof context experts as proposed earlier in this thesis. This is possible by giving the contextMLP extra binary inputs, which encode the current monophone. This approach hasthe disadvantage of requiring multiple forward passes through the context MLP duringrecognition, since the decoder will hypothesize more than one monophone at each timestep, which leads to di�erent network input patterns.6.3 Polyphone Clustered ContextsWe have presented an architecture for estimating context dependent posterior monophoneprobabilities, given a set of context classes. We have not yet talked about how we obtainthese contextual classes. The remainder of this chapter will present polyphone clusteringusing decision trees, as it is used within the mixture-of-Gaussians based JANUS recog-nizer. We will show, that the resulting context clustering trees can also be used to derivephonetic context classes for the context expert networks in our hybrid framework.6.3.1 PolyphonesPolyphones are generalizations of the well-established triphones. They model a broadercontext of a given monophone. For instance, the word 'BABYSITTING' is modeled,according to our dictionary, as the following sequence of monophones:



6.3. POLYPHONE CLUSTERED CONTEXTS 71B - EY - B - IY - S - IH - DX - IX - NGIf we'd model, for instance, polyphonic contexts of a maximum of +=� 2 phones, theabove word would be modeled as a sequence of the following polyphones:Monophone PolyphoneB * - * - B - EY - BEY * - B - EY - B - IYB B - EY - B - IY - SIY EY - B - IY - S - IHS B - IY - S - IH - DXIH IY - S - IH - DX - IXDX S - IH - DX - IX - NGIX IH - DX - IX - NG - *NG DX - IX - NG - * - *An inventory of polyphones can be extracted from large text corpora and stored e�-ciently in a set of binary decision trees, one for each monophone. It should be obvious,that the number of polyphones observed in a given large text corpus is far too high toallow separate models for each one of them. In fact, many of the observed polyphones dooccur only once in the training set. Additionally, there may be some polyphones in anunseen test corpus, which were not present in the training corpus, no matter how big thelatter was.Therefore, we need to apply a clustering procedure, which reduces the number ofdistinct models while providing full coverage of unseen new test data. By far the mostpopular technique is to use decision trees with questions about the phonetic context. De-cision trees are very appealing because they guarantee to cover all phones in any contexts,while using a distance measure based on the acoustic data to split nodes and grow thetree.6.3.2 Decision Tree ClusteringDecision trees are divisive clustering methods making use of binary trees asking questionsat each internal node. Associated with a decision tree is a �nite set of questions whichcan be answered with yes or no. The children nodes of each internal node correspond tothe two possible answers to the particular question asked. Starting with a tree containingonly the root node, succesive splits are applied to grow the tree to a desired size.The iterative tree growing procedure works as follows: Initially, all the acoustic train-ing data is associated with the root node. In each growing step, a preliminary split iscomputed for all of the leave nodes and all the possible questions, that can be asked.Each of these preliminary splits is scored using a distance measure which models the



72 CHAPTER 6. CONTEXT MODELINGgoodness of the split. The leave node with the best score is then split, while all the otherpreliminary splits are discarded. The training data associated with the node being split,is distributed among the children nodes according to the answers to the actual questionbeing used. The distance measure used to score the preliminary node splits is very muchdependent on the representation of the data. In [30],[31], unimodal multivariate Gaus-sians with diagonal covariance matrices are used to model the data in each leave node.They use the gain in log-likelihood due to the data being split as the distance measure.This involves the estimation of diagonal covariance matrices for each hypothesized nodesplit: �L = n log j�j � (nl log j�lj+ nr log j�rj)where n is the number of samples associated with the parent node, nl and nr arethe number of samples associated with the children nodes, respectively, � is the diagonalcovariance matrix of the data in the parent node and �l and �r are the diagonal covariancematrices of the data in the children nodes, respectively.Once a decision tree for a particular monophone is grown to a desired size, its leavesrepresent the context classes of that monophone and are labeled accordingly.6.3.3 Entropy based ClusteringThe distance measure used in [30],[31] requires the estimation of covariance matrices foreach hypothesized node split using all the acoustic data associated with the nodes involvedin the split. This can be very expensive, especially when the training dataset and the setof questions are large.Phonetic context decision trees in JANUS are grown using a distance measure thatdoes not depend on the acoustic training data directly. Instead, the mixture coe�cientsof the context independent Gaussian mixtures are interpreted as discrete distributionsover a vector quantized feature space, represented by the codebooks of Gaussians. Whenhypothesizing a new split, discrete distributions over the same monophone codebook arecomputed for the two hypothesized children nodes. To score the goodness of the split,the gain in entropy using separate distributions for the children nodes is computed.D(p;pl;pr) = nlHl(pl) + nrHr(pr)� nH(p)with Hl(pl) = �Xi pli log pliHr(pr) = �Xi pri log priH(p) = �Xi pi log pi



6.3. POLYPHONE CLUSTERED CONTEXTS 73In the above equation, the sums go over the number of coe�cients in the discreteprobability distributions. Using the above distance function to score splits in a decisiontree is e�cient and appealing from an information theoretic point of view, since theabove splitting score can be interpreted as the mutual information between children nodesdistribution.6.3.4 Analyzing Cluster TreesTo show properties of the splitting criterion, we created cluster trees for the ESST speechtask with 5 di�erent numbers of overall context models : 500, 1000, 1500, 2000 and 2500.The ESST speech task is an English spontaneous speech database which we also use forthe evaluation of the hybrid speech recognizer (see Chapter 8 for details).For each of the 5 cluster trees, we computed the number of context models generatedfor each monophone (over all states of a 3-state left-right HMM model). Fig. 6.3 showsthe evolution of the number of context models over the 5 cluster phases and the 52monophones in our system.
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Figure 6.3: Distribution of context modelsIt is remarkable that the trees for the monophones N, T and IY together contain about20% of all cluster models (2500) over all trees. Fig. 6.4 shows a typical decision tree. Itwas build for the middle state of a three-state model of the monophone AX. It is part ofa forest of 156 decision trees (52 monophones times 3 states) with an overall number of



74 CHAPTER 6. CONTEXT MODELING1000 context models. The polyphonic context is restricted to the 3 phones left and rightof a midphone. The set of all possible questions, that were available for the generation ofthe tree is listed in Appendix A.
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Figure 6.4: Decision tree for monophone AX-mObviously, the clustering process favours questions about the immediate right or leftneighboring phone. This is consistent with our intuition that the inuence of context isdecreasing with increasing neighborhood distance. Nevertheless, the tree in Fig. 6.4 alsouses questions about the broader context. It even asks a question about a phone that lies3 frames in the future, although such questions generally occur only in the lower partsof the trees. That means, that it is in fact helpful to consider broader contexts thanjust triphones. In the beginning of node splitting, the tree concentrates on neighboringcontexts, but when the trees get bigger, the splitting process starts to use broader contextquestions as well.



Chapter 7Mixtures of Gaussian ExpertsUntil now, we have assumed a generalized linear model in both gates and experts of anHierarchical Mixture of Experts, although the architecture in principle allows arbitraryparametric forms of gates and experts. In the case of classi�cation, however, the modelsfor gates and experts have to full�l the constraint, that their output activations sum upto one for each input frame. Recently, Xu, Jordan and Hinton [57] have proposed to usea parametric form based on Gaussian kernels for the gates. We will further develop theirwork, showing that the same parametric form can be used for experts as well. Such anarchitecture is very attractive because it can be initialized to a near optimal solution verye�ciently, thus reducing convergence time of the learning algorithm.7.1 Alternative ParameterizationInstead of applying a generalized linear model with softmax nonlinearity, the followingparameterization was proposed for the gate in a one-level mixture of experts architecture([57]): gi(x;v) = �iP (xjvi)Pk �kP (xjvk) with Xk �k = 1 and �k � 0P (xjvi) = 1(2�)n=2j�ij1=2 exp n�1=2(x� �i)T��1i (x� �i)oThis form of a gate is legal, since the gi's by de�nition sum up to one, thus providinga partition of unity for each input feature vector x. The above parametric form can beinterpreted as a parametric a-posteriori classi�er according to Bayes theorem:p(!ijx) = P (!i)p(xj!i)Pk P (!k)p(xj!k)75



76 CHAPTER 7. MIXTURES OF GAUSSIAN EXPERTSwhere the prior probabilities P (!i) are the �i's and the class likelihoods p(xj!i) aremodeled by single Gaussian distributions.7.2 Gaussian Classi�er as GateParameterizing the gate of a mixture of experts as a Gaussian a-posteriori classi�er allowsto derive an e�cient single-loop EM algorithm to estimate the parameters of the gate.Additionally, the special parametric form allows to initialize the Gaussian kernels anda-priori probabilities which speeds up training times signi�cantly.7.2.1 EM algorithmThe conditional mixture underlying a mixture of experts isP (yjx;�) = Xi giPi(yjx;�i)= Xi �iP (xjvi)Pk �kP (xjvk)Pi(yjx;�i)= Xi �iP (xjvi)P (x;v) Pi(yjx;�i)If we attempt to derive an EM algorithm directly on this mixture density, we �nd thatthe M-step is not analytically solvable and would require iterative processing, similar tothe IRLS algorithm. However, the above conditional mixture can be rewritten in a form,that allows an analytical solution for the ML problem:P (y;x) = P (yjx;�)P (x;v) =Xi �iP (xjvi)Pi(yjx;�i)Instead of estimating the gating parameters to maximize the likelihood of the originalmixture density, we can maximize the likelihood of the above joint density. Applying theEM algorithm in a similar way as we did in the case of generalized linear models leads tothe following iterative estimation method:(1) E-step For each training vector, compute the posterior node probabilities hi accord-ing to h(j)i (y(t)jx(t)) = �(j)i P (x(t)jv(j)i )Pi(y(t)jx(t);�(j)i )Pk �kP (x(t)jv(j)k )Pk(y(t)jx(t);�(j)k )



7.2. GAUSSIAN CLASSIFIER AS GATE 77(2) M-step Use the hi's to compute new estimates for the parameters �i, �i and �iof the gate. The new estimates can be computed directly, since the ML problem isnow analytically solvable:�(j+1)i = Pt h(j)i (y(t)jx(t))PtPk h(j)k (y(t)jx(t))�(j+1)i = Pt h(j)i (y(t)jx(t))x(t)Pt h(j)i (y(t)jx(t))�(j+1)i = Pt h(j)i (y(t)jx(t)) hx(t) � �(j+1)i i hx(t) � �(j+1)i iTPt h(j)i (y(t)jx(t))The ML problem for the experts remains analytically unsolvable (in the case of clas-si�cation) and those parameters must be estimated either iteratively by gradient ascentor by the least squares heuristic. However, the above EM algorithm for gates is computa-tionally more e�cient than the IRLS algorithm for GLIMs. Note, that the computationof node posteriors hi has changed compared to the EM algorithm for GLIMs. This indi-rectly inuences the estimation of expert parameters also, since the joint node posteriorsappear in the re-estimation formulas for experts.Note also, that the above formulation of the EM learning does maximize the sum ofthe mixture likelihood and the conditional likelihood of the gate instead of maximizingthe mixture likelihood itself. During testing, however, the output of the mixture stillfollows the mixture model of HME's.7.2.2 InitializationThe parametric form which we have applied to the gate is very attractive because it allowsthe initialization of parameters to near optimal values. There is a signi�cant body of workon the initialization of Gaussian mixture models and radial basis function networks whichcan be adopted here as well. In fact, since we already know, that the parametric formcan be viewed as a Gaussian a-posteriori classi�er, its parameters can best be initializedby estimating priors and class likelihoods by relative frequencies and maximum likelihoodestimation, respectively. However, in the case of a gate in a mixture of experts, we donot have class labels to estimate the parameters of a Gaussian classi�er the way we justproposed (nevertheless, this technique will gain importance later, when we'll use Gaussianclassi�ers as experts also).One possible initialization technique for Gaussian gates that works very well in practiceis to estimate the parameters such that the likelihood of the data under an unsupervisedmixture model is maximized. That means, we initalize the parameters of the gate accord-ing to



78 CHAPTER 7. MIXTURES OF GAUSSIAN EXPERTS
v̂i = argmaxvi Xt logXi �(t)i P (x(t)jvi)with Pk �k = 0 and �k � 0. Usually, maximizing such a likelihood is done in thefollowing three steps:(1) Extract Samples Initialize the means of the Gaussians by extracting the appro-priate number of samples randomly from the training set.(2) Cluster Means Apply a clustering algorithm such as the k-means or LBG algorithmto the means. This corresponds to minimizing the distortion of a discrete vector-quantized distribution where the codebook vectors are the means.(3) Maximum Likelihood Iteratively reestimate the mixture coe�cients �i, the means�i and the covariance matrices �i according to the EM algorithm for Gaussianmixtures [10].The possibility to initalize the gate parameters to near optimal solutions and thesingle-loop EM re-estimation algorithm render the Gaussian parameterization a powerfulextension to the standard HME architecture.7.2.3 Combining Multiple Classi�ersThere is one other application of Gaussian gates, namely the task of combining multipleclassi�ers (CMC). Suppose we have n di�erent kind of pre-trained classi�ers, all trainedon the same data set. Since each of the classi�ers might have learned di�erent partsof the data best, it is generally a good idea to combine their estimates, if we have acombination method capable of supporting the good and suppressing the bad classi�ersfor each training sample.The problem can be treated as a special case of a mixture of experts, where the expertsparameters remain �xed and only the gates are iteratively adapted. The single-loop EMalgorithm can therefore be directly used to estimate the gate parameters. It was shownin [57] that this can increase overall performance considerably, while avoiding the costlyre-estimation of the expert classi�ers. This makes this technique even more attractive forour purpose in speech recognition, since we have to deal with large datasets consisting ofmillions of feature vectors.7.3 Mixture of Gaussian ExpertsGiven the advantages of the Gaussian parameterization of the gate, it would be nice, ifwe could use the same parameterization for the experts as well. Also, we would like to



7.3. MIXTURE OF GAUSSIAN EXPERTS 79generalize the technique to hierarchical mixtures with more than one gate. Unfortunately,the solution to the EM learning problem proposed in [57] does not generalize to experts.We will therefore relax the EM constraint and derive a generalized EM algorithm thatonly guarantees to increase the mixture likelihood in each iteration, instead of maximizingit.7.3.1 Gaussian Classi�ers as ExpertsThe parametric form based on Gaussian kernels is even more attractive for experts thanit is for gates. The reason is, that in the case of experts, we have class labels for theinitialization available. This simpli�es the initialization of expert parameters, since eachGaussian kernel can be estimated independently on a subset of the data. Given thatthe gate is already initialized, the initalization of the experts requires just a single passthrough the training data, yet yielding parameter estimates which give the mixture aninitial performance that is close to the optimal one, even before applying any kind oftraining algorithm to the whole architecture.7.3.2 GEM algorithmAs promised, we will now derive a generalized EM algorithm for a mixture of expertswhich uses Gaussian parameterizations exclusively. The probability model of the overallarchitecture is P (yjx;�) =Xi gi(yjx;vi)Pi(yjx;�i)where the Pi are multinomial densities, modeling the multiway classi�cation task im-posed on the experts and the vi and �i are the sets of parameters for gate and experts,respectively. The expert activations are computed the same way as the gate activations,assuming a Gaussian a-posteriori classi�er:yij(x;�i) = �ijP (xj�ij)Pk �ikP (xj�ik) with Xk �ik = 1 and �ik � 0P (xj�ij) = 1(2�)n=2j�ijj1=2 exp n�1=2(x� �ij)T��1ij (x� �ij)oThe expert activations can be re-written in an interesting form:yij(x;�i) = exp(zij)Pk exp(zik)with zij = log(�ij)� 12 hn log(2�) + logj�ijj+ (x� �ij)T��1ij (x� �ij)i



80 CHAPTER 7. MIXTURES OF GAUSSIAN EXPERTSWe have expressed the expert activations using the same 'softmax' nonlinearity as inthe GLIM case. The di�erence is, that we changed the underlying linear model whichcomputes z = WX to a radial model, which basically computes z = (X�W )2. Expressingthe new model in terms of the softmax function allows us to unify linear and radial expertmodels.The M-step of the EM algorithm for mixtures of experts involves the maximization ofthe following two likelihoods (assuming a multinomial probability model)v(k+1)i = argmaxvi Xt Xj h(t)j log g(t)j�(k+1)i = argmax�i Xt h(t)i Xj t(t)j log y(t)ijwhere the t(t)j are targets for the expert output nodes. Because of the nonlinearity ofthe softmax function in both g and �, there is no closed-form solution to this problem.Therefore, we derive a GEM algorithm which increases the likelihoods using gradientascent v(k+1)i = v(k)i + �Xt 24Xj h(t)j (�ij � g(t)j )35 @zi@vi�(k+1)ij = �(k)ij + �Xt h(t)i "Xl t(t)l (�jl � y(t)il )# @zj@�jwhere �ij is the Kronecker symbol, � is the learning rate, and the zi are the linear orradial functions prior to the softmax nonlinearity.In the case of Gaussian experts with diagonal covariance matrices, we obtain thefollowing update rules for the parameters of a speci�c expert Ei:�(k+1)j = �(k)j + �Xt h(t)i "Xl t(t)l (�jl � y(t)l )# 1�(t)j�(k+1)jm = �(k)jm + �Xt h(t)i "Xl t(t)l (�jl � y(t)l )# (xm � �(t)jm)�2(t)jm�2(k+1)jm = �2(k)jm + �Xt h(t)i "Xl t(t)l (�jl � y(t)l )# (xm � �(t)jm)2 � �2(k)jm�4(t)jmThe �j's need to be normalized after each iteration, in order to ful�ll the constraint,that their sum yields one. To speed up convergence, it is possible to use this algorithmin a stoachastic gradient based version, updating the parameters each time M training



7.4. EXPERIMENTS 81samples have been presented. The presented GEM algorithm is basically a �rst-ordertechnique, therefore, the reader may argue that convergence speed might be too slowto render this algorithm useful. However, we will show, that the combination of thisalgorithm with the initalization technique presented above yield very fast convergence inpractice.7.3.3 BBI Trees for PruningIn [16], we presented a binary tree based space partioning algorithm which is very e�ectivein speeding up the evaluation of Gaussian mixtures with diagonal covariance matrices.This algorithm partitions the feature space in a set of 2d so called buckets by means ofhyperplanes orthogonal to one of the coordinate axis. Given a particular feature vector x,the algorithm is able to determine the bucket, in which the vector resides, with just a fewscalar comparisons. Having determined the correct bucket, a reduced list of Gaussians,which is computed in advance, is evaluated instead of the whole mixture.This algorithm can easily be applied to speed up a Gaussian classi�er based hierarchicalmixture of experts, if the diagonal covariance assumption holds. First, we compute aBBI space partioning tree for each of the Gaussian classi�ers (each node in the MGEtree). During training or testing, when the MGE nodes are asked to compute posteriorprobabilities, the BBI trees are used to determine a reduced set of Gaussians, whichcontribute more than a speci�c threshold. Only these Gaussians are then evaluated, allthe remaining ones are pruned to an activation of 0:0. This technique can be seen asa form of MGE tree pruning, if applied to gating nodes, where each Gaussian in thegate classi�er corresponds to one of the children nodes. We found that BBI trees forMGE pruning are particularly useful for MGE topologies with a high branching factor.The overhead of pre- computing BBI trees for each MGE node is neglectable during thetraining of MGE's. For testing, the BBI trees only have to be computed once and can bestored together with the remaining MGE tree parameters.7.4 ExperimentsWe trained a GLIM- and a Gauss-classi�er based mixture of experts on the Peterson &Barney vowel data, to compare the two parameterizations. The architecture was the samein both cases, a 1-level tree, featuring 1 gate and 10 experts. We chose the branchingfactor of the tree to be the number of output classes, because this allows an even fasterinitialization scheme for the MGE than presented so far. Initialization for the MGEproceeds in two steps (requiring two iterations through the training data):(1) Estimate parameters of a single Gaussian expert. Expand the tree to a 1-level, 10children architecture, switching the Gaussian expert to a Gaussian gate and freezeits parameters.



82 CHAPTER 7. MIXTURES OF GAUSSIAN EXPERTS(2) Estimate parameters of the 10 new experts, using the gate activations as observationweights.After the initalization, we train the architecture using the GEM algorithm, presentedearlier. Fig. 7.1 shows the log-likelihood on the training set for an MGE and an HME.Fig. 7.2 shows the mean square error on the test set for the same training run.
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Figure 7.1: Evolution of log-likelihood for HME and MGE during training
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Figure 7.2: Evolution of MSE for HME and MGE during trainigThe �rst two iterations for the MGE consist of initializing the parameters. The perfor-mance of the MGE after initialization is already very high, yet the following GEM trainingcan improve performance further. Note, that the initialization phase for the MGE is tak-ing considerably less time than a regular GEM or EM iteration, where we have to computenode and branching posteriors. Taking this into account, the MGE compares favourablyto a same-size HME.



Chapter 8Evaluation
8.1 Hybrid JanusThis section briey introduces the hybrid HME/HMM speech recognition system, that wasdeveloped during this thesis. As a starting point of this work, there was a fully functionalcontinuous-density HMM speech recognizer available - JANUS-SR version 3. This systemintegrates the basic recognizer modules, such as feature extraction, acoustic modeling,language modeling and the decoder. The goal of this thesis was, to implement a completenew acoustic scoring module based on HME's for JANUS, which can be used stand-aloneor in combination with the existing mixture-of-Gaussians scoring module. Version 3 ofthe JANUS recognizer was constructed as a speech recognition toolbox, exporting all therelevant data structures and methods in an object oriented fashion, using the Tcl/Tktoolkit as the user front-end.8.1.1 General ConceptThe JANUS recognizer implements acoustic scoring by a generic object, called 'stream'.A system can contain one or more of such streams. Each stream can be trained andasked for estimates of model likelihoods. One important concept in JANUS is, thatthe streams are responsible for the modeling of basic acoustic units. All other modulesinterface with the streams by tagged sequences of phones. This allows the use of di�erentcontext-models by di�erent streams and facilitates the integration of a connectionist scorecomputer. For instance, a tied-state continuous density mixture-of-Gaussians scoring withtypically about 5000 context models can easily be combined with a context-independentconnectionist a-posteriori scoring.The hybrid system, developed for this thesis, allows context-independent and context-dependent connectionist (HME) scoring of multi-state HMM's, using decision trees tocluster models. Fig. 8.1 gives an overview of the connectionist part of the hybrid JANUSsystem. 83
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Figure 8.1: Overview: Modules of hybrid JANUS recognition systemThe HmeStream object realizes model clustering, score computation and training byrefering to the HmeSet object. The HmeSet object contains a set of Hme objects for con-text independent and context-dependent modeling. The HmeSet object also manages thedistribution of training and testing frames to the required Hme objects. An Hme objectrealizes an arbitrary hierarchical mixtures of experts tree (arbitrary topology). It con-tains gate and expert nodes, which in turn contain Classi�er objects. Right now, 3 typesof Classi�er objects are available in JANUS: Standard GLIM's as proposed for HME'sby Jordan & Jacobs, Gauss classi�ers necessary to build Mixtures of Gaussian experts(MGE) and two-layer perceptrons (MLP). The concept of allowing arbitrary classi�ers asHME nodes generalizes the original idea of HME's which was entirely based on GLIM's.More classi�er types can easily be added to JANUS, giving a great deal of exibility toHME objects. Also, non-modular approaches like ICSI's single MLP hybrid system canbe modeled by single node HME's. Apart from being used as HME nodes, all the classi�ertypes export their functionality through the user interface, which allows to use them for



8.2. TASK DESCRIPTION 85other speech- or even non-speech related purposes as well.When computing scores or updating parameters, the HmeStream refers to a HmeTreeobject to cluster phonetic contexts to model names. In the context-independent case,this decision tree is degenerated to a decision list. Once phonetic contexts are resolvedto model names, the HmeStream hands them down to the HmeSet object which refersto a HmeMapList object to map model names to the appropriate HME and output nodeidenti�ers.8.2 Task DescriptionTo evaluate the system, we use the English Spontaneous Scheduling Task (ESST), a 2500word spontaneous speech database in the domain of meeting negotiation. The databaseconsists of roughly 8000 utterances (26 hours of speech), recorded at a sampling rate of16 kHz. Typical examples of utterances areI I MEANT MAY TWENTY SIXTH ARE YOU AVAILABLE MAY TWENTYSIXTH BECAUSE MAY THIRTY FIRST TO JUNE THE SECOND I'LLBE OUT OF TOWNOKAY WE NEED TO SCHEDULE ANOTHER MEETING MY WEEK ISN'TLOOKING THIS WEEK ISN'T LOOKING TOO BAD MONDAY I'M FREEIN THE AFTERNOON AND TUESDAY I'M FREE IN THE MORNING SOI GUESS WE'LL START WITH THAT AND I'LL SEE HOW YOURSCHEDULE ISThe database features lots of spontaneous e�ects, such as false starts, stuttering andincomplete sentences. It contains a roughly equal amount of male and female speakers.The utterances were recorded under low noise conditions using close talking headset mi-crophones. Nevertheless, the recordings contain a considerable amount of human (coughs,breathing) and non-human (key clicks, electronic hum) noise.8.3 General System DescriptionThe feature space for the system is cepstrum based. ADC data is preprocessed in thefollowing steps:(1) Detect Speech primarily based on signal power. Use this feature to suppress non-speech segments.(2) Compute short-time FFT over 16ms windows at a frame rate of 100 frames/sec.



86 CHAPTER 8. EVALUATION(3) Convert frequency scale into a log melscale with 30 coe�cients.(4) Compute cepstrum with 13 coe�cients.(5) Compute delta and delta-delta features and merge them with cepstrum and someADC features like power and zero crossing rate.(6) Apply context-independent LDA and shrink the resulting 47 dimensional vector tothe 32 most-signi�cant coe�cients.(7) In some experiments, we did merge a 5-frame window of 32-dimensional features toa 160-dimensional feature to provide more context information for the networks.Since the HME's require supervised training, we need to generate alignment paths foreach training utterance, which in turn provide targets for each frame. There are manyways of computing training alignments for a connectionist system. A purely connectionisthybrid system, however, requires iterative training, where the system of a previous itera-tion itself is used to align the training data for the next iteration. There are two majordrawbacks of this kind of training. It requires many iterations and a consistent stoppingcriterion, and, it relies heavily on reasonable initial network parameters. Some researchersaccomplish the latter by pre-training the networks on a hand-labeled phonetic databasesuch as TIMIT.We use a di�erent training scheme. Since our recognizer integrates connectionist andmixture-of-Gaussians based scoring, it is relatively easy to use a well-trained Gaussian rec-ognizer to align the training data for the hybrid system. Therefore, we compute alignmentpaths for each training utterance and save them to disk. These paths are subsequentlyused as targets for the NN training. We found, that this training scheme worked very well,although ultimately, we might gain performance by re-training the networks on alignmentsthat were generated by the (trained) hybrid system.All experiments were carried out using a 3-state HMM left-right topology and 51monophones. The resulting setup for the HmeStream therefore was as follows: 1 statediscriminating HME, 3 monophone HME's and a maximum of 153 context modelingHME's for context-dependent systems.The systems are evaluated in terms of word accuracy (WA), substitution (S), deletion(D) and insertion (I) rates, using a set of 291 test utterances which were kept apart fromthe training data. The number of training iterations performed and the size of the systemin terms of the number of acoustic modeling parameters are reported also.8.4 CI SystemsWe trained several systems, based on di�erent HME architectures and di�erent HMEnode classi�ers to evaluate the hybrid system. We started to experiment with context-independent hybrid HME systems and investigated the following architectures:



8.4. CI SYSTEMS 87� GLIM nodes: Trees of depth 2 with a branching factor of 4. Gate and expertnodes were generalized linear models.� Gaussian nodes: Trees of depth 1 with a branching factor of 52, which is thenumber of monophones in the system. The branching factor was chosen as thenumber of monophones to be able to use the fast initialization technique for MGE'sthat we presented earlier.� Growing trees: Trees with a constant branching factor of 4 and GLIM nodes,adaptively grown with the constructive method presented in this thesis. The treeswere grown until they contained the same number of experts (16) as the other GLIMbased architecture. To speed up the tree growing phase, we used a restricted trainingset of about one tenth of all training utterances. However, the grown architecturewas then retrained on the whole training set.� MLP nodes: Trees of depth 1 with a branching factor of 4 and 2-layer MLP nodes.Each MLP contained either 100 or 300 hidden nodes. The architecture was trainedby gradient ascent in log likelihood, assuming a multinomial probability model forgates and experts. Therefore, the output non-linearity of all MLP's was the softmaxfunction.� Single node MLP: HME's consisting of only one single expert node, containinga 2-layer MLP with 500 hidden nodes. This architecture is comparable to ICSI'shybrid system based on MLP's.� Gender dependent MLP nodes: Separate MLP-HME's trained on male andfemale speakers, respectively. After training, the two gender dependent HME'swere combined to a new HME, introducing an additional top-level gate. The wholearchitecture was then retrained for one additional iteration. This form of initalizingan HME resembles the Meta-Pi paradigm, as introduced in [18].Results for the above systems are summarized in the following table:System nodes # params #iter itime WC Subs Dels Ins WAHME-1 GLIM 421k 4 18h 66.1% 23.2% 10.7% 8.4% 57.7%MGE-1 Gauss 530k 3 8h 67.8% 22.4% 9.8% 9.5% 58.3%HME-2 GLIM 421k 9 7h 67.0% 22.5% 10.5% 9.1% 57.9%HME-3 MLP 962k 3 26h 68.9% 21.5% 9.6% 8.1% 60.8%HME-4 MLP 420k 4 17h 68.5% 21.9% 9.6% 9.3% 59.2%HME-5 MLP 1.0M 3 30h 69.6% 20.6% 9.8% 7.9% 61.7%In this table, #iter stands for the number of training iterations that were performedand itime stands for the amount of time required for one iteration through the training



88 CHAPTER 8. EVALUATIONdata (measured on a DEC alpha workstation). WC, Subs, Dels, Ins and WA are abbre-viations for word correct rate, substitution rate, deletion rate, insertion rate and wordaccuracy, respectively.We achieved the best results with systems that used MLP's as node classi�ers. Howeverthis is largely due to the fact, that these systems had more parameters than the ones thatwere based on GLIM's. Larger GLIM based HME's have the disadvantage of increasedtree traversal overhead during training and testing.8.5 CD SystemsNext, we trained and tested context-dependent hybrid systems. Since the context-de-pendent posteriors are modeled by independent sets of CI and CD HME's, the contextHME's can be trained separately. Also, the context HME's are trained on much smallertraining sets, depending on the priors of the corresponding monophones. Therefore, thecomplexity of context HME's can be kept low, which is favourable both in terms of thenumber of additional parameters and in the additional training time. For this thesis, wetrained context HME's consisting of only one expert node, a multinomial GLIM. Thisrequires only a very modest increase in the number of parameters and in the trainingtime. From our continuous density HMM recognizer, a polyphone clustering decision treewith 2000 context classes was available. This tree can be shrinked to any desired numberof context classes. We used trees with 500 and 1000 context classes for our experiments.Training the context HME's took only about 2-5 hours and required only one iterationthrough the training data. After the context HME's have been trained, they were used toaugment some of the context-independent hybrid systems presented in the last section.The following table summarizes the results for the context-dependent hybrid HME/HMMsystems:System Type CI CD-500 CD-1000WA # param WA # param WA # paramHME-CD-1 GLIM-2-4 57.7% 421k 60.8% 501k 63.8% 581kHME-CD-2 MLP-1-4 60.8% 962k 61.7 1.06M 65.8% 1.14MHME-CD-3 MLP-GD 61.7% 1.0M N/A 1.08M 67.1% 1.16MThe numbers reported in the WA columns are word accuracies. The best hybridHME/HMM system achieved a word accuracy of 67.1% using 1000 context classes. Ourcontext-dependent continuous-density mixture of Gaussians HMM recognizer currentlyachieves between 71% and 73.1% modeling 5000 context classes with tied-mixtures over2000 distinct codebooks. This system contains over 4 million parameters, which is 4-8times more than observed in the neural network systems, that we analyzed for this thesis.



8.6. CD SMOOTHING 89Furthermore, decoding speed is about 2-5 times faster for the hybrid system, rendering ituseful for near-realtime decoding (i.e. demo situations). Fig. 8.2 gives an overview of theperformance of the various hybrid systems in terms of word accuracy.
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Figure 8.2: Word accuracies for several hybrid HME/HMM systems8.6 CD SmoothingIn our context-dependent hybrid HMM system, we estimate scaled acoustic model likeli-hoods the following way:p̂(xjcj; !i; sk) = p(cjj!i; sk;x)P (cjj!i; sk) p(!ijsk;x)P (!ijsk) p(skjx)P (sk)As in [30], we introduce a smoothing factor for the context dependent posteriorsin order to compensate di�erent dynamic ranges of context-independent and context-dependent posteriors. The above likelihood estimation is therefore modi�ed to include acontext-dependent likelihood scaling factor  with 0:0 �  � 1:0p̂(xjcj; !i; sk) =  p(cjj!i; sk;x)P (cjj!i; sk) ! p(!ijsk;x)P (!ijsk) p(skjx)P (sk)



90 CHAPTER 8. EVALUATIONA smoothing factor  = 1:0 corresponds to the original likelihood estimation, wherecontext-dependent and context-independent scaled likelihoods are weighted equally. As goes towards zero, the contribution of the context-dependent HME's is reduced. For = 0:0 the system degenerates to a context-independent system, context-dependentlikelihood estimates are fully suppressed.
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Figure 8.3: Smoothing context-dependent scaled likelihoodsThe e�ect of this kind of smoothing can be seen in Fig. 8.3, which shows the wordaccuracy for di�erent smoothing factors applied to the HME-CD-2 system.In this experiment, the word accuracy of the system could be improved by 1.1% witha smoothing factor of 0:8. Instead of using just one single smoothing factor for all thecontext-dependent HME's, it might be advantageous to have separate smoothing factorsfor each one of the context-dependent HME's. In principle, this option is available inthe current implementation of the hybrid system. However, a learning algorithm forthe smoothing factors must be implemented, because they can no longer be adapted bysampling the word accuracy. This might be done in future work.8.7 Prior Division and SDNOur implementation of the hybrid system allows the selective activation of each singleHME. This allows to experiment with di�erent setups, without having to boot new systemsfrom scratch. For instance, a context-dependent system can easily be switched to acontext-independent one by turning o� all the context networks. Furthermore, the statediscriminating network (SDN) in a multi-state topology can also be switched on and o�.To experimentally check the validity of theoretical results, we performed several test runswith the SDN enabled and disabled, respectively. The results were consistent with the



8.8. ANALYZING THE SYSTEMS 91theory for all tests. The systems with disabled SDN were always 2-3% worse than theones with the SDN enabled, in terms of word accuracy.Division of network outputs by class prior probabilities was observed to boost perfor-mance also. However, in some cases where we trained the networks on relatively smallamounts of data, we found that prior division had the opposite e�ect of decreasing overallperformance. Since prior probabilities are estimated by relative frequencies in the trainingset, smaller training set sizes will lead to poorer estimates of class priors. Especially whensome of the classes have very low priors, a large training set is inevitable.8.8 Analyzing the SystemsA hybrid speech recognition system should not only be evaluated in terms of word accuracyor word error rates. We will therefore take a closer look at some other aspects of the hybridrecognition process.8.8.1 Sample HypothesesTaking a closer look at some of the recognizer's hypotheses can provide insight in the kindof errors that are made. Also, it is interesting to compare recognition hypotheses from ahybrid and a traditional system. Following is a list of typical false recognition hypothesesof the traditional HME (TRD) and the hybrid HME (HYB) system together with thecorrect reference (REF):REF: Okay that's fine so wednesday the third at the coffee shopTRD: We could do it so fine so wednesday the third at coffee shopHYB: Okay that sounds fine so wednesday the third at that coffee shopREF: should we meet again sometimesTRD: with with should we meet again some times withHYB: should we meet again some timesREF: Well would you be free on friday the eighthTRD: hours now would june be you free on friday the eighthHYB: I'm then Ron would you be free on friday the eighthREF: okay see you thenTRD: okay see you thenHYB: okay see you then isREF: yes today is january the fourth so yeah tomorrow is that okayTRD: yes two days january four so yeah tomorrow is that okayHYB: I yesterday january the four so I'm yeah tomorrow is that okay



92 CHAPTER 8. EVALUATIONGenerally, both systems commit errors in the same regions. However, there are alsoparts, were one of the systems is detecting the right words wereas the other system iscompletely wrong and vice versa. This encourages the exploration of systems, whereobservation likelihoods are computed as a combination of neural network and parametricmixture methods.8.8.2 Gating Probability DiagramsOne of the advantages of HME's over monolithic neural networks is the distributed wayof solving the classi�cation task. To demonstrate how the HME's that we've trained onESST data behave in terms of gating and distributing responsibility among experts, wedeveloped a tool that allows to plot gating probabilities (expert activations) over timefor an HME. Fig. 8.4 shows such a plot for the mid-state HME of the HME-1 systempresented earlier. The HME consists of 16 experts and 5 gates, organized in a 2-leveltree of branching factor 4. The plot was generated by computing HME activations alonga forced alignment of a recognized hypotheses. It also contains vertical lines indicatingword boundaries.

+NOISE+ I'M ALSO FREE AFTER ONE PM ON WEDNESDAY THE FOURTH SO WHAT ABOUT AROUND TWOFigure 8.4: Expert activations over time for HME-2-4The above plot reveals some interesting aspects of our hybrid HME system. Thebeginning and ending part of the above utterance contains long noise parts, which coincidewith strong activations of just two experts (number 10 and 11 from top to bottom).Experts number 2,13 and 16 are contributing most during speech segments. There arealso some experts, which are hardly ever active at all (1,6 and 8, for instance). However,we found, that in other utterances, spoken by di�erent speakers, some of these experts



8.8. ANALYZING THE SYSTEMS 93show di�erent behaviour and are contributing to the HME's decision. Nevertheless, someexperts are subject to pruning, because their contribution, cummulated over a set of testutterances, is too low to be of any signi�cance.8.8.3 Phoneme RecognitionTo analyze the frame accuracy of the hybrid recognizer, we computed monophone clas-si�cation error rates and monophone confusion matrices. Since the confusion matrix fora system with 52 monophones is rather big, we decided to present a sorted list of top-5confusions for each monophone instead. Appendix B contains such a confusion table. Inthe �rst column, it lists all monophones with their counts as measured on a list of 100utterances. The remaining columns contain the top-5 confusion candidates, including theactual monophone itself, together with the confusion percentage.Most confusions are consistent with what we would expect, but there are also someconfusions which appear to be less obvious. The following list contains some observationsregarding the confusion table:� The phone priors are distributed highly non-uniform, some phones are very rare (forinstance OY and ZH).� The noise modeling phones (indicated with a leading +) are mostly confused amongthemselves. Two noise phones appear to have extremely low prior probabilities(+LA and +TH).� The vowels are mostly confused with other vowels.� The phone NG is often confused with the phone N.� The phone R is often confused with AXR.� The phones M and N are both recognized with about 60% correct rate but the phoneM is much more often confused with an N than vice versa.� The silence phone SIL is recognized with the highest accuracy (96.5%).� The average monophone classi�cation error rate was observed to be between 35%and 42% for the di�erent systems.
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Chapter 9Conclusions
9.1 SummaryWe developed a modular neural network based system for estimating (scaled) emissionprobabilities in a HMM speech recognizer. It is based on generalized hierarchical mixturesof experts (HME), allowing the integration of arbitrary neural network models into treestructured classi�ers. We contributed some original work to both the �eld of HME's ingeneral and the �eld of hybrid systems:� We presented a constructive algorithm for HME's based on likelihood partitioningamong experts. It is considerably less expensive than standard decision tree growingalgorithms which require the evaluation of potential splits for all leaves.� We investigated an alternative parameterization for both gates and experts - amixture of Gaussian Experts (MGE). In this architecture, every node consists of aGaussian classi�er instead of the usual generalized linear model (GLIM). We showedthat the MGE o�ers a variety of initialization techniques which allow to train it evenfaster than an HME.� We developed a connectionist acoustic context modeling, based on factoring contextdependent acoustic posterior probabilities. Polyphonic acoustic contexts are clus-tered by decision trees, which we adopt from a mixture of Gaussians based HMMrecognizer. We showed, that such explicit modeling of context improves the hybridrecognizer's performance signi�cantly.The hybrid HMM system presented in this thesis o�ers many advantages over tradi-tional mixture of Gaussians based systems. It contains considerably less parameters andallows faster decoding, especially when pruning is enabled. Furthermore, training timerequirements have been reduced compared to other hybrid systems, which are based onmonolithic neural networks. However, further optimizations are necessary to fully exploitthe potential of this technology. 95



96 CHAPTER 9. CONCLUSIONS9.2 Further WorkThe presented system can be enhanced in various ways. Some of the ideas that cameup during the evaluation of the current system are summarized here. We believe, thatthe presented system still has a lot of potential for improvement. For instance, thevarious learning and testing parameters (especially for decoding) are most probably notyet optimal. Further work might concentrate on the following issues:� Mixture of likelihood estimatorsThe idea of multiple experts, whose decisions are combined by a gate can alsobe applied at higher levels in a speech recognizer. A hybrid system relies on dis-criminatively trained neural networks for (scaled) likelihood estimation whereas atraditional HMM system is based on parametric mixture densities. A system shouldbene�t from the combination of both techniques by a gating or mediator model ontop of the two (or possibly more) acoustic experts. In this case, the objective is tomaximize the combined estimates of the acoustic likelihood. However, gain factorsneed to be applied to the di�erent acoustic experts estimates, in order to accountfor the di�erent scales.� Unsupervised ML adaptationUnsupervised speaker adaptation has proven useful in traditional HMM speech rec-ognizers. A (usually linear) transformation of the parameter space is iterativelyupdated by maximum likelihood when several utterances of a particular speakeroccur. The same principle can be applied to a hybrid system. Additional front-endnetworks, which compute a linear transformation of the feature space can be used toaccount for speaker variations. Training labels for the front-end linear networks canbe generated by back-propagating errors resulting from a Viterbi-alignment of de-coder hypothesis. Note, that this kind of speaker adaptation can also be interpretedas a speaker adaptive LDA.� Improving convergence speedThe GEM and gradient ascent algorithms which we presented for the HME archi-tecture are subject to lots of additional optimization techniques to improve theirconvergence speed. We already employed methods such as momentum terms andon-line stochastic gradients. Especially when MLP's are used as gates and experts,learning parameter optimization is crucial to reduce the number of required trainingiterations. Although the presented system can be trained in 2-3 days on standardworkstations, a further decrease in training time is desirable.� Incorporating additional knowledge sourcesThe HME architecture allows in principle the use of di�erent feature spaces forgates and experts. Why not supplying the gates with additional features such as an



9.2. FURTHER WORK 97estimate of the speaking rate, gender or dialect region? Together with pre-trainedexperts, the classi�cation task may become easier and the whole architecture maybe trainable much faster.� Speaker/Utterance clusteringAlthough it is a well known fact, that acoustic features are highly speaker dependent,most HMM recognizers make use of a single set of parameters for all speakers or atmost, distinguish between male and female speakers. In the case of speech databaseswith a high degree of speaker variability, it might be more e�ective to cluster similarspeakers into groups which then are used to train a set of neural networks. Thesepre-trained neural networks can then easily be integrated and trained further asHME's.� Learning CD smoothing factorsWe introduced a smoothing factor between context independent and context depen-dent network outputs which was shown to improve performance over a non-smoothedsystem. We were using a single smoothing factor for all the context networks in oursystem. Our system also allows a separate smoothing factor for each one of thecontext networks. However, it remains to derive a learning algorithm for thesesmoothing factors (maximum likelihood). Separate smoothing factors will providea better information scaling between the CI and CD networks.� Dynamic score scaling factorWe discovered large di�erences in the number of insertions and deletions among thedecoded test set utterances. In some cases, the insertion rate is much higher thanthe deletion rate, indicating that the word insertion penalty is too low. In othercases however, the opposite behaviour can be observed (for the same language modelparameters). It seems, that the variation in the acoustic scores leads to di�erentrelative weights of the language model parameters. An adaptive score scaling factormight help to overcome this e�ect.� Con�dence measure based on posteriorsSince the acoustic models in a hybrid system are trained discriminatively, it might beuseful to derive a phone or word con�dence measure based on the networks estimatesof frame posteriors. Furthermore, a simple measure of the frame con�dence (such asthe di�erence in score between the best and the second best acoustic model) mightbe useful to dynamically adjust the search beam during decoding.
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Appendix AQuestion Set for Decision TreesQuestion-Name Set of Phonemes coveredNOISES +BR +HU +NH +SM +TH +LAHUMAN-NOISES +BR +HU +SM +TH +LALAUGHTER +LAUHHUH +FSILENCES SILCONSONANT P B F V TH DH T D S Z SH ZH CH JH K G HH M N NG RY W L ER DX AXRCONSONANTAL P B F V TH DH T D S Z SH ZH CH JH K G HH M N NG DXOBSTRUENT P B F V TH DH T D S Z SH ZH CH JH K GSONORANT M N NG R Y W L ER AXR DXSYLLABIC AY OY EY IY AW OW EH IH AO AE AA AH UW UH IX AXER AXRVOWEL AY OY EY IY AW OW EH IH AO AE AA AH UW UH IX AXDIPHTHONG AY OY EY AW OWCARDVOWEL IY IH EH AE AA AH AO UH UW IX AXVOICED B D G JH V DH Z ZH M N NG W R Y L ER AY OY EY IYAW OW EH IH AO AE AA AH UW UH DX AXR IX AXUNVOICED P F TH T S SH CH KCONTINUANT F TH S SH V DH Z ZH W R Y L ERDEL-REL CH JHLATERAL LANTERIOR P T B D F TH S SH V DH Z ZH M N W Y L DXCORONAL T D CH JH TH S SH DH Z ZH N L R DXAPICAL T D N DXHIGH-CONS K G NG W YBACK-CONS K G NG WLABIALIZED R W ER AXRSTRIDENT CH JH F S SH V Z ZH99



100 APPENDIX A. QUESTION SET FOR DECISION TREESQuestion-Name Set of Phonemes coveredSIBILANT S SH Z ZH CH JHBILABIAL P B M WLABIODENTAL F VLABIAL P B M W F VINTERDENTAL TH DHALVEOLAR-RIDGE T D N S Z L DXALVEOPALATAL SH ZH CH JHALVEOLAR T D N S Z L SH ZH CH JH DXRETROFLEX R ER AXRPALATAL YVELAR K G NG WGLOTTAL HHASPIRATED HHSTOP P B T D K G M N NGPLOSIVE P B T D K GFLAP DXNASAL M N NGFRICATIVE F V TH DH S Z SH ZH HHAFFRICATE CH JHAPPROXIMANT R L Y WLAB-PL P BALV-PL T DVEL-PL K GVLS-PL P T KVCD-PL B D GLAB-FR F VDNT-FR TH DHALV-FR SH ZHVLS-FR F TH SHVCD-FR V DH ZHROUND AO OW UH UW OY AW OWHIGH-VOW IY IH UH UW IXMID-VOW EH AH AXLOW-VOW AA AE AOFRONT-VOW IY IH EH AECENTRAL-VOW AH AX IXBACK-VOW AA AO UH UWTENSE-VOW IY UW AELAX-VOW IH AA EH AH UHROUND-VOW AO UH UWREDUCED-VOW IX AXREDUCED-CON AXR



101Question-Name Set of Phonemes coveredREDUCED IX AX AXRLH-DIP AY AWMH-DIP OY OW EYBF-DIP AY OY AW OWY-DIP AY OY EYW-DIP AW OWROUND-DIP OY AW OWLIQUID-GLIDE L R W YW-GLIDE UW AW OW WLIQUID L RLW L WY-GLIDE IY AY EY OY YLQGL-BACK L R W
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Appendix BMonophone Confusion TableCorrect Phone 1 2 3 4 5+BR,14988 +BR (53.776%) +SM (14.905%) SIL (7.986%) +NH (7.686%) +F (5.171%)+F,9129 +F (52.788%) +BR (12.794%) AY (4.962%) +HU (3.626%) N (3.494%)+HU,1710 SIL (11.754%) +BR (11.345%) +F (9.240%) +NH (8.538%) +HU (8.129%)+LA,0+NH,27337 +NH (70.728%) SIL (11.793%) +SM (6.566%) +BR (6.113%) +HU (0.647%)+SM,11179 +SM (63.360%) +BR (15.556%) +NH (12.228%) SIL (5.314%) F (1.565%)+TH,0AA,1704 AA (30.927%) AO (12.617%) AY (10.915%) +F (10.622%) AW (5.869%)AE,4248 AE (48.682%) AY (8.781%) EY (6.097%) EH (5.508%) IH (4.355%)AH,4396 AH (35.873%) IY (7.302%) +F (6.938%) AX (5.823%) AY (4.504%)AO,4057 AO (53.882%) AY (7.247%) OW (6.655%) L (4.757%) +F (4.585%)AW,3058 AW (34.565%) AY (11.772%) +F (10.203%) OW (9.287%) AO (8.600%)AX,4290 AX (21.655%) IH (9.207%) +F (5.991%) AH (5.921%) AE (5.524%)AXR,1533 R (33.203%) AXR (26.419%) ER (8.089%) UW (6.393%) AX (3.196%)AY,8195 AY (59.890%) +F (7.468%) AO (4.454%) AE (3.563%) EY (3.405%)B,2747 B (68.657%) DH (3.932%) D (3.640%) M (2.803%) P (2.039%)CH,506 CH (43.281%) S (9.091%) JH (8.696%) T (8.300%) K (7.510%)D,4708 D (55.501%) N (6.967%) T (6.670%) B (3.951%) DH (3.717%)DH,4463 DH (58.122%) D (8.582%) B (4.549%) N (3.742%) TH (3.495%)DX,687 DX (38.428%) T (15.429%) IY (6.114%) D (5.677%) B (4.076%)EH,5590 EH (40.626%) AE (12.701%) AY (9.911%) R (4.991%) IH (4.347%)ER,3703 ER (63.003%) R (24.764%) AXR (2.457%) AY (1.728%) EY (1.512%)EY,5590 EY (71.521%) IY (10.877%) IH (2.934%) EH (1.932%) AE (1.538%)F,5490 F (84.390%) TH (4.645%) +NH (1.949%) +BR (1.712%) +SM (1.202%)G,1441 G (46.495%) K (13.393%) D (11.797%) B (3.747%) N (3.400%)HH,1927 HH (50.337%) +BR (12.818%) +NH (7.317%) AY (5.138%) AE (2.750%)IH,2637 IH (39.477%) EY (7.433%) UW (6.560%) AH (5.650%) AX (3.906%)IX,1811 IX (29.376%) IY (17.449%) IH (9.442%) EY (9.277%) AX (4.252%)IY,10362 IY (74.551%) EY (9.303%) Y (2.422%) UW (1.776%) IX (1.756%)JH,622 JH (46.463%) T (15.756%) D (6.752%) CH (4.502%) K (3.698%)K,5774 K (74.645%) T (6.304%) +SM (3.395%) SIL (3.135%) +BR (2.598%)L,5621 L (57.161%) +F (8.611%) OW (6.138%) AO (2.597%) R (2.491%)M,6345 M (60.772%) N (19.196%) +BR (3.830%) +F (3.515%) W (1.481%)N,13024 N (63.506%) M (6.741%) +BR (5.413%) +F (3.209%) NG (2.434%)NG,1751 NG (34.609%) N (29.640%) M (5.768%) IY (4.797%) EY (4.169%)OW,4039 OW (38.623%) +F (9.557%) L (7.923%) AO (5.620%) AY (4.085%)OY,20 EH (45.000%) AY (30.000%) AO (10.000%) OY (5.000%) OY (0.000%)P,1221 P (44.062%) K (16.298%) T (7.043%) B (6.470%) SIL (4.586%)R,5334 R (69.835%) ER (6.580%) AY (4.124%) AXR (2.081%) +F (1.669%)103



104 APPENDIX B. MONOPHONE CONFUSION TABLECorrect Phone 1 2 3 4 5S,8708 S (83.532%) Z (6.431%) F (2.664%) T (2.251%) TH (2.079%)SH,597 SH (53.266%) S (13.903%) CH (8.878%) T (7.873%) Z (6.365%)SIL,53729 SIL (96.516%) +BR (1.539%) +SM (0.631%) +NH (0.281%) K (0.143%)T,13190 T (61.266%) K (7.779%) S (3.215%) D (2.926%) +SM (2.449%)TH,4353 TH (53.986%) F (10.705%) +BR (4.663%) SIL (4.319%) +SM (4.273%)UH,1147 UH (40.977%) UW (8.980%) EY (8.195%) IH (7.934%) AX (6.103%)UW,4354 UW (52.526%) IY (5.122%) EY (5.076%) IH (4.410%) +BR (2.802%)V,2565 V (42.105%) F (16.725%) M (4.405%) B (3.782%) N (3.197%)W,5849 W (69.345%) L (5.779%) AO (4.360%) R (4.274%) M (1.351%)Y,1755 Y (47.008%) IY (28.262%) UW (3.305%) IH (2.963%) EY (2.336%)Z,2994 Z (59.987%) S (29.125%) T (2.204%) DH (1.035%) TH (0.969%)ZH,6 IY (50.000%) F (33.333%) +BR (16.667%) +BR (0.000%) +BR (0.000%)
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