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Abstract. Rather than presenting a specific trick, this paper aims at
providing a methodology for large scale, real-world classification tasks in-
volving thousands of classes and millions of training patterns. Such prob-
lems arise in speech recognition, handwriting recognition and speaker or
writer identification, just to name a few. Given the typically very large
number of classes to be distinguished, many approaches focus on para-
metric methods to independently estimate class conditional likelihoods.
In contrast, we demonstrate how the principles of modularity and hi-
erarchy can be applied to directly estimate posterior class probabilities
in a connectionist framework. Apart from offering better discrimination
capability, we argue that a hierarchical classification scheme is crucial in
tackling the above mentioned problems. Furthermore, we discuss train-
ing issues that have to be addressed when an almost infinite amount of
training data is available.

1 Introduction

The majority of contributions in the field of neural computation deal with
relatively small datasets and, in case of classification tasks, with a relatively
small number of classes to be distinguished. Representatives of such problems
include the UCI machine learning database [16] and the Proben [20] bench-
mark set for learning algorithms. Research concentrates on aspects such as miss-
ing data, model selection, regularization, overfitting vs. generalization and the
bias/variance trade-off. Over the years, many methods and ’tricks’ have been
developed to optimally learn and generalize when only a limited amount of data
is available.

On the other hand, many problems in human computer interaction (HCI)
such as speech and handwriting recognition, lipreading and speaker and writer
identification require comparably large training databases and also often ex-
hibit a large number of classes to be discriminated, such as (context-dependent)
phones, letters and individual speakers or writers. For example, in state-of-the-
art large vocabulary continuous speech recognition, we are typically faced with
an inventory of several thousand basic acoustic units and training databases
consisting of several millions of preprocessed speech patterns. There is only a



limited amount of publications available on the sometimes very different prob-
lems concerning the choice of learning machines and training algorithms for such
tasks and datasets.

This article addresses exactly the latter kind of learning tasks and provides
a principled approach to large scale classification problems, exemplifying it on
the problem of connectionist speech recognition. Our approach is grounded on
the powerful divide and conquer paradigm that traditionally has always been
applied to problems of rather large size. We argue that a hierarchical approach
that modularizes classification tasks is crucial in applying statistical estimators
such as artificial neural networks. In that respect, this paper presents not just
a single ’trick of the trade’, it offers a methodology for large scale classification
tasks. Such tasks have traditionally been addressed by building generative mod-
els rather than focussing on the prediction of posteriors without making strong
assumptions on the distribution of the input.

The remainder of the paper is organized as follows. Section 2 presents the gen-
eral approach to soft hierarchical classification. Section 3 then discusses methods
to design the topology of hierarchical classifiers - a task that is of increasing im-
portance when dealing with large numbers of classes. Finally, section 4 demon-
strates in detail the application of hierarchical classification to connectionist
statistical speech recognition. Section 5 concludes this paper with a summary.

2 Hierarchical Classification

Consider the task of classifying patterns x as belonging to one of N classes wy.
Given that we have access to the class conditional probability densities p(x|wy),
Bayes theory states that the optimal decision should be based on the a-posteriori
probabilities

wrlx) = p(X\wk)p(wk)
Plok®) = S (s

Given that equal risks are associated with all possible misclassifications, the
optimal decision is to choose the class with maximum a-posteriori probability
given a specific pattern x. Two distinct approaches have to be considered when
applying Bayes theory to a learning from examples task with generally unknown
distributions. In the first approach, one tries to estimate class-conditional like-
lihoods p(x|wy) and prior probabilities p(wy) from a labeled dataset which are
then used to calculate posterior probabilities according to Bayes rule. In prin-
ciple, this approach can be applied to tasks with an arbitrary large number
of classes since the class-conditional likelihoods can be estimated independently.
However, such an approach focuses on the modeling of the class-conditional den-
sities. For classification accuracy however, it is more important to model class
boundaries.

The second approach accomodates this perspective by directly estimating
posterior class probabilities from datasets. It was shown (e. g. [6]) that a large



class of artificial neural networks such as multi-layer perceptrons and recur-
rent neural networks can be trained to approximate posterior class probabilities.
The degree of accuracy of the approximation however depends on many factors,
among them the plasticity of the network. Comparing the two approaches, the
discriminative power of methods that estimate posterior probabilities directly is
generally higher, resulting in better classification accuracy especially when the
class-conditional distributions are very complex. This fact (among others) ex-
plains the success and popularity of neural network classifiers on many learning
from examples tasks.

However, when the number of classes to be distinguished increases to say
several thousand, neural network estimators of posterior probabilities fail to
provide good approximations mainly because of two reasons: First, real-world
problems involving such a large number of classes often exhibit an extremely
non-uniform distribution of priors [28]. Many learning algorithms for neural
networks (especially stochastic on-line gradient descent) have difficulties with
non-uniformly distributed classes. Particularly the distribution of posteriors of
infrequent classes tend to be approximated poorly. Second, and more important,
one of the prerequisites for training neural networks to estimate posteriors, the
1-out-of-V coding of training targets, implies that the number of output neurons
matches the number of classes. It is unfeasible to train a neural network with
thousands of output neurons. Also, with increasing number of classes, the com-
plexity of the optimum discriminant functions also increases and the potential
for conflicts between classes grows. Thus, from our point of view, typical mono-
lithic neural network classifiers are not applicable because of their limitation to
tasks with relatively few classes.

2.1 Decomposition of Posterior Probabilities

Applying the principle of divide and conquer, we can break down the task of dis-
criminating between thousands of classes into a hierarchical structure of many
smaller classification tasks of controlled size. This idea underlies the approaches
to decision tree architectures [5, 21, 23]. Decision trees classify input patterns
by asking categorical questions at each internal node. Depending on the answer
to these questions a single path is followed to one of the child nodes and the
process repeats until a leaf node is reached and a (winner) class label is emitted.
Therefore, decision tree classifiers can only supply us with hard decisions. No
information about the confusability of a specific input pattern is given to us.
Rather, we are often interested in the posterior class probabilities because we
wish to have a measure of the ambigueness of a decision. Furthermore, we are
sometimes required to feed a measure of the degree of membership for all poten-
tial classes into a superior decision making process. As we will see in section 4,
statistical speech recognition is a typical example for the latter scenario.
Adhering to the divide and conquer approach but generalizing the decision
tree framework, the statistical method of factoring posteriors can be applied
to design soft classification trees [24, 25]. For now, we assume, that optimal
posterior probabilities are available. Let S be a (possibly large) set of classes wy,



to be discriminated. Consider we have a method at our disposition which gives us
a partitioning of S into M disjoint and non-empty subsets S; such that members
of S; are almost never confused with members of S; (Vj #4). A particular class
wy, will now be a member of S and exactly one of the subsets S;. Therefore, we
can rewrite the posterior probability of class wy, as a joint probability of the class
and the corresponding subset S; and factor it according to

p(wk|x) = p(wg, S;|x) with wi € S;
= p(Si|x) p(wk|Si, x).
Thus, the global task of discriminating between all the classes in S has been
converted into (1) discriminating between subsets S; and (2) independently dis-

criminating between the classes w; remaining within each of the subsets S;.
Recursively repeating this process yields a hierarchical tree-organized structure

(Fig. 1).
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Fig. 1. Hierarchical decomposition of posteriors

Note, that the number of subclasses S; of each node does not need to be con-
stant throughout the classifier tree and might be subject to optimization during
the tree design phase. In order to compute the posterior probability for a specific
class, we have to follow the path from root node to the leaf corresponding to the
class in question, multiplying all the conditional posteriors along the way. Both
the design of the tree structure (divide) and the estimation and multiplication
(conquer) of conditional posteriors at each node are important aspects in this
architecture, that have to be considered thoroughly because in practice, only
approximations to the conditional posteriors are available.



2.2 Hierarchical Interpretation

The presented architecture can be interpreted as a probability mass distribution
device. At the root node, an initial probability mass of 1 is fed into the architec-
ture. At each node, the incoming probability mass is multiplied by the respective
conditional posterior probabilities and fed into the child nodes. Eventually, the
probability mass is distributed among all the leaves (classes) rendering their pos-
terior probabilities. In contrast, classifier trees are mostly used as hard-switching
devices, where only a single path from root node to one of the leaves is taken.

A hierarchical decomposition of posterior probabilities through a soft classi-
fication tree offers several advantages. If one of the nodes in the tree, for example
the root node fails to provide good estimates of conditional posteriors, a hard
decision tree will produce many classification errors. In a soft classification tree,
such shortcomings will influence the decision process less dramatically. Also,
recovery from errors is often possible through a superior decision process.

Another aspect of soft classification trees that can be exploited for various
purposes is the sum-to-unity property observable in any horizontal cross-section
at any level of the tree. The tree can be cut off at a certain level and still be
used as a soft classification tree that computes posterior class probabilities. This
is equivalent to creating a new (smaller) set of classes by clustering and merg-
ing the original classes according to the tree topology. In general, the resulting
classification task will be easier to solve than the original one.

Related to the sum-to-unity property of cross-sections is that the partial
posteriors computed on a path from the root node to a leaf are decreasing
monotonically. This in turn allows to close paths whenever a suitable thresh-
old is reached, pruning whole subtrees with classes that would otherwise receive
posteriors smaller than the threshold. This property yields the possibility to
smoothly trade off classification accuracy against computational complexity. In
the limit, when only a single path with highest conditional posterior is followed,
the soft classification tree transmutes into a hard decision tree.

2.3 Estimation of Conditional Node Posteriors

Given a hierarchical decomposition of posterior class probabilities, it remains
to instantiate the tree nodes with estimators for the required conditional pos-
teriors. Conditioning a posterior on a subset of classes S; can be accomplished
by restricting the training set of the corresponding learning device to the pat-
terns with a class label from S;. According to this setting, the available training
data in each node is distributed among all its child nodes according to the class
partitioning. While the root node receives all available training data, nodes fur-
ther down the tree receive less data than their predecessors. On the other hand,
specialization increases from root node to leaves. This fact has important conse-
quences on learning speed and model selection when training whole hierarchies.

One of the important issues in hierarchical decompositions of posterior prob-
abilities are the unavoidable inaccuracies of practical estimators for the condi-
tional posteriors that have to be provided in each tree node. Neural networks



can only be trained to approzimate the true distribution of posterior class proba-
bilities and the degree of accuracy depends on both the inherent difficulty of the
task as given by the training set and the network structure and training schedule
being used. Inaccurate approximations to the true distribution of posteriors hurt
most in the upper layers of a classification tree - a fact that has to be taken into
account by tree design procedures, which we will discuss next.

3 Classifier Tree Design

When it comes to the design of soft classifier trees, or equivalently to the de-
sign of hierarchical decompositions of class posteriors, the choice of algorithm
depends mostly on the number of initial classes. We will first discuss optimal
tree structures before we will turn to heuristic design algorithms necessary when
dealing with the large number of classes that we have to deal with.

3.1 Optimality

The optimal soft classification tree for a given task and given type and struc-
ture of estimators for the conditional node posteriors is the one which results
in minimum classification error in the Bayes setting. If all the node classifiers
would compute the true conditional posteriors, the tree structure would have no
influence on the classifier performance because any kind of factoring (through
any kind of tree structure) yields an ezact decomposition of the class posteriors.
However, in practice, approximation errors of node classifiers render the choice
of tree structure an important issue. For small numbers of classes, the optimal
tree can in principle be found by exhaustively training and testing all possible
partitionings for a particular node (starting with the root node) and chosing the
one that gives the highest recognition accuracy. However, even if restricting the
tree structure to binary branching nodes and balanced partitionings, the number
K of partitionings that have to be examined at the root node
N!

L

quickly brings this algorithm to its limits, even for a moderate number of
classes N. Therefore, we have to consider heuristics to derive near optimal tree
structures. For example, one valid possibility is to assume that the accuracy of
achievable approximations to the true posteriors is related to the separability of
the corresponding sets of classes.

3.2 Prior Knowledge

Following the above mentioned guideline, prior knowledge about the task in
question can often be applied to hierarchically partition the global set of classes
into reasonable subsets. The goal is to partition the remaining set of classes in



a way that intuitively maximizes the separability of the subsets. For example,
given a set of phones in a speech recognizer, a reasonable first partitioning would
be to build subsets consisting of voiced and unvoiced phones. In larger speech
recognition systems where we have to distinguish among multi-state context-
dependent phones, prior knowledge such as state and context identity can be used
as splitting criterion. In tasks such as speaker or writer identification, features
such as gender or age are potential candidates for splitting criteria.

The advantage of such knowledge driven decompositions is a fast tree design
phase which is a clear superiority of this approach when dealing with large
numbers of classes. However, this method for the design of hierarchical classifiers
is subjective and error prone. Two experts in a specific field might disagree
strongly on what constitutes a reasonable hierarchy. Furthermore, it is not always
the case that reasonable partitionings yield good separability of subsets. Expert
knowledge can be misleading.

3.3 Confusion Matrices

In case the number of classes is small enough to allow the training of a single
classifier, the design of a soft classifier tree can be based on the confusion matrix
of the trained monolithic classifier. Indicating the confusability of each pair of
classes, the confusion matrix yields relatively good measures of the separabil-
ity of pairs of classes. This information can be exploited for designing a tree
structure using a clustering algorithm. For instance, we can define the following
(symmetric) distance measure between two disjunct sets of classes Sy and S;

d(Sk.S) == > > Clwi,w|T) + Clwj,wi|T)

w;ESK w;ES

where C(w;,w;|T) denotes the number of times class w; is confused with
class w; as measured on a set of labeled patterns 7. The distance d(Sk, Si) can
now be used as a replacement for the usual Euclidean distance measure in a
standard bottom-up clustering algorithm. Unfortunately, once the number of
classes increases to several thousand, training of a monolithic classifier becomes
increasingly difficult.

3.4 Agglomerative Clustering

Assuming that separability of classes correlates with approximation accuracy of
estimators for the posterior class probabilities, we can go further and assume that
separability of classes can be measured by a suitable distance between the class
conditional distributions in feature space. We already introduced such a distance
measure in form of the elements of a class confusion matrix. Other, computation-
ally less expensive distance measures would be the Euclidean distance between
class means or the Mahalanobis distance between the classes second order statis-
tics. Irrespective of the chosen distance measure, the goal always is to group the
set of classes in a way that results in maximum inter- and minimum intra-group



distances. Solutions to this problem are known as agglomerative clustering al-
gorithms and a large pool of variations of the basic algorithm is available in the
literature [7].

4 Application to Speech Recognition

In this section, we will demonstrate the main ideas and benefits of the hier-
archical classifier approach on the task of large vocabulary continuous speech
recognition (LVCSR). More specifically, we will focus on acoustic modeling for
statistical speech recognition using hidden Markov models (HMM) [27]. To give
an impression of the complexity of such a task: training databases typically con-
sist of tens of millions of speech patterns, the number of acoustic classes being
distinguished ranges from ca. 50 (monophones) to over 20000 (context-dependent
polyphones).

4.1 Statistical Speech Recognition

The basic statistical entity in HMM based speech recognition is the posterior
probability of word sequences Wy, ..., Wy given a sequence of acoustic observa-
tions Xq,..., X and a set of model parameters @

PWy,...,Wx|X1,...,Xnm,0)

During training, we are seeking parameters © that maximize this probability
on the training data

T
6= arg maxg HP(W],...7WN(t)|X1,...7XM(t),(-))

t=1

and during recognition, we want to find the sequence of words that maximizes
this probability for a given acoustic observation and fixed model parameters @

Wi,...,Wy = argmaxy, o P(Wi,..., Wx|Xq,..., XM, 0)

In order to simplify the process of maximizing the posterior probability of
word sequences, Bayes rule is usually applied

P(Xq4,...,.X P
P(Wl,...,WN|X1,...,XM): ( 1, ; M|W17 7WN) (Wla 7WN)

This rule separates the estimation process into the so called acoustic model
(AM) consisting of terms that depend on the acoustic observations X1, ..., Xm
and the language model (LM) consisting of terms that depend only on the se-
quence of words Wy, ..., Wpy. In this paper we will focus on acoustic modeling
using connectionist estimators as a typical example of a task involving the dis-
crimination of thousands of classes. For a review on other important aspects of



LVCSR such as pronunciation modeling, language modeling and decoding algo-
rithms we refer the reader to [27].

The task of acoustic modeling (ignoring the denominator) is to estimate
parameters @M which maximize

P(Xq,...,Xpm|Wy,...,Wn,0AM).

Words W; are modeled as sequences (or graphs) of phone models. The map-
ping from words to phone models is usually accomplished by means of a pronun-
ciation dictionary. Phone models in turn are usually modeled as m-state left-
to-right hidden Markov models (HMM) to capture the temporal and acoustic
variability of speech signals. The following figure shows the process of converting
a sequence of words into (1) a pronunciation graph (possibly with pronunciation
variants) and (2) an HMM state graph.
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Fig. 2. Typical hidden Markov model in speech recognition
In this framework, where word sequences are represented as directed acyclic

graphs of HMM states, the likelihood of an acoustic observation can be rewritten
as



P(Xy,.., XmWi, o W)= > P(Xa,.. ., Xmls,. o 8um) p(s1,- .. 8m)

S1,--SM

where the summation extends over all possible state sequences s1,..., Sy in
the HMM model for the word sequence Wy, ..., Wx. In the Viterbi approxima-
tion, the above likelihood is approximated by the probability of the most likely

state sequence

PXq,...,Xm|Wi,...,Wn) = max P(Xq,...,Xmls1,...,5m) p(s1,...,5m)-

S1,--8M

Given a specific state sequence, the likelihood of the acoustic observations
given that sequence can be factored as follows

In the application of first-order hidden Markov models to the estimation of
such likelihoods one usually makes two simplifying assumptions:

— Independence of Observations:

M
P(Xl ..... XM‘S]7 78M)sz(X1‘S]7 7SM) p(sl 7SM)
i=1
— First-order Assumption:
M
P(Xl, ey X]\/I|Sl, ey SM) ~ HP(XI‘%) p(S,j|Si,1)
i=1

4.2 Emission and Transition Modeling

Mainstream LVCSR systems follow the above approach by modeling emission
probability distributions p(Xj|s;) and transition probabilities p(s;|s;—1) sepa-
rately and independently. Emission probability distributions are usually mod-
eled using mixture densities from the exponential family, such as the mixture of
Gaussians

p(Xilsi) = > v Ne(Xils:)
k=1

where the v, denote mizture coefficients and the Ny mizture component den-
sities (here: normal distributions). Transition probabilities on the other hand
are modeled by simple multinomial probabilities since they are conditioned on
a discrete variable only (not on the input vector).



The advantage of this approach is a decoupled estimation process that sep-
arates temporal and acoustic modeling. As such, it allows to easily vary HMM
state topologies after training in order to modify temporal behaviour. For in-
stance, state duplication is a popular technique to increase the minimum dura-
tion constraint in phone models. Having separated emission and transition prob-
ability estimation, state duplication consists of simply sharing acoustic models
among multiple states and adapting the transition probabilities.

However, the disadvantage of the above approach is a mismatch in the dy-
namic range of emission and transition probabilities. The reason is that transition
probabilities are modeled separately as multinomial probabilities, constrained
by the requirement to sum to one. This leads to a dominant role of emission
probabilities with transition probabilities hardly influencing overall system per-
formance.

4.3 Phonetic Context Modeling

So far we have assumed that only one HMM is required per modeled mono-
phone (see Fig. 2). Since the English language can be modeled by approximately
45 monophones, one might get the impression that only that number of HMM
models need to be trained. In practice however, one observes an effect called coar-
ticulation that causes large variations in the way specific monophones actually
sound, depending on their phonetic context.

Usually, explicit modeling of phones in phonetic context yields great gains
in recognition accuracy. However, it is not immediately clear how to achieve
robust context-dependent modeling. Consider, for example, so called triphone
models. A triphone essentially represents the realization of a specific monophone
in a specific context spanning one phone to the left and right. Assuming an
inventory of 45 monophones, the number of (theoretically) possible triphones is
45% = 91125. Many of these triphones will occur rarely or never in actual speech
due to the linguistic constraints in the language. Using triphones therefore results
in a system which has too many parameters to train. To avoid this problem, one
has to introduce a mechanism for sharing parameters across different triphone
models.

Typically, a CART like decision tree is adopted to cluster triphones into
generalized triphones based on both their a-priori probability and their acous-
tic similarity. Such a top-down clustering requires the specification of viable
attributes to be used as questions on phonetic context in order to split tree
nodes. Mostly, linguistic classes such as vowel, consonant, fricative, plosive, etc.
are being employed. Furthermore, one can generalize triphones to polyphones by
allowing dependence on a wider context (and not just the immediate left and
right neighboring phones). Fig. 3 shows a typical decision tree for the clustering
of polyphonic variations of a particular monophone state.

The collection of all leaf nodes of decision trees for each monophone state
in a given system represents a robust and general set of context-dependent sub-
phonetic units. Since each of these units corresponds to several triphone HMM
states, they are often called tied states. Typically, a large vocabulary continuous
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Fig. 3. Phonetic Context Modeling using Decision Trees. Shown is a decision tree
modeling phonetic contexts of middle state (3-state HMM) of monophone /AX/.

speech recognizer models between 3000 and 24000 such tied states. Mainstream
LVCSR systems scale to any number of context-dependent modeling units since
emission and transition models are independently estimated for each tied state.

4.4 Connectionist Acoustic Modeling

Locally discriminant connectionist acoustic modeling is the most popular ap-
proach to integrate neural networks into an HMM framework [3, 4, 18]. It is
based on converting estimates of local posterior class probabilities to scaled like-
lihoods using Bayes rule. These scaled likelihoods can then be used as observation
probability estimates in standard HMMs. For a moderately small number N of
HMM states, a neural network can be trained to jointly estimate posterior prob-
abilities p(s;|X;) for each state s; given an input vector Xj. Bayes rule yields
the corresponding scaled ! class conditional likelihoods

oy _ p(siXs)
PGk =70y

! The missing additional term consisting of the probability of the input vector p(X;)
is usually omitted because it is independent of the class/state identity and therefore
does not influence a Viterbi style search for the most likely state sequence.



While p(s;|X;) is estimated using a neural network, prior probabilities p(s;)
can be estimated by relative frequencies as observed in the training data. Several
researchers (e. g. [3, 14]) have reported improvements with connectionist acoustic
modeling when the technique for the estimation of emission probabilities was the
only difference in comparison. Since mainstream HMMSs for speech recognizers
are mostly trained in a maximum likelihood framework using the Expectation-
Maximization (EM) algorithm, incorporation of discriminatively trained neural
networks that focus on modeling of class boundaries instead of class distributions
is often observed to be beneficial. Also, compared to mixtures of Gaussians based
acoustic models, connectionist acoustic models are often reported to achieve the
same accuracy with far less parameters.

However, when the number of HMM states is increased to model context-
dependent polyphones (triphones,quintphones), a single neural network can no
longer be applied to estimate posteriors. It becomes necessary to factor the pos-
terior state probabilities [17] and modularize the process of estimating those
posteriors. In most approaches, the posteriors are factored on phonetic context
or monophone identity (e.g. [4, 9, 15]). Viewing factoring as a hierarchical decom-
position of posteriors, we generalized the approaches to context-dependent con-
nectionist acoustic modeling by introducing a tree structured hierarchy of neural
networks (HNN) [12, 13] corresponding to a multi-level factoring of posteriors
based on a-priori knowledge such as broad sound classes (silence,noises,phones),
phonetic context and HMM state identity. Fig. 4 shows the topology of such a
structure.

SIL-Net

O SPEECH-Net

NOISE-Net’%\

MONO-Net

%\CONTEXT-Nets

STATE-Nets

© 00 00O0

Fig.4. Topology of a Hierarchy of Neural Networks (HNN) to estimate con-
text-dependent posteriors, factored based on a-priori phonetic knowledge



At the top of this hierarchy, we discriminate silence, noise and speech sounds
by means of two networks (SIL-Net, SPEECH-Net). The motivation for this
specific partitioning comes from the observation that these three classes are
easy to distinguish acoustically. The remainder of the tree structure decomposes
the posterior of speech, conditioning on monophone, context and state identity
as these are convenient sound classes modeled by any phone based HMM speech
recognizer. The hierarchy of Fig. 4 can be decomposed even further, for instance
by factoring conditional monophone posteriors (estimated by the MONQO-Net)
based on linguistic features (e.g. voiced/unvoiced, vowel/consonantal, fricative
etc.). The motivation behind such a decomposition is twofold. First, it reduces
the number of local classes in each node, improving approximation accuracy and
second, it yields a decoupled and specialized set of expert networks having to
handle a smaller amount of phonetic variation.

However, as mentioned in section 3, the use of prior knowledge for the design
of a hierarchy of neural networks does not take into account dissimilarity of the
observed classes in feature space. We therefore developed an agglomerative clus-
tering algorithm to automatically design such hierarchies for the estimation of
posteriors for a large number of classes. We termed this framework ACID/HNN
[11].

4.5 ACID Clustering

ACID (Agglomerative Clustering based on Information Divergence) is a bottom-
up clustering algorithm for the design of tree-structured soft classifiers such as
a hierarchy of neural networks (HNN) [10, 11]. Although developed for connec-
tionist acoustic modeling, the algorithm can in principle be used for any kind of
classification task. Starting from a typically very large set of initial classes, for
example the set of decision tree clustered HMM states in a speech recognizer 2,
the ACID algorithm constructs a binary hierarchy. The nodes in the resulting
tree are then instantiated with estimators for the respective conditional poste-
rior probabilities, for instance in form of an HNN. The clustering metric in the

ACID algorithm is the symmetric information divergence [26]

dlsivs)) = [ (p(xlsi) = plxls;) log L ax
x p(x(s;)

between class conditional densities of clusters. In contrast to standard ag-
glomerative clustering algorithms which mostly represent clusters by their means
and employ the Euclidean distance metric, we chose to represent, clusters by
parametric mixture densities (mixtures of Gaussians) in the ACID algorithm.
Modeling clusters with mixture densities is much more adequate than just using
the mean and it still allows to cluster large amounts of classes in a reasonable
time. The symmetric information divergence (also called Kullback-Leibler dis-
tance) measures the dissimilarity of two distributions and was therefore chosen

2 In our case, we experimented with up to 24000 initial classes



as the clustering metric. Typically, each initial class (state) is modeled using a
single full covariance multivariate Gaussian density

1 1
X|(S8;) = —F/————————exp1— =< (X — itZ;]X— i
plxton) = e el 6 = ) 57 x = )

with mean vector p; and covariance matrix X;. Clustering then continuously
merges initial classes which corresponds to building mixture densities based on
the Gaussians. The symmetric information divergence between two states s; and
s; with Gaussian distributions amounts to

Asi,55) = 5ir{(Z— 2)(57" - 5;7))

(3

+ %tr{(zgl + 2 (s — ) (i — )"}

The computation of this distance measure requires O(n?) multiplications and
additions (assuming pre-computed inverse covariance matrices), where n is the
dimensionality of the input feature space. To reduce the computational load of
the ACID clustering algorithm, one can model the class conditional likelihoods
with diagonal covariance matrices only. Feature space transformations such as
principal component analysis and linear discriminant analysis can be used to
approximate such distributions. When using diagonal covariance Gaussians, the
symmetric information divergence simplifies to

d RS (07, — o)’ + (0f, + o) (ar — wjr)”
(si,585) = ) E 02 02
P ik Ok

where afk and p; denote the k-th coefficient of the variance and mean vectors
of state s;, respectively. The evaluation of the latter distance measure requires
only O(n) multiplications and additions.

Making the simplifying assumption of linearity of information divergence, we
can define the following distance measure between clusters of Gaussians Sy and
S

D(Sk,S1) = Y p(silSk) > pls;lS)d(si, s;)

5; €Sk s;ES;

This distance measure is used in the ACID clustering algorithm:



1. Initialize algorithm with N clusters S;, each containing
(1) a parametric model of the class-conditional likelihood and
(2) a count C;, indicating the frequency of class s; in the train-
ing set.

2. Compute within cluster priors p(s;|Sy) for each cluster Sy, using
the counts C;

3. Compute the symmetric divergence measure D(Sy, S;) between
all pairs of clusters S; and S;.

4. Find the pair of clusters with minimum divergence, S; and S;

5. Create a new cluster S = S;(JS; containing all Gaussians of S;
and S/ plus their respective class counts. The resulting para-
metric model is a mixture of Gaussians where the mixture
coefficients are the class priors

6. Delete clusters S; and S}

7. While there are at least 2 clusters remaining, continue with 2.

ACID Initialization Initialization requires to estimate class conditional like-
lihoods for all (tied) states modeled by the recognizer. The number N of initial
classes therefore is determined by other parts of the speech recognizer, namely
by the phonetic decision tree that is typically applied to cluster phonetic con-
texts, or aquivalently to tie HMM states [27]. Initial class conditional densities
for these classes can be computed from state alignments using either the Viterbi
or the Forward-Backward algorithm on training data and corresponding HMM
state graphs generated from training transcriptions. Estimation of initial para-
metric models for the ACID algorithm therefore requires a single pass through
the training data. After initial models have been estimated, the actual ACID
clustering does not require any further passes through the training data. Fur-
thermore, note that this algorithm clusters HMM states without knowledge of
their phonetic identity solemnly based on acoustic dissimilarity.

ACID Dendrograms For illustration purposes, Fig. 5 shows a dendrogram
of a typical ACID clustering run on a relatively small set of only 56 initial
classes corresponding to the set of single-state monophone HMMs in a context-
independent speech recognizer. The set of classes consists of 44 standard English
phones along with 7 noise sounds (marked with a plus), 4 phones modeling
interjections (marked with an ampersand) and silence (SIL).

Already the top level split separates silence, breathing and noise sounds
(lower subtree) almost perfectly from phonetic sounds (upper subtree). Further-
more, clusters of acoustically similar phones can be observed in the ACID tree,
for instance

IX,TH,IY,Y
— JH,CH,SH,ZH
~ 7ZSF

— ER,AXR,R



Fig. 5. Typical dendrogram of ACID clustering

ACID clustering was found to be quite effective in generating a hierarchical
decomposition of a classification task into subtasks of increasing difficulty (when
traversing the tree from root node to leaves). In the case of connectionist acoustic
modeling for speech recognition, we observed that nodes in the upper layers
of an ACID clustered HNN tree distinguish between broad phonetic classes,
whereas nodes further down the tree begin to distinguish the particular phones
within a broad phonetic class. Thus, ACID clustering constitutes an effective
algorithm for discovering inherent hierarchical structure and exploiting it for



modular classification.

Model Selection The choice of model size and topology becomes very impor-
tant in the application of hierarchical soft classifiers to tasks such as connectionist
speech recognition. While the global tree topology is determined by the outcome
of the ACID clustering (or any other tree design procedure), it remains to de-
cide on local (node-internal) classifier topology. The task of a local classifier is
to estimate conditional posterior probabilities based on the available training
data. Since a particular local estimator is conditioned on all predecessor nodes
in the tree, it only receives training data from all the classes (leaves) that can
be reached from the respective node. This amounts to a gradually diminishing
training set when going from root node to nodes further down the tree. Fig. 6
shows this property of HNNs with a plot of the amount of available training pat-
terns vs. node depth for a binary hierarchy with 6000 leaves. Note the logscale
on the ordinate.
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Fig. 6. Available Training Data in Different Depths of HNN Tree

When deciding on the local model complexity, we consider tree nodes as lying
in a continuum between the following two extrema:

Top of the Hierarchy
— large amounts of training data available
— allows for large node classifiers
— relatively easy, general classification tasks



Bottom of the Hierarchy
— only small amounts of training data available
— requires relatively small node classifiers
— comparably hard classification tasks
— high degree of specialization

Ideally, the complexity of local node classifiers should be selected so as to
maximize generalization ability of the complete hierarchy. Generalization, on
the other hand, is influenced by three factors: (1) size and distribution of the
training set, (2) model complexity and (3) classification complexity of the specific
task at hand. Obviously, we can not alter the latter of these factors. Furthermore,
in the context of our architecture, we assume that the size of the training set for
each node is fixed by the tree topology, once the hierarchy has been designed.
Therefore, we have to choose model complexity based on available training data
and difficulty of classification task.

In our experiments in connectionist acoustic modeling, we typically use multi
layer perceptron (MLP) nodes with a single hidden layer and control model
complexity by varying the number of hidden units. We use standard projective
kernels with tanh activations for the hidden units and a task dependent non-
linearity for the output units (sigmoid for binary and softmax for multiway
classification). The overall number of weights in such a network depends linearily
on the number of hidden units. According to [1] and with some approximations,
a rule of thumb is to choose the number of hidden units M to satisfy

v>Y
€

where N is the size of the training set and € is the expected error rate on the
test set. In our case, the variation in the number of training patterns in the differ-
ent nodes dominates the above formula. Therefore, we set the number of hidden
units proportional to b~ ", where b is the branching factor of the classification
tree and n is the node depth. As long as the tree is approximately balanced in
terms of the prior distribution of child nodes, this strategy leads to hidden layers
with size proportional to the number of available training patterns. A more fun-
damental treatment of model complexity using multiple training runs and cross
validation is desirable. However, in case of large-scale applications such as speech
recognition, such a strategy is not realizable because of the high computational
cost resulting from very large training databases. Less heuristic approaches to
select model complexity still have to be explored.

4.6 Training Hierarchies of Neural Networks on Large Datasets

For the demonstration of various aspects of training large and complex structures
such as hierarchies of neural networks on typical datasets, we report on exper-
iments on the Switchboard [19] speech recognition database. Switchboard is a
large corpus of conversational American English dialogs, recorded in telephone
quality all over the US. It consists of about 170 hours of speech which typically



corresponds to about 60 million training samples. The corpus currently serves
as a benchmark for the official evaluation of state-of-the-art speech recognition
systems. Switchboard is a comparably hard task, current best systems achieve
word error rates in the vicinity of 30-40%. Fig. 7 shows the structure of an HNN
based connectionist acoustic model for an HMM based recognizer, in our case
the Janus recognition toolkit (JanusRTk) [8].
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Fig. 7. Hierarchy of Neural Networks for Connectionist Acoustic Modeling: The upper
part shows an ACID clustered HNN after node merging. This architecture computes
posterior probabilities for a set of generalized polyphones. To allow for integration
into the HMM framework, these posteriors are converted to scaled likelihoods. The
correspondence to actual HMM states is accomplished by means of phonetic decision
trees.



Due to the inherent variability and complexity of the task and the large
amount of training data, typical speech recognition systems model several thou-
sand distinct subphonetic units (HMM states) as base classes. This requires to
train an estimator for posterior probabilities of thousands of distinct acoustic
classes based on millions of training samples, in order to take advantage of the
full modeling granularity of the speech recognizer.

In the following, we will discuss several aspects of training a hierarchical soft
classifier on large datasets such as Switchboard. Due to the modular structure
of the classifier, the size of the model inventory and the training database, the
following discussion leads to rather unique problems and solutions. However, it
is important to emphasize that these properties stem from the structure of the
classifier and the size of the task - not from the specific task of acoustic modeling
for speech recognition. Thus, they are transferable to comparably large tasks,
e. g. handwriting, speaker or face recognition.

Classifier Tree Topology Depending on the number of classes to be modeled,
tree design algorithm, branching factor and size and structure of local node
classifiers have to be chosen. For Switchboard, we were experimenting with three
systems consisting of 6000, 10000 and 24000 distinct classes, respectively. We
used the ACID clustering algorithm to design an initial tree structure from
the set of base classes for the 6k and 24k systems. As a second step of the
tree design phase, we applied a greedy node merging algorithm on the ACID
clustered hierarchy. Node merging decreases the number of internal nodes while
increasing the average branching factor (arity) of the tree. Training of such
hierarchies is less problematic than training of the original binary tree structure
since the difference among nodes (in terms of the number of available training
patterns) is somewhat extenuated and the overall number of networks is reduced.
However, local classification tasks change from 2-way (binomial) to more complex
multi-way (multinomial) problems which might have an impact on the accuracy
of estimating conditional posteriors. Therefore, we constrain the node merging
algorithm to produce nodes with a maximum branching factor of 8-12. This
value was found to improve training speed while not affecting overall classifier
accuracy. Considerably larger branching factors are not reasonable in our case as
we would gradually loose the advantage of the hierarchical structure by flatening
the tree.

For the 10k system, we were using the architecture of Fig. 4 that was designed
by prior knowledge, not taking into account any measure of class similarity. This
structure exhibits a larger average branching factor and less depth than the
ACID clustered trees. Although we could decrease the branching factor at the
MONO node by introducing linguistic classes as mentioned earlier, we still have
large branching factors at the context nodes which are much harder to resolve
with prior knowledge only.

The resulting tree nodes were instantiated with MLPs of varying size of the
(single) hidden layer. The local MLPs output layer were parameterized with the
softmax non-linearity for two reasons. First, it complies to the property of the
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Fig. 8. Overview of ACID clustered HNNs for 6k (left) and 24k (right) classes

modeled probability distribution to sum up to one, and second, the softmax
function implements the expected value of the multinomial probability density.
Fig. 8 gives an overview of the structure of the ACID/HNN systems. Tree com-
pactification reduced the number of internal nodes of the 24k system from 24k
to about 4k by increasing the average number of local classes (average branching
factor) from 2 to about 8. Especially when dealing with large numbers of classes,
we found that moderate tree compactification improved classifier performance.
The overall numbers of parameters of the tree classifiers were 2M for the 6k
system, 2.4M for the 10k system and 3.1M for the 24k system.

Training Algorithm and Parameters Training a distributed, hierarchically
organized collection of neural networks on different amounts of training data is
a challenging task. Our training criterion is maximum likelihood, assuming a
multinomial probability model (1-out-of-N) over all base classes. A target class
label is associated with each training pattern, indicating the correct base class.
All networks in nodes along the path from root node to the current target class’
leaf receive the current pattern for training. Because of the large amount of
training data, we use on-line (stochastic) gradient ascent in log-likelihood with
small batches (10-100 patterns) to train the individual networks. More elaborate
training algorithms which apply second order methods in optimizing the objec-
tive function are too costly in our scenario - a single epoch of training, processing
all 60 million patterns in the training database takes 3-5 days on a Sparc Ultra
workstation. A practical training algorithm therefore must not take longer than
1-4 epochs to converge. Furthermore, because of the large number of networks
that have to be trained, a potential training algorithm can not be allowed to use
large amounts of memory - which could be the case with second order methods.
Of course, training of individual node classifiers is independent and can therefore
easily be parallelized for shared memory multi-processors which alleviates the
latter requirement.

Since we are relying on stochastic gradient ascent in our training method,
we additionally use a simple momentum term to smooth gradients. Also, we use
local learning rates for each network that are initialized with a global learning



rate and adapted individually to the specific learning task. The global learning
rate is annealed in an exponentially decaying scheme:
gt =g * e

Typically, we use an initial global learning rate 7 between 0.001 and 0.01,
a momentum constant of 0.5 and a global annealing factor yg of 0.999...0.9999
applied after each batch update.

In order to accomodate the different learning speeds of the node classifiers due
to the different amount of available training data, we control individual learn-
ing rates using the following measure of correlation between successive gradient
vectors g,_1 and gy:

9hgn1

&y = arccos | ———————————
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an, measures the angle between the gradients g,_; and g,. Small angles
indicate high correlation and therefore steady movement in weight space. There-
fore, we increase the learning rate linearily up to the current maximum (as
determined by initial learning rate, annealing factor and number of updates per-
formed) whenever a, < 90° for several batch updates M. Large angles, on the
other hand, indicate random jumps in weight space. We therefore decrease the
learning rate exponentially whenever a,, > 90° for several batch updates M.
In summary, we obtain the following update rule for local learning rate 7; of
network i:

a6 b (Zilyons) <907 -
1 : 1 n .
77?4‘ = min 77?;_ v :'Y if LM (Zi\io an,k) > 90° + €
i else

with linear increase § = 0.001...0.01 and exponential annealing factor v =
0.5...0.9. The number of batch updates M controls smoothing of a whereas ¢
controls the influence of the global learning rate. For ¢ — 90°, local learning
rates are forced to follow the global learning rate, whereas low values of € allow
local learning rates to develop individually. Typical values that have been used
in our experiments are M = 10 and e = 20°.

Adapting individual learning rates to the training speed is a critical issue
in hierarchical classifiers. Networks at the top of the tree have to be trained on
very large amounts of training data. Therefore, learning rates must be allowed
to become relatively small in order to benefit from all the data and not reach the
point of saturation too early. On the other hand, networks at the bottom of the
tree have to be trained with comparably small amounts of data. In order to train
these networks within the same small number of passes through the overall data,
we have to apply comparably large learning rates to reach a maximum in local
likelihood as fast as possible. However, unconstrained adaptation of learning
rates with aggressive optimization of learning speed may result in failure to
converge. In our experiments with global initialization of all networks using the



same maximum learning rate, global annealing of the maximum learning rate
and local adaptation of individual learning rates that are constrained to never
become larger than the global learning rate gives best results.

Generalization/Overfitting Simply speaking, we did not observe any over-
fitting in our experiments. Taking a look at the training of a large hierarchy in
terms of performance on an independent cross-validation set (Fig. 9), we can
see that the likelihood on this data levels off, but never starts to decrease again,
as is often observed on smaller tasks. In the plots of Fig. 9, the vertical lines
indicate multiple epochs (passes) through the training data (consisting of 87000
utterances). Obviously, the large amount of available training data allows for
excellent generalization, early stopping was not necessary. This behaviour is sur-
prising at first sight, because we did not use any kind of explicit regularization
of the local MLLPs. At second sight, however, we can identify several reasons for
the good generalization of HNNs on this task:

— Training data can be considered very noisy in our case, since samples come
from a large variety of different speakers and recording conditions. Training
with noisy data is similar to regularization and therefore improves general-
ization [2].

— Consider the hierarchy for the 6k classes system (Fig. 8). Some of the 816
networks at the bottom of the tree probably have not seen enough training
patterns to generalize well to new data. Although all of these networks to-
gether constitute 85% of the total number of networks, they contribute just
as one of 7 networks to any particular posterior probability. The networks in
the upper part of the hierarchy have the largest influence on the evaluation of
posterior probabilities. For those networks, the amount of available training
data can be considered so abundant that test set error approaches training
set error rate. In other words, optimal generalization can be achieved.

Results We evaluate the proposed hierarchical classifiers as connectionist acous-
tic models in a speech recognition system. Performance of speech recognizers is
usually measured in terms of the word error rate on a reasonably large set of
test utterances. In our case, we test the different acoustic classifiers with the
Janus [8] recognizer on the first 30 seconds of each speaker in the official 1996
Switchboard evaluation test set, consisting of 366 utterances not present in the
training set.

|acoustic ClassiﬁerH# Classes|# parameters|w0rd error rate|
HNN 10000 2.0 M 37.3 %
ACID/HNN 6000 2.4 M 36.7 %
ACID/HNN 24000 3.1 M 33.3 %




log-likelihood

log-likelihood

0.68

0.64

0.56

Classification Error

0.52

0.48

0.44

Normalized Log-Likelihood of X-Validation Set

Y

T

o

7

87000 174000 261
# training utterances

000

Average Normalized Log-Likelihood of Node Classifiers

S

87000 174000 261000

# training utterances

Average Normalized Classification Error of Node Classifiers

—\N\\x\»ﬂ

—_—

87000 174000 261000

# training utterances

Fig. 9. Cross-Validation during training of 24k ACID/HNN architecture



The above results are competitive with those of state-of-the-art systems and
indicate a clear advantage of the ACID clustered over the pre-determined hi-
erarchical classifiers. We suspect, that the reason for the better performance of
automatically clustered hierarchies of neural networks is the difference in tree
topology. Automatically clustered HNNs such as the presented ACID/HNN trees
exhibit small and comparably uniform average branching factors that allow to
robustly train estimators of conditional posterior probabilities. In contrast, hand-
crafted hierarchies such as the 10k HNN tree contain nodes with rather large
branching factors. Fig. 10 shows the branching factors for all the networks in
the 10k tree structure.
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Fig. 10. Branching Factors of Individual Nodes in 10k HNN

The largest observed branching factor in this tree was 276. This requires
the joint estimation of conditional posterior probabilities for as many as 276
classes which may result in rather poor approximations to the true posterior
probabilities for some of the networks in the tree.

Furthermore, the superior performance of both ACID/HNN classifiers over
the hand-crafted 10k tree, demonstrates the full scalability of the hierarchical
approach and justifies the increase in the number of parameters. Earlier attempts
to train hand-crafted hierarchies for 24k classes failed to provide classifiers that
could be used as acoustic models in a speech recognizer. Poor approximations to
the real posterior probabilities led to instabilities in decoding when dividing by
priors in this case. Apart from that, we do not know of any other non-parametric
approach capable of directly and discriminatively estimating posterior probabil-
ities for such a large amount of classes.

5 Conclusions

We have presented and discussed a methodology for the estimation of poste-
rior probabilities for large numbers of classes using a hierarchical connectionist



framework. The aim of the paper is to demonstrate the necessity of hierarchical
approaches to modularize classification tasks in large-scale application domains
such as speech recognition, where thousands of classes have to be considered
and millions of training samples are available. The divide and conquer approach
proves to be a versatile tool in breaking down the complexity of the original
problem into many smaller tasks. Furthermore, agglomerative clustering tech-
niques can be applied to automatically impose a suitable hierarchical structure
on a given set of classes, even in the case this set contains tens of thousands
of classes. In contrast to the relatively small standard benchmarks for learning
machines, aspects such as choice of training method, model selection and gen-
eralization ability appear in different light when tackling large-scale probability
estimation problems.
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