
Applying Divide and Conquer toLarge Scale Pattern Recognition TasksJ�urgen Fritsch, Michael Finkefritsch@ira.uka.de, �nkem@cs.cmu.eduInteractive Systems LaboratoriesUniversity of KarlsruheAm Fasanengarten 576128 Karlsruhe, Germany Carnegie Mellon University5000 Forbes AvenuePittsburgh, PA 15213, USAAbstract. Rather than presenting a speci�c trick, this paper aims atproviding a methodology for large scale, real-world classi�cation tasks in-volving thousands of classes and millions of training patterns. Such prob-lems arise in speech recognition, handwriting recognition and speaker orwriter identi�cation, just to name a few. Given the typically very largenumber of classes to be distinguished, many approaches focus on para-metric methods to independently estimate class conditional likelihoods.In contrast, we demonstrate how the principles of modularity and hi-erarchy can be applied to directly estimate posterior class probabilitiesin a connectionist framework. Apart from o�ering better discriminationcapability, we argue that a hierarchical classi�cation scheme is crucial intackling the above mentioned problems. Furthermore, we discuss train-ing issues that have to be addressed when an almost in�nite amount oftraining data is available.1 IntroductionThe majority of contributions in the �eld of neural computation deal withrelatively small datasets and, in case of classi�cation tasks, with a relativelysmall number of classes to be distinguished. Representatives of such problemsinclude the UCI machine learning database [16] and the Proben [20] bench-mark set for learning algorithms. Research concentrates on aspects such as miss-ing data, model selection, regularization, over�tting vs. generalization and thebias/variance trade-o�. Over the years, many methods and 'tricks' have beendeveloped to optimally learn and generalize when only a limited amount of datais available.On the other hand, many problems in human computer interaction (HCI)such as speech and handwriting recognition, lipreading and speaker and writeridenti�cation require comparably large training databases and also often ex-hibit a large number of classes to be discriminated, such as (context-dependent)phones, letters and individual speakers or writers. For example, in state-of-the-art large vocabulary continuous speech recognition, we are typically faced withan inventory of several thousand basic acoustic units and training databasesconsisting of several millions of preprocessed speech patterns. There is only a



limited amount of publications available on the sometimes very di�erent prob-lems concerning the choice of learning machines and training algorithms for suchtasks and datasets.This article addresses exactly the latter kind of learning tasks and providesa principled approach to large scale classi�cation problems, exemplifying it onthe problem of connectionist speech recognition. Our approach is grounded onthe powerful divide and conquer paradigm that traditionally has always beenapplied to problems of rather large size. We argue that a hierarchical approachthat modularizes classi�cation tasks is crucial in applying statistical estimatorssuch as arti�cial neural networks. In that respect, this paper presents not justa single 'trick of the trade', it o�ers a methodology for large scale classi�cationtasks. Such tasks have traditionally been addressed by building generative mod-els rather than focussing on the prediction of posteriors without making strongassumptions on the distribution of the input.The remainder of the paper is organized as follows. Section 2 presents the gen-eral approach to soft hierarchical classi�cation. Section 3 then discusses methodsto design the topology of hierarchical classi�ers - a task that is of increasing im-portance when dealing with large numbers of classes. Finally, section 4 demon-strates in detail the application of hierarchical classi�cation to connectioniststatistical speech recognition. Section 5 concludes this paper with a summary.2 Hierarchical Classi�cationConsider the task of classifying patterns x as belonging to one of N classes !k.Given that we have access to the class conditional probability densities p(xj!k),Bayes theory states that the optimal decision should be based on the a-posterioriprobabilities p(!kjx) = p(xj!k)p(!k)Pi p(xj!i)p(!i) :Given that equal risks are associated with all possible misclassi�cations, theoptimal decision is to choose the class with maximum a-posteriori probabilitygiven a speci�c pattern x. Two distinct approaches have to be considered whenapplying Bayes theory to a learning from examples task with generally unknowndistributions. In the �rst approach, one tries to estimate class-conditional like-lihoods p(xj!k) and prior probabilities p(!k) from a labeled dataset which arethen used to calculate posterior probabilities according to Bayes rule. In prin-ciple, this approach can be applied to tasks with an arbitrary large numberof classes since the class-conditional likelihoods can be estimated independently.However, such an approach focuses on the modeling of the class-conditional den-sities. For classi�cation accuracy however, it is more important to model classboundaries.The second approach accomodates this perspective by directly estimatingposterior class probabilities from datasets. It was shown (e. g. [6]) that a large



class of arti�cial neural networks such as multi-layer perceptrons and recur-rent neural networks can be trained to approximate posterior class probabilities.The degree of accuracy of the approximation however depends on many factors,among them the plasticity of the network. Comparing the two approaches, thediscriminative power of methods that estimate posterior probabilities directly isgenerally higher, resulting in better classi�cation accuracy especially when theclass-conditional distributions are very complex. This fact (among others) ex-plains the success and popularity of neural network classi�ers on many learningfrom examples tasks.However, when the number of classes to be distinguished increases to sayseveral thousand, neural network estimators of posterior probabilities fail toprovide good approximations mainly because of two reasons: First, real-worldproblems involving such a large number of classes often exhibit an extremelynon-uniform distribution of priors [28]. Many learning algorithms for neuralnetworks (especially stochastic on-line gradient descent) have di�culties withnon-uniformly distributed classes. Particularly the distribution of posteriors ofinfrequent classes tend to be approximated poorly. Second, and more important,one of the prerequisites for training neural networks to estimate posteriors, the1-out-of-N coding of training targets, implies that the number of output neuronsmatches the number of classes. It is unfeasible to train a neural network withthousands of output neurons. Also, with increasing number of classes, the com-plexity of the optimum discriminant functions also increases and the potentialfor con
icts between classes grows. Thus, from our point of view, typical mono-lithic neural network classi�ers are not applicable because of their limitation totasks with relatively few classes.2.1 Decomposition of Posterior ProbabilitiesApplying the principle of divide and conquer, we can break down the task of dis-criminating between thousands of classes into a hierarchical structure of manysmaller classi�cation tasks of controlled size. This idea underlies the approachesto decision tree architectures [5, 21, 23]. Decision trees classify input patternsby asking categorical questions at each internal node. Depending on the answerto these questions a single path is followed to one of the child nodes and theprocess repeats until a leaf node is reached and a (winner) class label is emitted.Therefore, decision tree classi�ers can only supply us with hard decisions. Noinformation about the confusability of a speci�c input pattern is given to us.Rather, we are often interested in the posterior class probabilities because wewish to have a measure of the ambigueness of a decision. Furthermore, we aresometimes required to feed a measure of the degree of membership for all poten-tial classes into a superior decision making process. As we will see in section 4,statistical speech recognition is a typical example for the latter scenario.Adhering to the divide and conquer approach but generalizing the decisiontree framework, the statistical method of factoring posteriors can be appliedto design soft classi�cation trees [24, 25]. For now, we assume, that optimalposterior probabilities are available. Let S be a (possibly large) set of classes !k



to be discriminated. Consider we have a method at our disposition which gives usa partitioning of S intoM disjoint and non-empty subsets Si such that membersof Si are almost never confused with members of Sj (8j 6= i). A particular class!k will now be a member of S and exactly one of the subsets Si. Therefore, wecan rewrite the posterior probability of class !k as a joint probability of the classand the corresponding subset Si and factor it according top(!kjx) = p(!k; Sijx) with !k 2 Si= p(Sijx) p(!kjSi;x):Thus, the global task of discriminating between all the classes in S has beenconverted into (1) discriminating between subsets Si and (2) independently dis-criminating between the classes !k remaining within each of the subsets Si.Recursively repeating this process yields a hierarchical tree-organized structure(Fig. 1).
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Fig. 1. Hierarchical decomposition of posteriorsNote, that the number of subclasses Si of each node does not need to be con-stant throughout the classi�er tree and might be subject to optimization duringthe tree design phase. In order to compute the posterior probability for a speci�cclass, we have to follow the path from root node to the leaf corresponding to theclass in question, multiplying all the conditional posteriors along the way. Boththe design of the tree structure (divide) and the estimation and multiplication(conquer) of conditional posteriors at each node are important aspects in thisarchitecture, that have to be considered thoroughly because in practice, onlyapproximations to the conditional posteriors are available.



2.2 Hierarchical InterpretationThe presented architecture can be interpreted as a probability mass distributiondevice. At the root node, an initial probability mass of 1 is fed into the architec-ture. At each node, the incoming probability mass is multiplied by the respectiveconditional posterior probabilities and fed into the child nodes. Eventually, theprobability mass is distributed among all the leaves (classes) rendering their pos-terior probabilities. In contrast, classi�er trees are mostly used as hard-switchingdevices, where only a single path from root node to one of the leaves is taken.A hierarchical decomposition of posterior probabilities through a soft classi-�cation tree o�ers several advantages. If one of the nodes in the tree, for examplethe root node fails to provide good estimates of conditional posteriors, a harddecision tree will produce many classi�cation errors. In a soft classi�cation tree,such shortcomings will in
uence the decision process less dramatically. Also,recovery from errors is often possible through a superior decision process.Another aspect of soft classi�cation trees that can be exploited for variouspurposes is the sum-to-unity property observable in any horizontal cross-sectionat any level of the tree. The tree can be cut o� at a certain level and still beused as a soft classi�cation tree that computes posterior class probabilities. Thisis equivalent to creating a new (smaller) set of classes by clustering and merg-ing the original classes according to the tree topology. In general, the resultingclassi�cation task will be easier to solve than the original one.Related to the sum-to-unity property of cross-sections is that the partialposteriors computed on a path from the root node to a leaf are decreasingmonotonically. This in turn allows to close paths whenever a suitable thresh-old is reached, pruning whole subtrees with classes that would otherwise receiveposteriors smaller than the threshold. This property yields the possibility tosmoothly trade o� classi�cation accuracy against computational complexity. Inthe limit, when only a single path with highest conditional posterior is followed,the soft classi�cation tree transmutes into a hard decision tree.2.3 Estimation of Conditional Node PosteriorsGiven a hierarchical decomposition of posterior class probabilities, it remainsto instantiate the tree nodes with estimators for the required conditional pos-teriors. Conditioning a posterior on a subset of classes Si can be accomplishedby restricting the training set of the corresponding learning device to the pat-terns with a class label from Si. According to this setting, the available trainingdata in each node is distributed among all its child nodes according to the classpartitioning. While the root node receives all available training data, nodes fur-ther down the tree receive less data than their predecessors. On the other hand,specialization increases from root node to leaves. This fact has important conse-quences on learning speed and model selection when training whole hierarchies.One of the important issues in hierarchical decompositions of posterior prob-abilities are the unavoidable inaccuracies of practical estimators for the condi-tional posteriors that have to be provided in each tree node. Neural networks



can only be trained to approximate the true distribution of posterior class proba-bilities and the degree of accuracy depends on both the inherent di�culty of thetask as given by the training set and the network structure and training schedulebeing used. Inaccurate approximations to the true distribution of posteriors hurtmost in the upper layers of a classi�cation tree - a fact that has to be taken intoaccount by tree design procedures, which we will discuss next.3 Classi�er Tree DesignWhen it comes to the design of soft classi�er trees, or equivalently to the de-sign of hierarchical decompositions of class posteriors, the choice of algorithmdepends mostly on the number of initial classes. We will �rst discuss optimaltree structures before we will turn to heuristic design algorithms necessary whendealing with the large number of classes that we have to deal with.3.1 OptimalityThe optimal soft classi�cation tree for a given task and given type and struc-ture of estimators for the conditional node posteriors is the one which resultsin minimum classi�cation error in the Bayes setting. If all the node classi�erswould compute the true conditional posteriors, the tree structure would have noin
uence on the classi�er performance because any kind of factoring (throughany kind of tree structure) yields an exact decomposition of the class posteriors.However, in practice, approximation errors of node classi�ers render the choiceof tree structure an important issue. For small numbers of classes, the optimaltree can in principle be found by exhaustively training and testing all possiblepartitionings for a particular node (starting with the root node) and chosing theone that gives the highest recognition accuracy. However, even if restricting thetree structure to binary branching nodes and balanced partitionings, the numberK of partitionings that have to be examined at the root nodeK = N !(N2 !)2quickly brings this algorithm to its limits, even for a moderate number ofclasses N . Therefore, we have to consider heuristics to derive near optimal treestructures. For example, one valid possibility is to assume that the accuracy ofachievable approximations to the true posteriors is related to the separability ofthe corresponding sets of classes.3.2 Prior KnowledgeFollowing the above mentioned guideline, prior knowledge about the task inquestion can often be applied to hierarchically partition the global set of classesinto reasonable subsets. The goal is to partition the remaining set of classes in



a way that intuitively maximizes the separability of the subsets. For example,given a set of phones in a speech recognizer, a reasonable �rst partitioning wouldbe to build subsets consisting of voiced and unvoiced phones. In larger speechrecognition systems where we have to distinguish among multi-state context-dependent phones, prior knowledge such as state and context identity can be usedas splitting criterion. In tasks such as speaker or writer identi�cation, featuressuch as gender or age are potential candidates for splitting criteria.The advantage of such knowledge driven decompositions is a fast tree designphase which is a clear superiority of this approach when dealing with largenumbers of classes. However, this method for the design of hierarchical classi�ersis subjective and error prone. Two experts in a speci�c �eld might disagreestrongly on what constitutes a reasonable hierarchy. Furthermore, it is not alwaysthe case that reasonable partitionings yield good separability of subsets. Expertknowledge can be misleading.3.3 Confusion MatricesIn case the number of classes is small enough to allow the training of a singleclassi�er, the design of a soft classi�er tree can be based on the confusion matrixof the trained monolithic classi�er. Indicating the confusability of each pair ofclasses, the confusion matrix yields relatively good measures of the separabil-ity of pairs of classes. This information can be exploited for designing a treestructure using a clustering algorithm. For instance, we can de�ne the following(symmetric) distance measure between two disjunct sets of classes Sk and Sld(Sk ; Sl) = � X!i2Sk X!j2SlC(!i; !j jT ) + C(!j ; !ijT )where C(!i; !j jT ) denotes the number of times class !i is confused withclass !j as measured on a set of labeled patterns T . The distance d(Sk; Sl) cannow be used as a replacement for the usual Euclidean distance measure in astandard bottom-up clustering algorithm. Unfortunately, once the number ofclasses increases to several thousand, training of a monolithic classi�er becomesincreasingly di�cult.3.4 Agglomerative ClusteringAssuming that separability of classes correlates with approximation accuracy ofestimators for the posterior class probabilities, we can go further and assume thatseparability of classes can be measured by a suitable distance between the classconditional distributions in feature space. We already introduced such a distancemeasure in form of the elements of a class confusion matrix. Other, computation-ally less expensive distance measures would be the Euclidean distance betweenclass means or the Mahalanobis distance between the classes second order statis-tics. Irrespective of the chosen distance measure, the goal always is to group theset of classes in a way that results in maximum inter- and minimum intra-group



distances. Solutions to this problem are known as agglomerative clustering al-gorithms and a large pool of variations of the basic algorithm is available in theliterature [7].4 Application to Speech RecognitionIn this section, we will demonstrate the main ideas and bene�ts of the hier-archical classi�er approach on the task of large vocabulary continuous speechrecognition (LVCSR). More speci�cally, we will focus on acoustic modeling forstatistical speech recognition using hidden Markov models (HMM) [27]. To givean impression of the complexity of such a task: training databases typically con-sist of tens of millions of speech patterns, the number of acoustic classes beingdistinguished ranges from ca. 50 (monophones) to over 20000 (context-dependentpolyphones).4.1 Statistical Speech RecognitionThe basic statistical entity in HMM based speech recognition is the posteriorprobability of word sequences W1; : : : ;WN given a sequence of acoustic observa-tions X1; : : : ;XM and a set of model parameters �P (W1; : : : ;WN jX1; : : : ;XM; �)During training, we are seeking parameters � that maximize this probabilityon the training data�̂ = argmax� TYt=1P (W1; : : : ;WN(t)jX1; : : : ;XM(t); �)and during recognition, we want to �nd the sequence of words that maximizesthis probability for a given acoustic observation and �xed model parameters �Ŵ1; : : : ; ŴN = argmaxW1;:::;WNP (W1; : : : ;WN jX1; : : : ;XM; �)In order to simplify the process of maximizing the posterior probability ofword sequences, Bayes rule is usually appliedP (W1; : : : ;WN jX1; : : : ;XM) = P (X1; : : : ;XMjW1; : : : ;WN ) P (W1; : : : ;WN )P (X1; : : : ;XM)This rule separates the estimation process into the so called acoustic model(AM) consisting of terms that depend on the acoustic observations X1; : : : ;XMand the language model (LM) consisting of terms that depend only on the se-quence of words W1; : : : ;WN . In this paper we will focus on acoustic modelingusing connectionist estimators as a typical example of a task involving the dis-crimination of thousands of classes. For a review on other important aspects of



LVCSR such as pronunciation modeling, language modeling and decoding algo-rithms we refer the reader to [27].The task of acoustic modeling (ignoring the denominator) is to estimateparameters �AM which maximizeP (X1; : : : ;XMjW1; : : : ;WN ; �AM):Words Wi are modeled as sequences (or graphs) of phone models. The map-ping from words to phone models is usually accomplished by means of a pronun-ciation dictionary. Phone models in turn are usually modeled as m-state left-to-right hidden Markov models (HMM) to capture the temporal and acousticvariability of speech signals. The following �gure shows the process of convertinga sequence of words into (1) a pronunciation graph (possibly with pronunciationvariants) and (2) an HMM state graph.
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Fig. 2. Typical hidden Markov model in speech recognitionIn this framework, where word sequences are represented as directed acyclicgraphs of HMM states, the likelihood of an acoustic observation can be rewrittenas



P (X1; : : : ;XMjW1; : : : ;WN ) = Xs1;:::;sM P (X1; : : : ;XMjs1; : : : ; sM ) p(s1; : : : ; sM )where the summation extends over all possible state sequences s1; : : : ; sM inthe HMM model for the word sequence W1; : : : ;WN . In the Viterbi approxima-tion, the above likelihood is approximated by the probability of the most likelystate sequenceP (X1; : : : ;XMjW1; : : : ;WN ) � maxs1;:::;sM P (X1; : : : ;XMjs1; : : : ; sM ) p(s1; : : : ; sM ):Given a speci�c state sequence, the likelihood of the acoustic observationsgiven that sequence can be factored as followsP (X1; : : : ;XMjs1; : : : ; sM ) � MYi=1 p(XijX1; : : : ; Xi�1; s1; : : : ; sM ) p(s1; : : : ; sM ):In the application of �rst-order hidden Markov models to the estimation ofsuch likelihoods one usually makes two simplifying assumptions:{ Independence of Observations:P (X1; : : : ;XMjs1; : : : ; sM ) � MYi=1 p(Xijs1; : : : ; sM ) p(s1; : : : ; sM ){ First-order Assumption:P (X1; : : : ;XMjs1; : : : ; sM ) � MYi=1 p(Xijsi) p(sijsi�1)4.2 Emission and Transition ModelingMainstream LVCSR systems follow the above approach by modeling emissionprobability distributions p(Xijsi) and transition probabilities p(sijsi�1) sepa-rately and independently. Emission probability distributions are usually mod-eled using mixture densities from the exponential family, such as the mixture ofGaussians p(Xijsi) = nXk=1 
kNk(Xijsi)where the 
k denote mixture coe�cients and the Nk mixture component den-sities (here: normal distributions). Transition probabilities on the other handare modeled by simple multinomial probabilities since they are conditioned ona discrete variable only (not on the input vector).



The advantage of this approach is a decoupled estimation process that sep-arates temporal and acoustic modeling. As such, it allows to easily vary HMMstate topologies after training in order to modify temporal behaviour. For in-stance, state duplication is a popular technique to increase the minimum dura-tion constraint in phone models. Having separated emission and transition prob-ability estimation, state duplication consists of simply sharing acoustic modelsamong multiple states and adapting the transition probabilities.However, the disadvantage of the above approach is a mismatch in the dy-namic range of emission and transition probabilities. The reason is that transitionprobabilities are modeled separately as multinomial probabilities, constrainedby the requirement to sum to one. This leads to a dominant role of emissionprobabilities with transition probabilities hardly in
uencing overall system per-formance.4.3 Phonetic Context ModelingSo far we have assumed that only one HMM is required per modeled mono-phone (see Fig. 2). Since the English language can be modeled by approximately45 monophones, one might get the impression that only that number of HMMmodels need to be trained. In practice however, one observes an e�ect called coar-ticulation that causes large variations in the way speci�c monophones actuallysound, depending on their phonetic context.Usually, explicit modeling of phones in phonetic context yields great gainsin recognition accuracy. However, it is not immediately clear how to achieverobust context-dependent modeling. Consider, for example, so called triphonemodels. A triphone essentially represents the realization of a speci�c monophonein a speci�c context spanning one phone to the left and right. Assuming aninventory of 45 monophones, the number of (theoretically) possible triphones is453 = 91125. Many of these triphones will occur rarely or never in actual speechdue to the linguistic constraints in the language. Using triphones therefore resultsin a system which has too many parameters to train. To avoid this problem, onehas to introduce a mechanism for sharing parameters across di�erent triphonemodels.Typically, a CART like decision tree is adopted to cluster triphones intogeneralized triphones based on both their a-priori probability and their acous-tic similarity. Such a top-down clustering requires the speci�cation of viableattributes to be used as questions on phonetic context in order to split treenodes. Mostly, linguistic classes such as vowel, consonant, fricative, plosive, etc.are being employed. Furthermore, one can generalize triphones to polyphones byallowing dependence on a wider context (and not just the immediate left andright neighboring phones). Fig. 3 shows a typical decision tree for the clusteringof polyphonic variations of a particular monophone state.The collection of all leaf nodes of decision trees for each monophone statein a given system represents a robust and general set of context-dependent sub-phonetic units. Since each of these units corresponds to several triphone HMMstates, they are often called tied states. Typically, a large vocabulary continuous
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Fig. 3. Phonetic Context Modeling using Decision Trees. Shown is a decision treemodeling phonetic contexts of middle state (3-state HMM) of monophone /AX/.speech recognizer models between 3000 and 24000 such tied states. MainstreamLVCSR systems scale to any number of context-dependent modeling units sinceemission and transition models are independently estimated for each tied state.4.4 Connectionist Acoustic ModelingLocally discriminant connectionist acoustic modeling is the most popular ap-proach to integrate neural networks into an HMM framework [3, 4, 18]. It isbased on converting estimates of local posterior class probabilities to scaled like-lihoods using Bayes rule. These scaled likelihoods can then be used as observationprobability estimates in standard HMMs. For a moderately small number N ofHMM states, a neural network can be trained to jointly estimate posterior prob-abilities p(sijXi) for each state si given an input vector Xi. Bayes rule yieldsthe corresponding scaled 1 class conditional likelihoodsp̂(Xijsi) = p(sijXi)p(si) :1 The missing additional term consisting of the probability of the input vector p(Xi)is usually omitted because it is independent of the class/state identity and thereforedoes not in
uence a Viterbi style search for the most likely state sequence.



While p(sijXi) is estimated using a neural network, prior probabilities p(si)can be estimated by relative frequencies as observed in the training data. Severalresearchers (e. g. [3, 14]) have reported improvements with connectionist acousticmodeling when the technique for the estimation of emission probabilities was theonly di�erence in comparison. Since mainstream HMMs for speech recognizersare mostly trained in a maximum likelihood framework using the Expectation-Maximization (EM) algorithm, incorporation of discriminatively trained neuralnetworks that focus on modeling of class boundaries instead of class distributionsis often observed to be bene�cial. Also, compared to mixtures of Gaussians basedacoustic models, connectionist acoustic models are often reported to achieve thesame accuracy with far less parameters.However, when the number of HMM states is increased to model context-dependent polyphones (triphones,quintphones), a single neural network can nolonger be applied to estimate posteriors. It becomes necessary to factor the pos-terior state probabilities [17] and modularize the process of estimating thoseposteriors. In most approaches, the posteriors are factored on phonetic contextor monophone identity (e.g. [4, 9, 15]). Viewing factoring as a hierarchical decom-position of posteriors, we generalized the approaches to context-dependent con-nectionist acoustic modeling by introducing a tree structured hierarchy of neuralnetworks (HNN) [12, 13] corresponding to a multi-level factoring of posteriorsbased on a-priori knowledge such as broad sound classes (silence,noises,phones),phonetic context and HMM state identity. Fig. 4 shows the topology of such astructure.
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Fig. 4. Topology of a Hierarchy of Neural Networks (HNN) to estimate con-text-dependent posteriors, factored based on a-priori phonetic knowledge



At the top of this hierarchy, we discriminate silence, noise and speech soundsby means of two networks (SIL-Net, SPEECH-Net). The motivation for thisspeci�c partitioning comes from the observation that these three classes areeasy to distinguish acoustically. The remainder of the tree structure decomposesthe posterior of speech, conditioning on monophone, context and state identityas these are convenient sound classes modeled by any phone based HMM speechrecognizer. The hierarchy of Fig. 4 can be decomposed even further, for instanceby factoring conditional monophone posteriors (estimated by the MONO-Net)based on linguistic features (e.g. voiced/unvoiced, vowel/consonantal, fricativeetc.). The motivation behind such a decomposition is twofold. First, it reducesthe number of local classes in each node, improving approximation accuracy andsecond, it yields a decoupled and specialized set of expert networks having tohandle a smaller amount of phonetic variation.However, as mentioned in section 3, the use of prior knowledge for the designof a hierarchy of neural networks does not take into account dissimilarity of theobserved classes in feature space. We therefore developed an agglomerative clus-tering algorithm to automatically design such hierarchies for the estimation ofposteriors for a large number of classes. We termed this framework ACID/HNN[11].4.5 ACID ClusteringACID (AgglomerativeClustering based on InformationDivergence) is a bottom-up clustering algorithm for the design of tree-structured soft classi�ers such asa hierarchy of neural networks (HNN) [10, 11]. Although developed for connec-tionist acoustic modeling, the algorithm can in principle be used for any kind ofclassi�cation task. Starting from a typically very large set of initial classes, forexample the set of decision tree clustered HMM states in a speech recognizer 2,the ACID algorithm constructs a binary hierarchy. The nodes in the resultingtree are then instantiated with estimators for the respective conditional poste-rior probabilities, for instance in form of an HNN. The clustering metric in theACID algorithm is the symmetric information divergence [26]d(si; sj) = Zx(p(xjsi)� p(xjsj)) log p(xjsi)p(xjsj) dxbetween class conditional densities of clusters. In contrast to standard ag-glomerative clustering algorithms which mostly represent clusters by their meansand employ the Euclidean distance metric, we chose to represent clusters byparametric mixture densities (mixtures of Gaussians) in the ACID algorithm.Modeling clusters with mixture densities is much more adequate than just usingthe mean and it still allows to cluster large amounts of classes in a reasonabletime. The symmetric information divergence (also called Kullback-Leibler dis-tance) measures the dissimilarity of two distributions and was therefore chosen2 In our case, we experimented with up to 24000 initial classes



as the clustering metric. Typically, each initial class (state) is modeled using asingle full covariance multivariate Gaussian densityp(xjsi) = 1p(2�)nj�ij expf�12(x� �i)t��1i (x� �i)gwith mean vector �i and covariance matrix �i. Clustering then continuouslymerges initial classes which corresponds to building mixture densities based onthe Gaussians. The symmetric information divergence between two states si andsj with Gaussian distributions amounts tod(si; sj) = 12 trf(�i ��j)(��1j ���1i )g+ 12 trf(��1i +��1j )(�i � �j)(�i � �j)tgThe computation of this distance measure requires O(n2) multiplications andadditions (assuming pre-computed inverse covariance matrices), where n is thedimensionality of the input feature space. To reduce the computational load ofthe ACID clustering algorithm, one can model the class conditional likelihoodswith diagonal covariance matrices only. Feature space transformations such asprincipal component analysis and linear discriminant analysis can be used toapproximate such distributions. When using diagonal covariance Gaussians, thesymmetric information divergence simpli�es tod(si; sj) = 12 nXk=1 (�2jk � �2ik)2 + (�2ik + �2jk)(�ik � �jk)2�2ik�2jkwhere �2ik and �ik denote the k-th coe�cient of the variance and mean vectorsof state si, respectively. The evaluation of the latter distance measure requiresonly O(n) multiplications and additions.Making the simplifying assumption of linearity of information divergence, wecan de�ne the following distance measure between clusters of Gaussians Sk andSl D(Sk; Sl) = Xsi2Sk p(sijSk) Xsj2Sl p(sj jSl)d(si; sj)This distance measure is used in the ACID clustering algorithm:



1. Initialize algorithm with N clusters Si, each containing(1) a parametric model of the class-conditional likelihood and(2) a count Ci, indicating the frequency of class si in the train-ing set.2. Compute within cluster priors p(sijSk) for each cluster Sk, usingthe counts Ci3. Compute the symmetric divergence measure D(Sk; Sl) betweenall pairs of clusters Sk and Sl.4. Find the pair of clusters with minimum divergence, S�k and S�l5. Create a new cluster S = S�k SS�l containing all Gaussians of S�kand S�l plus their respective class counts. The resulting para-metric model is a mixture of Gaussians where the mixturecoe�cients are the class priors6. Delete clusters S�k and S�l7. While there are at least 2 clusters remaining, continue with 2.ACID Initialization Initialization requires to estimate class conditional like-lihoods for all (tied) states modeled by the recognizer. The number N of initialclasses therefore is determined by other parts of the speech recognizer, namelyby the phonetic decision tree that is typically applied to cluster phonetic con-texts, or aquivalently to tie HMM states [27]. Initial class conditional densitiesfor these classes can be computed from state alignments using either the Viterbior the Forward-Backward algorithm on training data and corresponding HMMstate graphs generated from training transcriptions. Estimation of initial para-metric models for the ACID algorithm therefore requires a single pass throughthe training data. After initial models have been estimated, the actual ACIDclustering does not require any further passes through the training data. Fur-thermore, note that this algorithm clusters HMM states without knowledge oftheir phonetic identity solemnly based on acoustic dissimilarity.ACID Dendrograms For illustration purposes, Fig. 5 shows a dendrogramof a typical ACID clustering run on a relatively small set of only 56 initialclasses corresponding to the set of single-state monophone HMMs in a context-independent speech recognizer. The set of classes consists of 44 standard Englishphones along with 7 noise sounds (marked with a plus), 4 phones modelinginterjections (marked with an ampersand) and silence (SIL).Already the top level split separates silence, breathing and noise sounds(lower subtree) almost perfectly from phonetic sounds (upper subtree). Further-more, clusters of acoustically similar phones can be observed in the ACID tree,for instance{ IX,IH,IY,Y{ JH,CH,SH,ZH{ Z,S,F{ ER,AXR,R
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+BR Fig. 5. Typical dendrogram of ACID clusteringACID clustering was found to be quite e�ective in generating a hierarchicaldecomposition of a classi�cation task into subtasks of increasing di�culty (whentraversing the tree from root node to leaves). In the case of connectionist acousticmodeling for speech recognition, we observed that nodes in the upper layersof an ACID clustered HNN tree distinguish between broad phonetic classes,whereas nodes further down the tree begin to distinguish the particular phoneswithin a broad phonetic class. Thus, ACID clustering constitutes an e�ectivealgorithm for discovering inherent hierarchical structure and exploiting it for



modular classi�cation.Model Selection The choice of model size and topology becomes very impor-tant in the application of hierarchical soft classi�ers to tasks such as connectionistspeech recognition. While the global tree topology is determined by the outcomeof the ACID clustering (or any other tree design procedure), it remains to de-cide on local (node-internal) classi�er topology. The task of a local classi�er isto estimate conditional posterior probabilities based on the available trainingdata. Since a particular local estimator is conditioned on all predecessor nodesin the tree, it only receives training data from all the classes (leaves) that canbe reached from the respective node. This amounts to a gradually diminishingtraining set when going from root node to nodes further down the tree. Fig. 6shows this property of HNNs with a plot of the amount of available training pat-terns vs. node depth for a binary hierarchy with 6000 leaves. Note the logscaleon the ordinate.
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node depthFig. 6. Available Training Data in Di�erent Depths of HNN TreeWhen deciding on the local model complexity, we consider tree nodes as lyingin a continuum between the following two extrema:Top of the Hierarchy{ large amounts of training data available{ allows for large node classi�ers{ relatively easy, general classi�cation tasks



Bottom of the Hierarchy{ only small amounts of training data available{ requires relatively small node classi�ers{ comparably hard classi�cation tasks{ high degree of specializationIdeally, the complexity of local node classi�ers should be selected so as tomaximize generalization ability of the complete hierarchy. Generalization, onthe other hand, is in
uenced by three factors: (1) size and distribution of thetraining set, (2) model complexity and (3) classi�cation complexity of the speci�ctask at hand. Obviously, we can not alter the latter of these factors. Furthermore,in the context of our architecture, we assume that the size of the training set foreach node is �xed by the tree topology, once the hierarchy has been designed.Therefore, we have to choose model complexity based on available training dataand di�culty of classi�cation task.In our experiments in connectionist acoustic modeling, we typically use multilayer perceptron (MLP) nodes with a single hidden layer and control modelcomplexity by varying the number of hidden units. We use standard projectivekernels with tanh activations for the hidden units and a task dependent non-linearity for the output units (sigmoid for binary and softmax for multiwayclassi�cation). The overall number of weights in such a network depends linearilyon the number of hidden units. According to [1] and with some approximations,a rule of thumb is to choose the number of hidden units M to satisfyN > M�where N is the size of the training set and � is the expected error rate on thetest set. In our case, the variation in the number of training patterns in the di�er-ent nodes dominates the above formula. Therefore, we set the number of hiddenunits proportional to b�n, where b is the branching factor of the classi�cationtree and n is the node depth. As long as the tree is approximately balanced interms of the prior distribution of child nodes, this strategy leads to hidden layerswith size proportional to the number of available training patterns. A more fun-damental treatment of model complexity using multiple training runs and crossvalidation is desirable. However, in case of large-scale applications such as speechrecognition, such a strategy is not realizable because of the high computationalcost resulting from very large training databases. Less heuristic approaches toselect model complexity still have to be explored.4.6 Training Hierarchies of Neural Networks on Large DatasetsFor the demonstration of various aspects of training large and complex structuressuch as hierarchies of neural networks on typical datasets, we report on exper-iments on the Switchboard [19] speech recognition database. Switchboard is alarge corpus of conversational American English dialogs, recorded in telephonequality all over the US. It consists of about 170 hours of speech which typically



corresponds to about 60 million training samples. The corpus currently servesas a benchmark for the o�cial evaluation of state-of-the-art speech recognitionsystems. Switchboard is a comparably hard task, current best systems achieveword error rates in the vicinity of 30-40%. Fig. 7 shows the structure of an HNNbased connectionist acoustic model for an HMM based recognizer, in our casethe Janus recognition toolkit (JanusRTk) [8].
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Fig. 7. Hierarchy of Neural Networks for Connectionist Acoustic Modeling: The upperpart shows an ACID clustered HNN after node merging. This architecture computesposterior probabilities for a set of generalized polyphones. To allow for integrationinto the HMM framework, these posteriors are converted to scaled likelihoods. Thecorrespondence to actual HMM states is accomplished by means of phonetic decisiontrees.



Due to the inherent variability and complexity of the task and the largeamount of training data, typical speech recognition systems model several thou-sand distinct subphonetic units (HMM states) as base classes. This requires totrain an estimator for posterior probabilities of thousands of distinct acousticclasses based on millions of training samples, in order to take advantage of thefull modeling granularity of the speech recognizer.In the following, we will discuss several aspects of training a hierarchical softclassi�er on large datasets such as Switchboard. Due to the modular structureof the classi�er, the size of the model inventory and the training database, thefollowing discussion leads to rather unique problems and solutions. However, itis important to emphasize that these properties stem from the structure of theclassi�er and the size of the task - not from the speci�c task of acoustic modelingfor speech recognition. Thus, they are transferable to comparably large tasks,e. g. handwriting, speaker or face recognition.Classi�er Tree Topology Depending on the number of classes to be modeled,tree design algorithm, branching factor and size and structure of local nodeclassi�ers have to be chosen. For Switchboard, we were experimenting with threesystems consisting of 6000, 10000 and 24000 distinct classes, respectively. Weused the ACID clustering algorithm to design an initial tree structure fromthe set of base classes for the 6k and 24k systems. As a second step of thetree design phase, we applied a greedy node merging algorithm on the ACIDclustered hierarchy. Node merging decreases the number of internal nodes whileincreasing the average branching factor (arity) of the tree. Training of suchhierarchies is less problematic than training of the original binary tree structuresince the di�erence among nodes (in terms of the number of available trainingpatterns) is somewhat extenuated and the overall number of networks is reduced.However, local classi�cation tasks change from 2-way (binomial) to more complexmulti-way (multinomial) problems which might have an impact on the accuracyof estimating conditional posteriors. Therefore, we constrain the node mergingalgorithm to produce nodes with a maximum branching factor of 8-12. Thisvalue was found to improve training speed while not a�ecting overall classi�eraccuracy. Considerably larger branching factors are not reasonable in our case aswe would gradually loose the advantage of the hierarchical structure by 
ateningthe tree.For the 10k system, we were using the architecture of Fig. 4 that was designedby prior knowledge, not taking into account any measure of class similarity. Thisstructure exhibits a larger average branching factor and less depth than theACID clustered trees. Although we could decrease the branching factor at theMONO node by introducing linguistic classes as mentioned earlier, we still havelarge branching factors at the context nodes which are much harder to resolvewith prior knowledge only.The resulting tree nodes were instantiated with MLPs of varying size of the(single) hidden layer. The local MLPs output layer were parameterized with thesoftmax non-linearity for two reasons. First, it complies to the property of the



level # nodes = # hidden# networks units/network1 1 2562 1 2563 1 2564 3 1925 19 1286 121 647 816 32total 962
level # nodes = # hidden# networks units/network1 1 1282 10 1283 77 644 524 325 3434 16total 4046Fig. 8. Overview of ACID clustered HNNs for 6k (left) and 24k (right) classesmodeled probability distribution to sum up to one, and second, the softmaxfunction implements the expected value of the multinomial probability density.Fig. 8 gives an overview of the structure of the ACID/HNN systems. Tree com-pacti�cation reduced the number of internal nodes of the 24k system from 24kto about 4k by increasing the average number of local classes (average branchingfactor) from 2 to about 8. Especially when dealing with large numbers of classes,we found that moderate tree compacti�cation improved classi�er performance.The overall numbers of parameters of the tree classi�ers were 2M for the 6ksystem, 2.4M for the 10k system and 3.1M for the 24k system.Training Algorithm and Parameters Training a distributed, hierarchicallyorganized collection of neural networks on di�erent amounts of training data isa challenging task. Our training criterion is maximum likelihood, assuming amultinomial probability model (1-out-of-N) over all base classes. A target classlabel is associated with each training pattern, indicating the correct base class.All networks in nodes along the path from root node to the current target class'leaf receive the current pattern for training. Because of the large amount oftraining data, we use on-line (stochastic) gradient ascent in log-likelihood withsmall batches (10-100 patterns) to train the individual networks. More elaboratetraining algorithms which apply second order methods in optimizing the objec-tive function are too costly in our scenario - a single epoch of training, processingall 60 million patterns in the training database takes 3-5 days on a Sparc Ultraworkstation. A practical training algorithm therefore must not take longer than1-4 epochs to converge. Furthermore, because of the large number of networksthat have to be trained, a potential training algorithm can not be allowed to uselarge amounts of memory - which could be the case with second order methods.Of course, training of individual node classi�ers is independent and can thereforeeasily be parallelized for shared memory multi-processors which alleviates thelatter requirement.Since we are relying on stochastic gradient ascent in our training method,we additionally use a simple momentum term to smooth gradients. Also, we uselocal learning rates for each network that are initialized with a global learning



rate and adapted individually to the speci�c learning task. The global learningrate is annealed in an exponentially decaying scheme:�n+1G = �nG � 
G:Typically, we use an initial global learning rate �G between 0:001 and 0:01,a momentum constant of 0:5 and a global annealing factor 
G of 0:999 : : :0:9999applied after each batch update.In order to accomodate the di�erent learning speeds of the node classi�ers dueto the di�erent amount of available training data, we control individual learn-ing rates using the following measure of correlation between successive gradientvectors gn�1 and gn: �n = arccos � gtngn�1jjgnjjjjgn�1jj��n measures the angle between the gradients gn�1 and gn. Small anglesindicate high correlation and therefore steady movement in weight space. There-fore, we increase the learning rate linearily up to the current maximum (asdetermined by initial learning rate, annealing factor and number of updates per-formed) whenever �n < 90� for several batch updates M . Large angles, on theother hand, indicate random jumps in weight space. We therefore decrease thelearning rate exponentially whenever �n > 90� for several batch updates M .In summary, we obtain the following update rule for local learning rate �i ofnetwork i:�n+1i = min8<:�n+1G ;8<:�ni + ��ni � 
�ni 9=;9=; if 8>><>>: 1M �PMk=0 �n�k� < 90� � �1M �PMk=0 �n�k� > 90� + �else 9>>=>>;with linear increase � = 0:001 : : :0:01 and exponential annealing factor 
 =0:5 : : : 0:9. The number of batch updates M controls smoothing of � whereas �controls the in
uence of the global learning rate. For � ! 90�, local learningrates are forced to follow the global learning rate, whereas low values of � allowlocal learning rates to develop individually. Typical values that have been usedin our experiments are M = 10 and � = 20�.Adapting individual learning rates to the training speed is a critical issuein hierarchical classi�ers. Networks at the top of the tree have to be trained onvery large amounts of training data. Therefore, learning rates must be allowedto become relatively small in order to bene�t from all the data and not reach thepoint of saturation too early. On the other hand, networks at the bottom of thetree have to be trained with comparably small amounts of data. In order to trainthese networks within the same small number of passes through the overall data,we have to apply comparably large learning rates to reach a maximum in locallikelihood as fast as possible. However, unconstrained adaptation of learningrates with aggressive optimization of learning speed may result in failure toconverge. In our experiments with global initialization of all networks using the



same maximum learning rate, global annealing of the maximum learning rateand local adaptation of individual learning rates that are constrained to neverbecome larger than the global learning rate gives best results.Generalization/Over�tting Simply speaking, we did not observe any over-�tting in our experiments. Taking a look at the training of a large hierarchy interms of performance on an independent cross-validation set (Fig. 9), we cansee that the likelihood on this data levels o�, but never starts to decrease again,as is often observed on smaller tasks. In the plots of Fig. 9, the vertical linesindicate multiple epochs (passes) through the training data (consisting of 87000utterances). Obviously, the large amount of available training data allows forexcellent generalization, early stopping was not necessary. This behaviour is sur-prising at �rst sight, because we did not use any kind of explicit regularizationof the local MLPs. At second sight, however, we can identify several reasons forthe good generalization of HNNs on this task:{ Training data can be considered very noisy in our case, since samples comefrom a large variety of di�erent speakers and recording conditions. Trainingwith noisy data is similar to regularization and therefore improves general-ization [2].{ Consider the hierarchy for the 6k classes system (Fig. 8). Some of the 816networks at the bottom of the tree probably have not seen enough trainingpatterns to generalize well to new data. Although all of these networks to-gether constitute 85% of the total number of networks, they contribute justas one of 7 networks to any particular posterior probability. The networks inthe upper part of the hierarchy have the largest in
uence on the evaluation ofposterior probabilities. For those networks, the amount of available trainingdata can be considered so abundant that test set error approaches trainingset error rate. In other words, optimal generalization can be achieved.Results We evaluate the proposed hierarchical classi�ers as connectionist acous-tic models in a speech recognition system. Performance of speech recognizers isusually measured in terms of the word error rate on a reasonably large set oftest utterances. In our case, we test the di�erent acoustic classi�ers with theJanus [8] recognizer on the �rst 30 seconds of each speaker in the o�cial 1996Switchboard evaluation test set, consisting of 366 utterances not present in thetraining set. acoustic classi�er # classes # parameters word error rateHNN 10000 2.0 M 37.3 %ACID/HNN 6000 2.4 M 36.7 %ACID/HNN 24000 3.1 M 33.3 %
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The above results are competitive with those of state-of-the-art systems andindicate a clear advantage of the ACID clustered over the pre-determined hi-erarchical classi�ers. We suspect, that the reason for the better performance ofautomatically clustered hierarchies of neural networks is the di�erence in treetopology. Automatically clustered HNNs such as the presented ACID/HNN treesexhibit small and comparably uniform average branching factors that allow torobustly train estimators of conditional posterior probabilities. In contrast, hand-crafted hierarchies such as the 10k HNN tree contain nodes with rather largebranching factors. Fig. 10 shows the branching factors for all the networks inthe 10k tree structure.
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Fig. 10. Branching Factors of Individual Nodes in 10k HNNThe largest observed branching factor in this tree was 276. This requiresthe joint estimation of conditional posterior probabilities for as many as 276classes which may result in rather poor approximations to the true posteriorprobabilities for some of the networks in the tree.Furthermore, the superior performance of both ACID/HNN classi�ers overthe hand-crafted 10k tree, demonstrates the full scalability of the hierarchicalapproach and justi�es the increase in the number of parameters. Earlier attemptsto train hand-crafted hierarchies for 24k classes failed to provide classi�ers thatcould be used as acoustic models in a speech recognizer. Poor approximations tothe real posterior probabilities led to instabilities in decoding when dividing bypriors in this case. Apart from that, we do not know of any other non-parametricapproach capable of directly and discriminatively estimating posterior probabil-ities for such a large amount of classes.5 ConclusionsWe have presented and discussed a methodology for the estimation of poste-rior probabilities for large numbers of classes using a hierarchical connectionist
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