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\The most beautiful thing we an experiene is the mysterious. It is the soure of all

true art and siene. He to whom this emotion is a stranger, who an no longer

pause to wonder and stand wrapped in awe, is as good as dead"

Albert Einstein.





Abstrat

This thesis presents a new, hierarhial framework for onnetionist aousti model-

ing in large voabulary statistial speeh reognition systems. Based on the divide

and onquer paradigm, the task of estimating HMM state posteriors is deomposed and

distributed in the form of a tree-strutured arhiteture onsisting of thousands of

small neural networks. In ontrast to monolithi onnetionist models, our approah

sales to arbitrarily large state spaes. Phoneti ontext is represented simultaneously

at multiple resolutions whih allows for salable aousti modeling. We demonstrate

that the hierarhial struture allows for (1) aelerated sore omputations through

dynami tree pruning, (2) e�etive speaker adaptation with limited amounts of adap-

tation data and (3) downsizing of the trained model for small memory footprints.

The viability of the proposed hierarhial model is demonstrated in reognition exper-

iments on the Swithboard large voabulary onversational telephone speeh orpus,

urrently onsidered the most diÆult standardized speeh reognition benhmark,

where it ahieves state-of-the-art performane with less parameters and faster reog-

nition times ompared to onventional mixture models.

The seond ontribution of this thesis is an algorithm that allows for domain-adaptive

speeh reognition using the proposed hierarhial aousti model. In ontrast to hu-

mans, automati speeh reognition systems still su�er from a strong dependene on

the appliation domain they have been trained on. Typially, a speeh reognition

system has to be tailored to a spei� appliation domain to redue semanti, syn-

tati and aousti variability and thus inrease reognition auray. Unfortunately,

this approah results in a lak of portability as performane typially deteriorates

unaeptably when moving to a new appliation domain.

We present Strutural Domain Adaptation (SDA), an algorithm for hierarhially

organized aousti models that exploits the salable spei�ity of phoneti ontext

modeling by modifying the tree struture for optimal performane on previously

unseen appliation domains. We demonstrate the e�etiveness of the SDA approah

by adapting a large voabulary onversational telephone speeh reognition system

to (1) a telephone ditation task and (2) spontaneous sheduling of meetings. SDA

together with domain-spei� ditionaries and language models allows to math the

performane of domain-spei� models with only 45-60 minutes of aousti adaptation

data.





Zusammenfassung

Die vorliegende Arbeit pr�asentiert einen neuen, hierarhishen Ansatz f�ur die kon-

nektionistishe akustishe Modellierung in statistishen Spraherkennungssystemen

f�ur gro�e Wortsh�atze. Basierend auf dem Teile-und-Herrshe Paradigma werden a-

posteriori Wahrsheinlihkeiten von HMM Zust�anden in einer verteilten, in Form eines

Baumes strukturierten Arhitektur mit Hilfe mehrerer Tausend kleiner neuronaler

Netze gesh�atzt. Im Gegensatz zu monolithishen konnektionistishen Arhitekturen

skaliert der vorgestellte Ansatz auf beliebig gro�e Zustandsr�aume. Phonetishe Kon-

texte werden dabei simultan in mehreren Au�osungen repr�asentiert wodurh skalier-

bare akustishe Modellierung erm�ogliht wird. Es wird gezeigt, da� die hierarhis-

he Arhitektur (1) beshleunigte Evaluation mittels dynamishem Pruning, (2) ef-

fektive Spreheradaptation mit nur geringen Mengen an Adaptionsdaten und (3)

nahtr�aglihe Verkleinerung eines trainierten Modells erlaubt.

Die Leistungsf�ahigkeit des vorgeshlagenen hierarhishen Modells wird anhand von

Erkennungsexperimenten mit dem Swithboard Korpus bestehend aus spontansprah-

lihen Telefonkonversationen, dem derzeit shwierigsten standardisierten Spraher-

kenner Behmark, demonstriert. Die vorgeshlagene Arhitektur erzielt dabei eine

Erkennungsleistung vergleihbar zu den derzeit leistungsf�ahigsten Systemen, ben�otigt

dazu jedoh deutlih weniger Parameter und Rehenzeit.

Der zweite Beitrag dieser Arbeit ist ein Algorithmus der dom�anen-adaptive Sprah-

erkennung mit der vorgeshlagenen hierarhishen Arhitektur erm�ogliht. Heutige

Spraherkennungssysteme leiden immer noh an einer starken Abh�angigkeit von der

Anwendungsdom�ane f�ur die sie trainiert wurden. Typisherweise mu� ein Spraherken-

nungssystem auf eine bestimmte Anwendungsdom�ane hin zugeshnitten werden um

die semantishe, syntaktishe und akustishe Variabilit�at so weit wie m�oglih ein-

zushr�anken und dadurh die Erkennungsleistung zu verbessern. Ungl�ukliherweise

f�uhrt ein solher Ansatz zu einem Mangel an Portabilit�at, ersihtlih daran, da� die

Erkennungsleistung stark einbriht, wenn das System auf einer neuen, andersartigen

Dom�ane angewendet wird.

Wir pr�asentieren Strukturelle Dom�anenadaption (SDA), einen Algorithmus f�ur hier-

arhish organisierte akustishe Modelle, der die Skalierbarkeit der Spezi�zit�at der

Kontextmodellierung ausnutzt um die Baumstruktur des Modells an die Gegeben-

heiten in einer neuen Anwendungsdom�ane anzupassen, um die Erkennungsleistung zu

optimieren. Die E�ektivit�at des Algorithmus wird anhand zweier Adaptionsexperi-

mente demonstriert. Dabei wird ein auf der Swithboard Dom�ane trainiertes System

auf (1) eine Telefon-Diktierdom�ane und (2) eine spontansprahlihe Dialogdom�ane

portiert. SDA zusammen mit dom�anen-spezi�shen W�orterb�uhern und Sprahmod-

ellen erlaubt dabei eine Erkennungsleistung, die der Leistung dom�anen-spezi�sher

Erkenner entspriht, dabei jedoh nur 45-60 Minuten an Adaptationsdaten aus der

jeweiligen Zieldom�ane ben�otigt.
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Chapter 1

Introdution

Over the past years, researh in speeh reognition systems has improved the state-of-

the-art signi�antly, suh that a wide range of new, speeh enabled appliations have

beome possible. Consequently, the market in speeh tehnology and appliations

develops rapidly. For instane, high quality, speaker-independent ontinuous-speeh

ditation systems, whih formerly have only been available in researh labs and for

spei� appliation domains, now are available for the general purpose mass market

and will soon be integrated into omputer operating systems. Another emerging

appliation of speeh tehnology is in Interative Voie Response (IVR) enabled all

enters, where people now an all fully automated information systems and retrieve

seletive information by ommuniating with the system in a natural dialog instead

of by hitting the touh tone buttons of the telephone. A very interesting appliation

of speeh tehnology emerges in the �eld of multimedia information retrieval, where

speeh reognition systems are inreasingly being used to ategorize and transribe

radio and TV broadast news for the purpose of indexing and ontent lassi�ation.

Suh tehnology appears to be a major fator in managing, aessing and �ltering

the huge amounts of information spilled out by the mass media.

1.1 Motivation

Despite all these promising and exiting appliations, speeh reognition tehnology

still struggles with a lot of unresolved problems. For instane, speeh reognition

systems have to be tailored to spei� appliation domains in order to at least ap-

proah performane omparable to humans. As a onsequene, performane drops

unaeptably when the system is applied to domains di�erent from the originally tar-

geted domain. Therefore, there urrently is no universal speeh reognition system

available that, for any given language, would work in any environment, reognizing

an arbitrary voabulary in an arbitrary appliation domain. Rather, a typial speeh

1
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reognition system requires that detailed operating onditions are met in order to

ahieve optimal performane:

� Spei�ation of the type of mirophone to be used

� Spei�ation of reording onditions (e.g., quiet oÆe)

� Spei�ation of a �nite reognition voabulary

� Spei�ation of an appliation domain (e.g., ditation of �nanial newspaper

artiles, transription of telephone onversations)

Due to the statistial nature of urrent speeh reognition tehnology based on Hid-

den Markov Models (HMM), whih implies that system parameters are learned from

a large but �nite set of training patterns, a restrition to a spei� appliation domain

appears to be absolutely neessary for ahieving reasonable performane. The result-

ing lak of robustness and universality in most of the omponents of suh systems

has been identi�ed as a major weakness of today's speeh reognition tehnology.

While domain spei� voabularies, pronuniation ditionaries and language models

an typially be obtained and exhanged easily in order to aommodate a swith to a

new domain, the exhange or adaptation of the aousti model of a speeh reognizer

requires onsiderably more e�ort. The task of the aousti model is to estimate

the probability of aousti observations (suitably parameterized representation of an

aousti waveform) given a sequene of words. Typially, an aousti model onsists

of a set of HMMs with assoiated mixture density probability models. Mismathes

in the aousti model are not only aused by hanges in the reording onditions, the

type of mirophone or the speaker harateristis, as one might think at �rst glane.

Basi aousti units suh as phones are modeled in various alternative realizations,

depending on their phoneti ontext. This strategy has beome standard pratie in

large voabulary speeh reognition and improves reognition auray onsiderably

but renders the aousti model highly dependent on domain spei� omponents

suh as the voabulary and the language model. As a result, we typially observe a

mismath in the spei�ity of ontext modeling in addition to an aousti mismath

in a new target domain. As the spei�ity of ontext modeling an not be altered

easily in onventional aousti models beause of a lak of struture and salability,

the standard approah is to build and train a new domain-spei� aousti model to

replae the existing one as soon as the phoneti harateristis of the target domain

di�er signi�antly from those of the training domain. Unfortunately, this approah is

time-, labour- and ost-intensive as it requires large amounts of transribed aousti

data.
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As an alternative to onventional aousti modeling based on mixture densities, sev-

eral researhers have independently developed a methodology for inorporating on-

netionist models (based on neural networks) into a statistial speeh reognition

system. Suh systems are often alled hybrid speeh reognition systems sine they

ombine disriminatively trained onnetionist aousti models with the standard

HMM framework. In the most simple setting, a single arti�ial neural network is ap-

plied to the estimation of posterior phone or state probabilities. While o�ering better

disrimination, faster evaluation and a smaller number of parameters, monolithi on-

netionist aousti models are diÆult to sale to ontext-dependent modeling and

have therefore been used primarily for monophone modeling. However, the fat that

state posteriors and state priors are both expliitly available o�ers attrative potential

for adapting these models to domains di�erent from the training domain.

1.2 Approah

This thesis presents a new, hierarhial framework for onnetionist aousti modeling

that, among other bene�ial properties, allows to dynamially adapt the spei�ity of

ontext modeling to new, previously unseen appliation domains. The tree-strutured

model o�ers all the advantages of onventional onnetionist aousti models while

o�ering a variety of bene�ial new properties suh as salability to any number of

HMM states and fast evaluation through dynami tree pruning. The model is demon-

strated to be e�etive in modeling up to 24000 states with onnetionist estimators,

ahieving performane omparable to standard mixture based aousti models while

being smaller in size and faster to deode.

We motivate, introdue and evaluate the proposed hierarhial onnetionist arhi-

teture as an alternative to standard mixture based modeling in large voabulary

onversational speeh reognition. Experimental evaluation of arhitetural aspets

is performed on the Swithboard orpus, urrently a major fous in the speeh researh

ommunity. Swithboard ontains more than 170 hours of telephone quality reord-

ings of human-to-human onversations over the publi telephone network. As suh

it exhibits strong variations in reording quality and bakground noise. Even worse,

the onversational nature of the reordings implies a high proportion of disuenies

suh as false starts, hesitations, interjetions, et. As one an imagine, Swithboard

is a omparably hard speeh reognition domain. Today's state-of-the-art systems

yield performane in the range of 30-40% word errors.

The hierarhial struture of the proposed model together with its onnetionist

framework for estimating both state posteriors and state priors leads to the se-

ond major ontribution of this thesis: An algorithm for dynamially adapting the

struture, the size and the preditors of a trained hierarhial onnetionist aousti
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model for eÆient adaptation of a speeh reognition system to a previously unseen

domain. In Strutural Domain Adaptation (SDA), as the algorithm is alled, a om-

parably small amount of transribed data from the new domain is used to estimate

the prior distribution of the HMM states of the original model in the new domain.

Typially, this distribution is quite di�erent from the one obtained on the original

training orpus, due to di�erenes in voabulary and language model. Using an esti-

mate of the state prior distribution on the new domain, we adapt the priors in eah

node of the modeling tree by propagating the state priors through the tree struture.

Typially, ertain branhes of the modeling tree will be pruned as they lead to HMM

states with very low observation ounts. In addition, SDA allows to further prune

the resulting tree struture aording to the observation ounts, for instane to down-

size the aousti model for small memory footprint and/or faster evaluation. Thus,

the hierarhial arhiteture together with the algorithm for strutural adaptation

represent a versatile tool for domain-adaptive aousti modeling.

We evaluate strutural domain adaptation of our hierarhial model using two quite

di�erent appliation senarios. The baseline to both experiments is a model trained

on the Swithboard orpus. In the �rst senario, we adapt this model's struture

to a domain onsisting of read newspaper artiles, the Wall Street Journal (WSJ)

domain. In ontrast to the majority of this orpus, we seleted a subset onsisting

of telephone quality speeh in order to keep aousti di�erenes small. In the seond

senario, we port the Swithboard model to a domain alled English Spontaneous

Sheduling Task (ESST), onsisting of spontaneous human-to-human onversations.

This orpus is reorded with high-quality mirophones and exhibits a omparably

small and restrited voabulary. Using the SDA algorithm, we demonstrate that the

Swithboard trained hierarhial onnetionist model an be adapted e�etively to

the unseen domains using only 45-60 minutes of aousti adaptation data. The result-

ing struturally adapted systems math the performane of domain-spei� systems

trained on several hours of data.

1.3 Outline

On a global level, this thesis is divided into two major parts. Chapters 2 to 4 are of

introdutory nature, summarizing spei� aspets about automati speeh reogni-

tion that are of relevane to the remainder of the thesis. The following hapters 5 to

10 are then devoted to the original ontributions of this thesis.

Chapter 2 introdues the reader to the �eld of statistial speeh reognition. Rather

than presenting all the bells and whistles of the state-of-the-art, this review of the

basi onepts in automati speeh reognition is meant to provide the neessary

bakground for readers unfamiliar with this disipline. Therefore, it only briey
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touhes ertain aspets that are less relevant for the ontent of later hapters. Also,

this hapter is restrited to the presentation of standard tehnology, namely the one

build around ontinuous density Hidden Markov Models. Phoneti ontext model-

ing, a very important modeling tehnique now found in any large voabulary speeh

reognition system is reviewed. The fous here is to introdue the reader to the side

e�ets of ontext modeling: on the one hand, it signi�antly improves performane;

on the other hand it introdues a strong dependene on the spei� training domain

whih an dramatially derease robustness towards unseen domains. As this thesis

presents a solution to this problem, this part might be regarded as both a review and

a motivation for later hapters.

Chapter 3 is devoted to onnetionist aousti modeling and hybrid arhitetures.

Here, it is shown how lassi�er neural networks an be integrated into the HMM

formalism in order to take advantage of properties suh as better lass disrimination

and faster model evaluation. The hapter presents and disusses arhitetures that

have been used for hybrid speeh reognition in the past.

Chapter 4 is devoted to the Swithboard large voabulary onversational speeh

reognition (LVCSR) orpus. This widely used orpus serves as a benhmark for

the arhitetures and algorithms presented in this thesis.

Chapter 5 introdues hierarhial onnetionist aousti modeling as a oneptual

framework for tree-strutured, salable aousti models. We theoretially motivate

the derivation of this divide-and-onquer based arhiteture whih is grounded on sta-

tistial fatoring of posterior state probabilities. We disuss properties of the resulting

tree based lassi�ers fousing on design algorithms for induing tree strutures. We

show how suh a model an be integrated into the lassial HMM framework for the

purpose of aousti modeling. Furthermore, we analyze the viability of feed forward

lassi�er neural networks for the task of estimating onditional posterior probabilities

in tree nodes. The resulting hierarhial aousti model, whih we all a Hierarhy

of Neural Networks, is then integrated into a state-of-the-art speeh reognizer and

evaluated on the Swithboard LVCSR orpus.

In Chapter 6, we experimentally analyze dynami posterior based pruning of the

model introdued in hapter 5. This tehnique is very eÆient in avoiding to evaluate

posterior probabilities of unlikely states, thereby reduing the omputational load of

aousti model evaluation signi�antly. We show how this simple tehnique allows to

eÆiently trade-o� reognition auray against deoding speed.

Chapter 7 presents an algorithm for optimally adapting a hierarhial aousti model

to the aousti harateristis of spei� speakers, an important prerequisite for many

appliations of speeh reognition (e.g., ditation). In ontrast to existing aousti

models suh as those based on mixture densities, the proposed model does not require

additional model parameter tying mehanisms suh as regression lass trees to ahieve

eÆient speaker adaptation even with small amounts of data. We demonstrate how
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the hierarhial struture of the model itself an be exploited for speaker adaptation

and evaluate the resulting algorithm on Swithboard.

Building on the material from hapter 5 and 7, hapter 8 introdues Strutural Do-

main Adaptation (SDA), an algorithm for adapting a hierarhial aousti model to

unseen domains. For that purpose it uses a ombination of tree pruning and node

adaptation whih also adjusts the size of the model to the new domain. We present

details of the SDA algorithm and evaluate it by porting a Swithboard trained model

to two unseen domains of quite di�erent nature, namely Wall Street Journal (WSJ)

data and English Spontaneous Sheduling Task (ESST) data. We demonstrate how

SDA applied to the hierarhial Swithboard model allows to eÆiently and e�etively

adapt the reognizer to the new domains, requiring only 45-60 minutes of speeh from

those domains.

Chapter 9 is devoted to a related hierarhial arhiteture that has been developed as

part of this thesis, so alled mixture trees. Here, the emphasis was on hierarhially

struturing the omponents of a standard, likelihood based aousti model, in order

to take advantage of the saling and adaptation properties found for tree strutured

onnetionist aousti models. We derive an EM algorithm for estimating the param-

eters of suh a model and evaluate it on the Swithboard orpus. Also, we ompare

it with the onnetionist ounterpart presented in earlier hapters.

Chapter 10 presents strategies for stati and dynami ombination of multiple, pos-

sibly heterogeneous aousti models in an attempt to improve reognition auray

over eah one of the ontributing models. In ontrast to existing frame-level ombi-

nation approahes, we present an approah that ahieves a redution in word error

rate through a dynami ombination of a onventional likelihood based model and

the proposed hierarhial onnetionist model.

Finally, hapter 11 summarizes the main ontributions of this thesis and onludes

with a disussion of possible future work.



Chapter 2

Statistial Speeh Reognition

This hapter presents the main onepts of the state-of-the-art in statistial speeh

reognition. It introdues Hidden Markov Models (HMM) and their appliation to

automati speeh reognition. Sine the fous of this thesis lies in aousti mod-

eling, we restrit this presentation to aspets relevant to later hapters suh as

ontext-dependent modeling and the resulting domain dependene of aousti mod-

els, and only briey touh topis suh as preproessing and language modeling. For

further details on spei� aspets that ould not be inluded in this hapter, the

author refers the reader to the exellent reviews in [Rabiner '89, Huang et al. '90,

Rabiner & Juang '93, Young '96, Jelinek '97℄. Readers already familiar with the ba-

si statistial framework of automati speeh reognition based on hidden Markov

models may want to skip this hapter.

2.1 Overview

The basi unit of interest in statistial speeh reognition is the posterior probabil-

ity of word sequenes W

1

; : : : ;W

N

given a sequene of aousti observation vetors

x

1

; : : : ;x

M

and a set of model parameters �

p(W

1

; : : : ;W

N

jx

1

; : : : ;x

M

;�):

The sequene of aousti observation vetors onsists of a ondensed and suitably

transformed and preproessed representation of the atual sampled speeh waveform

whih ontains a lot of redundany. Fig. 2.1 depits how uttered word sequene and

aousti realization are linked by this fundamental probability density.

On a rather high level of desription, a statistial speeh reognition system onsists

of the following parts:

� A suitable framework for modeling the above probability.

7
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x ,...,x1 M

W ,...,W1 N

uttered word sequence

I will go

statistical model of speech

1 N 1 M Θ

speech waveform

preprocessing

sequence of acoustic
observation vectors

p(W ,...,W |x ,...,x  ,   )

Figure 2.1: Overview: statistial speeh reognition

� A method for estimating the parameters of the model. This is alled the esti-

mation problem.

� A method for deoding/searhing the most likely word sequene, given some

aousti observation. This is referred to as the reognition problem.

From the early beginnings of speeh reognition researh, the single most important

modeling framework that has been applied to statistial speeh reognition has been

the onept of a hidden Markov model (HMM). Today, this tehnique for modeling

temporal sequenes has evolved and been re�ned substantially in the ontext of speeh

reognition. Consequently, HMM based speeh reognition systems dominate the

�eld. Many alternative modeling frameworks have been shown to be just instanes

or speial ases of HMMs. We will disuss HMMs in detail in setion 2.3.1.

Training or estimation of suh a model onsists of �nding model parameters � that

maximize the above posterior probability on a ertain amount of training data

^

� = argmax

�

T

Y

t=1

p(W

(t)

1

; : : : ;W

(t)

N(t)

jx

(t)

1

; : : : ;x

(t)

M(t)

;�):
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Here, the term training data refers to a olletion of T training sentenes, eah one

onsisting of the uttered word sequene and the orresponding sequene of aousti

observation vetors.

When applying a trained model to the problem of speeh reognition, we seek to �nd

the sequene of words that maximizes the posterior probability for a given sequene

of aousti observation vetors and �xed model parameters �

^

W

1

; : : : ;

^

W

N

= argmax

W

1

;:::;W

N

p(W

1

; : : : ;W

N

jx

1

; : : : ;x

M

;�):

Bayes' rule allows to fator the posterior probability of word sequenes as follows:

p(W

1

; : : : ;W

N

jx

1

; : : : ;x

M

) =

p(x

1

; : : : ;x

M

jW

1

; : : : ;W

N

) P (W

1

; : : : ;W

N

)

p(x

1

; : : : ;x

M

):

To avoid unneessary onfusion, we have omitted the expliit dependene on �. This

rule allows to separate the estimation proess into the so alled aousti model (AM)

onsisting of terms that depend on the aousti observations x

1

; : : : ;x

M

and the

language model (LM) onsisting of terms that depend only on the sequene of words

W

1

; : : : ;W

N

. Sine the term in the denominator does not depend on the sequene of

words, it an be omitted in the searh for the most likely word sequene leading to

the following simpli�ed maximization problem

^

W

1

; : : : ;

^

W

N

= argmax

W

1

;:::;W

N

p(x

1

; : : : ;x

M

jW

1

; : : : ;W

N

) P (W

1

; : : : ;W

N

):

In the remainder of this hapter, we will disuss some of the issues in statistial speeh

reognition in more depth.

2.2 Preproessing

As the raw speeh waveform ontains a lot of redundany, speeh reognition systems

usually employ some form of preproessing to periodially extrat relevant informa-

tion about speeh sounds in form of so alled aousti feature vetors from the speeh

signal. Although there are many di�erent preproessing tehniques, most of them are

based on short time spetral analysis or linear predition [Rabiner & Shafer '78℄.

Fig. 2.2 depits the basi priniple in preproessing speeh waveforms. Typially, a

Hamming window,

h(t) = 0:54� 0:46 os(

2�t

D

) for t 2 [0; D℄;

of durationD = 10 : : : 40 mse is used to extrat a short segment of speeh from whih

a representation suh as the Fourier power spetrum is omputed. The window is
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Waveform

t

Acoustic
Feature
Vectors

Sliding
Window

t

frame shift

Figure 2.2: Preproessing: short time spetral analysis

shifted in disrete steps of 5-20 mse, thereby allowing to ompute short time power

spetra at a rate of 50-200 frames per seond.

Usually, the omputation of the power spetrum is just the �rst step in a whole

series of transformations and normalizations. For instane, a very popular pre-

proessing strategy onsists of omputing Mel-sale Frequeny Cepstral CoeÆients

(MFCCs) [Hunt et al. '80, Davis & Mermelstein '80℄. In that ase, the power spe-

tra are �rst transformed into the Mel-sale [Davis & Mermelstein '80℄, a pereptually

motivated logarithmi frequeny sale that emphasizes low frequeny omponents.

Next, the osine transformation is applied to the Mel-sale spetra, resulting in so

alled epstra. MFCCs are often modi�ed to inlude a non-linear warping of the

frequeny axis in order to ompensate di�erent voal trat lengths aross di�er-

ent speakers [Cohen et al. '95℄. Furthermore, in order to inrease the robustness

against di�erent mirophones and reording onditions the epstra are often normal-

ized for mean zero and unit variane whih is alled epstral mean ompensation

[Beattie & Young '92℄. The resulting feature vetors are sometimes further trans-

formed using prinipal omponent analysis (PCA) [Jolli�e '86℄ or linear disriminant

analysis (LDA) [Haeb-Umbah & Ney '92℄ to redue the orrelation among oeÆ-
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ients, inrease lass separability and/or to redue the �nal feature dimensionality.

No matter what spei� sequene of transformations is being used, all preproessing

tehniques aim at extrating highly ondensed representations of speeh from the

waveform to be reognized while preserving all the information neessary for disrim-

inating the di�erent speeh sounds in later stages.

2.3 Aousti Modeling

By applying Bayes' rule to fator the estimation proess into aousti model and

language model, we have separated the vetor of model parameters into parameter

subsets �

AM

and �

LM

, respetively. The task of aousti modeling in statistial

speeh reognition is to estimate the subset�

AM

of aousti model parameters whih

maximize

p(x

1

; : : : ;x

M

jW

1

; : : : ;W

N

;�

AM

):

Words W

i

are modeled as sequenes (or graphs) of phone models. The mapping

from words to phone models is usually aomplished by means of a pronuniation

ditionary. Phone models in turn are modeled by hidden Markov models in order to

apture their temporal and aousti variability.

2.3.1 Hidden Markov Models for Speeh Reognition

A �rst-order hidden Markov model (HMM) is a probabilisti automaton

� = fS; �; A;B; V g

onsisting of the omponents

S, the set of HMM states, S = fs

1

; : : : ; s

n

g

�, the probability distribution over the states, where �

i

is the probability that state

s

i

is initial.

A, the matrix of transition probabilities, where a

ij

is the probability that state s

j

follows state s

i

.

B, the set of emission probability densities B = fb

1

; : : : ; b

n

g, where b

i

(x) models the

onditional probability of observing/emitting feature vetor x in state s

i

.
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V , the set of observed features whih an be disrete (disrete HMM) or ontinuous

(ontinuous density HMM). In the ase of speeh reognition, ontinuous den-

sity HMMs operate on a ontinuous multivariate representation of the speeh

signal while disrete HMMs operate on a �nite set of disrete symbols that

are obtained from the ontinuous feature spae by means of a vetor quantizer

[Gersho & Gray '92℄. Continuous density HMMs typially outperform disrete

HMMs in speeh reognition due to a better resolution of the aousti feature

spae.

An HMM models a stohasti state-based proess, starting at some initial state. At

eah time step, a new feature vetor is generated (emitted) aording to the urrent

state's emission probability density followed by a transition to a new state aording

to the urrent state's transition probability distribution. HMMs get their name from

the fat that the sequene of states generating the observable sequene of feature

vetors is hidden.

In the ontext of HMMs, there are 3 well known problems [Rabiner '89℄, all of whih

have solutions in form of eÆient algorithms:

� Evaluation Problem: Given a sequene of observation vetors and an HMM,

what is the probability that the sequene has been generated by the HMM?

Using a dynami programming approah, it an be shown that this problem

an be eÆiently solved in time O(n

2

T ), where n is the number of states and

T is the length of the sequene. The orresponding algorithm is alled Forward

algorithm.

� Deoding Problem: Given a sequene of observation vetors and an HMM,

what is the most likely sequene of HMM states for generating the observed

sequene? Again, there is an eÆient solution to this problem in time O(n

2

T )

via a dynami programming approah. In the ase of the deoding problem,

the resulting algorithm is alled Viterbi algorithm.

� Optimization Problem: Given a sequene of observation vetors and an

HMM topology, estimate the parameters of the HMM so as to maximize the

likelihood of the sequene being generated by the HMM. There is no analytial

solution to this problem. However, there is an eÆient iterative method, the

Expetation Maximization (EM) algorithm [Dempster et al. '77℄ whih an be

applied. In the ontext of speeh reognition, the spei� form of this algorithm

is often alled Forward-Bakward or Baum-Welh algorithm.

For the purpose of speeh reognition, a spei� form of HMMs, namely �rst-order

n-state left-right HMMs, are being applied to model basi speeh units suh as phones
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and/or syllables (see Fig. 2.3). The assumption here is that speeh is a sequential

proess exhibiting great variability in the realization and duration of spei� phones.

Furthermore, the asymptoti omplexity of the Forward and Viterbi algorithms typi-

ally redues to O(nT ) in a left-right HMM as there is only a small onstant number

of valid loal transitions from eah state.

ss s2 3

p(s | s ) p(s | s )p(s | s )

p(s | s ) p(s | s ) p(s | s )

1 1 2 2 3 3

2 1 3 2 4 3

i i i

Observations

Transitions

1

2 3p(x |s ) p(x |s )1p(x |s )

Figure 2.3: First-order 3-state left-right HMM

Modeling the inventory of phones in a spei� language using the HMM model of

Fig. 2.3, we an identify the aousti model parameters of a speeh reognizer to

be the olletion of all HMM parameters, � = �. Fig. 2.4 shows the proess of

onverting a sequene of words into

1. a pronuniation graph (ontaining pronuniation variants) and

2. an HMM state graph,

whih allows us to formulate the problem of reognizing words from speeh via the

standard HMM framework. In this framework, where word sequenes are represented

as direted ayli graphs of HMM states, the likelihood of an aousti observation

an be rewritten as (omitting the dependene on W

1

; : : : ;W

N

of the right hand side

for simpliity)

p(x

1

; : : : ;x

M

jW

1

; : : : ;W

N

) =

X

s

1

;:::;s

M

p(x

1

; : : : ;x

M

js

1

; : : : ; s

M

) P (s

1

; : : : ; s

M

)

where the summation extends over all possible state sequenes s

1

; : : : ; s

M

in the HMM

model for the word sequene W

1

; : : : ;W

N

. In the Viterbi approximation, the above

likelihood is approximated by the probability of the most likely state sequene
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I  WILL  GO

W
IH

L

AY

W IH L

G OW

L

AY

L

G OW

Figure 2.4: Typial hidden Markov model in speeh reognition

p(x

1

; : : : ;x

M

jW

1

; : : : ;W

N

) � max

s

1

;:::;s

M

p(x

1

; : : : ;x

M

js

1

; : : : ; s

M

) P (s

1

; : : : ; s

M

)

Given a spei� state sequene, the likelihood of the aousti observations given that

sequene and the sequene prior probability an be fatored as follows

p(x

1

; : : : ;x

M

js

1

; : : : ; s

M

) =

M

Y

i=1

p(x

i

jx

1

; : : : ;x

i�1

; s

1

; : : : ; s

M

)

P (s

1

; : : : ; s

M

) =

M

Y

i=1

P (s

i

js

1

; : : : ; s

i�1

)

When applying �rst-order hidden Markov models to the estimation of suh likelihoods

one makes two simplifying assumptions:

� Independene of Observations:

p(x

1

; : : : ;x

M

js

1

; : : : ; s

M

) =

M

Y

i=1

p(x

i

js

1

; : : : ; s

M

)
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� First-order Assumption (Observations depend only on the urrent state, tran-

sitions depend only on the previous state instead of on the whole history of

states):

p(x

1

; : : : ;x

M

js

1

; : : : ; s

M

) =

M

Y

i=1

p(x

i

js

i

)

P (s

1

; : : : ; s

M

) =

M

Y

i=1

P (s

i

js

i�1

)

Clearly, these assumptions do not hold for speeh where suessive feature vetors

often exhibit high orrelation and o-artiulation e�ets an inuene the realization

of phones over several 100 mses. Nevertheless, �rst-order hidden Markov models

are widely used to model speeh units, mostly beause of the availability of eÆient

estimation and deoding algorithms. Also, many tehniques have been developed

over time whih extenuate the e�ets resulting from the above assumptions.

2.3.2 Emission and Transition Modeling

Mainstream speeh reognition systems follow the above approah by modeling emis-

sion probability distributions p(xjs

i

) and transition probabilities P (s

i

js

i�1

) separately

and independently. Emission probability distributions are usually modeled using mix-

ture densities from the exponential family, suh as the mixture of Gaussians

p(xjs

i

) =

n

X

j=1



j

N

j

(xjs

i

)

N

j

(xjs

i

) =

1

q

(2�)

d

j�

ij

j

exp

n

�

1

2

(x� �

ij

)�

�1

ij

(x� �

ij

)

t

o

where the 

j

denote mixture oeÆients and the N

j

Gaussian mixture omponent

densities in a d-dimensional spae with mean vetors �

ij

and ovariane matries

�

ij

. Often, full ovariane Gaussians (1) an not be estimated reliably due to data

sparsity, (2) in total require more than the available amount of memory, or (3) are

too expensive to evaluate. In suh ases, one typially assumes diagonal ovariane

Gaussians:

N

j

(xjs

i

) =

1

q

(2�)

d

Q

d

k=1

�

2

ijk

exp

n

�

1

2

d

X

k=1

(x

k

� �

ijk

)

2

�

2

ijk

o
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Transition probabilities on the other hand are modeled by simple multinomial prob-

abilities sine they are onditioned on a disrete variable only and not on the input

vetor

1

.

The advantage of this approah is a deoupled estimation proess that separates tem-

poral and aousti modeling. As suh, it allows to easily vary HMM state topologies

after training in order to modify temporal behavior. For instane, minimum duration

onstraints in phone models an easily be enfored by expanding the model from a

single to multiple states with tied observation probabilities [Robinson et al. '96℄.

However, the disadvantage of the above approah is a mismath in the dynami range

of emission and transition probabilities. The reason is that transition probabilities

are modeled separately as multinomial probabilities, onstrained by the requirement

to sum to one. This leads to a dominant role of emission probabilities with transition

probabilities hardly inuening overall system performane [Bengio '96℄.

2.4 Phoneti Context Modeling

So far we have assumed that only a single HMM is used to model eah monophone

(see Fig. 2.4). Sine the English language an be modeled by approximately 40-50

monophones, one might get the impression that only that number of HMM models

need to be trained.

2.4.1 From Monophones to Triphones to Polyphones

However in pratie, one observes an e�et alled o-artiulation that auses large

variations in the way spei� monophones atually sound, depending on their pho-

neti ontext [Chow et al. '86℄. Usually, expliit modeling of phones in phoneti

ontext yields substantial gains in reognition auray [Lee '88℄. However, it is not

immediately lear how to ahieve robust ontext-dependent modeling. Consider, for

example, so alled triphone models. A triphone essentially represents the realiza-

tion of a spei� monophone in a spei� ontext spanning one phone to the left

and right. For instane, in the HMM state graph of Fig. 2.4 the two ourrenes

of monophone L orrespond to two di�erent triphone models, namely L(AY,G) and

L(IH,G)

2

. Assuming an inventory of 50 monophones, the number of (theoretially)

possible triphones is 49 � 50 � 49 = 120050. Many of these triphones will our rarely

or never in atual speeh due to the linguisti onstraints in the language. Separate

modeling of all triphones therefore does not make sense as it leads to poor gener-

1

It should be noted that it is possible to enhane the HMM formalism suh that it allows to

ondition transition probability distributions on observation vetors.

2

Here, the �rst argument denotes the left and the seond argument the right neighboring phone.
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alization due to unreliable parameter estimates. The problem beomes even more

evident when generalizing triphones to so alled polyphones by allowing dependene

on a wider ontext, and not just the immediate left and right neighboring phones. To

avoid this data sparsity problem, one an either apply smoothing tehniques based

on interpolation of polyphone models with more robust ones, or introdue a meha-

nism for sharing parameters aross di�erent polyphones models. The latter approah

in onjuntion with deision trees has beome the most popular ontext modeling

tehnique and will be disussed next.

2.4.2 Phoneti Deision Trees

Deision trees [Safavian & Landgrebe '91℄ an be applied to luster observed poly-

phones into generalized ontext lasses aording to aousti and phoneti similarity

[Bahl et al. '91℄. Typially, a separate CART [Breiman et al. '84℄ like deision tree

is onstruted for eah HMM state of eah monophone by top-down lustering of

all observed polyphoni ontexts of the respetive monophone state. Through the

use of ategorial questions about spei� attributes at eah internal node, deision

trees allow to generalize to unseen lasses. This property is essential for modeling

polyphoni ontexts in speeh reognition where deision trees allow to generalize to

previously unseen polyphoni ontexts that might our during deoding.

For phoneti ontext modeling, a �nite and meaningful set of ategorial questions

about phoneti ontexts has to be de�ned. The most straight-forward questions

are those relating to a spei� neighboring monophone. For illustration, onsider

Table 2.1 ontaining 6 words and their phoneti transription. We examine ontext

modeling for the monophone AX whih is ontained in all 6 words. Note that the

transriptions in Table 2.1 have been arbitrarily aligned around the phone AX for

easy omparison of phoneti ontexts. Even when restriting ontext modeling to

immediate neighboring phones, �ve of the six ourrenes of the monophone AX in

Table 2.1 orrespond to di�erent triphones

3

.

Categorial questions for building a phoneti deision tree for monophone AX ould

ontain simple questions for spei� monophones. For instane, onsider the question

`Is monophone R at position +1 ?', in other words, `Is monophone R an immediate

right neighboring phone?'. This question indues two sets of AX-polyphones, namely

the ones that answer `yes' and the ones that answer `no'. While some other mono-

phone questions make sense in this example, there are others whih are useless (e.g.,

`Is monophone AX at position +1 ?') sine all polyphones would generate the same

answer.

In addition to questions about spei� monophones, questions about spei� pho-

neti lasses suh as vowels, onsonants, liquids, and friatives are frequently used.

3

Only `agglomerate' and `boomerang' share the same triphone at `AX'.
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Word Phoneti Transription

advisory AE D V AY Z AX R IY

agglomerate AX G L AA M AX R EY T

boomerang B UW M AX R AE NG

brilliant B R IH L Y AX N T

devouring D IH V AW AX R IH NG

indiative IH N D IH K AX T IH V

Position -5 -4 -3 -2 -1 0 +1 +2 +3

Table 2.1: Word transriptions to illustrate phoneti ontext modeling

Furthermore, ontext modeling may not be limited to within-word phoneti ontext

but may inlude ross-word ontext. In that ase, questions about the existene of

word boundaries are quite useful, if suh information is available.

Fig. 2.5 shows a typial deision tree for lustering the polyphoni variations of a

partiular state of monophone model AX. During onstrution of a phoneti deision

tree for a spei� state of a spei� monophone, an objetive funtion is evaluated at

eah node for eah question to determine the question that yields the greatest gain

when ontext lasses are split aording to that question. Assuming that appropriate

statistial models (e.g., Gaussians) have been estimated for eah polyphone observed

in some training orpus, we an for instane take split likelihood gain as our objetive

funtion that sores the goodness of splits:

G(N;N

L

; N

R

) =

�

X

x2N

L

log p

L

(x) +

X

x2N

R

log p

R

(x)

�

�

X

x2N

log p(x)

where N is the node in question, N

L

and N

R

are the left and right hild nodes and p(),

p

L

() and p

R

() are the statistial models for the node and its left and right hild nodes.

Split likelihood gain measures how muh the likelihood of the data in a spei� node

an be inreased by splitting the data in two sets aording to a phoneti question and

modeling the data in eah set separately. In ase of often used simple D-dimensional

diagonal ovariane Gaussian models, split likelihood gain simpli�es to

G(N;N

L

; N

R

) = n

D

X

k=1

log �

2

k

(N)

�

�
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log �
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(N

L
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+ n

R

D

X

k=1

log �

2

k

(N

R

)

�

where n, n

L

and n

R

are the number of samples in node N , left hild N

L

, and right

hild N

R

, respetively. �

2

k

(N)

, �

2

k

(N

L

)

, and �

2

k

(N

R

)

are the k-th diagonal ovariane

oeÆients of the Gaussians for node N , left hild N

L

and right hild N

R

, respe-

tively. Using an objetive funtion suh as split likelihood gain, deision trees an

be grown by iteratively splitting nodes until the gain falls below some predetermined
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+1=SONORANT?

Y
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+1=SIBILANT? -1=VOICED?+1=BILABIAL?
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Figure 2.5: Phoneti ontext modeling using deision trees. Shown is a deision tree

modeling phoneti ontexts of the middle state (3-state HMM) of monophone AX.

threshold. Alternatively, trees an be grown up to a predetermined number of leaf

nodes. Usually, the optimal number of leaf nodes is determined experimentally by

reognition runs on independent validation sets.

The olletion of leaf nodes of phoneti deision trees for all monophone states rep-

resents the reognizer's set of distintly modeled ontext-dependent sub-phoneti

units. Sine eah of these units models several atual HMM states, they are often

alled tied states. Typially, a large voabulary ontinuous speeh reognizer models

thousands (up to 20000 and more) of tied states via phoneti deision trees. See

Appendix B for a distribution of allophoni variation in a deision tree lustered

Swithboard model for 24000 tied states. Context-dependent phoneti modeling has

been reported to derease the word error rate of speeh reognition systems by up

to 50% [Shwartz et al. '85, Chow et al. '86℄. In our own experiments, we have ob-

served a 40% redution in word error rate when going from ontext-independent to

ontext-dependent modeling.
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2.4.3 Domain Dependene of Context Models

Phoneti ontext modeling using deision trees has emerged to a standard HMM

modeling tehnique for large voabulary speeh reognition that has been adopted by

almost all urrent state-of-the-art speeh reognition systems. However, while ontext

modeling redues word error rates onsistently, it signi�antly inreases dependene

on the aousti harateristis and the voabulary, phoneti ditionary and language

model of the training domain. The a-priori distribution of within-word ontext-

dependent phone models depends on both the phoneti transription of the words

in the training ditionary and the relative frequeny of these words in the training

orpus. Often, the words that onstitute the reognition ditionary di�er vastly aross

domains. As a result, ontext models obtained from data in one domain di�er from

those obtained on some other domain and performane of speeh reognition systems

in ross-domain appliations drops signi�antly due to the mismath in overage of

phoneti ontexts.

In addition, ross-word phoneti ontext modeling, whih improves performane over

within-word ontext modeling, introdues yet another dependeny on the training

domain. By allowing ontext models to span aross word boundaries, ross-word

ontext models additionally depend on the relative frequeny of word pairs and word

triples (in ase of single phone words) in the training domain. Suh statistis are

aptured by the language model of a speeh reognizer (see next setion) and are

known to di�er signi�antly aross domains.

As a onsequene of the above mentioned dependenies, ontext models are typi-

ally onstruted spei�ally on data from a spei� target domain, seleting size

and struture of phoneti deision trees for optimal reognition performane on data

from that target domain. By fousing on a spei� target domain, improved per-

formane is ahieved at the ost of redued robustness and lak of portability to

other domains. Often, ontext-dependent aousti models are rebuild from srath,

if it beomes neessary to port a trained speeh reognition system to some other,

previously unseen domain of signi�antly di�erent aousti, phoneti and linguisti

harateristis. While other domain dependent omponents of a speeh reognition

system suh as ditionary and language model an be obtained relatively easily for

a new domain, the onstrution of ontext-dependent aousti models requires large

amounts of transribed aousti data whih renders porting e�orts time-, labour- and

ost-intensive.

Through the appliation of a salable, hierarhial arhiteture, this thesis presents

a solution to the problem of domain-dependene of ontext modeling that does not

require expensive reonstrution of the aousti model when swithing to a new do-

main.



2.5 Language Modeling 21

2.5 Language Modeling

The task of a language model in statistial speeh reognition is to estimate the

probability of word sequenes, P (W

1

; : : : ;W

N

), whih an be fatored as follows:

P (W

1

; : : : ;W

N

) = P (W

1

) P (W

2

jW

1

)

N

Y

i=3

P (W

i

jW

i�1

; : : : ;W

1

):

In statistial n-gram modeling, one simpli�es the above expression by reduing the

onditioning on the full history of words to the last n� 1 words. For instane, in 3-

gram (trigram)modeling, one approximates the language model probability aording

to
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Unfortunately, the usefulness of standard n-gram modeling is restrited to small val-

ues of n due to the exponential growth of the number of n-grams. Assuming a reog-

nition voabulary ofM distint words, the total number of n-tuples that theoretially

need to be modeled by an n-gram equals M

n

, a number that even for moderate sizes

of voabularies of a few thousand words quikly exeeds the storage and omputa-

tional resoures of todays omputers. On the other hand, many of the M

n

n-tuples

never our in any text orpus due to the grammatial regularity of language. Es-

timation of n-gram probabilities therefore requires smoothing tehniques, typially

a ombination of disounting and baking-o� (e.g., [Kneser & Ney '95℄) in order to

obtain robust probability estimates from raw n-tuple ounts. In the ase of trigram

modeling, disounting means that the trigram ounts of the more frequently our-

ring trigrams are redued and the resulting exess probability mass is redistributed

amongst the less frequently ourring trigrams. Baking-o� is applied when there

are too few trigrams to form any estimate at all and involves replaing the trigram

probability by a saled bigram probability.

Despite of the restrited ontext width of 2-4 words, statistial n-gram language

models have proven to be quite e�etive. Furthermore, variable-length and ategory-

based n-gram models [Niesler & Woodland '95℄, ahe models [Jelinek et al. '91℄ and

trigger models [Lau et al. '93℄ allow to robustly inrease the ontext width beyond 4

words. Although many other language modeling tehniques have been proposed over

the years, n-gram models still dominate the �eld.

2.6 Deoding

The so alled deoder represents the heart of any speeh reognition system. Its task

is to �nd the most likely sequene of words for any given aousti input, where eah
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word is modeled by a sequene (sometimes a graph) of HMM states. As already

mentioned, the deoding problem for HMMs possesses an eÆient solution in form of

the Viterbi algorithm. However, when deoding large voabulary ontinuous speeh

with n-gram language models, an exat solution beomes intratable due to the very

large number of ompeting sentene hypotheses.

The most popular solution is the appliation of a form of heuristi pruning to a time-

synhronous Viterbi deoder whih is then alled Viterbi beam searh. At any time

step, partial hypotheses are extended by all possible suessor states but are kept

for future onsideration only when their sore stays within a ertain threshold (the

beam) relative to the sore of the urrent best hypothesis. This way, only a very

small fration of the atual searh spae has to be examined, leading to a manage-

able omputational omplexity. Unfortunately, suh a searh proess is no longer

guaranteed to �nd the most probable hypothesis. Searh errors are introdued when

the globally best hypothesis gets pruned during deoding beause of a temporarily

bad loal sore.
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Figure 2.6: Deoding errors with Viterbi beam searh

This fat is illustrated by Fig. 2.6. Here, lower sores orrespond to more likely

hypotheses. The lowest urve indiates the sore of the loally best hypotheses for

eah time step. Above this urve, there is the equidistant pruning threshold urve.

The sore traes of two hypotheses have been inluded into the plot: (1) the urve

for the globally best (most probable) hypothesis and (2) the urve for the `winning'

hypothesis found by this partiular instane of a beam searh. Note that although
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the �nal sore of the globally best hypothesis is better than the �nal sore of the

winning hypothesis, the globally best hypothesis never reahes the end of the utter-

ane. Instead, it gets pruned at the time mark indiated by a irle sine its partial

sore temporarily exeeds the pruning threshold. This searh error an be omitted

by inreasing the pruning beam width suh that the orret hypothesis stays below

the pruning threshold urve at all times.

Large voabulary speeh reognition systems typially operate at the two endpoints

of a ontinuous spetrum of beam widths. Researh & evaluation systems have to

use very large beam widths in order to redue the probability of deoding errors.

However, the inrease in performane omes at the ost of high deoding time (often

over one hundred times slower than real time). On the other hand, appliations suh

as large voabulary ditation require deoding times of almost real time in order to

be usable. Among other tehniques applied in this ase, deoding beams have to

be tightened onsiderably. Of ourse, pruning errors beome more likely, resulting

in a loss of performane. The trade-o� between reognition auray and deoding

speed is illustrated in Fig. 2.7 for various deoding beam widths of a typial large

voabulary speeh reognition system.
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Figure 2.7: E�et of varying deoder pruning beam width

An alternative approah to the problem of searhing the most probable word hy-

pothesis in a speeh reognition system is based on so alled best-�rst stak de-

oding [Paul '92, Renals & Hohberg '99℄ whih is related to the A

�

algorithm used

for heuristi searh in arti�ial intelligene. These searh algorithms are time asyn-
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hronous { the best soring path or hypothesis, irrespetive of time, is hosen for

extension and this proess is ontinued until a omplete hypothesis is determined.

The asynhrony of operation requires that a suitable heuristi is employed in om-

paring the sores of ompeting hypotheses. Stak deoding has several potential

advantages over Viterbi deoding: (1) The language model is deoupled from the

aousti model and is not used to generate new reognition hypotheses, (2) It is easy

to inorporate non-Markovian knowledge soures (e.g., long-span LMs) without mas-

sively expanding the state spae, and (3) The Viterbi assumption is not embedded in

the searh and thus a full maximum-likelihood searh riterion may be used with little

or no omputational overhead. Disadvantages of the approah inlude sensitivity to

the hoie of heuristi and the possibility of repeated omputation.

It should be noted that today's deoder tehnology has beome quite omplex due to

ross-word ontext-dependent phoneti modeling, tree-strutured pronuniation lex-

ia, and look-ahead tehniques. It is beyond the sope of this thesis to go into all these

details. The interested reader is referred to [Odell '95, Young '96, Ravishankar '96℄.



Chapter 3

Connetionist Aousti Modeling

This hapter starts with a ritial view on standard HMM based aousti modeling

in speeh reognition. We reveal the major weaknesses of traditional HMM modeling

that, together with the reborn interest in onnetionist models of ognitive proesses

in the eighties, led to the formulation of an alternative paradigm for aousti model-

ing. We motivate and introdue onnetionist aousti modeling, giving a review on

the tehniques and arhitetures that have been investigated. We lose this hapter

with a disussion of some shortomings of onnetionist aousti modeling.

3.1 Drawbaks of Standard Modeling

By standard modeling, we refer to the statistial framework based on Hidden Markov

Models presented in hapter 2. More spei�ally, standard modeling refers to the ap-

pliation of Gaussian mixture models for HMM observation probability estimation.

Reognition systems based on suh models o�er powerful learning and deoding al-

gorithms along with exible modeling of temporal aspets whih is why they have

attrated so muh interest in the speeh reognition ommunity. Pratially all exist-

ing speeh reognition systems are build around this modeling paradigm. However,

in order to take advantage of the representational power of HMMs, algorithms must

expliitly or impliitly make simplifying assumptions about the time series being

modeled. Some of these assumptions are obviously unrealisti and violated when

modeling speeh with HMMs. Nevertheless, this suboptimal model is generally a-

epted beause it an be used more e�etively than any alternative. Given the strong

base of mathematial tools for statistial speeh reognition with HMMs, modifying

only a few aspets of the existing approah at a time seems more appropriate than

starting from srath. Following is a list of shortomings that have been identi�ed

with standard modeling:

25
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� Independene Assumption: Suessive observation vetors are onsidered

independent and therefore unorrelated. This is a poor math to most kinds

of speeh segments. Diphthongs (e.g., AY,EY,OY) and glides (e.g., W,Y), for

instane, exhibit strong non-stationary behavior.

� First-Order Assumption: Observation vetors depend only on the urrent

HMM state and transitions depend only on the previous HMM state instead of

on the whole history of states. In ontrast, speeh is haraterized by strong

o-artiulation e�ets, e.g., observation vetors are inuened by the previous

phoneti state(s).

� Poor Disrimination: HMM training algorithms are based on Maximum

Likelihood (ML) whih assumes orretness of the models. As we just argued,

orretness of the models must be questioned due to �rst-order and indepen-

dene assumptions. More importantly, ML implies poor disrimination sine

ideally, minimization of the word error rate should be based on minimizing

a-posteriori word or sentene probabilities.

� Distributional Assumptions: For pratial as well as omputational rea-

sons, observation probability distributions in large voabulary onversational

speeh reognition systems are almost always modeled by mixtures of diagonal

ovariane Gaussians. The diagonal ovariane assumption neglets orrelations

between individual oeÆients of observation vetors.

� Arhitetural Struture: Standard mixture based modeling of observation

probability distributions results in an independent and unstrutured set of mod-

els. Missing struture is not problemati in terms of performane or auray

of modeling. However, many algorithms in speeh reognition suh as speaker

adaptation and fast aousti math require to struture the aousti model

aording to some aousti similarity riterion. If suh struture were built

inherently into the model, the above mentioned algorithms ould be realized

muh easier. Also, the missing struture prevents us from saling the model in

terms of the number of modeled HMM states.

Almost all of the above mentioned assumptions and shortomings have been ad-

dressed by researhers over the years. The �rst two assumptions are inherent to the

HMM model being used and an only be addressed by some sort of add-on orretion

mehanism or by moving to an entirely di�erent model. However, the latter three

assumptions/shortomings an be addressed by replaing the set of mixture density

models that approximate the HMM state observation probabilities by a more suitable
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model. This approah allows the system to bene�t from the exellent temporal mod-

eling properties of HMMs while investigating alternative forms of aousti modeling

of speeh.

3.2 Disriminative Modeling

A detailed treatment of disriminative modeling requires to establish a globally dis-

riminant training riterion based on the posterior probability of sequenes of words.

Globally disriminant approahes have been investigated (e.g., [Valthev '95℄) but

usually su�er from high omputational omplexity whih is why simplifying assump-

tions are often made in order to apply these approahes to large voabulary speeh

reognition tasks.

To avoid the omputational pitfalls of globally disriminative modeling and still im-

prove disrimination, loally disriminative modeling has been proposed by several

researhers (e.g., [Bourlard & Morgan '94℄. In loally disriminative modeling, the

training riterion is based on the posterior probability distribution over the set of

aousti HMM states for a spei� aousti feature vetor. In other words, rather

than disriminating words in a sentene, we aim at disriminating the basi speeh

units in eah frame of speeh data. Before disussing the potential bene�ts and ad-

vantages of suh modeling, we �rst have to elaborate on how loally disriminative

modeling an be integrated into HMMs. After all, the HMM formalism requires to

model state likelihoods for eah frame of aousti data. Using Bayes' rule we an

satisfy this onstraint:

p(xjs

i

) =

p(s

i

jx)

p(s

i

)

p(x)

Instead of diretly estimating the state likelihoods p(xjs

i

) for eah state s

i

given an

input feature vetor x, we an take a detour that allows us to inlude the state posteri-

ors p(s

i

jx). Estimators for the latter an be trained using the Maximum A Posteriori

(MAP) rather than the Maximum Likelihood (ML) training riterion. However, as

seen in the above expression, the integration of a MAP estimator requires to divide

the estimates of the posterior state probabilities by their prior probabilities and to

multiply the outome by the unonditional probability of observing the feature vetor

x. Fortunately, there is no need to estimate p(x) when applying the above rule to

speeh reognition. It merely adds an o�set to the aousti sores for eah aousti

frame that is independent of the HMM state and therefore does not inuene the

outome of a Viterbi style searh for the most likely state/word sequene. There-

fore, loally disriminative modeling in the HMM framework requires only to divide

estimates of the posterior state probabilities by their prior probabilities. The result-
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ing quantity p̂(xjs

i

) an diretly be used as HMM state emission probability and is

usually alled saled likelihood:

p̂(xjs

i

) =

p(s

i

jx)

p(s

i

)

The reader may ask: What is the point of going through this detour when we �nally

derive essentially the same probability as we would with a onventional Gaussian

mixture based estimator? There are at least the following potential advantages:

� Improved Disrimination: Estimators of the posterior probabilities are tr-

ained aording to MAP in ontrast to the ML based likelihood estimators. In

MAP based modeling, the emphasis is on modeling lass boundaries while in

ML modeling, the emphasis is on aurately modeling eah lass' distribution.

ML based estimators are in danger of wasting a lot of their parameter resoures

in modeling a distribution in regions where no other lasses ompete. MAP

estimators on the other hand fous their parameter resoures at lass boundaries

in order to maximize disrimination between lasses.

x

1

x

a-posteriori-estimator
p(s|x)

likelihood-estimator
p(x|s)

Figure 3.1: Likelihood estimators vs. a-posteriori estimators

Fig. 3.1 illustrates this behavior for a two lass problem. The upper graph shows

relatively omplex lass distributions that the likelihood based estimators seek
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to apture as aurately as possible. However, as an be seen in the lower

plot, disrimination between the two lasses an be ahieved with a very simple

MAP estimator sine there is almost no overlap between the lasses (the MAP

estimator for the seond lass is simply 1 � p(sjx) and is not inluded in the

plot).

� Smaller Number of Parameters: Fig. 3.1 also reveals another problem

with likelihood estimators. The waste of parameter resoures in modeling the

distribution in regions where it would not be neessary typially requires more

parameters and more omplex estimators than in the ase of disriminative a-

posteriori estimators.

It was shown [Bourlard & Morgan '94, Morgan & Bourlard '95℄, that loally

disriminative aousti models an indeed ahieve the same performane with

less parameters when ompared to standard HMM modeling.

� Expliit Control over Class Priors: In ase of a mismath of lass priors

between training and test orpus, for instane aused by a signi�antly di�erent

voabulary, loally disriminant models an be adapted e�etively sine the

lass priors are expliitly available.

In addition, depending on the type of estimator being used, loally disriminant mod-

els o�er easy integration of additional knowledge soures and redued assumptions

about the type of emission probability distribution. In the ase of neural network es-

timators, whih we will disuss next, the assumption of independene of observations

an be weakened onsiderably by taking a window of frames around the urrent time

frame as input to the estimator, instead of just the urrent time frame. This way,

important ontextual information an be inorporated into the probability estimation

proess.

3.3 Connetionist Aousti Modeling

Relying on distributed internal representations for solving lassi�ation and regres-

sion tasks, onnetionist arhitetures, also known as (arti�ial) neural networks

[Rumelhart & MClelland '86, Bishop '95a, Ripley '96℄, reated onsiderable interest

in the speeh reognition ommunity [Lippmann '89, Waibel & Lee '90, Waibel '91℄.

As neural networks were found to be exellent tools for lassifying speeh units suh

as phones, they have primarily been applied to simple speeh reognition problems

suh as lassi�ation of stati patterns. Neural networks for lassi�ation of omplete

temporal sequenes have not been suessful for ontinuous speeh reognition where

the number of possible word sequenes are pratially in�nite. However, within the
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HMM framework, onnetionist arhitetures have proven to be viable and some-

times superior alternatives as aousti models for the estimation of (saled) state

likelihoods.

A few years bak, it was shown (e.g., [Bridle '90℄) that the outputs of appropriately

trained lassi�er neural networks approximate lass posterior probabilities. A proof

of this property an be found in Appendix A. In fat, lassi�er neural networks were

found to be both eÆient and versatile tools for approximating posterior probabili-

ties. Although there are other estimators for posterior probabilities suh as polyno-

mial lassi�ers, neural networks have beome the single most important arhiteture

for loally disriminant aousti modeling. Neural network based loally disrimi-

nant models are usually alled onnetionist aousti models and speeh reognition

systems based on these models are often termed hybrid NN/HMM systems.

A wide variety of neural network models has been investigated for the purpose of

estimating posterior state probabilities. Following is a list of the most popular arhi-

tetures that have been applied to onnetionist aousti modeling:

� Multi Layer Pereptrons (MLP): MLPs arguably are the most frequently

applied neural network models for onnetionist aousti modeling (e.g., [Mor-

gan & Bourlard '90, Bourlard & Morgan '94, Morgan & Bourlard '95, Tebelskis

'95℄) due to a simple topology and an eÆient training algorithm based on

gradient desent (error bakpropagation). Sine MLPs were also applied exten-

sively in the arhiteture proposed in this thesis, we will present this type of

neural network in more detail.

Fig. 3.2 depits the struture of a typial feed-forward lassi�er MLP for on-

netionist aousti modeling onsisting of fully interonneted layers (eah unit

in the hidden and output layer reeives ativation from all units in the previous

layer). Although MLPs an onsist of several hidden layers in addition to an

input and an output layer, those with a single hidden layer were found to be suf-

�ient for suessful lassi�ation of speeh units and are theoretially apable

of modeling the same lass of funtions as networks with more hidden layers,

provided there are enough units in the hidden layer. Eah unit in the hidden

and output layer omputes a nonlinear funtion of its input vetor x onsisting

of a linear ativation funtion followed by a non-linear transfer funtion. While

all MLP units use the following projetive kernel
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as ativation funtion, where the w
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are weights and the b
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are the unit biases

1

,

transfer funtions are di�erent for di�erent layers of the network. Hidden units

1

Often, input vetors are impliitly extended by a onstant oeÆient of 1 whih allows to write
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Input Layer

Output Layer

Hidden Layer

Figure 3.2: Multi layer pereptron (MLP)

are mostly equipped with the sigmoid transfer funtion, yielding the following

output funtion
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Alternatively, the tanh funtion whih is just a symmetri version of the sigmoid

funtion is applied to hidden unit ativations. The type of transfer funtion

used for units in the output layer depends on the learning task and should not

be hosen arbitrarily. In the ase of onnetionist aousti modeling, MLPs

are used for multi-way lassi�ation of speeh units suh as monophone HMM

states. In statistial theory, multi-way soft lassi�ation is modeled by a multi-

nomial probability density. It an be shown [Jordan & Jaobs '94, Jordan '95℄,

that the mathing network transfer funtion (anonial link) for this probability

model is the softmax [Bridle '90℄ funtion:
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where M is the number of output units, N is the number of hidden units and

x

k

is the output of the k-th hidden unit. The softmax funtion together with

the bias as part of the weight vetor w
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a ross-entropy error funtion (whih essentially is equivalent to the log of a

multinomial probability density) onstitute the optimal hoie for output units

of a lassi�er neural network with respet to statistial interpretation of network

outputs and eÆieny of parameter estimation. For these reasons, we adhere

to the above theory and use lassi�er MLPs with softmax outputs throughout

this thesis. Nevertheless, it should be noted that other transfer funtions an

and have been applied to MLP based lassi�ation as well, partiularly when

statistial interpretability of network outputs is not required.

� Reurrent Neural Networks (RNN): RNNs are omparable to MLPs ex-

ept that they ontain additional reurrent onnetions that feed ativations

from the outputs of a partiular layer bak to the inputs of that layer. Suh

reurrent onnetions e�etively allow for improved modeling of temporal dy-

namis, whih was found to be advantageous in speeh reognition [Robinson &

Fallside '91, Robinson '94℄, where there are onsiderable orrelations between

adjaent feature vetors. The Abbot system [Hohberg et al. '95℄, arguably

the �rst onnetionist speeh reognition system that has ahieved ompeti-

tive performane on large voabulary speeh reognition tasks has been built

around a reurrent neural network [Robinson et al. '96℄ and is regularly parti-

ipating in the annual DARPA Broadast News evaluations [Cook et al. '97a,

Cook & Robinson '98, Cook et al. '99℄.

An interesting extension of RNNs that allows to simultaneously train and opti-

mally ombine reurrent neural networks for forward and bakward time dire-

tions, the bidiretional reurrent neural network [Shuster & Paliwal '97℄, has

also been applied suessfully to the task of onnetionist aousti modeling.

However, even though there is a generalization of bakpropagation alled Bak-

propagation Through Time (BPTT) available for reurrent networks, training

of RNNs is onsiderably more expensive than training of MLPs and requires

presentation of training patterns in their orret sequential order. Furthermore,

by using a window of frames around the urrent training frame as input pattern

vetors, ontextual information an be inorporated into MLPs to some extent

as well.

� Radial Basis Funtion Networks (RBF): In ontrast to the projetive

kernel used as ativation funtion in MLPs, RBFs make use of the following

radial kernel in hidden units

a

i

(x) =

N

X

k=1

(w

ik

� x

k

)

2

�

2

i



3.3 Connetionist Aousti Modeling 33

with parameters w

ik

(luster means) and �

2
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(luster varianes). Also, an ex-

ponential transfer funtion is used in hidden units whih yields the following

output

y

i

(x) = exp(�a

i

(x)) = exp(�

N

X

k=1

(w

ik

� x

k

)

2

�

2

i

)

Usually, RBFs [Moody & Darken '89, Renals '89, Poggio & Girosi '90℄ onsist

of a single hidden layer and a linear output layer whih renders these models very

similar to Gaussian mixture densities. As suh, RBFs an be initialized more ef-

�iently than MLPs by applying unsupervised lustering algorithms for obtain-

ing the parameters of the hidden layer. Also, RBFs with linear output layer need

not be trained with iterative gradient desent optimization methods. Rather, a

more eÆient two step proess of (1) lustering hidden unit means and selet-

ing appropriate varianes, and (2) estimating output weights analytially using

minimum least squares proedures is typially applied [Moody & Darken '89℄.

Although RBFs are primarily used with linear output layers for the purpose

of regression, they an also be applied to lassi�ation tasks [Yee '92℄. How-

ever, due to their loalized ativations in the hidden layer, RBFs are better

suited to regression tasks and it is often found that networks with projetive

kernels suh as MLPs outperform RBFs on lassi�ation tasks. Due to their

lose relationship to mixture densities, RBFs have raised onsiderable interest in

the speeh reognition ommunity (e.g., [Ney '91, Renals et al. '91℄) and even

lassi�er RBFs were applied suessfully to the task of onnetionist aousti

modeling in speeh reognition systems [Fritsh '96℄.

In addition to the above onnetionist arhitetures, Time-Delay Neural Networks

(TDNN) [Waibel et al. '87, Waibel '89, Hild & Waibel '93℄, modular ensembles of

TDNNs [Waibel et al. '88, Waibel '88, Waibel '89℄, and Hierarhial Mixtures of Ex-

perts (HME) [Jordan & Jaobs '94℄ have been used to build state-of-the-art onne-

tionist speeh reognition systems [Fritsh '96, Fritsh et al. '96℄.

Initially, onnetionist aousti modeling was applied to ontext-independent pho-

neti modeling, using a single, sometimes very large neural network with 40-60 out-

put units for jointly estimating posterior probabilities of typially about 40-60 HMM

states representing the phones modeled by the system. In a number of studies, it

was shown that suh monolithi onnetionist aousti models an outperform las-

sial aousti models based on Gaussian mixture densities, provided they both use

the same number of parameters and the same input features. However, performane

of Gaussian mixture models an be improved over onnetionist aousti models

by swithing to ontext-dependent phoneti modeling. In ontrast to onnetionist
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modeling, the inreased number of HMM states in ontext-dependent systems pose

no oneptual problem to traditional mixture modeling sine eah state's emission

probability distribution is modeled independently, using a separate mixture model

for eah state. Connetionist aousti models based on a monolithi neural network

lak suh salability and are not diretly suitable for ontext-dependent phoneti

modeling sine joint estimation of state posteriors requires the output layer of the

network to onsist of as many units as there are HMM states. Suessful training of

lassi�er neural networks beomes inreasingly diÆult if not impossible with larger

and larger output layers. Other ways of inorporating ontext-dependeny into the

onnetionist aousti modeling framework therefore had to be found.

3.4 Connetionist Context Modeling

In ontext-dependent aousti modeling, we have to estimate HMM state likelihoods

p(xjs

l

) for 1 � l � N just as in the ontext-independent ase, exept that the

total number of HMM states N is signi�antly larger. Noteworthy, eah state s

l

does not only orrespond to a spei� phone and position in the underlying atomi

HMM model but also to a spei� ontext lass (e.g., diphone, triphone). In lassial

ontext-dependent aousti modeling based on Gaussian mixture densities, knowledge

about underlying phone, position and ontext lass identities of individual states is

not required as eah state simply gets its own mixture density.

However, for onnetionist aousti modeling, it is advantageous to rewrite the state

likelihoods by making the knowledge about underlying phone !

i

, ontext lass 

j

and,

in ase of multi-state HMM topologies, position �

k

in the atomi HMM of state s

l

expliit:

p(xjs

l

) = p(xj!

i(s

l

)

; 

j(s

l

)

)

with i(s

l

) 2 f1; : : : ; Ig and j(s

l

) 2 f1; : : : ; Jg for single-state HMMs and

p(xjs

l

) = p(xj!

i(s

l

)

; 

j(s

l

)

; �

k(s

l

)

):

for K-state HMMs (k(s

l

) 2 f1; : : : ; Kg). In the loally disriminant framework, we

apply Bayes' rule to express state likelihoods in terms of state posteriors and priors

as already desribed earlier. We �rst take a look at ontext-dependent modeling with

single-state HMM topologies. Bayes' rule yields

p(xj!

i

; 

j

) =

p(!

i

; 

j

jx) p(x)

P (!

i

; 

j

)

:

As usual, p(x) an be omitted, resulting in saled likelihoods
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p̂(xj!

i

; 

j

) =

p(!

i

; 

j

jx)

P (!

i

; 

j

)

:

Straight-forward appliation of a single network for estimating p(!

i

; 

j

jx) requires

I � J output nodes. However, ontext-dependent posteriors p(!

i

; 

j

jx) and priors

P (!

i

; 

j

) an be deomposed into smaller, easier to solve subtasks that require only

networks with I and J output nodes using statistial fatoring [Morgan & Bourlard

'92℄. Aording to the de�nition of onditional probability, there are two di�erent

ways of fatoring, yielding onsiderably di�erent ontext-dependent onnetionist

arhitetures:

1. Fatoring Contexts:
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j
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p(!
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P (!
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2. Fatoring Phones:
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In both ases, the original posterior state probability p(!

i

; 

j

jx) has been deom-

posed into a produt of an unonstrained posterior probability and a onditional

posterior probability. The �rst one an be estimated with a neural network just like

in the ontext-independent ase. The seond, onditional posterior probability an

be estimated in various ways. Viewing a feed-forward lassi�er neural network as an

estimator of the left side of a onditional, given the right side as input, the input

layer of suh a network an be extended by adding binary nodes that sparsely enode

the value of the disrete dependent variable.

Alternatively, onditional posterior probabilities an be estimated using a set of neural

networks, one for eah possible value of the disrete dependent variable. Eah one

of these networks has to be trained only on data orresponding to the spei� value

of the disrete dependent variable for whih it was build. Consider for instane the

ase of (1.) fatoring ontexts. The unonstrained posterior probability p(

j

jx) an

be estimated with a neural network with J output units, one for eah ontext lass.

The onditional posterior p(!

i

j

j

;x) an be estimated with a set of J neural networks

N

j

, one for eah ontext lass, estimating

p

j

(!

i

jx) = p(!

i

j

j

;x) 8j 2 f1; : : : ; Jg
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The onditional dependene of p

j

(!

i

jx) on 

j

is realized by training eah network only

on data orresponding to its ontext lass 

j

. While eah of these networks estimates

phone posteriors as in the ontext independent ase, they all do so for a di�erent

phoneti ontext. Sine they represent speialized versions of a network for ontext-

independent onnetionist modeling, it is advantageous to initialize the parameters of

all the ontext-spei� networks with the parameters of a trained ontext-independent

network. This way, training of the networks is aelerated and ontext-dependent

estimates are regularized whih avoids over�tting in ases of little available ontext-

spei� training data.

In the ase of (2.) fatoring phones, the unonstrained phone posterior p(!

i

jx) is

idential to the one estimated in the ontext-independent ase. In ontrast to the

ase of fatoring ontexts, ontext-independent modeling is transparently embedded

into the ontext-dependent arhiteture, allowing to easily swith between the two

modes of operation. Furthermore, fatoring phones allows to apply phoneti deision

trees to indue a variable, robust and data-dependent number of generalized ontext

lasses for eah phone. The onditional posteriors p(

j

j!

i

;x) an be estimated by a

set of I phone-spei� neural networks N

i

suh that

p

i

(

j

jx) = p(

j

j!

i

;x) 8i 2 f1; : : : ; Ig

Again, the onditional dependene on the phone !

i

is realized by restriting the

training set of eah phone-spei� network to data orresponding to the respetive

phone. The resulting ontext-dependent onnetionist arhiteture onsists of expert

networks for disriminating the ontext lasses separately for eah phone while the

arhiteture resulting from fatoring ontexts onsists of expert networks for disrim-

inating the phones separately for eah ontext lass. Both approahes have been

applied suessfully, yielding improved performane over ontext-independent on-

netionist aousti modeling [Frano et al. '94, Frano et al. '97, Fritsh et al. '97,

Kershaw et al. '95, Kershaw '97℄.

The fatored priors in the denominator of the expressions for saled likelihoods are

determined aording to relative frequenies in the training set. Conditional priors

an be obtained in a similar way as onditional posteriors by restriting the training

set on whih relative frequenies are omputed to data orresponding to the value of

the disrete dependent variable.

Finally, we note that state posteriors for multi-state HMM topologies an be deom-

posed analogously to the single-state ase. The additional variable �

k

, indiating

position in the multi-state HMM, simply adds another degree of freedom in the order

of fatoring. However, not all of the 6 possible ways of fatoring the state posteriors

yield reasonable on�gurations as has been investigated in [Fritsh '96℄.
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3.5 Problems with Connetionist Modeling

Connetionist aousti models possess a wide range of properties (loally disrimi-

nant, more ompat, faster evaluation, expliit lass priors, et.) that are missing

in traditional mixture density based models. Nevertheless, wide-spread use of stan-

dard onnetionist aousti models in large voabulary speeh reognition systems

has been hindered beause of the following problems:

� Lak of Salability: As already mentioned, monolithi onnetionist aous-

ti models sale poorly with respet to the number of HMM states that are

modeled. A lassi�ation task involving n lasses requires a lassi�er neural

network with n output nodes. Unfortunately, the number of output nodes in a

neural network an not be inreased arbitrarily. In [Cohen et al. '92℄, the au-

thors report a derease in speeh reognition performane when inreasing the

number of output units in a monolithi network from 69 (ontext-independent)

to 200 (ontext-dependent). In fat, onnetionist aousti models were ob-

served to perform best when applied to the level of speeh monophones instead

of on the level of subphoneti HMM states. We have shown how the teh-

nique of fatoring ontext-dependent state posteriors allows for deomposition

of an otherwise oversized lassi�ation problem into a sequene of two or three

onsiderably smaller lassi�ation problems. Although fatoring posteriors has

opened the door to ontext-dependent onnetionist modeling, some of the re-

sulting lassi�ation tasks may still be too large for aurate estimation of

posteriors, espeially when phoneti deision trees are used to indue variable

amounts of ontext lasses for eah phone.

� Non-Uniform Priors: It has been observed that lassi�er neural networks

generate poor estimates of posterior lass probabilities for infrequent lasses

that our rarely in the training set. Estimates of posteriors for frequent lasses

tend to be overestimated by the network while estimates of posteriors for very

infrequent lasses often vanish [Lawrene et al. '98℄.

For optimal results, the lasses to be disriminated by the network should be

distributed uniformly in the data used for training the neural network. Un-

fortunately, real-world lassi�ation problems typially exhibit quite irregular,

non-uniform prior distributions. For instane, the following plot (Fig. 3.3) de-

pits the distribution of prior probabilities of English phones as estimated on

the Swithboard LVCSR orpus (see Chapter 4).

The least frequent phones (ZH,OY,EN) are about 20 times less probable than

the most frequent phones (S,T,N).
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Figure 3.3: Non-uniformity of phone prior distribution on Swithboard

� Computational Cost of Training: The amount of omputation required for

training the neural networks in a onnetionist aousti model an be orders of

magnitude more than is required for lassial HMM training. This is a onse-

quene of loally disriminant modeling, in whih all parameters are potentially

modi�ed for eah training pattern, irrespetive of the lass the pattern belongs

to. In traditional, non-disriminatively trained Gaussian mixture models, only

the parameters of a single mixture (out of several thousand) are a�eted by

any training pattern. Furthermore, maximum likelihood training of Gaussian

mixture based aousti models an easily be distributed among several omput-

ers, speeding up training times signi�antly. In ontrast, onnetionist aousti

models require on-line training of typially very large neural networks whih

an not be distributed as easily. Rather, eÆient training requires dediated

hardware whih is not the ase for onventional models. Furthermore, even

when using dediated parallel hardware for the training of neural networks, re-

searhers have reported training times of up to several weeks for their largest

onnetionist aousti models.

We will present a new arhiteture for onnetionist aousti modeling in hapter

5 that, in addition to providing strutural bene�ts not found in traditional models,

avoids eah one of the above pitfalls that have prevented wide-spread appliation of

onnetionist aousti models so far.



Chapter 4

The Swithboard Corpus

In order to assess and ompare the performane of speeh reognition systems, a va-

riety of standardized speeh reognition benhmarks and orpora have been olleted

over the years. Large strutured olletions of speeh and assoiated transriptions

are essential to progress in automati speeh reognition. Due to the many approxi-

mations and heuristis, superiority or inferiority of algorithms and arhitetures an

not only be justi�ed theoretially but must be assessed on widely used benhmark

orpora. In the following, we present the Swithboard orpus [Godfrey et al. '92℄,

whih has been used for experimental evaluation of the arhiteture and algorithms

proposed in this thesis.

4.1 Overview

Swithboard is a large multi-speaker orpus of onversational Amerian English tele-

phone speeh and text olleted automatially over T1 lines at Texas Instruments

(TI). It inludes about 2500 onversations by 500 di�erent speakers from every major

dialet region in the United States. Originally designed for speaker identi�ation and

topi spotting, it is now being used primarily for evaluating large voabulary on-

versational speeh reognition (LVCSR) systems for band-limited (telephone quality)

speeh.

Overall, the orpus ontains about 250 hours of speeh and nearly 3 million words of

text. The onversations were reorded as two separate but synhronized data streams

with 8kHz sampling rate and �-law enoding, one for eah speaker. The isolation of

the two speakers is limited by the long distane telephone network's eho anelling

performane, but is generally better than 20 deibel. However, some reordings

exhibit heavy ross-talk with both speakers audible on one reording side. Although

adaptive �lters an be used to redue suh ross-talk, it is nevertheless regarded as a

potential problem for speeh reognition algorithms.

39
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Partiipating subjets were asked to lead a natural onversation for about 5 minutes

whereby the automati olletion system suggested one out of 70 topis suh as `air

pollution', `are of the elderly', `football', `musi', `hild are', `taxes', et. Various

demographi information about the partiipating speakers was gathered and stored.

This inludes their age, sex, level of eduation and geographially-de�ned dialet area

where they grew up. Aording to this information, about 54.9% of the speakers were

male, 45.1% female. About 90% of the speakers had an eduation of ollege level or

above. The following two tables give information about age and dialet distribution

in the orpus:

Dialet Region Perentage

South Midland 29.4%

Western 16.1%

North Midland 14.6%

Northern 14.2%

Southern 10.6%

New York City 6.2%

Mixed 4.9%

New England 4.0%

Age Perentage

20{29 26.4%

30{39 33.7%

40{49 21.1%

50{59 16.4%

60{69 2.4%

Table 4.1: Dialet region and age distribution in Swithboard

The relatively high perentage of speakers from the `South Midland' area is at-

tributable to the fat that a lot of Texas Instruments employees partiipated and

the ompany is loated in this area. The speeh in the Swithboard orpus is fully

transribed, and the transription onventions doumented. Court reporters pro-

dued most of the verbatim transripts, following a manual prepared spei�ally for

the projet.

4.2 Charateristis

Swithboard is a spontaneous, onversational telephone speeh orpus. As suh, it

exhibits a variety of phenomena that render automati speeh reognition a very

diÆult problem:

� Speaking Style: disuenies, linguisti inoherene, false starts, interruptions,

repetitions, emotions (mostly laughter), bad grammar
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� Pronuniation E�ets: highly variable speaking rate, redued pronuniations

(going to ! gonna), o-artiulation, sloppy speeh (whatha gonna do `bout

it?)

� Telephone Channel: redued bandwidth, signal degradation, high variation

in hannel quality, reverberations, ehos, ross-talk, stati noise

� Ambient Noise: musi, television, kids rying, ars passing by, kithen noise,

et.

Furthermore, onversational speeh exhibits an extremely non-uniform distribution

of words.
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Figure 4.1: Word overage { Swithboard orpus

The Swithboard orpus ontains about 28000 distint words. Fig. 4.1 shows orpus

overage with respet to most frequent words. Aording to this analysis, the 100

most frequent words aount for roughly 65% of the orpus. The 1000 most frequent

words aount for a. 90% of the orpus. Among the most frequent words are `I',

`THE', `AND', `YOU', `THAT', `TO', `A', `OF' and `IT'. 90 of the 100 most frequent

words are omposed of only a single syllable. There is a large diversity of phoneti

pronuniation of these short, frequent words. For instane, the word `AND' has been

found in 87 di�erent phoneti pronuniations where the most ommon pronuniation

represents just 16% of all ourrenes. The high variation in phoneti realization
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Figure 4.2: Word frequenies { Swithboard orpus

renders the reognition of these words rather diÆult. Even worse, sine these words

are very ommon, their mis-reognition inuenes overall performane severely.

Fig. 4.2 shows word frequenies for the Swithboard orpus. While the 100 most

frequent words have frequenies that would allow separate word models for eah one

of them, more than 20600 words (73.6%) our less than 10 times in the orpus.

4.3 LVCSR Evaluations

The Defense Advaned Researh Projets Ageny (DARPA) together with the Na-

tional Institute for Standards and Tehnology (NIST) performs annual oÆial eval-

uations (denoted `Hub-5E') of large voabulary onversational speeh reognition

(LVCSR) systems on the Swithboard and Callhome orpora. Among the sites that

have partiipated in suh evaluations are BBN, Dragon Systems, SRI, Boston Uni-

versity, Cambridge University and Carnegie Mellon University. In 1997, the author

partiipated as a member of the Interative Systems Labs, a group of researhers from

University of Karlsruhe and Carnegie Mellon University whih sored �rst on that

year's Swithboard test set [Finke et al. '97℄. The following table presents the best

results in terms of word error rate in reent years' evaluations. Unfortunately, results

are not diretly omparable sine NIST selets a new test set of varying diÆulty

eah year. Swithboard-I denotes the original orpus, while Swithboard-II denotes



4.4 Thesis Relevane 43

a relatively new, not yet fully transribed additional orpus that has been used in

reent evaluations.

year test set word error rate

1995 Eval-95 from Swithboard-I 48.0%

1996 Eval-96 from Swithboard-I 38.8%

1997 Eval-97 from Swithboard-II 35.1%

1998 Eval-98 from Swithboard-II 36.7%

Table 4.2: Best performanes in oÆial Swithboard evaluations

While there has been a lot of progress in speeh reognition tehnology on the Swith-

board orpus, the word error rate still hovers in the thirties, falling far short of human

apabilities (4% word errors aording to [Lippmann '97℄) on this data.

4.4 Thesis Relevane

The Swithboard orpus o�ers unique features that make it attrative for evaluat-

ing the arhiteture and algorithms proposed in this thesis. It is one of the largest

existing speeh orpora and arguably the most diÆult one for today's speeh reog-

nition tehnology with lots of open questions and great potential for improvements

in modeling. With respet to thesis relevane, the Swithboard orpus

� is ideal for building a robust baseline reognizer for general Amerian English

and for domain adaptation experiments due to its aousti and linguisti vari-

ability.

� o�ers a high degree of phoneti variability whih requires detailed phoneti

ontext modeling to ahieve ompetitive performane. On the one hand, this

allows to demonstrate the salability of the proposed hierarhial onnetionist

aousti model to arbitrarily large HMM state spaes. On the other hand, this

leads to very spei� ontext models ideally suited for strutural adaptation

experiments on domains with less variability in phoneti ontext.

� represents a large voabulary orpus. With a phoneti ditionary of about 30000

distint word forms from a large variety of topis, a Swithboard reognizer

overs most of the words of smaller domains.

While there are speeh orpora with even larger voabularies suh as the Wall Street

Journal (WSJ) and the Broadast News (BN) domains, Swithboard is rather unique

in its ombination of onversational speaking style, large voabulary and redued

bandwidth aousti quality.
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Chapter 5

Hierarhial Connetionist

Aousti Modeling

This hapter presents a hierarhially organized onnetionist arhiteture for prob-

abilisti lassi�ation and its appliation to aousti modeling in automati speeh

reognition [Fritsh '97, Fritsh & Finke '98a, Fritsh & Finke '98b℄. We introdue

hierarhial soft lassi�ers and disuss their theoretial properties with respet to

statistial interpretation whih allows for integration into the HMM framework. In-

dution of suitable tree strutures is disussed in detail, fousing on lustering algo-

rithms and distane metris developed spei�ally for aousti modeling. We present

Hierarhies of Neural Networks { hierarhial lassi�ers that rely on feed-forward

neural networks for loal onditional posterior probability estimation. Thousands of

neural networks have to be optimized when training suh a model for onnetionist

aousti modeling. We present eÆient training tehniques that allow to train hierar-

hial models muh faster than most existing onnetionist aousti models. Finally,

we present experiments and reognition results using the proposed arhiteture on

the Swithboard orpus.

5.1 Hierarhial Classi�ers

Consider the task of lassifying patterns x as belonging to one of N lasses !

k

,

where N is assumed to be very large (N > 5000). Applying the priniple of divide

and onquer, the task of disriminating between thousands of lasses an be broken

down into a hierarhial struture of many onsiderably smaller lassi�ation tasks.

This idea underlies the approahes to deision tree arhitetures [Breiman et al. '84,

Quinlan '86, Safavian & Landgrebe '91℄. Deision trees lassify input patterns by

asking ategorial questions at eah internal node. Depending on the answer to these

questions a single path is followed to one of the hild nodes and the proess repeats

45
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until a leaf node is reahed and a winner lass label is emitted. However, deision tree

lassi�ers are restrited to hard deisions. No information about the onfusability of

a spei� input pattern is available. Rather, we are often interested in the posterior

lass probabilities p(!

k

jx) as a measure of the degree of lass membership. The opti-

mum hoie in the Bayes' sense then is to pik the lass with maximum a-posteriori

probability

1

. Furthermore, it is sometimes required to supply a measure of the degree

of membership for all potential lasses to a superordinate deision making proess as,

for instane, in statistial speeh reognition. Adhering to the divide and onquer

approah but generalizing the deision tree framework, the statistial method of fa-

toring posteriors an be applied to deompose the lass posteriors hierarhially. We

all the resulting arhiteture a soft lassi�ation tree.

5.1.1 Hierarhial Deomposition of Posteriors

For now, we assume, that optimal posterior probabilities are available. Let S be the

set of lasses !

k

to be disriminated. Consider we have a method at our disposition

whih gives us a partitioning of S intoM disjoint and non-empty subsets S

i

suh that

members of S

i

are almost never onfused with members of S

j

(8j 6= i). A partiular

lass !

k

will now be a member of S and exatly one of the subsets S

i

. Therefore, we

an rewrite the posterior probability of lass !

k

as a joint probability of the lass and

the orresponding subset S

i

and fator it aording to

p(!

k

jx) = p(!

k

; S

i

jx) with !

k

2 S

i

= p(S

i

jx) p(!

k

jS

i

;x):

Thus, the global task of disriminating between all the lasses in S has been onverted

into (1) disriminating between subsets S

i

and (2) independently disriminating be-

tween the lasses !

k

remaining within eah of the subsets S

i

. This two-stage proess

an be interpreted as orresponding to a tree-strutured arhiteture (see Fig. 5.1).

In this tree struture, the root node (�rst level) performs oarse lassi�ation between

the subsets S

i

, while the seond level nodes perform lassi�ation among the lasses

!

k

within eah subset S

i

. Eah base lass !

k

is represented by a leaf node in the

tree. By subdividing subsets S

i

further and hierarhially repeating the proess of

fatoring onditional posteriors, we an build larger, deeper tree strutures.

In the limit, a N lass lassi�ation problem an be deomposed into a binary tree

struture onsisting of N � 1 nodes, eah modeling a binary lassi�ation problem

(see Fig. 5.2). Note however, that the branhing fator does not have to be binary

1

Assuming that equal risks are assigned to all lasses.
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or onstant for all nodes in the lassi�ation tree but that it might be subjet to

optimization during the tree design phase.

In order to ompute the posterior probability for a spei� lass, we have to follow

the path from root node to the leaf orresponding to the lass in question, taking

the produt of all the onditional posteriors along the way. Both the design of the

tree struture (divide) and the estimation and multipliation (onquer) of onditional

posteriors at eah node are important aspets in this arhiteture, that have to be

onsidered thoroughly beause in pratie, only approximations to the onditional

posteriors are available [Sh�urmann & Doster '84℄.

1

x

x

x

p(S  | S  ,x) p(S  | S  ,x)

p(S | x)

1j 2j 21

i

S11 S12 S13 S21 S22 S23

S1 2S

S

Figure 5.1: Hierarhial deomposition of posteriors

5.1.2 Properties

In addition to being appliable to lassi�ation tasks involving thousands of lasses,

hierarhial soft lassi�ers possess a variety of other interesting properties that make

this kind of model partiularly interesting for onnetionist aousti modeling.

� Mass Distribution: The presented arhiteture an be interpreted as a prob-

ability mass distribution devie. At the root node, an initial probability mass
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of 1 is fed into the arhiteture. At eah node, the inoming probability mass is

multiplied by the respetive onditional posterior probabilities and fed into the

hild nodes. Eventually, the probability mass is distributed among all the leaves

(lasses) rendering their posterior probabilities. In ontrast, deision trees rep-

resent hard-swithing devies, where only a single path from root node to one

of the leaves is onsidered.

x

1

C
on

di
ti

on
al

P
os

te
ri

or
s

Figure 5.2: Binary tree struture for omputing lass posteriors

� Fault Tolerane: If one of the nodes in a lassi�ation tree, for example

the root node, fails to provide good estimates of onditional posteriors, a hard

deision tree will produe many lassi�ation errors due to the greedy loal

deisions. In ontrast, suh shortomings will inuene the deision proess

less dramatially in a soft lassi�ation tree as lassi�ation deisions are being

delayed until the tree is fully evaluated and the omplete posterior probability

distribution is available at the leaf nodes. More general, Fig.5.3 demonstrates

that greedy loal hoies as performed in a hard deision tree do not nees-

sarily lead to the maximum a-posteriori leaf node (the one hosen by a soft

lassi�ation tree).
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winning class in soft
classification tree

winning class
in hard decision tree

1

0.60.4

1.0 0.0 0.4 0.6

0.4 0.0 0.24 0.36

Figure 5.3: Di�erene between soft lassi�ation tree and hard deision tree

� Cross Setioning: A very interesting and important aspet of soft lassi-

�ation trees is the sum-to-unity property observable in any horizontal ross

setion at any level of the tree (see Fig. 5.4. For any ross setion, the partial

posteriors omputed down to the spei� tree level sum up to 1 and onstitute

a valid posterior probability distribution. Thus, a soft lassi�ation tree an be

ut o� at any tree level and still be used to ompute posterior probabilities for

a redued number of lasses. This is equivalent to merging the original lasses

aording to the tree topology up to the level of ross setioning. The resulting

lassi�ation task will be less spei� and often easier to solve than the original

one.

� Pruning: Related to the sum-to-unity property of ross setions is the property

that partial posteriors omputed on a path from the root node to a leaf are

dereasing monotonially. This in turn allows to lose paths whenever the

partial posterior falls below a suitable threshold, thereby pruning whole subtrees

with lasses that would otherwise reeive posteriors smaller than the threshold.

This property yields the possibility to smoothly trade-o� lassi�ation auray

against omputational omplexity. In the limit, when only a single path with

highest onditional posterior probability is followed, the soft lassi�ation tree

resembles a deision tree.

The above properties together with the fat that soft lassi�ation trees are suitable

to any size of lassi�ation task render this kind of model an optimal hoie for
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Σ=1

Σ=1

Σ=1

Σ=1

Figure 5.4: Sum-to-unity property of ross setions

loally disriminant aousti modeling. However, in order to be appliable in a speeh

reognition system, the following issues have to be addressed:

� Given a set of HMM states to be modeled, how an we onstrut a suitable tree

struture for hierarhial aousti modeling?

� How an we estimate the loal onditional posterior probabilities required at

eah tree node?

� How an a hierarhial aousti model be trained eÆiently, given the huge

amount of training data typially required for speeh reognition?

� How an a hierarhial lassi�er be integrated into an HMM based speeh reog-

nition system?

The remainder of this hapter is therefore devoted to the analysis of the above issues

and to the spei� algorithmi and arhitetural solutions that we have developed in

order to realize a speeh reognition system based on a hierarhial aousti model.

5.2 Tree Constrution

When it omes to the design of soft lassi�ation trees, or equivalently to the design

of hierarhial deompositions of lass posteriors, the hoie of algorithm depends
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mostly on the number of initial lasses. In our spei� ase, we are seeking a tree

struture on top of a set of HMM states, that results in an e�etive hierarhial

deomposition of the state posteriors. As the set of base lasses in this ase onsists

of the set of deision tree lustered HMM states, we might onsider to adopt the

struture of the ontext lustering deision trees for the purpose of hierarhially

fatoring the state posteriors. However, the set of deision trees typially onstitutes

a bad hoie for hierarhial aousti modeling for the following reasons:

� In the standard approah, phoneti deision trees are grown independently for

eah monophone. One of the motivations for this restrition is reduing the om-

putational omplexity of tree growing. However, there is onsiderable evidene

for aousti similarities between allophoni variants of di�erent monophones

whih suggest to not enfore any suh onstraint when the tree struture is to

be exploited for hierarhial aousti modeling.

� Phoneti deision trees typially exhibit a strong imbalane due to the ategor-

ial questions used for splitting nodes. While the yes-branh of suh questions

ontains only few examples, the no-branh ontains the majority of examples

and therefore is subjet to exessive further splitting, ausing the imbalane.

In ontrast, a more balaned tree is desirable for hierarhial soft lassi�a-

tion of HMM states in order to exploit the divide-and-onquer priniple most

e�etively.

Instead of adopting the most likely suboptimal phoneti deision tree struture, we

will investigate approahes at onstruting alternative tree strutures spei�ally for

the purpose of hierarhial soft lassi�ation of HMM states. To that end, we postu-

late the following design riteria for tree strutures that are to be used for hierarhial

aousti modeling.

1. Aousti similarity of hild nodes should be smallest for the root node and

should inrease monotonially towards the bottom of the tree. This is to ensure

that the omplexity of the loal lassi�ation tasks inreases from top to bottom.

As the quality of estimates of the loal onditional posterior probabilities at the

root node inuenes the auray of posterior probabilities of all leaf nodes, we

want to have a lassi�ation task as easy as possible at the root node. Further

down the tree, the auray of estimates of the loal onditional posteriors

beomes less and less ritial.

2. Balaned trees should be favored, suh that an approximately equal number of

nodes have to be traversed to evaluate any leaf node.
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3. The a-priori distribution of hild nodes should be lose to a uniform distribution

for any tree node to allow for the training of aurate estimators of the loal

onditional posterior probabilities.

We will �rst disuss optimal tree strutures before we will turn to loally optimal algo-

rithms required when dealing with the large number of lasses typially enountered

in ontext-dependent aousti modeling.

5.2.1 Optimality

The optimal soft lassi�ation tree for a given task and given type and struture of

estimators for the onditional node posteriors is the one whih results in minimum

lassi�ation error. If all the node lassi�ers would ompute the true onditional

posteriors, the tree struture would have no inuene on the lassi�er performane

beause any kind of fatoring (through any kind of tree struture) yields an aurate

deomposition of the lass posteriors. However, in pratie, approximation errors

of node lassi�ers render the hoie of tree struture an important issue. For small

numbers of lasses, the optimal tree an in priniple be found by exhaustively training

and testing all possible partitionings for a partiular node (starting with the root

node) and hoosing the one that gives the highest reognition auray. However, even

if restriting the tree struture to binary branhing nodes and balaned partitionings,

the number K of partitionings that have to be examined at the root node

K =

 

N

N=2

!

quikly brings this algorithm to its limits, even for a moderate number of lasses

N . Therefore, we have to onsider heuristis to derive potentially sub-optimal tree

strutures. For example, one valid possibility is to assume that the ahievable a-

uray of approximations to the true posteriors is related to the separability of the

orresponding sets of lasses.

5.2.2 Prior Knowledge

Following the above mentioned guideline, prior knowledge about the task in question

an often be applied to hierarhially partition the global set of lasses into reasonable

subsets. The goal is to partition the remaining set of lasses in a way that intuitively

maximizes the separability of the subsets. For example, given a set of phones in a

speeh reognizer, a reasonable �rst partitioning would be to build subsets onsisting

of voied and unvoied phones. In larger speeh reognition systems where we have

to distinguish among multiple ontext-dependent phone states, prior knowledge suh
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as state and ontext identity an be used as splitting riterion (see Fig. 5.5). In tasks

suh as speaker or writer identi�ation, features suh as gender or age are potential

andidates for splitting riteria.

monophones

context classes

HMM states

Figure 5.5: Three level tree struture for ontext-dependent hierarhial aousti

modeling onstruted based on prior phoneti knowledge

The advantage of suh knowledge driven deompositions is a fast tree design phase

whih is a lear superiority of this approah when dealing with large numbers of

lasses. However, this method for the design of hierarhial lassi�ers is subjetive

and error prone. Two experts in a spei� �eld might disagree strongly on what on-

stitutes a reasonable hierarhy. Furthermore, it is not always the ase that reasonable

partitionings yield good separability of subsets. Expert knowledge an be misleading.

5.2.3 Confusion Matries

In ase the number of lasses is small enough to allow the training of a single lassi�er,

the design of a soft lassi�ation tree an be based on the onfusion matrix of the

trained monolithi lassi�er. Indiating the onfusability of eah pair of lasses, the

onfusion matrix yields relatively good measures of the separability of pairs of lasses.

This information an be exploited for designing a tree struture using a lustering

algorithm. For instane, we an de�ne the following (symmetri) distane measure

between two disjunt sets of lasses S

k

and S

l
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measured on a set of labeled patterns T . The distane d(S

k

; S

l

) an now be used

as a replaement for the usual Eulidean distane measure in a standard bottom-up

lustering algorithm. Unfortunately, one the number of lasses inreases to several

thousand, training of a monolithi lassi�er beomes inreasingly diÆult.

5.2.4 Cluster Methods

Assuming that separability of lasses orrelates with approximation auray of es-

timators for the posterior lass probabilities, we an go further and assume that

separability of lasses an be measured by a suitable distane between a lass repre-

sentative or the lass onditional distributions in feature spae. Examples of distane

measures inlude, for instane, the Eulidean distane between lass means or the

Mahalanobis distane between the lasses seond order statistis. Irrespetive of the

hosen distane measure, the goal always is to group the set of lasses in a way that

results in maximum inter- and minimum intra-group distanes. Solutions to this

problem are known as lustering algorithms (e.g., [Duda & Hart '73℄). We will in-

vestigate this lass of algorithms in more detail in the following setion and develop

eÆient solutions for designing soft lassi�ation trees.

5.3 Bottom-Up vs. Top-Down Clustering

Considering the large amount of HMM states that we intend to model with hierar-

hial lassi�ers, eÆieny and pratiality of a tree growing algorithm is of foremost

importane. It is for this reason, that we are fousing on luster methods for on-

struting the proposed hierarhially organized aousti models. In the following, we

develop spei� solutions for lustering hierarhial lassi�ers based on parametri

models (single Gaussians) for the HMM states and suitable distane measures be-

tween suh densities, omparing the two major types of hierarhial luster methods,

namely agglomerative (bottom-up) and divisive (top-down) algorithms. Agglomera-

tive proedures start with n singleton lusters as the leaf nodes and onstrut a tree

struture bottom-up by suessively merging lusters. In ontrast, divisive proedures

start with all the samples in one luster (the root node) and onstrut a tree struture

top-down by suessively splitting lusters. We will see that both approahes exhibit

pros and ons with respet to our appliation.
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5.3.1 Distane Measures

As already mentioned, we represent eah initial lass (HMM state) probabilistially

using a single Gaussian density. In ontrast to more simple representations, for

instane onsisting of just a mean vetor, the additional seond order statistis allow

for more aurate distane measures. Gaussian densities for eah HMM state an

easily be obtained from the training data using maximum likelihood estimation.

In our work, we have investigated two distane measures based on seond order

statistis for hierarhial lustering, namely one based on information divergene and

one based on split likelihood gain.

� Symmetri Information Divergene:

Information divergene, also known as Kullbak-Leibler (KL) divergene [Kull-

bak & Leibler '51℄, measures the amount of information that is lost, when

approximating a ontinuous probability density p

i

with some other ontinuous

density p

j

. In its basi form, it is de�ned as

KL(p

i

; p

j

) =
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(x) log
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i

(x)
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(x)

dx

It measures how losely p

j

resembles p

i

. For inreasing similarity, the KL diver-

gene approahes zero, whih is obtained only in ase of p

i

= p

j

. Unfortunately,

the standard form of the KL divergene is not symmetri and hene an not be

used diretly as a distane measure. However, a symmetri version of the KL

distane an easily be derived:
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In our ase, the densities p

i

and p

j

model the distribution of aousti vetors

in HMM states s

i

and s

j

and are parameterized by normal densities. The

above KL divergene thus measures the amount of dissimilarity between HMM

states s

i

and s

j

. One an show (e.g., [Tou & Ganzales '74℄) that the symmetri

information divergene between two normal densities amounts to
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To redue the omputational load of a lustering algorithm that utilizes this

distane measure, we typially restrit the Gaussian ovarianes to diagonal

matries, resulting in the following simpli�ed distane measure
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� Split Likelihood Gain:

In ontrast to symmetri information divergene, split likelihood gain measures

the gain in likelihood obtained by splitting the data of a spei� luster into two

halves and modeling eah half separately. Therefore, this measure is primarily

used for divisive lustering. We have already introdued split likelihood gain

in our overview of phoneti ontext modeling in hapter 2 where it served as

the optimization riterion in seleting phoneti questions for divisive growing

of phoneti deision trees. Assuming perfet models for the distribution of our

data vetors, there would be no gain from separately modeling parts of a given

density. However in pratie, we an only approximate the true distribution

of our data, for instane by means of seond order statistis. Consequently,

onsiderable gains in likelihood an be obtained by splitting the data as is

illustrated in Fig. 5.6.

p(x)

p  (x)
R

p  (x)
L

Gaussian model

True density

Figure 5.6: Split likelihood gain with Gaussian models

Split likelihood gain an also be onsidered a measure of the dissimilarity of the

lasses resulting from a split. In the limit of idential distributions for the data
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in eah lass, its value onverges to zero as there is no gain from modeling the

lasses separately. As already stated in hapter 2, split likelihood gain is de�ned

as the di�erene in log likelihood between the hild nodes and the parent node.
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agonal ovariane Gaussian densities modeling the data distribution after the

split. Hereby, split likelihood gain simpli�es to the following, omputationally

eÆient expression:
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where n, n

L

and n

R

denote the number of samples observed in the parent and

hild distributions, respetively.

5.3.2 Agglomerative Clustering

Our initial approah to hierarhially lustering HMM states for tree-strutured on-

netionist aousti modeling is based on agglomerative lustering. Starting with a

set of leaf nodes representing the HMM states to be lustered, we suessively re-

ate new tree nodes by merging existing ones aording to their aousti similarity,

thereby onstruting a binary tree struture in a bottom-up fashion. We model the

data distribution at the initial leaf nodes by diagonal Gaussian densities and measure

their dissimilarity using the symmetri information divergene introdued earlier.

In a straight-forward approah, we would merge the statistis of two hild nodes to

form a new, single Gaussian density for the parent node. However, as the available

amount of data inreases exponentially towards the top of the tree, the omplexity

of the orresponding distribution will also inrease onsiderably. A single, diagonal

Gaussian density must be onsidered a poor approximation of the distribution in the

upper region of the tree. In order to improve the modeling auray, we developed

an extension [Fritsh et al. '97℄ of standard agglomerative lustering whih forms

mixture densities as models of the data distribution in parent nodes by suessively

merging the initial Gaussian densities, using the within-luster a-priori probabilities

of the Gaussians as the mixture weights (see Fig. 5.7). This way, none of the initial

information is lost during lustering, given that we generalize the distane measure

to the information divergene between mixtures of Gaussians.
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Figure 5.7: Forming Gaussian mixtures for improved agglomerative lustering

A omputationally feasible approximation to the otherwise not analytially solvable

integral expression for the KL divergene between Gaussian mixtures an be obtained

by assuming linearity of the symmetri information divergene d(S
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) and p(s
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) denote the within-luster a-priori probabilities of the states

s

i

in the luster S

k

and the states s
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in the luster S

l

. N
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and N

j

denote the Gaussian

models for states s

i

and s

j

, respetively.

Finally, Fig. 5.8 details the agglomerative lustering algorithm as we have used it

for lustering tree strutures for a given set of HMM states. The omputational

omplexity of this algorithm is O(n

3

)

2

, where n is the number of HMM states. In

our initial experiments, we were applying this algorithm to onstrut tree strutures

2

Under the assumption that we only have O(n) memory available. If we would have O(n

2

)

memory available, the omputational omplexity ould be redued to O(n

2

) using a priority queue

for maintaining the distanes between all pairs of states.
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for ontext-independent modeling, typially involving less than 200 HMM states.

For illustration purposes, Fig. 5.9 shows a dendrogram of a typial agglomerative

lustering run on a relatively small set of only 56 HMM states orresponding to the

set of single-state monophone HMMs in a ontext-independent Swithboard system.

The model set onsists of 44 standard English phones along with 7 noise sounds

(marked with a plus), 4 phones modeling interjetions (marked with an ampersand)

and silene (SIL).

Agglomerative Clustering Algorithm

1. Initialize algorithm with n lusters S

i

, eah ontaining

(1) a parametri model of the state-onditional likelihood

for the orresponding state s

i

, e.g., a diagonal Gaussian

(2) a ount C

i

, indiating the frequeny of state s

i

in the training set.

2. Compute within-luster priors p(s

i

jS

k

) for eah luster S

k

based on the

ounts C

i

3. Compute the symmetri divergene measure d(S

k

; S

l

) between all pairs

of lusters S

k

and S

l

.

4. Find the pair of lusters with minimum divergene, S

�

k

and S

�

l

5. Create a new luster S = S

�

k

S

S

�

l

ontaining all states from S

�

k

and

S

�

l

plus their respetive ounts. The resulting parametri model is a

mixture of Gaussians where the mixture oeÆients are the state priors

6. Delete lusters S

�

k

and S

�

l

7. While there are at least 2 lusters remaining, ontinue with 2.

Figure 5.8: Agglomerative lustering algorithm based on information divergene

Interestingly, the agglomerative lustering algorithm identi�es lusters of phones

that orrespond roughly to well known linguisti lasses, suh as stop onsonants,

nasals and friatives. The top level split separates silene, breathing and noise

sounds (lower subtree) almost perfetly from speeh sounds (upper subtree). Remark-

able phone lusters that emerge early on during lustering onsist of (IX,IH,IY,Y),

(JH,CH,SH,ZH), (Z,S,F), (ER,AXR,R), (T,D,P,K). After these initial experiments

with ontext-independent systems, we swithed to ontext-dependent models with

thousands of states as required for state-of-the-art performane in large, omplex

domains suh as Swithboard. Fig. 5.10 shows a tiny part of the dendrogram for
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unonstrained agglomerative lustering of 5000 ontext-dependent HMM states.
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Figure 5.10: Agglomerative lustering of ontext-dependent HMM states

Note, that the algorithm groups together HMM states belonging to di�erent mono-

phones right from the start

3

. This observation on�rms our earlier laim that the

aousti similarity of HMM states an sometimes be larger between allophoni vari-

ants of di�erent monophones than between allophoni variants of the same mono-

phone.

The basi agglomerative lustering algorithm as presented so far exhibits ertain

weaknesses that beome most prominent when inreasing the number of HMM states

to be lustered. First of all, the algorithm tends to produe very imbalaned trees.

The upper urve in Fig. 5.11 shows the average depth of leaf nodes for di�erent num-

bers of leaf nodes. For omparison, we have inluded a urve that gives the depth of

leaf nodes in a balaned binary tree for the same number of leaf nodes

4

. For 5000

HMM states (leaf nodes), the average depth of leaf nodes of a tree onstruted by

agglomerative lustering already reahes 80 with a standard deviation of over 50. As

stated in the beginning of this setion, suh imbalaned trees are problemati and

3

The state names onsist of an initial monophone name, followed by the identi�er for the position

in a three state left-right HMM (b,m,e), followed by an identi�er for the spei� allophoni variant

of that state (in brakets).

4

This urve onstitutes a lower bound for the average depth of leaf nodes in any binary tree
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Figure 5.11: Unonstrained agglomerative lustering leads to imbalaned trees

undesirable for the task of hierarhially estimating HMM state posteriors. Thus,

we inorporated an additional penalty term into the distane measure for luster-

ing whih enfores balaned trees by favoring a uniform distribution of the a-priori

probabilities of hild nodes. More spei�ally, we hose the negative entropy of the

distribution fp; 1� pg of a-priori hild node probabilities

�H(p) = p log(p) + (1� p) log(1� p)

as the penalty term and inorporated it additively into our distane measure using

an empiri weighting fator � as follows:

d(S

k

; S

l

)

?

= d(S

k

; S

l

)� �H(p(S

k

))

As an be seen in Fig. 5.11 (� = 100), the additional penalty term allows to luster

balaned trees using the agglomerative algorithm. In Figs.5.12 and 5.13, we have

investigated the e�et of the additional penalty term in more detail.

For four di�erent systems with 5000, 1000, 500 and 200 deision tree lustered,

ontext-dependent HMM states, we have lustered soft lassi�ation trees using the

agglomerative lustering algorithm with additional entropy penalty term. The e�et

of varying the weight � on the average depth of leaf nodes an be seen in Fig. 5.12.

For inreasing �, we obtain more and more balaned trees, until for � � 50, this

proess eventually saturates. Partiularly for systems with large numbers of HMM
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Figure 5.12: Average depth of leaf nodes when penalizing non-uniform priors during

agglomerative lustering of binary trees

states suh as the 5000 state system, the additional penalty term greatly improves

tree balane.

However, balaning our agglomerative luster trees is only an indiret e�et of the

additional entropy based penalty term. In fat, the original purpose of introduing

this penalty term was to favor a uniform prior distribution of hild nodes at eah tree

node. With respet to the estimation of posterior probabilities of hild nodes, a highly

non-uniform prior distribution typially leads to poor estimates for the infrequent

hild node, espeially when a neural network is trained to estimate these posteriors.

We will disuss this aspet in more detail in a later setion on aspets of onnetionist

estimators for onditional posterior probabilities in our arhiteture. The e�et of the

additional penalty term on the prior distribution of hild nodes an be seen in Fig. 5.13

for the same state sets and luster runs already depited in Fig. 5.12. This time,

however, we have plotted the average normalized entropy of the a-priori distribution

of hild nodes vs. varying values of �. The normalized entropy has a range of [0; 1℄,

with 0 orresponding to one of the priors being zero and 1 orresponding to a perfetly

uniform prior distribution. As expeted, the inorporation of the additional penalty

term not only leads to more balaned trees but is also e�etive in inreasing the

average normalized node entropy and thereby allows to ontrol the prior distribution

and to enfore uniform priors.

The seond disadvantage of the basi agglomerative lustering algorithm is the re-



64 Chapter 5 Hierarhial Connetionist Aousti Modeling

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 20 40 60 80 100

M
ea

n 
N

or
m

al
iz

ed
 E

nt
ro

py
 o

f P
rio

r 
D

is
tr

ib
ut

io
n

Non-Uniform Prior Penalty

5000 states
1000 states

500 states
200 states

Figure 5.13: Average entropy of node prior distributions when penalizing non-uniform

priors during agglomerative lustering of binary trees

strition to binary trees. A binary tree requires n�1 loal estimators, one for eah of

n�1 internal nodes, given n leaf nodes. In our appliation, detailed ontext-modeling

an easily lead to several thousand HMM states requiring the same number of loal

estimators for a binary hierarhy. Trees with a larger branhing fator would allow

to derease the number of loal estimators (at the ost of reating more omplex

lassi�ation tasks) and to derease the average depth of the soft lassi�er tree. Ex-

tending the basi agglomerative lustering algorithm to allow for larger branhing

fators b essentially inreases the omputational omplexity exponentially aording

to O(n

b+1

), whih is unfeasible in pratie. However, we an onstrut b-ary trees

from binary trees in a post-proessing step by applying the following greedy bottom-

up node merging algorithm:

1. Create a list P of tree nodes that initially onsists of all leaf nodes

2. Determine a list Q of tree nodes that onstitute root nodes of the largest sub-

trees ontaining 2 < n � b nodes from P .

3. For eah node q in Q: Find the set of nodes P

q

2 P in the orresponding subtree

and make them leaf nodes of a new node q

0

that replaes q. Set P = (PnP

q

)[q

0

.

Throw away all other nodes in the subtree of q.

4. While P ontains more than 2 nodes, go to step 2.
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In addition to riteria suh as tree balane, uniformity of priors and possible branhing

fators, omputational omplexity and salability also are important aspets of a

tree onstrution algorithm. The relatively high omputational omplexity of the

proposed agglomerative lustering algorithm diminishes its appliability to lustering

more than about 1000 HMM states. However, allowing for the following simpli�ation

of the proposed algorithm, we an signi�antly redue its omputational omplexity:

Consider only the distanes between the luster with smallest ount and all other

lusters in step 3 of algorithm 5.8 (this redues the omplexity from O(n

3

) to O(n

2

)).

This way, low probability states are grouped together early in the lustering proess,

inreasing luster mass rapidly suh that later deisions will be based on reasonably

reliable luster models. Furthermore, this strategy naturally leads towards balaned

trees.

In summary, agglomerative lustering based on information divergene is a viable

strategy for onstruting hierarhial soft lassi�ers for onnetionist aousti mod-

eling. However, we had to modify and extend the basi algorithm in order to make

the algorithm more eÆient, more exible and to enfore balaned trees and uniform

priors.

5.3.3 Divisive Clustering

As an alternative to agglomerative lustering, we have investigated divisive (top-

down) lustering. In divisive lustering, we start with a single luster ontaining all

the HMM states and suessively split lusters until only lusters ontaining a single

HMM state remain. Top-down approahes have the advantage, that if most interest

is on the upper levels of the resulting tree struture, they are more likely to produe

informative lusterings. In the binary ase, a divisive method has to onsider 2

n�1

�1

partitions of n states into two non-empty sets at the �rst step. In general, this is

omputationally unfeasible, so we have to apply reasonable heuristis suh that we

only have to onsider a small proportion of these partitions. In our ase, we seek

a division into two lusters that maximizes their dissimilarity, measured by means

of the split likelihood gain distane measure introdued earlier. There are various

heuristi approahes to �nd a division that yields a dissimilarity as lose as possible

to the maximum (e.g., variants of k-means lustering). As k-means is not diretly

appliable to split likelihood gain, we developed an iterative method for divisive

lustering of HMM states (see Fig. 5.14).

Note, that this instane of a divisive algorithm allows to onstrut trees with arbitrary

branhing fator, not just binary trees as is the ase with the standard agglomerative

lustering algorithm. Furthermore, experimental evaluation of the above algorithm

revealed, that the ost of onstruting b-ary trees depends only linearly on b, even

though the theoretial number of possible legal partitionings grows exponentially with
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inreasing b. Note also the similarity of the given divisive algorithm to the one that is

typially used for growing phoneti deision trees for ontext modeling. However, a

�nite set of questions allows to limit the number of splits to be onsidered for growing

phoneti deision trees to a few hundred, whereas the algorithm in Fig. 5.14 relies on

a greedy optimization heuristi.

Divisive Clustering Algorithm

1. Initialize algorithm with a single luster, ontaining

suÆient Gaussian statistis (aumulators) for eah

one of the HMM states s

i

to be modeled

2. Randomly selet b states from the urrent luster and use

their statistis as initial models for b new hild nodes

3. For all remaining states in the urrent luster:

Find the hild node for whih the split likelihood riterion

is maximized when adding the state's statistis and put

it into that node

4. Randomly selet a hild node and a state in that node:

Compute the di�erene in split likelihood gain when removing

the state from the seleted node and putting it into eah one

of the other hild nodes

5. If split likelihood gain an be inreased, move the seleted

state from the seleted hild node into the hild node whih

gives maximum gain and go bak to step 4

6. For eah hild node:

If there are more than b states left, ontinue with step 2; otherwise

reate leaf nodes for the remaining states

Figure 5.14: Divisive lustering algorithm for onstruting b-ary trees based on split

likelihood gain

In addition to being omputationally more eÆient than the agglomerative ounter-

part and allowing to diretly onstrut trees with branhing fators b � 2, the above

divisive luster algorithm o�ers yet another advantage in that it reates more bal-

aned trees. Fig. 5.15 shows how the average depth of leaf nodes in trees lustered

with the divisive algorithm dereases with inreasing branhing fator. The urves

are given for di�erent numbers of leaf nodes (HMM states).
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Figure 5.15: Average tree depth vs. branhing fator for divisive lustering

Note that even a binary tree lustered for as many as 20000 HMM states is almost

perfetly balaned without the use of any expliit penalty term in the distane mea-

sure as was required for agglomerative lustering. This behavior an be attributed to

the fat that the split likelihood gain distane measure already favors uniform splits

to some extent as it is highly dependent on the distribution of model ounts.

In order to be able to visually ompare the shape and quality of lustered trees,

we next applied the divisive algorithm to a small set of ontext-independent HMM

states, similar to the one used in Fig. 5.9. Fig. 5.16 depits the resulting dendro-

gram. Note, that the dendrogram is plotted on a log-sale sine split likelihood gain

orrelates with the amount of data being split (the model ounts) whih dereases

exponentially due to the splits being applied during lustering. Clusters of phones

similar to the ones found in agglomerative lustering an be identi�ed in Fig. 5.16,

e.g., (JH,CH,SH,ZH), (Z,S,F) and (M,N,NG). However in divisive lustering, the spe-

i� value of the distane measure at whih a split ourred is more indiative of the

amount of data (sum of ounts of the orresponding HMM states) in the luster than

of the aousti similarity. In ontrast, the agglomerative lustering algorithm allows

for better analysis and omparison of the aousti similarity of states and lusters

aross the tree sine the applied distane measure is independent of the amount of

data used to estimate the luster statistis.

Although the divisive lustering algorithm does not su�er from the tree imbalane

problem of standard agglomerative lustering, we still investigated the e�et of expli-
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Figure 5.16: Divisive lustering of ontext-independent phones
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itly enforing uniform priors at eah tree node during lustering. For that purpose,

we modi�ed the basi divisive algorithm in steps 3 and 4 by verifying that

b min

i=1;:::;b

p

i

� � � 2 [0; 1℄

is satis�ed before adding or reloating any state in any hild node (the p

i

's are the

hild node priors). A value of � = 0 orresponds to the original divisive algorithm

where no restritions are imposed. Larger values of � slowly enfore a uniform a-

priori distribution until for � = 1, only a perfetly uniform prior distribution will be

allowed. Of ourse, � = 1 is not a reasonable value in pratie. The algorithm will

fail to enfore the onstraint as perfetly uniform prior distributions an normally

not be realized. Fig. 5.17 and 5.18 give results for lustering runs with the extended

divisive algorithm. As already observed in Fig. 5.15, the basi divisive algorithm

already reates reasonably balaned trees. Consequently, the additional onstraint

on the prior distributions hardly redues the average depth of leaf nodes as an be

seen in Fig. 5.17. Only the urve for 5000 states shows a signi�ant derease in

average depth of leaf nodes for inreasing prior penalty �.
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Figure 5.17: Average depth of leaf nodes when penalizing non-uniform priors during

divisive lustering of binary trees

However, there is a measurable e�et when examining the average node prior distri-

bution (see Fig. 5.18). The average normalized entropy of prior distributions an be

inreased signi�antly for � � 0:8. Not surprisingly, the average entropy dereases
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Figure 5.18: Average entropy of node prior distributions when penalizing non-uniform

priors during divisive lustering of binary trees

again for larger values of � as it beomes harder, if not impossible to enfore the

uniformity onstraint at some nodes. However, omparing Fig. 5.18 with Fig. 5.13,

we an see that enforing uniform priors is not nearly as important in the divisive as

it is in the agglomerative algorithm.

5.3.4 Disussion

In summary, divisive lustering is omputationally more eÆient than agglomerative

lustering and o�ers the attrative advantage of being more exible in that it al-

lows to diretly onstrut trees with arbitrary branhing fators. In addition, the

trees resulting from divisive lustering are more balaned and the algorithm does

not neessarily require any intervention to enfore tree balane as is the ase with

agglomerative lustering. Table 5.1 ompares the main features of the two lustering

algorithms presented in the previous two setions.

While these onsiderations lead us to a preferene towards the divisive algorithm, it

should be noted that this preferene results mainly from a omputational omplex-

ity point of view. In fat, agglomerative lustering often yields linguistially more

meaningful tree strutures. In their extended versions, both algorithms are apable

of generating balaned tree strutures that hierarhially represent aousti similarity

of HMM states - a prerequisite for e�etive hierarhial aousti modeling.
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Agglomerative Clustering Divisive Clustering

emphasis on lower levels emphasis on upper levels

better representation of more inuened by

aousti similarity prior probabilities

binary trees arbitrary b-ary trees

loally optimal based on heuristis

expliit balaning required yields balaned trees

omputationally expensive omparatively fast

Table 5.1: Comparison between agglomerative and divisive lustering algorithms

5.4 Loal Probability Estimation

One a suitable tree struture has been onstruted using one of the methods pre-

sented in the previous setion, it remains to provide estimators for the loal on-

ditional a-posteriori probabilities at eah tree node. In this setion, we disuss the

various issues that have to be addressed in order to ensure that aurate estimates

of the onditional posteriors an be obtained. In partiular, we address the following

issues:

� How to estimate onditional posteriors (5.4.1)

� What kind of onnetionist model to apply (5.4.2)

� How to obtain suitable target vetors for training (5.4.4)

� How to determine the model omplexity (5.4.5)

� What kind of learning algorithms to apply (5.4.6)

5.4.1 Estimation of Conditional Posteriors

Fig. 5.19 shows the task of estimating loal onditional a-posteriori probabilities at

a spei� tree node. Given a ertain input feature vetor x, the loal estimator

has to provide a-posteriori probabilities p(S

i

jS;x) for eah one of the hild nodes

S

i

, onditioned on the urrent node S. Of ourse, the estimates of the onditional

a-posteriori probabilities have to satisfy

p(S

i

jS;x) � 0 8i and

X

i

p(S

i

jS;x) = 1

in order to represent a valid posterior probability distribution.
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Figure 5.19: Loal Probability Estimation

As already disussed in hapter 3, lassi�er neural networks have proven to be ex-

ellent tools for estimating posterior lass probabilities, when trained appropriately.

A wide variety of monolithi network arhitetures has been applied to the task

of diretly estimating HMM state posteriors, an approah that is ommonly alled

onnetionist aousti modeling with the resulting speeh reognition systems alled

hybrid NN/HMM systems. In the ase of our hierarhial arhiteture, we have

deomposed the task of jointly estimating HMM state posteriors into a tree stru-

tured, modular ensemble of smaller, loalized tasks, namely to estimate onditional

a-posteriori probabilities for hild nodes in the tree. In order to apply neural network

models to the estimation of these probabilities, we �rst have to solve the problem of

estimating onditional posteriors using a lassi�er neural network.

Eah of the modularized estimation tasks is assoiated with a partiular tree node

and is furthermore independent of all others. As the posteriors to be estimated are

onditioned on the partiular tree node the task is assoiated with, the onditional

dependene on this tree node an be realized by restriting the training set for the

loal neural network estimator to training patterns of HMM states that are loated

within the subtree with the spei� tree node as root node. Fig. 5.20 illustrates this

tehnique for a three layer, binary hierarhy.

Assoiated with eah leaf node (HMM state) is a partiular set of training patterns

5

,

labeled with the index of the orresponding leaf node. Assoiated with eah internal

tree node is a neural network estimator for the onditional posterior probabilities

of all its hild nodes. The networks at the nodes in the lowest level of the tree are

trained on the patterns of all their diret hild nodes, whih are at the same time

5

Assuming, for now, that the underlying HMMs are trained aording to the Viterbi algorithm

that implies a one-to-one mapping between HMM states and training patterns.
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leaf nodes. The training set for the networks at the nodes one level above onsists

of the ombination of the training sets of the orresponding hild nodes, whih is

approximately twie as big in a binary hierarhy. This proess ontinues further up

the hierarhy, with the nodes' training sets roughly doubling at eah tree layer, until

we reah the root node. The training set at the root node onsists of all patterns of

all leaf nodes, i.e. the omplete training set from all HMM states. By restriting the

training sets in the above desribed manner, we have set the basis for training the

loal neural networks to estimate the desired onditional posterior probabilities.
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1 / 2 7 / 85 / 63 / 4
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NNNNNNNN
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1,2,3,4 / 5,6,7,8

Figure 5.20: Hierarhial distribution of HMM state training data

It should be noted that there are other, non-onnetionist approahes to the task of es-

timating a-posteriori probabilities, for instane polynomial regression [Sh�urmann '96℄.

However, as we will shortly see, onnetionist models have the distint advantage that

partiularly lassi�ation models are well understood in terms of statistial interpreta-

tion [MCullagh & Nelder '89℄ and an be realized suh that they intrinsially adhere

to the onstraints of an a-posteriori probability distribution. Polynomial regression

models, in ontrast, require post-proessing in form of on�dene mapping to ahieve
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this property.

In the remainder of this thesis, we refer to a soft lassi�ation tree equipped with neu-

ral networks at eah internal tree node for the estimation of the relevant onditional

a-posteriori probabilities as a Hierarhy of Neural Networks (HNN) [Fritsh '97,

Fritsh & Waibel '98℄. When applied to the task of estimating posterior probabilities

of HMM states in a hybrid, loally disriminative speeh reognition system, we all

our arhiteture a Hierarhial Connetionist Aousti Model. We �nally note that

the Neural Tree model proposed in [Stromberg et al. '91℄ is arhiteturally similar to

the Hierarhy of Neural Networks. However, Neural Trees represent a spei� form of

standard deision trees in whih neural networks are used for making hard loal de-

isions. Instead of omputing a posterior probability distribution over HMM states,

Neural Trees make hard deisions about the potentially orret HMM state (as do

most of the deision tree models) and are therefore only of limited use for aousti

modeling in large voabulary speeh reognition.

5.4.2 Feed-Forward Classi�er Networks

We hose a simple feed-forward arhiteture, the Multi-Layer Pereptron (MLP) with

a single, non-linear hidden layer of problem-dependent size, a non-linear softmax out-

put layer and fully interonneted layers without shortuts as the sole onnetionist

model for the estimation of loal onditional posterior probabilities in a Hierarhy of

Neural Networks. Fig. 5.21 depits the struture of suh a model, to be used in a

binary HNN.

The units in the hidden layer ompute the weighted sum of their inputs whih in-

ludes a bias unit with a onstant ativation of 1 and passes the result through a

tanh shaped squashing funtion, a symmetri version of the ommonly used sigmoid

ativation funtion (see also setion 3.3). The nodes in the output layer also om-

pute a weighted sum of their inputs whih onsist of the ativations in the hidden

layer. Again, an additive bias vetor is inluded before the �nal network outputs

y

k

are omputed through a softmax ativation funtion. The softmax ativation

funtion has been hosen beause in the terminology of generalized linear mod-

els, it represents the (inverse) anonial link to a multinomial probability model

for a likelihood based objetive funtion (ross-entropy) for multi-way lassi�ation

[MCullagh & Nelder '89, Jordan & Jaobs '94, Jordan '95℄. As we will shortly see,

the network has to be trained as a multi-way lassi�er

6

in order to approximate a-

6

In the ase of a binary HNN, the networks in the tree struture have to be trained for binary

lassi�ation whih, aording to the generalized linearmodel theory, involves a Bernoulli probability

model and a single sigmoid output node. However, one an show that softmax for two output nodes

is equivalent to a single node sigmoid. This allows to unify our approah and to represent both

binary and multi-way lassi�ation using the same model.



5.4 Loal Probability Estimation 75

posteriori probabilities and hoosing the anonial link instead of an arbitrary squash-

ing funtion at the network's output layer together with the appropriate objetive

funtion allows for statistial interpretation and in addition simpli�es �rst-order train-

ing algorithms suh as error bakpropagation [Rumelhart et al. '86℄, as parts of the

derivatives anel out.

1

1

output layer
(softmax nodes)

Input
Layer

hidden layer
(tanh nodes)

Conditional Posteriors

weight matrix V

weight matrix W

bias vector a

bias vector b

bias node

bias node

Input Feature Vector

Figure 5.21: Multi layer pereptron (MLP) with a single hidden layer for loal esti-

mation of onditional posteriors in a binary HNN

Overall, the network jointly omputes the following funtions y

k

(x) at its output units

whih will be interpreted as estimates of an a-posteriori probability distribution over

the feature spae, from whih x is taken:

y

k

(x) =

exp(z

k

(x))

P

l

exp(z

l

(x))

z

k

(x) =

X

j

w

kj

tanh

 

X

i

v

ji

x

i

+ a

j

!

+ b

k

where the v

ji

denote the weights from unit i in the input layer to unit j in the hidden

layer (subsumed in the weight matrix V ), a

j

denotes the bias weight for hidden unit

j (subsumed in the bias vetor a), the w

kj

denote the weights from unit j in the
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hidden layer to unit k in the output layer (subsumed in the weight matrix W ) and

b

k

denotes the bias weight for output unit k (subsumed in the bias vetor b).

Typially, we inlude the bias vetors a and b into the weight matries V and W ,

respetively, and extend the input and hidden layer ativation vetors by an additional

onstant of 1, whih allows to formulate the network funtion more ompat as

y = softmax(W tanh(V x))

The number of input units in this arhiteture is �xed for all networks in the tree and

is given by the dimensionality of the input feature spae. The number of output units

is equal to the branhing fator at the tree node for whih the network omputes a-

posteriori probabilities, i.e. the number of hild nodes. Eah unit in the output layer

represents a partiular hild node of the orresponding tree node. The size of the

hidden layer an be hosen arbitrarily and onstitutes the single degree of freedom in

terms of varying model omplexity. We prefer this standard MLP arhiteture over

more omplex models for the following reasons:

� Aording to the universal approximation theorem that goes bak to a theorem

by the Russian mathematiian Kolmogorov, any ontinuous n-variate funtion

(e.g., the posterior probabilities in our ase) an be approximated to an arbi-

trary degree of auray by an MLP with a single hidden layer of appropriate,

�nite size ontaining non-linear squashing funtions. Aording to this, a sin-

gle non-linear hidden layer is suÆient for general funtion approximation and

the orresponding MLP onstitutes the simplest arhiteture that exhibits this

property.

� MLPs have been used extensively and suessfully for the estimation of pos-

terior probabilities in the past, espeially in the �eld of onnetionist aousti

modeling.

� The simpliity of the MLP and its layered arhiteture allows for eÆient on-

line training using the error bakpropagation algorithm. EÆieny of parameter

estimation is an important aspet of hierarhial onnetionist aousti models

as the tree strutures an ontain several thousand nodes, requiring to train

thousands of neural networks.

� The proess of optimizing the network size in terms of generalization perfor-

mane is simpli�ed by the fat that there is only a single parameter (the number

of hidden units) for ontrolling the model omplexity.
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5.4.3 Loal Training Targets

Estimation of a (onditional) posterior probability density with the proposed type

of neural network requires, in addition to an appropriate non-linearity at the out-

put layer, that the network is trained as a pattern lassi�er, minimizing a suitable

objetive funtion for 1-out-of-N target vetors. In the ase of our hierarhial on-

netionist arhiteture, suh target vetors are obtained aording to Fig. 5.22.

1

1

0

0

1

0

x

x

x

Figure 5.22: Loal training targets for Viterbi based HMM training

Under the Viterbi assumption, an aeptable simpli�ation in training HMMs for

speeh reognition, there is exatly one HMM state that is onsidered responsible

for generating eah pattern vetor. In our tree struture, the Viterbi assumption

implies that only a single leaf node has to be onsidered for eah training pattern.

As a onsequene, only the networks at nodes on the path from the root node to the

urrently ative leaf node reeive training information for the orresponding training

pattern. Loal training targets for the networks at the nodes along that path onsist

of vetors of 0s with a single 1 at the position that orresponds to the next hild

node on the path. Depending on the training mode, the parameters of the loal
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lassi�ers are either updated after eah training pattern (on-line training), after a

ertain number of patterns (bath training), or after all training patterns have been

presented to the arhiteture (o�-line training).

5.4.4 Model Seletion

When applying onnetionist models (or any other model) to the task of supervised

pattern lassi�ation based on a �nite training set, it is well known that the omplex-

ity of the model, i.e. the number of parameters employed, must be hosen arefully

in order to avoid over�tting and ahieve generalization to unseen data. Typially,

there is a ertain operating point for a given number of training patterns, where las-

si�ation performane on an independent validation set is optimal. While lassi�ers

with a smaller number of parameters are not apable of apturing the full omplexity

of the lassi�ation task, those with a larger number of parameters over�t to the

training set and exhibit poor generalization to unseen data. This e�et is known as

the bias/variane-dilemma or -trade-o� [Geman et al. '92, Tibshirani '96℄.

Basially, the predition error of a learner an be deomposed into a sum of a bias

(measuring how aurate the learner predits the training data) and a variane om-

ponent (measuring how muh the learners predition errors vary over di�erent test

sets), plus an additional term that quanti�es the diÆulty of the learning problem.

Inreasing the number of parameters redues the bias of the preditor but at the same

time inreases the variane, while dereasing the number of parameters dereases the

variane but inreases the bias. The problem of seleting the optimum model size is

usually addressed by one of the following approahes:

1. A-priori, knowledge based seletion of model size

2. Iterative seletion of model size (several trials)

3. Regularization [Girosi et al. '95℄

We �rst investigate a-priori seletion of the model size. Ideally, the omplexity of

loal node lassi�ers should be seleted so as to maximize generalization ability of

the omplete hierarhy. Generalization, on the other hand, is inuened by three

fators: (1) size and distribution of the training set, (2) model omplexity and (3)

lassi�ation omplexity of the spei� task at hand. Obviously, we an not inuene

the latter of these fators. Furthermore, in the ontext of our arhiteture, we assume

that the size of the training set for eah tree node is �xed by the tree topology, one

the hierarhy has been designed. Therefore, we have to hoose the model omplexity

of the estimator at eah node based on available training data and diÆulty of lassi-

�ation task. The following Fig. 5.23 shows the amount of training data available on
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average at eah level in a typial binary hierarhial onnetionist aousti model for

6000 HMM states

7

. In aordane with the intuition already gained from Fig. 5.20,

the number of available training patterns inreases exponentially from the bottom of

the tree to the top.
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Figure 5.23: Available training data in di�erent depths of HNN tree

The overall number of parameters in the type of neural network that we are using

depends linearly on the number of hidden units. Aording to [Baum & Haussler '89℄

and with some approximations, a rule of thumb is to hoose the number of hidden

units M to satisfy

M < N �

where N denotes the number of available training patterns and � is the expeted error

rate on the test set. In our ase, the variation in the number of training patterns in the

di�erent nodes is expeted to dominate the above formula. Therefore, a reasonable

initial strategy is to set the number of hidden units proportional to b

�d

, where b is

the branhing fator of the tree struture and d is the depth of the node. As long as

the tree is approximately balaned in terms of the prior distribution of hild nodes,

this strategy leads to hidden layers with size proportional to the number of available

training patterns. However, as an exponential inrease in the number of hidden units

7

The tree has been designed from the full Swithboard training set, using the agglomerative

lustering algorithm from setion 5.3.2, penalizing non-uniform priors.
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(when going from the bottom of the tree to the top) quikly leads to unfeasibly large

networks and the gains from making large networks even larger seem not to be worth

the additional omplexity, it is advisable to limit the number of hidden units to some

prede�ned maximum.

The seond approah to model seletion is more thorough but at the same time on-

siderably more expensive. In our ase it onsists of training a set of MLPs with

di�erent numbers of hidden units, e.g., 16, 32, 64, et., for eah tree node and om-

paring their performane on a previously unseen validation set, �nally seleting the

network whih gives maximum auray and disarding all others. The disadvantage

of this approah, of ourse, is that a large number of networks will be trained in

vain and the overall training time inreases signi�antly. Nevertheless, we have in-

vestigated this approah for building a hierarhial onnetionist aousti model for

the Swithboard domain. We report results of these experiments in the evaluation

setion.

The e�etiveness of the third approah, regularization, has been demonstrated for

many other onnetionist arhitetures [Girosi et al. '95℄ but remains to be investi-

gated in the ontext of the proposed model in future work.

5.4.5 Optimization Algorithms

Even though the majority of individual networks in our tree struture have to be

trained only on small proportions of the full training orpus, there are several hun-

dred if not thousand suh lassi�ation tasks to be proessed in order to obtain a

ompletely trained hierarhy (see next setion). Therefore, we onsider only stohas-

ti learning/optimization algorithms that ompute approximations to the gradients

and update the parameters of a network either after eah single training pattern or

after a small bath of pattern vetors instead of after presentation of the omplete

training set.

Another important issue with our tree strutured arhiteture is memory require-

ments. A feasible optimization algorithm has to be onservative in its memory re-

quirements if we want to train all neural networks within a hierarhy while passing

through the data. For instane, assuming that we have 256 MBytes available and

our hierarhial aousti model onsists of about 4000 networks, an optimization al-

gorithm must not take more than 64 KBytes of memory per network. Assuming

furthermore that the loal networks in our hierarhy typially onsist of about 2000

weights, eah taking 4 Bytes, the available memory for an optimization algorithm

allows only to store the equivalene of about 8 times the vetor of weights. Thus,

we are limited to �rst-order optimization algorithms. A seond order algorithm suh

as the Newton-Raphson method would require to store the Hessian of the objetive

funtion with respet to the vetor of weights, a 2000 x 2000 matrix, for eah network,
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summing up to a total of about 256 GBytes in the senario given above.

Consider a partiular network at a partiular node in an HNN tree. Let T denote

the training set available for estimating the parameters of the network. The training

set onsists of pairs of input and target vetors:

T = f(x

1

; t

1

); : : : ; (x

n

; t

n

)g

The ross-entropy error funtion simpli�es as follows under the assumption of 1-out-

of-N target vetors:
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X

i=1
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where y

j

(x) represents the funtion omputed by the network at its j-th output

unit. The goal of training is to minimize the above error funtion with respet to

the weights in the neural network estimator. For the experiments presented in this

thesis, we have investigated the following two optimization algorithms for training

the networks in an HNN:

Stohasti Gradient Desent

In its standard formulation, gradient desent updates the vetor of weights w

t

at time

t aording to

w

t+1

= w

t

+�w

t

with �w

t

= ��

dE

dw

(w

t

)

with salar learning rate �. The on-line version of gradient desent, often alled

stohasti gradient desent omputes a stohasti estimate of the true gradient from

only a few training vetors in order to update the parameters of the network more

often than just after presentation of the whole training set. As mentioned before,

on-line operation of the optimization algorithm is ruial for ahieving aeptable

training times in speeh reognition appliations. It has frequently been observed

that onvergene of gradient desent an be sped up signi�antly by introduing a

so-alled momentum term:

�w

t

= ��

dE

dw

(w

t

) + ��w

t�1

using a salar momentum fator �. Although simple gradient desent is surprisingly

e�etive in training neural networks, there is one notieable disadvantage with respet
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to our arhiteture: The learning parameters (learning rate � and momentum fator

�) have to be tuned separately for the training of eah network in a Hierarhy of

Neural Networks as di�erent networks require di�erent parameter settings for optimal

learning. Due to the large number of networks in suh a hierarhy, we have to �nd

ways of automatially tuning these parameters in order to obtain a reasonable training

algorithm for the full HNN tree.

Saled Conjugate Gradients

To avoid problems with learning parameters that have to be tuned spei�ally for

eah network in an HNN, we have investigated a seond optimization algorithm that

allows to train a neural network without requiring any ruial learning parameter. We

adopted an algorithm alled Saled Conjugate Gradients (SCG) [M�ller '93℄ whih is

a variant of the standard onjugate gradients algorithm that does not require a time

onsuming line searh. In fat, the SCG algorithm ontains no ritial user dependent

parameters and enables a fully automati network training.

In the SCG algorithm, the vetor of weights w

t

at time t is updated aording to the

following iterative optimization rule:

w

t+1

= w

t

+�w

t

with �w

t

= �

t

p

t

with the salar �

t

omputed as follows
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where g

t

denotes the negative gradient of E at time t with respet to the weights w:
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and the onjugate gradients p

t

omputed reursively as follows

p
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The SCG algorithm di�ers from the standard onjugate gradients algorithm in the

expression for the vetor s

t

whih is approximated as follows to avoid omputing the

Hessian with respet to the weights:
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The onstant � is unritial as long as it is kept small enough and the saling fa-

tor �

t

is adjusted automatially by the SCG algorithm depending on the positive

de�niteness of the Hessian (see [M�ller '93℄ for further details).

Although the SCG algorithm theoretially requires `true' gradients, i.e. o�-line mode

of operation, we have obtained satisfatory results with stohasti gradients om-

puted from about 100 training patterns whih again is ruial for our appliation.

It should be noted though, that the SCG algorithm routinely fails to onverge when

using onsiderably less than the above mentioned 100 pattern vetors for omputing

estimates of the gradients.

5.4.6 Approximation Auray

While we have disussed how we an aurately estimate loal onditional posterior

probabilities in a hierarhial lassi�er using small lassi�er neural networks, it is not

immediately lear whether the �nal estimates omputed at the leaf nodes aurately

approximate the real a-posteriori probability distribution. Inevitably, the loal node

lassi�ers an only produe estimates of the true onditional posteriors. Final lass

posteriors at the leaf nodes are omputed by multiplying these loal estimates in a

spei�ed manner. How do loal approximation errors inuene the global approxi-

mation error in a Hierarhy of Neural Networks?

A ommon way to empirially verify a lassi�ers ability to approximate posterior

lass probabilities is to ompute a histogram for the probability of a lassi�er output

y

i

(x) belonging to the orret target lass. Formally, we estimate P (i = jy

i

(x)),

where y

i

(x) is the output of the lassi�er for lass i, given an input feature vetor

x and  is the index of the target lass. The plot in Fig. 5.24 was omputed from

the outputs of a trained Hierarhy of Neural Networks lassi�er for 8000 tied HMM

states (see setion 5.7.6 for details) fed with 500000 pattern vetors. A lassi�er

that produes perfet a-posteriori probabilities would yield a histogram urve that

follows the diagonal from (0; 0) to (1; 1). The loser a histogram urve follows that

diagonal in pratie, the more aurate are the lassi�er's approximations to the true

posteriors.

As we an see from Fig. 5.24, our experiment yields an almost perfet diagonal,

demonstrating that a Hierarhy of Neural Networks an indeed be trained to produe

aurate estimates of posterior probabilities for a large number of lasses. It appears

that loal approximation errors (if present) do not amplify but anel out during

the top-down omputation of state posteriors in a hierarhial onnetionist aousti

model.
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Figure 5.24: Empiri Validation of Posterior Approximation Property of Hierarhial

Classi�er for 8000 HMM States

5.5 Global Training Tehniques

The training of onnetionist aousti models is typially reported to be orders of

magnitude more expensive then training of omparable onventional aousti models

based on mixture densities. In the past, dediated parallel proessing hardware has

often been neessary in order to train the sometimes very large onnetionist aousti

models in reasonable times

8

. This is onsidered one of the major drawbaks of the

onnetionist approah to aousti modeling.

Although the individual networks in our hierarhial onnetionist model are om-

paratively small, training of the overall arhiteture is also omputationally quite

expensive due to the very large number of networks that typially onstitute suh a

hierarhy. However, in ontrast to monolithi onnetionist models, training of our

HNN model an still be realized eÆiently on standard hardware as eah network

in an HNN tree an be trained independently of all others. The set of tree nodes

with assoiated networks an be distributed among several standard omputers and

trained independently.

We have developed two parallelizable training tehniques for HNN trees whih will be

desribed in the following. The �rst one is based on jointly training all the networks

in an HNN tree while passing through the training data. In ontrast, the seond

8

Where `reasonable' quite often translates to `several days' !
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tehnique is based on extrating separate training sets for eah one of the networks

in an HNN tree using a single pass through the training data and then independently

training all the networks in parallel on their respetive training set.

5.5.1 Joint Training

Consider the proess of jointly training all the networks in a Hierarhy of Neural Net-

works. We sequentially proess the input training patterns and determine for eah

pattern the networks involved in estimating the posterior probability of the assoi-

ated HMM state aording to a Viterbi alignment (see Fig. 5.22). These networks

are loated on the path from root node to the spei� leaf node representing the

target HMM state. The assoiated training pattern is presented to eah one of these

networks together with 1-out-of-N target vetors that are onstruted aording to

Fig. 5.22. At eah time step, di�erent networks will reeive the respetive training

pattern depending on the target HMM state

9

. Whenever a network in the HNN tree

has aumulated a ertain prede�ned amount of training patterns (the bath size), we

trigger a parameter update using one of the optimization algorithms presented in the

previous setion and start to aumulate training patterns again, possibly keeping

loal state information for the optimization algorithm (suh as the previous gradient

for omputing momentum terms in subsequent updates).

There is no ommuniation or synhronization required between the individual tree

nodes. Thus, the entire training sheme an be parallelized and distributed easily

among several proessors. We simply keep the entire HNN tree struture on eah

proessor but instantiate only disjunt sets of nodes with networks. After training,

we merge the networks from eah training proess into a single omplete HNN tree

struture. As no ommuniation is required, the speed-up obtained from distributing

joint training sales almost linearly with the number of available omputers

10

.

In priniple, the individual nodes in an HNN tree an be distributed in any fashion.

However, we ertainly prefer on�gurations that result in suÆiently balaned om-

putational load during training. Fig. 5.25 presents a strategy that aims at optimal

load balane by grouping all nodes in every tree level and assigning a di�erent pro-

essor to eah suh node luster. At eah time step during training, a single network

in eah luster reeives the urrent training vetor aording to the path from root

node to the leaf node representing the urrent target HMM state. Assuming that all

networks in the HNN get updated after having reeived a globally onstant amount

of training patterns, the presented strategy in fat ahieves optimal load balane.

9

Of ourse, the network at the root node will reeive all training patterns, irrespetive of the

target HMM states.

10

In pratie, disk I/O an beome a bottlenek sine all parallel proesses have to aess the

speeh waveform data (or the preomputed feature vetors) during training.
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In ase we apply stohasti gradient desent to the task of jointly training the indi-

vidual networks in an HNN, we have to tune the learning parameters spei�ally for

eah network. This is important beause networks in di�erent levels of the HNN tree

reeive vastly di�erent amounts of training data. For instane, the network at the

root node typially requires a omparatively small learning rate as it reeives several

million training patterns (in our appliation). In ontrast, the networks at the bot-

tom of the tree reeive only a few thousand training patterns and therefore require

onsiderably larger learning rates to guarantee fast onvergene. Thus, we assign

individual learning rates to eah network in an HNN but keep a global momentum

fator (typially � = 0:9).

NN NN NN NN

NN

NN

NN

CPU1

CPU2

CPU3

Figure 5.25: Distributing joint training of HNN nodes on several CPUs

The loal learning rates �

i

are initialized with a single global learning rate �

G

. During

the proess of training the hierarhy, the loal learning rates are adapted individually

with the global learning rate funtioning as an upper bound for the loal learning

rates to avoid divergene of the optimization proess due to exessively large loal

learning rates. Furthermore, the global learning rate �

G

is annealed aording to the

following rule to stabilize gradient desent towards the end of training:

�

(t+1)

G

= �

(t)

G

� �

G
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Typially, we use an initial global learning rate �

(0)

G

between 0:001 and 0:01 and

a global annealing fator �

G

of 0:999 : : : 0:9999 applied after eah 10000 training

patterns.

In order to aommodate the di�erent learning speeds of the node lassi�ers due to

the di�erent amounts of available training data, we ontrol individual learning rates

using the following measure of orrelation between suessive gradient vetors g

(t�1)

and g

(t)

:
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= aros
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(t)

measures the angle between the gradients g

(t�1)

and g

(t)

. Small angles indi-

ate high orrelation and therefore steady movement in weight spae. Therefore, we

inrease the learning rate linearly up to the urrent maximum (as determined by

initial learning rate, annealing fator and number of updates performed) whenever



(t)

< 90

Æ

for several updates. Large angles, on the other hand, indiate random

jumps in weight spae. We therefore derease the learning rate exponentially when-

ever 

(t)

> 90

Æ

for several onseutive updates. In summary, we obtain the following

update rule for loal learning rate �
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;

with linear inrease Æ = 0:001 : : : 0:01 and exponential annealing fator � = 0:5 : : :0:9.

The number of bath updates M ontrols smoothing of  whereas � ontrols the

inuene of the global learning rate. For � ! 90

Æ

, loal learning rates are fored

to follow the global learning rate, whereas low values of � allow loal learning rates

to develop individually. Typial values that have been used in our experiments are

M = 10 and � = 20

Æ

. We �nally note that the above learning rate adaptation sheme

is very similar in spirit to the delta-bar-delta learning rule proposed in [Jaobs '88℄.

However, in ontrast to our sheme the delta-bar-delta rule is based on the sign of

the produt instead of on the angle between suessive gradient vetors

11

.

5.5.2 Independent Training and Sampling

In addition to the joint training tehnique presented above, we have developed an

alternative training sheme that, although requiring onsiderable amounts of tempo-

rary disk spae, allows for faster and more onvenient training of the loal neural

11

Furthermore, the delta-bar-delta rule assumes a separate learning rate for eah network weight.
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networks in an HNN. Furthermore, this approah allows us to apply more sophis-

tiated optimization algorithms of higher order sine the individual networks are

trained sequentially on eah proessor.

Independent training proeeds in three stages (see Fig. 5.26). In an initial step, we

proess the omplete training database, determine the relevant nodes in the hierar-

hy for eah training pattern and store for eah one of these nodes the pattern vetor

together with the orresponding target vetor in a node-spei� training data set

for subsequent network training. Instead of storing all the pattern vetors relevant

to eah node, we sample only a subset of these patterns for the nodes in the upper

levels of the tree. This saves substantial amounts of storage spae and is onsidered

unritial (in terms of the auray of the resulting estimators) sine there is a lot

of redundany in the orresponding training sets. In our experiments on the Swith-

board orpus, onsisting of roughly 60 million training patterns, we required about

3-5 GBytes of disk spae for storing the partially sub-sampled training sets for all the

tree nodes of a typial HNN.

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN NN NNNN

NN

Extract Training Data1. 2. Train Networks 3. Recombine HNN

Figure 5.26: Data sampling and independent training of HNNs

In a seond step, we sequentially train neural networks for eah one of the extrated

node-dependent training sets. All kinds of sophistiated, memory-intensive optimiza-

tion algorithms an be applied in this stage as we do not have to keep the omplete

hierarhy in memory as in the ase of joint training. Furthermore, independent

training an easily be distributed among several proessors without requiring any

ode hanges, ahieving linear speed-up and optimal load balaning without any ef-

fort. We simply partition the set of networks to be trained appropriately and let eah

proessor train a separate subset of networks.

In the �nal step of sequential training, we have to plug in the trained networks

into the orresponding nodes of the HNN tree in order to obtain the ompletely
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trained hierarhial onnetionist model. One of the big advantages of independent

training is that we an eÆiently experiment with di�erent network sizes or di�erent

optimization algorithms one the training sets have been extrated and stored on

disk. A potential disadvantage is the large amount of required temporary disk spae.

Using the independent training tehnique, we were able to train medium sized HNNs

onsisting of around 1000 nodes on the full Swithboard orpus in less than 24 hours

using 8 Pentium-II/400Mhz CPU's. This is omparable to the training time re-

quired for a onventional non-onnetionist model using the same number of CPU's.

In summary, our hierarhial onnetionist aousti model does not su�er from the

exessively long training times typially reported for monolithi onnetionist arhi-

tetures.

5.6 Integration into HMM Framework

We now turn our attention to aspets onerning the integration of the presented

hierarhial onnetionist model into the standard HMM framework found in nearly

all of today's large voabulary ontinuous speeh reognition systems.

5.6.1 Model Integration

We onsider the ase of integrating our hierarhial onnetionist aousti model into

a deision-tree lustered ontext-dependent HMM speeh reognizer. Fig. 5.27 gives

an overview of the relevant parts of the resulting hybrid NN/HMM speeh reogni-

tion system. A sequene of raw sub-phoneti HMM states, e.g., a triphone HMM,

is translated into a sequene of more robust tied HMM states by means of the ap-

propriate phoneti deision trees. This part of the reognizer is idential for both

onventional as well as onnetionist aousti models. In onventional models, we

assign a separate Gaussian mixture model to eah leaf node in all phoneti deision

trees for estimating emission probabilities for the orresponding tied HMM state.

In ontrast, a hierarhial onnetionist aousti model estimates these HMM emis-

sion probabilities within a single tree struture where there is a one-to-one mapping

between the leaf nodes of the HNN tree and the set of leaf nodes of all deision trees.

We distinguish the following three phases of building a ontext-dependent large vo-

abulary onnetionist speeh reognizer from initial state alignments of the training

data

12

:

� Tree Building: One the phoneti deision trees have been grown for a par-

tiular appliation domain, we onstrut a Hierarhy of Neural Networks model

12

These alignments might either be obtained by uniform segmentation or by running the Viterbi

algorithm on referene word transriptions using some other, previously trained aousti model
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for the set of leaf nodes of all deision trees. If the HNN is to be onstruted

using one of the luster algorithms presented in setion 5.3, we �rst have to

estimate the required Gaussian models for eah leaf node in eah deision tree

aording to the given initial state alignments.

phonetic
decision
tree

1
Hierarchy of
Neural Networks

x

Figure 5.27: Integration of a hierarhial onnetionist aousti model into a deision

tree lustered HMM reognizer

� Training: In Viterbi/label training, there is a one-to-one mapping between

target HMM state and feature vetor for eah time step. Using the appropriate

phoneti deision tree, we an determine the HNN leaf node that orresponds

to the target HMM state and assign the urrent feature vetor to the nodes on

the path from that leaf node to the HNN root node for subsequent training of
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the orresponding neural network estimators. In priniple, we ould also apply

forward-bakward HMM training but the omputational omplexity of training

the hierarhial onnetionist aousti model then inreases several-fold with

hardly any gains in reognition performane.

� Deoding: Typially, a frame synhronous Viterbi beam searh aesses the

aousti model by requesting emission probabilities for a list of urrently ative

tied HMM states for eah time frame. This list translates into a list of HNN leaf

nodes, for whih we ompute posterior probabilities by top-down evaluation of

the relevant nodes in the tree.

5.6.2 Inorporating Priors

So far, we have been onerned with the estimation of HMM state posteriors p(s

i

jx)

through a tree-strutured onnetionist model. In the HMM framework however, we

are required to provide estimates of the HMM state emission probabilities p(xjs

i

)

also referred to as state likelihoods. Appliation of Bayes' rule yields an expression

for onverting state posteriors into state likelihoods:

p(xjs

i

) =

p(s

i

jx)

p(s

i

)

p(x)

The last term p(x) an be omitted in frame-synhronous deoding as already men-

tioned in setion 3.2. Aording to this, a saled likelihood an be omputed by

simply dividing the estimates of the state posteriors by the state priors:

p̂(xjs

i

) =

p(s

i

jx)

p(s

i

)

In our hierarhial onnetionist aousti model, we have deomposed the state pos-

teriors into produts of loal onditional node posteriors. The posterior probability

of a spei� HMM state is omputed by multiplying all the estimates of loal ondi-

tional posteriors on the path from root node to the leaf node representing the HMM

state (see Fig. 5.28).

Using the naming onventions from Fig. 5.28, a spei� HMM state posterior is

omputed aording to

p(s

i

jx) =

D(s

i

)�1

Y

k=0

p(N

i

(k + 1)jN

i

(k);x)

given a tree struture and loal estimators for the onditional posterior probabilities

(D(s

i

) denotes the depth of the leaf node that represents the state s

i

). Now, the
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N (3) = ii S

N (2)i

N (0)

N (1)

i

i

Figure 5.28: Top-down omputation of state posteriors in a hierarhial onnetionist

aousti model

same tree struture an be used to deompose the HMM state prior probabilities into

a produt of onditional prior probabilities:

p(s

i

) =

D(s

i

)�1

Y

k=0

p(N

i

(k + 1)jN

i

(k))

Thus, in addition to having a separate neural network based estimator for the ondi-

tional posterior probabilities at eah tree node, we need to estimate onditional prior

probabilities of hild nodes at eah tree node. This an simply be done by ounting

the ouranes of hild nodes for eah tree node and normalizing these ounts to

relative frequenies. Interestingly, deomposing the priors as well as the posteriors

allows to rewrite the expression for the saled likelihood of HMM states suh that we

an ompute it from loal saled likelihoods at eah node in the HNN tree:

p̂(xjs

i

) =

D(s

i

)�1

Y

k=0

p(N

i

(k + 1)jN

i

(k);x)

p(N

i

(k + 1)jN

i

(k))

Thus, as a byprodut of omputing saled likelihoods for an HMM state (represented

by a partiular leaf node), we also obtain saled likelihoods for the tree nodes along

the path down to that HMM state.
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p̂(xjN

i

(j)) =

j�1

Y

k=0

p(N

i

(k + 1)jN

i

(k);x)

p(N

i

(k + 1)jN

i

(k))

with 0 � j � D(s

i

)

Both the partial posterior and partial prior omputed down to a spei� tree node

represent valid probabilities. In fat, they model the posterior and prior probabilities

of the aousti unit emerging from the union of HMM states reahable from that node.

We gradually re�ne the estimates of the state posterior and prior probabilities on our

way from the root node down to a leaf node by inreasing the aousti resolution from

broad phoneti lasses down to single HMM states. This multi-sale representation

and omputation of the probabilities of aousti units is one of the main properties

and advantages of the hierarhial approah presented in this thesis and will be

exploited for various purposes in later hapters.

Another interesting point to note is that the hierarhial deomposition of prior prob-

abilities aording to the tree struture of an HNN and their expliit utilization in

the modular omputation of saled likelihoods o�ers possibilities for soft strutural

modi�ations absent in any onventional onnetionist aousti model. By altering

the loal onditional priors at a spei� tree node, we an re-weight the ontribution

of the subtrees emerging from its hild nodes. We an even softly pinh o� ertain

tree branhes ompletely without having to expliitly remove these branhes. The

expliit availability of state priors in onnetionist aousti models is onsidered to be

advantageous sine it allows to adapt the model to di�erenes in the prior distribu-

tions between training and test set. In monolithi onnetionist models however, the

modi�ation of priors does not inuene the struture or behavior of the model itself.

In ontrast, the tree struture of our hierarhial onnetionist aousti model repre-

sents just a hull of possible strutures that are shaped by the atual loal onditional

priors. This property of our model opens the door to strutural model adaptation

and modi�ation of the spei�ity of ontext modeling. We will detail this aspet of

the model and its appliation to domain-adaptive speeh reognition in hapter 8. In

summary, it is most important to note that priors are an essential and powerful part

of our hierarhial model that allow to dynamially ontrol its struture, rather than

just an add-on orretion mehanism required by the HMM formalism.

5.6.3 Embedded Training

It is possible to use so-alled embedded Viterbi training to iteratively optimize both

the alignment of the training data, i.e. the segmentation into words, phones and HMM

states, and the parameters of a onnetionist aousti model [Franzini et al. '90℄.

With respet to this tehnique, our hierarhial onnetionist model does not di�er
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from onventional, monolithi onnetionist models and the same algorithm an be

applied:

1. Compute initial state labels for entire training set

2. Train HNN model on urrent state labels

3. Relabel training set using the urrent HNN model by performing Viterbi align-

ments

4. Unless some stopping riterion is ful�lled, go to step 2.

Of ourse, we need to provide reasonable initial state labels and we must have a

onsistent riterion for stopping the above iterative proess. Provided that we start

from aurate initial labels, e.g., Viterbi alignments with some other trained aousti

model, reognition auray typially saturates quikly, requiring only 2-3 iterations

of embedded training.

5.7 Evaluation on Swithboard

The performane of hierarhial onnetionist aousti models in large voabulary

speeh reognition systems has been evaluated in experiments on the Swithboard

telephone speeh orpus. We detail the arhitetures that we have onstruted and

trained and ompare their performane on this diÆult but standard benhmark task.

5.7.1 General Setup

All of the experiments with hierarhial onnetionist aousti models were performed

in more or less the same general speeh reognition setup whih is desribed in

the following. We were mostly using the Janus Reognition Toolkit (JanusRTk)

[Finke et al. '97, Zeppenfeld et al. '97℄, a state-of-the-art statistial speeh reogni-

tion toolkit very well suited for researh and development due to its objet-oriented

modular struture and its tight oupling with the Tl/Tk sripting language. For

some of the more reent experiments, we were using a new, ompletely rewritten

large voabulary speeh reognition toolkit [Finke et al. '99℄ whih is partiularly

well suited for modeling onversational speeh as, for instane, found in the Swith-

board orpus. Irrespetive of the reognition toolkit used, the basi reognizer om-

ponents (feature preproessing, phones set, phoneti ditionary, language model, et.)

were idential suh that reognition results are diretly omparable. Following is an

itemized desription of the main omponents:
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� Preproessing: First, we applied a Hamming-windowed short-time spetral

analysis using a 256-point Fast Fourier Transformation (FFT) to the raw 8 kHz

audio data. The analysis window has a length of 160 samples and is shifted by 80

samples, resulting in a preproessing rate of 100 frames per seond. The power

spetrum is then frequeny warped using a pieewise linear transformation to

ompensate di�erent voal trat lengths. After transforming the power spetra

into a 30-dimensional log Mel-sale, 13-dimensional epstra are omputed by

applying a disrete osine transformation. The resulting Mel-Frequeny Cep-

stral CoeÆients (MFCC) are normalized by epstral mean subtration for eah

onversation side. After adding the average log power of the analysis window,

42-dimensional vetors onsisting of the 14-dimensional stati features and their

�rst and seond order time derivatives were omputed. The �nal 32-dimensional

feature vetors were obtained by applying a trunated LDA transformation. We

also experimented with 39 dimensional feature vetors onsisting of 13 MFCCs

and their �rst and seond order time derivatives without applying the LDA and

obtained similar results.

Conventional ontext-independent onnetionist aousti models are often built

on muh higher dimensional pattern vetors onsisting of a window of multiple

MFCC vetors extending several frames into the past and the future in order

to apture a higher amount of aousti ontext and thereby improve modeling

auray. In ontrast to suh impliit inorporation of aousti ontext, our hi-

erarhial model allows for more e�etive expliit modeling of phoneti ontext

whih is why standard preproessing appears to be suÆient. Furthermore,

we are interested in ompat features as the number of parameters in our dis-

tributed and modular hierarhial arhiteture depends linearly on the feature

dimensionality.

� Phoneti Modeling: The set of monophones onsists of 1 silene model, 1

garbage mumble phone for modeling unknown words, 6 noise models (breathing,

human noise, non-human noise, lip smak, throat leaning and laughter) and

48 speeh phones (ontaining 4 speial phones for modeling interjetions). In

phoneti ontext modeling, phoneti deision trees were grown only for the 48

speeh phones and for 2 of the noises (laughter and mumble). Silene and all

other noises were modeled ontext-independently. For lustering pentaphone

ontext deision trees, a set of around 100 phoneti questions was asked in a

window of +/- 2 phones within words and +/- 1 phone aross words. Phones at

word boundaries and three di�erent stress levels are marked with speial tags

whih an be queried in addition to the standard phoneti features.

� Pronuniation Modeling: Aurately modeling pronuniation variability in

onversational speeh is an important omponent for automati speeh reogni-
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tion. Pronuniation modeling in our Swithboard system is based on the work

reported in [Finke '96, Finke & Waibel '97b℄. The pronuniation ditionary

ontains 15000 unique words with an average of 2 pronuniation variants per

word, yielding a total of 30000 entries. 59% of the words are represented by just

a single pronuniation variant. Some of the remaining words are represented by

up to 50 di�erent pronuniation variants. The pronuniation variants are gen-

erated from the baseform pronuniations by a deision tree based approah and

assoiated pronuniation weights are learned from the training orpus. In ad-

dition, the phoneti ditionary was enhaned by 1756 pronuniation variants of

the 262 most frequently ourring word-tuples (e.g., GOING-TO) and -triples

(e.g., A-LOT-OF), so-alled multi-words. This allows to apture ross-word

pronuniation e�ets muh better (e.g., GOING-TO ! GONNA). In a pro-

edure alled Flexible Transription Alignment (FTA) [Finke & Waibel '97a℄,

the aousti training data is aligned against an arti�ially enrihed training

transription represented as a direted ayli graph. The graph models a va-

riety of onversational e�ets by allowing for multiple pronuniations, optional

multi-words, optional �ller words, optional begin and end words et. Using

the Viterbi algorithm, the best mathing sequene of words is extrated and

aligned for subsequent training of the aousti model. This way, FTA improves

the quality of transriptions whih was shown to yield signi�ant gains in reog-

nition auray.

� Language Modeling: For language modeling, we use a three-way non-linear

interpolation of Kneser-Ney [Kneser & Ney '95℄ bak-o� trigram models. The

three models were trained on the Swithboard (3M words), Callhome (200k

words) and Broadast News (130M words) orpora, respetively. Where noted,

we have used the Swithboard language model by itself in order to simplify and

speed up deoding.

� Deoding: A state-of-the-art time-synhronous Viterbi beam searh deoder

using a phoneti pre�x-tree organized lexion was used for generating word

latties and �rst best hypotheses with ontext-dependent aousti models. A

standardized interfae between the deoder and potential aousti models allows

for easily swithing between onventional mixture based aousti models and

the hierarhial onnetionist aousti models presented in this thesis.

For further details on spei� aspets of the speeh reognition system used for our

experiments on the Swithboard domain, the reader is referred to [Finke et al. '97,

Zeppenfeld et al. '97℄. All reognition results were obtained on a subset of the oÆial

1996 Swithboard evaluation test set onsisting of the �rst 30 seonds of speeh from
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all 40 speakers in that set, whih amounts to 4550 words ontained in a total of 20

minutes of speeh.

5.7.2 Manually Construted vs. Clustered HNNs

First, we ompare manually onstruted against automatially lustered Hierarhies

of Neural Networks (HNN). An HNN for 10000 deision tree lustered tied HMM

states was manually onstruted using knowledge about phonetis and HMM topolo-

gies involved. Fig. 5.29 depits the struture of this model and the strategy applied

in deomposing the task into a hierarhial model.
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Figure 5.29: Manually onstruted HNN for 10000 HMM states

The root onsists of a binary node for disriminating between the silene phone and

all other phones. In the seond layer, another binary node is used to disriminate

between noise phones and speeh phones. In the third layer, we use a 7-ary node

for disriminating the noise phones and a 48-ary node for disriminating the speeh

monophones. In the fourth layer, we use 3-ary nodes for disriminating between the

begin-, middle- and end- states of the atomi 3-state left-right HMM topologies used

for modeling speeh and noise phones. In the �nal �fth layer, we disriminate between

the individual ontextual variations of eah sub-phoneti unit as provided by the

ontext-lustering deision trees. The omplete tree ontains a total of 209 internal

nodes equipped with single hidden layer MLPs for estimating the loal onditional

posteriors. Note that the branhing fator of the individual nodes varies onsiderably
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in the tree (Fig. 5.30). While the roughly 50 state nets perform 3-way lassi�ation

tasks, some of the ontext nets perform lassi�ation tasks involving more than 200

lasses.
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Figure 5.30: Branhing fators of individual nodes in manually onstruted HNN

To make the distribution of branhing fators more uniform, the monophone node

ould be deomposed further aording to phoneti lasses suh as plosives, friatives,

vowels, et. However, we would also have to deompose the ontext nodes in the �nal

layer of the HNN tree. Although this ould be aomplished by loning the struture

of the orresponding ontext deision trees, suh proeeding would lead to a highly

imbalaned HNN tree whih is undesirable for the reasons stated in setion 5.2.

The manually onstruted HNN was ompared against a bottom-up lustered hier-

arhy for 6000 tied HMM states. We hose a system with 6k HMM states instead

of the above 10k HMM states in order to redue the number of parameters in the

lustered HNN to a value omparable to the manually onstruted HNN. As lustered

HNNs bene�t from more tree nodes, a omparison between 10k systems would not be

fair. In bottom-up lustering, we applied an additional penalty term to enfore tree

balane and avoid non-uniform priors. The resulting binary HNN was ompati�ed

to a 10-ary HNN using the node merging algorithm presented in setion 5.3.2. After

experimenting with various tree branhing fators, we found that values in the range

4-10 yield tree strutures that represent a good ompromise between resolution and

ompatness. Binary trees are disadvantageous beause they are expensive to eval-

uate and ine�etive in their use of parameters as they are omparatively deep and
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ontain the largest amount of internal tree nodes. HNN trees with branhing fators

onsiderably larger than 10, on the other hand, are diÆult to train as the omplexity

of the loal learning tasks inreases with inreasing branhing fator.

depth # nodes = # hidden

# networks units/network

0 1 256

1 6 128

2 43 128

3 145 64

4 326 64

5 298 32

6 143 32

total 962

Table 5.2: Overview of bottom-up lustered 10-ary HNN for 6k HMM states

The �nal tree for modeling 6k HMM states has height 7 and onsists of 962 internal

tree nodes. A set of 962 single hidden layer MLPs was assigned to the tree nodes

and model omplexity was ontrolled by inreasing the number of hidden units from

32 at the bottom of the tree to 256 at the top of the tree. The overall number of

parameters of this model amounts to 2.1 million, whih ompares to about 2 million

parameters ontained in the manually onstruted HNN. Table 5.2 gives details for

the lustered tree and Table 5.3 gives reognition results obtained with the manually

onstruted and the lustered HNN trees. Even though modeling onsiderably less

HMM states, the lustered HNN ahieves a signi�antly better reognition rate than

the manually onstruted HNN.

aousti model # states # params word error rate

manually onstruted HNN 10000 2.0 M 37.3 %

bottom-up lustered HNN 6000 2.1 M 35.8 %

Table 5.3: Performane of manually onstruted vs. lustered HNN

We attribute the di�erene in performane to the di�ering tree topologies. In ontrast

to the manually onstruted HNN tree, the bottom-up lustered HNN tree exhibits

small and omparatively uniform average branhing fators that allow to robustly

train estimators of onditional posterior probabilities. Some of the loal lassi�ation

tasks in the manually onstruted tree may not be performed aurately due to an

exessively large number of lasses involved.
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5.7.3 Salability

In order to demonstrate the salability of the hierarhial onnetionist modeling

framework with respet to the amount of phoneti ontext modeling we give results

obtained with three di�erent lustered HNN models: (1) a tree similar to the one

in Fig. 5.9 for 3-state ontext-independent modeling of the 56 monophones, (2) the

tree for 6k deision tree lustered ontext-dependent HMM states from the previous

setion and (3) a tree for 24k deision tree lustered ontext-dependent HMM states.

To our knowledge, it has never before been attempted to onstrut a onnetionist

aousti model for suh a high degree of ontext modeling and it would not make

muh sense to apply a monolithi arhiteture to this task. However, the hierarhial

deomposition of posteriors used in our hierarhial onnetionist model allows to

apply this model even to as many as 24000 HMM states and bene�t from the inreased

aousti and phoneti resolution.

During the onstrution phase for the 24k tree, we arefully experimented with di�er-

ent values for the non-uniform prior penalty in order to obtain an even more ompat

tree struture than in the ase of 6k HMM states. The resulting tree struture has

height 5 and ontains a total of 4046 internal tree nodes with a maximum branhing

fator of 10. Again, we were assigning a set of 4046 single hidden layer MLPs as

estimators for the loal onditional posteriors to the tree nodes. Also, the number of

hidden units was inreased from the bottom to the top of the tree, this time however

using values ranging from 16 to 128. The resulting hierarhial onnetionist aous-

ti model ontains a total of 3.1 million parameters distributed over the 4046 neural

networks (see Table 5.4).

depth # nodes = # hidden

# networks units/network

0 1 128

1 10 128

2 77 64

3 524 32

4 3434 16

total 4046

Table 5.4: Overview of bottom-up lustered 10-ary HNN for 24k HMM states

Table 5.5 gives reognition error rates obtained for all three HNN models. Obviously,

ontext-dependent modeling improves performane enormously ompared to ontext-

independent modeling. Furthermore, modeling 24000 instead of only 6000 ontext-

dependent HMM states redues the word error rate by 2.5% absolute.
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aousti model # states # params word error rate

ontext-independent HNN 154 0.8 M 56.4 %

ontext-dependent HNN 6000 2.1 M 35.8 %

ontext-dependent HNN 24000 3.1 M 33.3 %

Table 5.5: Salability of hierarhial onnetionist aousti modeling framework

These results show that the hierarhial onnetionist modeling framework sales well

to exessive amounts of ontext modeling and that this property allows to signi�antly

improve performane on Swithboard ompared to ontext independent modeling.

5.7.4 Joint Training

The HNN trees for 6k, 10k and 24k HMM states were trained on Viterbi state align-

ments from a mixture of Gaussians system using stohasti on-line gradient desent

and the joint training tehnique presented in setion 5.5.1. A randomly seleted set

of 100 utteranes was exluded from the training set and used as a validation set for

determining early stopping. The three plots in Fig. 5.31 show the evolution of various

performane measures on the validation set during training of the largest model built,

namely the HNN tree for 24k HMM states. Eah vertial line orresponds to a full

pass through the available training data onsisting of 2500 onversation sides with a

total of 87000 utterane segments.

From top to bottom, the plots show (1) the normalized log likelihood of the valida-

tion data aording to the given state alignments and the model trained so far, (2)

the average of the loal normalized log likelihood over all the 4046 lassi�er neural

networks in the tree and (3) the average of the normalized mis-lassi�ation errors,

again averaged over all the 4046 tree nodes. All three urves level o� after about 3

passes through the training data, demonstrating that even suh a large model an be

trained to onvergene in very few training iterations. Furthermore, the fat that the

normalized log likelihood levels o� on the validation set instead of starting to derease

again at some point, indiates that the hierarhial model is very robust to over�tting

e�ets on the Swithboard domain. In ontrast to the training of monolithi onne-

tionist models on smaller tasks, expliit regularization is not required in our ase.

Obviously, the large amount of training data

13

allows for exellent generalization and

early stopping is not neessary. We attribute this behavior to the following aspets:

� Training data an be onsidered very noisy, sine a large variety of di�erent

speakers and reording onditions have been onsidered during olletion of

13

The full Swithboard training orpus onsists of roughly 60 million patterns
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the orpus. Training with noisy data is similar to regularization and therefore

improves generalization [Bishop '95b℄.

� Some of the 3434 networks at the nodes in the lowest level of the 24k HNN tree

do not reeive enough training samples to generalize well to unseen new data.

Although all of these networks together onstitute 85% of the total number of

networks in the tree, they ontribute just as one out of 5 (height of the tree)

networks to any partiular posterior probability. The networks in the upper

part of the hierarhy have the largest inuene on the posteriors omputed by

the tree. For those networks, the very large amount of available training data

guarantees that the validation set error approahes the training set error whih

is an indiator for good generalization performane.

5.7.5 Comparison to Conventional Models

We ompare the performane of our largest hierarhial onnetionist model to the

performane of a state-of-the-art system with a onventional, mixtures of Gaussians

based aousti model. For this purpose, we had available the best performing system

[Finke et al. '97℄ on the Swithboard part of the oÆial 1997 DARPA Hub-5E eval-

uation. As the author was partiipating in the group of researhers that developed

that system, a diret omparison of the two modeling paradigms within the same

general system setup is possible. We report reognition error rates for two systems

that di�er only in the model for estimating HMM emission probabilities (Table 5.6).

aousti model # params word error deoding

rate time

Hierarhy of Neural Networks (HNN) 3.1 M 34.4% 90 xRT

Mixtures of Gaussians (CMU-ISL/Hub-5E 97) 6.6 M 31.5% 300 xRT

Table 5.6: Comparison between hierarhial onnetionist and onventional aousti

models on 1997 development test set

In ontrast to earlier experiments, these results were obtained with a single (Swith-

board) trigram language model. The underlying ontext lustering deision trees

were onstruted for the mixtures of Gaussians model and de�ne a set of 24000 tied

pentaphone HMM states. They were adopted without modi�ations for hierarhial

onnetionist modeling. For deoding, we have used large beams to minimize the

number of pruning errors aused by the heuristi searh strategy as the fous of this

experiment was on omparing the aousti models. Tightening the searh beam yields

faster deoding times for both models but also inreases the word error rate. Also, it
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should be noted that the HNN model has a slight disadvantage beause it was trained

only on state alignments generated with the mixtures of Gaussians model.

Considering that the mixtures of Gaussians model (a) ontains more than twie the

number of parameters, (b) went through several iterations of embedded Viterbi train-

ing and () was heavily optimized on the above test set during the development of

the evaluation system, the hierarhial onnetionist modeling framework yields per-

formane ompetitive to the best urrent state-of-the-art systems

14

while deoding is

more than 3 times faster for deoding beams that minimize the number of pruning

errors.

5.7.6 Loal Model Seletion

In another experiment, we were omparing a-priori determined model size against

automati loal model seletion. For that purpose, we onstruted a 4-ary HNN tree

for 8000 tied HMM states using the top-down divisive lustering algorithm. The

resulting model tree has height 9 and was equipped with single hidden layer MLPs

as shown in olumn 3 of Table 5.7 for the baseline model. In automati loal model

seletion, we used the same tree struture but trained a set of MLPs with 4, 8, 16,

32, 64 and sometimes even 128 hidden units for eah tree node and seleted the one

whih gave minimum error on an independent validation set.

depth # nodes = # hidden units per network

# networks baseline model seletion

0 1 64 max 128

1 4 64 max 128

2 12 64 max 128

3 23 64 max 128

4 76 32 max 128

5 256 32 max 64

6 984 32 max 64

7 2188 16 max 64

8 330 16 max 64

total 3866

Table 5.7: Overview of top-down lustered 4-ary HNNs for 8k HMM states

In order to be able to easily train and test several di�erent MLPs for eah tree node,

we used the independent instead of the joint training tehnique for HNN training. For

14

The oÆial evaluation results on the 1997 Swithboard evaluation test set ranged from

35.1% (ahieved by the CMU-ISL/Hub-5E 97 system used in the above omparison) to 42.9%

[Martin et al. '97℄. Note that the results in Table 5.6 were obtained on a di�erent test set.
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this purpose, we extrated and stored a predetermined number of feature vetors (up

to 150000) for eah node in the HNN tree in one pass through the available training

data. One the training data was extrated, neural networks for eah tree node were

trained sequentially on the orresponding training set. Fig. 5.32 shows the mean and

standard deviation of the optimal number of hidden units in eah tree level as found

by loal model seletion.
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Figure 5.32: Automati loal model seletion (see text)

As expeted, the average number of hidden units dereases with inreasing tree depth.

However, there are some nodes even in the upper levels of the tree where networks

with only 4 hidden units yield best performane. On the other hand, some nodes

at the bottom of the tree are equipped with networks with 64 hidden units by loal

model seletion.

aousti model # states # params word error rate

baseline HNN 8000 2.7 M 38.6 %

loal model seletion 8000 3.6 M 37.8 %

Table 5.8: E�et of loal model seletion on reognition performane

Finally, Table 5.8 gives reognition results for the baseline HNN and the HNN result-

ing from loal model seletion. Again, these results were obtained on our standard
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test set with a single (Swithboard) trigram language model. Loal model seletion

inreases the number of parameters from 2.7 to 3.6 million and dereases the word

error rate by 0.8% absolute.

5.7.7 Embedded Viterbi Training

In all the experiments reported so far, the hierarhial onnetionist models were

trained on state alignments that were generated with a onventional mixture of Gaus-

sians model. In this experiment, we investigated whether we an improve performane

by re-training on state alignments omputed with the hierarhial onnetionist model

itself. This proedure is ommonly alled iterative embedded Viterbi training. We

used the HNN model for 8k HMM states from the previous setion as our baseline

model. Table 5.9 gives word error rates for the baseline and one iteration of embedded

Viterbi training.

aousti model trained on state labels from word error rate

baseline HNN mixture of Gaussians system 38.6 %

embedded training baseline HNN 37.6 %

Table 5.9: Performane gain through embedded Viterbi training

Re-aligning the training data with the onnetionist model followed by re-training

improved performane by 1.0% absolute. This results shows that state labels op-

timized with one partiular aousti model are not neessarily optimal for training

some other aousti model.
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Fast Model Evaluation

This hapter presents a tehnique for eÆiently evaluating the hierarhial onne-

tionist aousti model presented in the previous hapter. Based on exploiting the

hierarhial struture by means of dynami tree pruning, it allows to aelerate the

evaluation of posterior state probabilities in hierarhies of neural networks onsider-

ably. While dynami tree pruning represents a tehnique for trading-o� reognition

speed against auray, we present experimental results that indiate that the eval-

uation of a hierarhial onnetionist aousti model an be sped up by a fator of

almost 10 with hardly any inrease in word error rate. Furthermore, dynami tree

pruning an be realized by adding a single line of ode as the potential for fast evalua-

tion is inherent to the arhiteture. In ontrast, onventional aousti models require

additional strutures for determining relevant subsets of HMM states to be evaluated

and do not provide omparably high speed-ups.

6.1 Real-Time Speeh Reognition

Today, automati speeh reognition tehnology still is omparably demanding in

terms of memory and proessing speed requirements. For instane, state-of-the-

art researh systems for large voabulary onversational speeh reognition on the

Swithboard domain were reported to require 200-300 MBytes of RAM and to run

in 100-300 times real-time (xRT)

1

on standard hardware [Martin et al. '97℄. More

reently, there have been substantial e�orts in speeding up researh systems whih

led to a new Spoke ondition in the Broadast News evaluation for systems that run

at about 10xRT and faster [DAR '98℄. For ommerial appliations, a speeh reog-

nition system often has to ope with limited resoures and has to ful�ll real-time

onstraints in order to be useful.

1

100xRT means that it takes 100 seonds to deode an utterane of 1 se duration.

107
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Regardless of the spei� type of aousti model being employed, the approahes to

speeding up a statistial speeh reognition system always follow the same general

pattern. Fig. 6.1 illustrates this proess in terms of the distribution of omputations

into two broad lasses: (1) evaluating the aousti model and (2) deoding (where

deoding ontains evaluating the language model).
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Figure 6.1: From researh to real-time systems: qualitative analysis of proportion of

time spent in aousti model evaluation vs. atual deoding

As the qualitative analysis of Fig. 6.1 shows, the evaluation of the aousti model

onstitutes only a very small proportion of the overall omputations in a typial

researh system. Most of the time is spent in deoding word hypotheses as pruning

beams are kept large to avoid searh errors. The �rst step in speeding up a Viterbi

beam searh based deoder therefore always is to tighten the pruning beams whih

vastly redues overall omputations. Small inreases in word error rate typially

have to be tolerated in this step as searh errors are introdued. The middle plot

in Fig. 6.1 shows the impliations of tight deoding beams on the distribution of

omputations. While the time spent in atual deoding has been redued signi�antly,

the proportion of time spent in evaluating aousti model sores all of a sudden

dominates the overall running time and an onsume even more than 80% of the

total amount of omputation in a speeh reognition system. Applying some kind

of tehnique for fast, approximative aousti model evaluation beomes ruial for

ahieving automati speeh reognition in real-time with an approximately uniform

distribution of omputations among aousti model evaluation and atual deoding.

Consequently, there has been a large body of work on tehniques for speeding up the

evaluation of onventional mixture densities based aousti models (e.g., [Watanabe
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et. al. '94, Fritsh et. al. '95, Fritsh & Rogina '96, Knill et. al. '96, Ravishankar

'96℄). Some of these approahes are based on applying a tree struture to quikly and

dynamially determine a signi�antly redued set of HMM states with potentially

high emission probabilities. Only the likelihoods of states in this redued set are fully

evaluated, the likelihoods of all others are approximated. Speed-ups in the evaluation

of the aousti model on the order of a fator of 3-5 with virtually no or only a modest

inrease in word error rate have been reported using suh tehniques. However, the

omputation required to onstrut the additional strutures for determining redued

sets of HMM states and the additional memory required to store these strutures

sometimes limits the usefulness of these tehniques in pratie.

Consider now the hierarhial onnetionist aousti model presented in the previous

hapter. This model already is organized in a tree struture whih an be exploited

for fast, approximative evaluation without a need for additional struture as we will

shortly see. In addition, improved loal disrimination of HMM states in the hier-

arhial onnetionist model allows to speed-up model evaluation more aggressively

than in the ase of onventional models.

6.2 Dynami Tree Pruning

For any given time frame, the sores of HMM states with high posterior probabil-

ity of emitting the urrent feature vetor have to be evaluated with high auray

as they are most likely to inuene the result hypothesis of a Viterbi beam searh.

However, the majority of HMM states exhibit omparably small posterior probabil-

ities of emitting the urrent feature vetor. It is suÆient to eÆiently ompute

approximations of the sores of these states whih allows to save a large propor-

tion of overall omputations. The tree-strutured top-down omputation of posterior

probabilities in a hierarhial onnetionist aousti model allows to implement this

idea in form of dynami tree pruning [Fritsh & Finke '98a℄. A similar pruning teh-

nique has been proposed by [Waterhouse & Robinson '95, Waterhouse '97℄ for fast

approximative evaluation of hierarhial mixtures of experts [Jordan & Jaobs '94℄.

The posterior probability of an HMM state in a Hierarhy of Neural Networks is

omputed as the produt of the onditional node posteriors along the path from root

node to the spei� leaf node representing the HMM state (see Fig. 5.28):

p(s

i

jx) =

D(s

i

)�1

Y

k=0

p(N

i

(k + 1)jN

i

(k);x)

where D(s

i

) is the depth of the leaf node, x is the urrent feature vetor and the

N

i

(k); 8k = f1; : : : ; D(s

i

)g denote the tree nodes along the path from root to s

i

. As

eah of the onditional node posteriors in the above produt ful�lls the onstraint
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i
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the top-down omputation of p(s
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jx) yields monotonially dereasing partial posterior

probabilities
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?

D(s

i

)

(s

i

jx). The monotoniity of partial posteriors implies that the

posterior probability of HMM states in a subtree an never beome larger than the

partial posterior omputed down to the root node of that subtree. This allows to eÆ-

iently identify subtrees that ontain HMM states with posterior probability less than

a given threshold �. As the sore of these dynamially determined low-probability

states does not have to be omputed with full auray, we an stop evaluating on-

ditional posteriors on our way down the tree aording to the following rule

if p

?

j

(s

i

jx) < �; stop top-down evaluation

Fig. 6.2 illustrates dynami tree pruning for the ase of a binary tree. For the spei�

feature vetor in this example, only the shaded nodes have to be evaluated. All others

lie on paths with partial probability smaller than �. The dashed boxes represent the

subtrees that are not evaluated. The posterior probabilities of all HMM states in suh

a dashed box are tied and approximated by some funtion of the partial posterior at

the assoiated root node.

Several strategies for assigning posteriors to HMM states in pruned subtrees have

been investigated in this thesis. Although the speed-up in evaluating the aousti

model stand-alone is idential for all these strategies (depending only on the pruning

threshold �), the e�et on sentene deoding in a omplete reognition system are

very di�erent. Consider the ase that the partial posterior p

?

j

(s

i

jx) < � for some

j < D(s

i

):

� Partial Posterior Pruning (PPP):

In partial posterior pruning, we assign the partial posterior omputed down to

the node where pruning ours to the HMM states in the orresponding subtree:

p(s

i

jx) = p

?

j

(s

i

jx)

This partial posterior is an upper bound on the posterior probabilities of the

HMM states in the subtree and therefore overestimates the true posteriors. For

that reason, PPP might even slow down deoding and be ounterprodutive for

very small �.
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� Uniform Posterior Pruning (UPP):

In uniform posterior pruning, we sale the partial posterior by a fator  = 1=N ,

where N is the number of HMM states in the pruned subtree:

p(s

i

jx) =  p

?

j

(s

i

jx)

This rule distributes the partial posterior uniformly among all HMM states

in the pruned subtree and thereby ensures that the hierarhial onnetionist

aousti model omputes a valid overall posterior probability distribution.

���
���
���

���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

Figure 6.2: Dynami tree pruning

� State Deativation Pruning (SDP):

In state deativation pruning, we e�etively deativate the HMM states in the

pruned subtree by setting

p(s

i

jx) = 0

This strategy indiretly speeds up deoding signi�antly as partial hypothe-

ses that end with one of the pruned states get pruned immediately as their

sore falls out of the deoder's pruning beam. We have termed this tehnique

state deativation pruning as it is similar in spirit to phone deativation prun-

ing [Renals '96℄. However, in ontrast to phone deativation pruning whih
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was proposed in the ontext of a monolithi onnetionist model, SDP in a

hierarhial aousti model additionally yields signi�ant savings in sore om-

putation as only parts of the hierarhy have to be evaluated. It should be noted

though, that phone deativation pruning may also yield savings in sore om-

putation if the monolithi, ontext-independent aousti model is augmented

with ontext-dependent modules as in [Kershaw et al. '95℄.

In the remainder, we present experiments and results of dynami tree pruning in

hierarhial onnetionist aousti models. We evaluate the above three strategies in

terms of their e�et on reognition speed and word error rate.

6.3 Experimental Evaluation

All of the experiments with dynami tree pruning have been arried out on the Swith-

board orpus, using a reognition setup idential to the one used for the experiments

in hapter 5. We �rst analyze the e�et of dynami tree pruning on the hierarhial

onnetionist arhiteture in isolation and then take a look at the e�ets on deod-

ing speed and word error rate in a omplete large voabulary onversational speeh

reognition system.

6.3.1 Pruning Hierarhies of Neural Networks

For the experiments reported here, we have seleted two of the HNN aousti models

onstruted in the previous hapter, one for 8000 tied HMM states, the other one for

24000 tied HMM states. We �rst take a look at the e�et of dynami tree pruning

on the average perentage of tree nodes that have to be evaluated in the HNN.

Fig. 6.3 shows the impat of the pruning threshold � on the amount of omputations

required in the aousti model. The outome of this experiment is independent

of the pruning strategy as the aousti model was evaluated stand-alone (without

subsequent deoding).

The baseline perentage (no pruning) for these urves is 65% (not 100%) as this is

a typial average number of HMM states for whih the deoder requests emission

probabilities for eah frame. The perentage of nodes that have to be evaluated is

roughly halved for pruning thresholds of � � 10

�5:5

for the model with 8000 leaf

nodes and � � 10

�6:5

for the model with 24000 leaf nodes. A speed-up of about 10

in omputation of aousti sores an be ahieved by setting � � 10

�3

for the 8k

model and � � 10

�4

for the 24k model.

Next, we take a look at the perentage of HMM states for whih the posterior prob-

abilities are omputed with full auray, i.e. for whih the partial posteriors are

omputed ompletely down to the leaf nodes (see Fig. 6.4).
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Figure 6.3: E�et of dynami tree pruning on perentage of evaluated tree nodes
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This time we onsider only those HMM states for whih an estimate of the emission

probability is requested by the deoder, thus the baseline for no pruning is 100%.

Dynami tree pruning starts to redue the number of fully evaluated HMM states for

� � 10

�13

. The urves in Fig. 6.4 are very similar to those in Fig. 6.3, however one

an make an interesting observation. The e�et of pruning with a given threshold �

is stronger in ase of the 24k model ompared to the 8k model. As a onsequene,

speed-ups are larger for the 24k model than for the 8k model, given equal pruning

thresholds. Of ourse, speed-up by itself means nothing if not set in relation to the

e�et of pruning on the auray with whih posterior probabilities are estimated

in an HNN. The following Fig. 6.5 depits how the average (negative logarithmi)

posterior probability of the orret model (along Viterbi alignments of the validation

set) is inuened by the dynami tree pruning threshold �.
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Figure 6.5: E�et of dynami tree pruning on posteriors

Here, we have applied partial posterior pruning (PPP) to assign probabilities to

pruned HMM states. PPP was hosen beause pruning errors show up learly in

form of overestimation of posteriors with this pruning strategy. This allows to easily

�nd useful operating points for the threshold �. Up to a pruning threshold of about

� = 10

�4

, the posterior probabilities along the alignments of the orret hypotheses

are hardly inuened by dynami tree pruning. Above this however, pruning starts

to inuene the probability of the orret HMM states. As already disussed before,

PPP overestimates the true posterior probabilities whih is experimentally on�rmed

by the plots in Fig. 6.5. Still, for � = 10

�4

we an ahieve speed-ups of a fator of
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10 and more in evaluating the state posteriors with almost no e�et on the sore of

the orret hypotheses.

6.3.2 Pruning during Deoding

We now investigate the e�et of dynami tree pruning on a omplete large voabulary

onversational speeh reognition system. To this end, we use the HNN aousti

model for 24000 HMM tied states in the reognition system desribed in setion 5.7.

The baseline system with no pruning in the hierarhial onnetionist aousti model

and wide deoding beams runs in 145 times real-time (xRT) on a 300 MHz Sun

UltraSpar and ahieves a word error rate of 34.4% on a subset of 12 speakers taken

from the 1996 Swithboard evaluation test set.

As a �rst step, we tighten the deoding beams until performane starts to derease

due to searh errors. Tighter deoding beams allow us to speed-up the reognition

system to roughly 90xRT with a small inrease in word error rate to 34.8%. For

even tighter beams the word error rate inreases onsiderably. In ontrast to other

less diÆult domains, the onversational style of speaking and the poor quality of

telephone hannels in the Swithboard domain leads to di�use aousti models and

a omparably high amount of onfusion during deoding. That in turn limits the

reognition speed obtainable by tightening the deoding beams suh that real-time

operation without signi�ant losses in reognition auray appear impossible on

today's standard hardware. However, we next show that applying dynami tree

pruning to the hierarhial onnetionist aousti model yields onsiderable savings

in both the evaluation of the aousti model and in deoding.

Consider �rst the impat of dynami tree pruning on the deoding time. Fig. 6.6

shows a plot of the real-time fators obtained with dynami tree pruning for all three

pruning strategies introdued earlier. As mentioned earlier, the baseline speed for no

pruning is a deoding time of roughly 90 times real-time. As expeted, the required

deoding time dereases with inreasing pruning threshold �

2

. Furthermore, SDP

yields the largest gains in reognition speed, followed by UPP. PPP on the other

hand yields omparably small gains in reognition speed espeially for high pruning

thresholds. Note that the di�erent gains in reognition speed obtained by these three

pruning strategies reet the di�erenes in their ability to indiretly prune the searh

spae and thereby speed-up deoding. The gains in evaluating the aousti model

itself are idential for all three methods.

Of ourse, the gains in reognition speed obtained by dynami tree pruning must

be ontrasted with the impat on the reognition error rate in order to determine

appropriate values for the pruning threshold � and to assess and ompare the quality

2

Again, note that higher pruning thresholds orrespond to smaller values on the x-axis in these

plots, due to the negative logarithmi transform applied
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of eah one of the above pruning strategies. Fig. 6.7 shows how di�erent pruning

thresholds a�et the reognizer's word error rate for all three pruning strategies.

This plot reveals that although SDP yields high gains in reognition speed, it also

auses signi�ant inreases in word error rate. In ontrast, PPP and UPP exhibit

a more gentle inuene on reognition auray. In fat, for the range of pruning

thresholds shown in Fig. 6.7 the reognition auray is not a�eted adversely at all.

It is interesting to analyze the e�ets of dynami tree pruning by means of a ombined

plot of reognition speed and auray. Fig. 6.8 depits the trade-o� between reog-

nition speed and auray indued by dynami tree pruning in a single graph. Here,

we have investigated a bigger range of pruning thresholds from 10

�9

� � � 10

�3

in

order to make the trade-o� more obvious.
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Figure 6.8: Word error rate vs. deoding time for varying pruning threshold in

dynami tree pruning

6.4 Disussion

Based on the above experiments and results, the usefulness and appliability of the

proposed pruning strategies appear as follows:

� Partial Posterior Pruning (PPP):

PPP yields omparably small gains in reognition speed and furthermore slows
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down deoding for high pruning thresholds suh that the usefulness of this

tehnique is rather restrited.

� Uniform Posterior Pruning (UPP):

UPP yields gains in overall reognition speed of up to a fator of 6 over the

wide beam baseline system without negative e�ets on the reognition au-

ray. Beause of its moderate impat on reognition auray for high pruning

thresholds, UPP should be regarded as the standard pruning strategy for dy-

nami tree pruning.

� State Deativation Pruning (SDP):

SDP yields onsiderably higher gains in reognition speed than those obtainable

by UPP (up to a fator of 11). However, suh high gains derease the reognition

auray notieably. Therefore SDP should only be applied with omparably

small pruning thresholds � or in ases where the speed-ups obtained by UPP

are not suÆient for the partiular appliation.

The following table 6.1 summarizes our results for speeding up a large voabulary

onversational speeh reognition researh system in terms of word error rate and

assoiated deoding times. The baseline word error rate of 34.4% an be maintained

while speeding up the system by a fator of 6 using uniform posterior pruning (UPP).

ondition word error rate (%) deoding time (xRT)

baseline 34.4 145

tight deoding beams 34.8 91

moderate dynami tree pruning 34.6 24

aggressive dynami tree pruning 45.1 13

Table 6.1: Summary of results for fast model evaluation on Swithboard

Allowing a 30% relative inrease in the word error rate, we an even speed-up the

system by a fator of 13 using the more aggressive state deativation pruning (SDP).

Note that these results have been obtained with a large and omplex evaluation sys-

tem using the largest and most aurate hierarhial onnetionist aousti model

(24000 tied states) that we have build so far. The tehniques presented in this hap-

ter allow us to redue the turn-around times during the development of evaluation

systems signi�antly from 145 times real-time to 24 times real-time without a loss in

reognition auray.



Chapter 7

Speaker Adaptation

This hapter presents an algorithm for e�etively adapting the parameters of a

speaker-independent hierarhial onnetionist aousti model to the harateristis

of a spei� speaker. In ontrast to existing aousti models suh as those based

on mixture densities, the proposed hierarhial onnetionist model does not require

additional model parameter tying mehanisms suh as regression lass trees for e�e-

tive adaptation of the model to spei� speakers in the ase of limited amounts of

adaptation data. Rather, we bene�t from the multi-level tree-strutured representa-

tion of HMM states in our hierarhial onnetionist model whih inherently realizes

parameter tying aording to aousti similarity.

7.1 Introdution

In some very rare ases, it is adequate to train the aousti model of a speeh reog-

nition system on data from a single speaker, yielding a so-alled speaker-dependent

system. In most ases however, we are more interested in speaker-independent models

that do not require data from a potential user during training. The parameters of a

speaker-independent aousti model are trained on data from several hundred di�er-

ent speakers in order to ahieve robustness to unseen speakers. Unfortunately, this

strategy not only inreases robustness but also degrades overall system performane

beause of an inrease in model variane. Fig. 7.1 illustrates this for two hypotheti

aousti models A and B. The inorporation of distributions from several speakers

inreases the variane of A and B ompared to a single speaker and thereby inreases

their overlap whih makes it harder to distinguish the two lasses.

Generally, the error rate of a speaker-independent system is about twie as high as

that of a speaker-dependent system. To lose the gap in performane in ases where

speaker-independent modeling is unavoidable as for example in ommerial ditation

systems, various methods for speaker adaptation have been proposed as a means for

119
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A
B

A

B

Figure 7.1: Speaker-dependent (left) vs. speaker-independent (right) models

improving the performane of suh models on a spei� speaker. In any ase, speaker

adaptation requires some aousti data from the target speaker, so alled adaptation

data. We distinguish the following two priniple strategies for speaker adaptation:

� Feature based adaptation: The preproessed aousti data of the target

speaker is normalized by applying some kind of transformation suh that the

performane of the aousti model improves on that data. A popular example

of this strategy is voal trat length normalization (VTLN) whih attempts

to normalize speeh spetra for di�ering lengths of the voal trat. In other

approahes, speeh epstra are transformed by a general linear or aÆne map

whih is obtained by maximum likelihood estimation on the adaptation data.

Feature based adaptation typially yields only moderate gains in auray as

a single (linear) transformation of the input features does not allow to apture

the harateristis of di�erent speakers.

� Model based adaptation: Here, we follow the opposite strategy. Instead

of transforming the input features suh that the probability that our model

has generated it is maximized, we transform the model to �t the data. At

�rst glane, we might laim that there is no real di�erene between these two

approahes. However, in model based adaptation, one typially applies di�er-

ent transformations to di�erent HMM states or even to di�erent omponent

densities in a mixture model and thereby takes into onsideration the omplex

variation in the aousti realization of di�erent polyphones aross speakers. The

most popular example for this strategy is Maximum Likelihood Linear Regres-

sion (MLLR) [Leggetter & Woodland '94℄ whih applies linear (atually aÆne)

transformations to the means (and potentially also to the varianes) of Gaus-

sians in a mixture densities based aousti model. In fat, MLLR has evolved
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to now being the standard tehnique for speaker adaptation in mixture based

aousti modeling.

Interestingly, it has been found that the gains obtained from feature and model

based adaptation are nearly additive [Pye & Woodland '97℄, suggesting that both

approahes over di�erent aspets of the variation among speakers. Depending on

whether referene transriptions are available with the aousti adaptation data or

not, we furthermore distinguish between supervised and unsupervised speaker adap-

tation:

� Supervised adaptation: For eah adaptation utterane both the aousti

data (e.g., epstra) and the referene word transription are available (as is

the ase in training). Using the Viterbi algorithm, a state alignment an be

generated that assigns HMM states to aousti pattern vetors for eah time

frame. For instane, supervised adaptation is typially inorporated into a

ditation system in form of an enrollment phase where the user has to read

adaptation sentenes that are provided by the system before he/she is allowed

to use the system.

� Unsupervised adaptation: Only the aousti data is available for eah adap-

tation utterane. In order to obtain the state alignments required for most adap-

tation algorithms, the adaptation utterane is �rst deoded with the speaker-

independent aousti model, yielding a sentene hypothesis. This sentene hy-

pothesis (although probably ontaining erroneous words) is then aligned with

the adaptation data by applying the Viterbi algorithm

1

. If available, estimates

of word on�dene an be used to mask portions of the sentene that are on-

sidered unreliable by the reognizer. Unsupervised adaptation does not require

user ooperation in form of an enrollment phase but an be applied while the

reognizer is in use. However, unsupervised adaptation yields lower gains in

reognition auray than supervised adaptation.

The approah to speaker adaptation that we present in the remainder of this hapter

falls into the ategory of model based adaptation algorithms. We present and evaluate

it in the ontext of unsupervised speaker adaptation on the Swithboard domain but

it an just as well be applied to supervised adaptation as we will demonstrate in

hapter 8.

1

Often, a Viterbi deoder already provides a state alignment of the sentene hypothesis.
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7.2 Limited Amounts of Adaptation Data

An important aspet of speaker adaptation that has to be addressed by any adapta-

tion algorithm is data sparsity resulting from limited amounts of available adaptation

data. A typial state-of-the-art aousti model for large voabulary speeh reogni-

tion models several thousand distint HMM states. For instane, onsider a mixture

density based aousti model for 8000 HMM states trained on the Swithboard or-

pus. Fig. 7.2 depits the overage of this set of HMM states for various amounts of

adaptation data (assuming a preproessing rate of 100 frames per seond).
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Figure 7.2: Data sparsity problem in speaker adaptation

About 5 minutes of adaptation data yield at least a single pattern vetor (sample)

for half of the HMM states. In order to over 90% of all HMM states with at least

a single pattern vetor, over 35 minutes of adaptation data is required. However,

observing a single pattern vetor learly does not allow to estimate an MLLR adap-

tation transformation. If we demand that more than 100 pattern vetors (samples)

be observed per state, even a full hour of adaptation data only yields a overage of

6.5% of all HMM states.

In pratie, the amount of available adaptation data per speaker often is muh lower.

The Swithboard orpus, for instane, onsists of telephone onversations between

two speakers with an average duration of about 6 minutes and a maximum duration

of about 10 minutes. Fig. 7.3 depits a histogram plot showing the distribution of the

amount of speeh available per onversation side (speaker) in the orpus. There is a
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sharp peak at around 3 minutes of data per speaker. For that amount of data, almost

two thirds (65%) of the 8k HMM states in the above mentioned aousti model will

not be observed at all. Clearly, some kind of transformation tying must be introdued

suh that the large proportion of unobserved models an also bene�t from these small

amounts of adaptation data. Furthermore, tying is ruial for aumulating enough

data for robust estimation of the parameters of an adaptation transformation.
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Figure 7.3: Histogram plot of amount of available data for 20000 Swithboard on-

versation sides

The standard approah to transformation tying uses a preomputed regression lass

tree for assigning a small, data dependent number of MLLR transformations (or-

responding to the leaf nodes of the regression lass tree) to the set of omponent

densities of all mixtures. A regression lass tree is omputed by top-down lustering

the set of omponent densities aording to aousti similarity down to a ertain

number of leaf nodes that depends on the amount of available adaptation data (see

Fig. 7.4). The more adaptation data we have available, the deeper the regression

lass tree. At eah leaf node of the regression lass tree, a single MLLR adaptation

transformation is estimated from the joint data of all omponent densities tied to

that leaf node and then applied to transform the parameters of the tied omponent

densities.

This way, it is possible to adapt even the omponent densities in HMM states that

have not been observed in the adaptation data. However, suh regression lass tree

based MLLR requires to ompute and store the additional tying struture as the



124 Chapter 7 Speaker Adaptation

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Gaussians

conventional acoustic model

regression
class tree

regression classes

tying

Figure 7.4: Transformation tying in regression tree based MLLR of onventional

aousti models

onventional aousti model itself exhibits no struture at all. Interestingly, the

tying struture that is missing in onventional aousti models is readily available

in a hierarhial onnetionist aousti model. Consequently, this kind of model

inherently supports e�etive adaptation with limited amounts of adaptation data and

the orresponding adaptation algorithm turns out to be muh simpler and requires

no additional struture.

7.3 Adaptation Algorithm for HNN Models

In our implementation of a speaker adaptation algorithm for the hierarhial onne-

tionist aousti model presented in this thesis, we exploit the multi-level state tying

inherent to this tree strutured model. When presenting training or adaptation data

to the hierarhy, the available amount of data at eah node inreases from the bottom

to the top of the tree. The root node of an HNN tree reeives all data presented to the

aousti model and its estimates of posterior and prior probabilities are ontributing

to all the HMM states. Thus, the root node realizes the highest level of parameter

sharing in this model and therefore is our primary andidate for model adaptation.

Depending on the amount of available adaptation data, we might also adapt the tree

nodes in the level below the root node and so on.

Following the above lines of thought, we an formulate a general method for speaker

adaptation in the hierarhial aousti model (Fig. 7.5). It onsists of the three

steps ounting, node seletion and node adaptation. First, the available amount
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of adaptation data is omputed for eah tree node. The single free parameter in

the algorithm is the adaptation threshold C

min

whih de�nes how many samples are

onsidered to form 'enough data' for adapting the parameters of a node. Based on

this threshold, we selet tree nodes for adaptation in the seond step.

HNN Speaker Adaptation Algorithm

1. Counting:

(a) Compute state labels for the adaptation data using Viterbi alignments

of either the orret transripts (supervised adaptation) or the word

hypotheses generated by the reognizer (unsupervised adaptation).

(b) For eah HMM state: ount the number of adaptation samples assigned

to that state aording to the state alignments.

() Assign these state ounts to the orresponding leaf nodes in the HNN

tree. Compute HNN node ounts C(N

i

) for all nodes N

i

in a bottom-up

fashion:

C(N

i

) =

X

N

j

2CHILDREN(N

i

)

C(N

j

)

2. Node Seletion:

(a) Determine a reasonable minimum number of adaptation samples re-

quired to adapt a HNN tree node, the adaptation threshold C

min

.

(b) Selet all HNN nodes N

i

for adaptation that satisfy C(N

i

) � C

min

.

3. Adaptation of Seleted Nodes:

(a) Adapt loal estimator of onditional a-posteriori probabilities

(b) Adapt estimates of the prior probabilities of hild nodes

Figure 7.5: Outline of speaker adaptation algorithm for hierarhial onnetionist

aousti model

Finally, we adapt the parameters of the seleted nodes based on the available adap-

tation data. It is very important to note that both the loal estimator of posterior

probabilities (a neural network in our ase) and the estimates of hild prior proba-

bilities need to be adapted in eah seleted node as we use the model to ompute

saled likelihoods. Nodes that reeive less than C

min

samples of adaptation data are

not adapted by the algorithm. Although this might potentially lead to a mismath

between the adapted and the unadapted nodes in the tree struture, the bene�t of
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(1) improved disrimination in the seleted and adapted tree nodes, and of (2) the

signi�ant amount of sharing of these nodes among the HMM states is expeted to

ompensate suh an e�et.

7.3.1 Node Seletion

For a given onstant adaptation threshold C

min

, di�erent numbers of tree nodes

will be seleted for di�erent speakers, depending on the amount of available adap-

tation data. This is exatly the behavior we desire in speaker adaptation: With

inreasing amount of adaptation data the number of tree nodes subjet to adapta-

tion inreases until eventually all tree nodes are adapted to the harateristis of

a partiular speaker. In pratial appliations of speaker adaptation however, the

amount of available adaptation data typially is very limited and allows to adapt

only a small proportion of all tree nodes. Figs. 7.6 and 7.7 depit the situation for

small and medium amounts of adaptation data.
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Figure 7.6: Adaptive seletion of HNN nodes: small amount of adaptation data

For our investigation of speaker adaptation of hierarhial onnetionist aousti mod-

els on the Swithboard speeh orpus, we hose the previously mentioned HNN model



7.3 Adaptation Algorithm for HNN Models 127

NN NN NN NN

NN

NN NN

se
le

ct
ed

Figure 7.7: Adaptive seletion of HNN nodes: medium amount of adaptation data

for 8000 tied HMM states and a set of 20 representative speakers from the 1996 eval-

uation test set. The amount of available adaptation data for eah speaker varies

between 1 minute and 7 seonds to 3 minutes and 16 seonds. Fig. 7.8 depits the

minimum, mean and maximum number of tree nodes seleted for adaptation on that

test set, depending on the value of the adaptation threshold C

min

.

Assuming for instane, that C

min

= 2000 yields enough data for robustly adapting

HNN tree nodes, our algorithm selets between 2 and 7 tree nodes for adaptation.

7.3.2 Node Adaptation

Before we an answer the question of how to set the value of C

min

, we �rst disuss

methods for adapting the parameters of a partiular HNN tree node as the hoie of

adaptation method will determine the amount of adaptation data required. As men-

tioned above, adaptation of HNN tree nodes requires to adapt the neural network

that estimates loal onditional posterior probabilities and furthermore to adapt the

estimates of the prior probabilities of hild nodes. Severe mismathes between pos-

teriors and priors will lead to degraded performane if we only adapt one of the two

distributions in a onnetionist aousti model.

Let's �rst onsider the task of adapting the neural network for estimating loal on-
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Figure 7.8: Min/mean/max number of HNN nodes subjet to adaptation for di�erent

adaptation thresholds over 20 Swithboard test set speakers

ditional posterior probabilities at a spei� tree node. The estimates produed by

the network reet the posterior probability distribution on the training set. Given

a small set of adaptation samples from a spei� speaker, we want to take aount of

the fat that the posterior distribution for that speaker might di�er from the learned

speaker-independent distribution. Depending on the number of available adaptation

samples, we might onsider the following tehniques for adapting a network's param-

eters. In all ases, we have to withhold a small proportion of the adaptation data to

be used as a validation set during network training. Otherwise, we will over�t the

relatively small amounts of adaptation data, resulting in poor generalization.

� Train new network: If we have available a omparably large amount of

adaptation data, we an train a new neural network with randomly initialized

weights to estimate the loal posterior probabilities on the adaptation data

and simply replae the existing network in the orresponding HNN tree node.

However, we must be aware of the fat that we will disard all information

gained from speaker-independent training for the partiular node that is subjet

to adaptation.

� Retrain old network: In this variant of adaptation, we ontinue to train the

existing speaker-independently trained neural network on the adaptation data

available at the orresponding HNN tree node. As we monitor the networks
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performane on a withheld validation set during training, we an guarantee

that the performane of the adapted network will be at least as good as the

performane of the speaker-independent network with whih we have started.

Thus, this tehnique impliitly regularizes the adaptation step and prevents

over�tting of small adaptation data sets.

� Train additional linear front-end layer: In ases where a HNN tree node

obtains very little adaptation data or where the orresponding neural network

is too large for retraining, we might want to keep the parameters of the network

�xed and add an additional layer in front of the network's input layer whih

linearly transforms the input pattern vetors. This way, only a relatively small

amount of parameters have to be estimated from the adaptation data whih in-

reases the robustness and generalization performane of the resulting adapted

network. Adding a linear front-end layer for adaptation purposes is best suited

to the relatively large networks used in traditional, monolithi onnetionist

aousti models where it has been applied suessfully (e.g., [Neto et al. '95℄).

For smaller networks, it will not be as e�etive as network retraining sine a

linear front-end layer an not fully apture the typially non-linear mapping

from speaker-independent to speaker-dependent feature spae.

Compared to traditional monolithi onnetionist aousti models, the networks used

in our hierarhies of neural networks are muh smaller whih normally allows to apply

retraining of the relevant speaker-independent networks in order to ahieve e�etive

speaker adaptation. Adaptation of loal prior probabilities an be aomplished by

simply re-estimating them on the adaptation data. As the available adaptation data

at a partiular HNN node must be suÆient for retraining the loal neural network,

it will be more than suÆient for re-estimating the priors.

7.4 Adaptation Experiments

In the following, we present results of applying the proposed adaptation algorithm to

the task of unsupervised speaker adaptation of a hierarhial onnetionist aousti

model on 20 representative speakers from the 1996 Swithboard evaluation test set.

For that purpose, a speaker-independent Hierarhy of Neural Networks aousti model

for 8000 ontext-dependent tied HMM states has been trained on the full Swithboard

training orpus, onsisting of data from more than 500 di�erent speakers. As we

investigate unsupervised speaker adaptation, we �rst have to run the reognizer with

the speaker-independent aousti model and generate sentene hypotheses and state

alignments for the aousti adaptation data. Fig. 7.9 shows the amount of adaptation

data available for eah of the 20 adaptation speakers.
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Figure 7.9: Available adaptation data for 20 Swithboard test set speakers

The baseline performane of the speaker-independent system on the set of these

20 adaptation speakers is 36.8% word error. Thus, on average every third word is

deoded falsely, resulting in erroneous word and state alignments. We did not attempt

to mask the false segments by applying some kind of word on�dene measure as has

beome popular now, but used all of the obtained state alignments for adaptation.

7.4.1 Node Seletion

For eah speaker, we ompute sample ounts for all HNN tree nodes from the state

alignments and selet nodes subjet to adaptation based on a pre-determined adap-

tation threshold C

min

. We have experimented with

C

min

2 f500; 1000; 2000; 4000; 6000; 8000g:

The following table 7.1 gives an overview of the number of adaptation samples

(frames) available for eah speaker and the number of tree nodes seleted for adap-

tation based on the di�erent values of C

min

. Note how the di�ering global amounts

of available adaptation data lead to signi�antly di�erent numbers of seleted tree

nodes for eah speaker. Furthermore, the value of C

min

must be arefully seleted

suh that it does not exeed the available amount of adaptation data as in the ase

of C

min

= 8000 for speaker 'sw4338-A'. Otherwise, none of the tree nodes will be

seleted and the model an not be adapted.
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7.4.2 Neural Network Adaptation

Having seleted tree nodes for adaptation aording to the adaptation threshold, we

proeed with the adaptation of the loal neural networks. We opted for the method

of retraining the existing speaker-independent networks on the available adaptation

data. For eah seleted tree node, 10% of the orresponding adaptation data were

withheld as the validation set for monitoring performane. The remaining 90% were

used for gradient-desent based training. Training was stopped as soon as the per-

formane on the validation set eased to improve.

Speaker # adapt. # HNN nodes subjet to adaptation

ID frames for various values of C

min

500 1000 2000 4000 6000 8000

sw3157-A 10933 18 8 5 2 2 2

sw3157-B 14164 24 9 7 2 2 2

sw3264-A 15719 25 10 7 2 2 2

sw3380-A 14182 24 9 7 2 2 2

sw3494-B 13044 23 8 6 2 2 2

sw3538-A 15881 24 11 7 2 2 2

sw3538-B 9348 17 7 4 2 2 2

sw3822-A 8433 9 7 3 2 2 1

sw3824-B 19658 25 16 7 4 2 2

sw3835-A 14950 25 9 7 2 2 2

sw3927-A 14715 25 9 7 2 2 2

sw3940-B 8782 10 8 2 2 2 1

sw4073-B 19546 26 12 7 4 2 2

sw4093-A 13990 23 9 7 2 2 2

sw4093-B 8247 12 7 3 2 2 1

sw4141-A 15525 25 10 7 2 2 2

sw4178-A 15341 25 9 7 2 2 2

sw4322-A 13510 23 8 6 2 2 2

sw4338-A 6726 10 6 2 2 1 0

sw4373-B 9524 15 8 4 2 2 1

Average: 13111 20.4 9.0 5.6 2.2 2.0 1.7

Table 7.1: Adaptation data and number of adapted nodes for 20 Swithboard test

set speakers

As an example, we take a loser look at the network at the root node of the HNN

tree. Fig. 7.10 shows for eah test speaker the lassi�ation error rate of this network

on the speaker's validation data before and after adaptation. In all but 3 ases,

the lassi�ation error rate of the network at the root node ould be improved by

retraining it on the adaptation data. As an be seen from table 7.1, the adaptation
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algorithm typially selets more than just the root node for adaptation. Thus, even

if the performane of the root node ould not be improved by retraining on the

adaptation data, some other node further down the tree might be.
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Figure 7.10: Classi�ation error of root node lassi�ers before and after adaptation

Let's now take a look at how the loal improvements in onditional posterior probabil-

ity estimation at the adapted nodes inuene the estimation of HMM state posteriors

in the omplete hierarhy. Fig. 7.11 shows the average negative log posterior prob-

ability of the HMM state assigned to an adaptation sample for di�erent numbers of

adapted tree nodes in the hierarhial onnetionist aousti model. The estimates

are averaged over all data of all 20 adaptation speakers. As expeted, the average

negative log posterior dereases (the posterior probability inreases) with inreasing

number of adapted nodes. The plot in Fig. 7.11 suggests to adapt even more than

an average of 20 nodes in the HNN tree as the average posterior probability of the

adaptation data is expeted to rise even further. However, we must be areful and

not jump to onlusions imprudently. The state alignments that we are soring were

obtained from erroneous sentene hypotheses generated by the deoder as we operate

in unsupervised adaptation mode. Thus, an inrease in the number of adapted tree

nodes will only inrease the probability of the falsely deoded hypotheses - not the

probability of the unknown orret transription that we really seek to inrease. In

pratie, we have to measure the word error rate for di�erent values of C

min

in order

to �nd an optimal number of adapted tree nodes.
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Figure 7.11: Average negative log posterior probability of adaptation data for varying

number of adapted tree nodes

7.4.3 Prior Adaptation

As stated before, the estimates of hild prior probabilities at seleted tree nodes

are adapted by re-estimating these probabilities on the adaptation data. This is

aomplished by simply normalizing the ounts for eah hild node to get relative

frequenies. To demonstrate that there really are di�erenes in the distributions of

prior probabilities between the speaker-independent training set and adaptation sets

of di�erent speakers, we again take a loser look at the root node of the HNN tree.

The root node in our 8k HNN has four hild nodes. Fig. 7.12 plots the symmetri KL

distane (information divergene) between the speaker-independent prior distribution

and the speaker-adapted prior distributions for eah speaker.

Although omparably small, there are measurable di�erenes between these prior dis-

tributions. As the KL-distanes themselves are not easily interpretable, we also plot

the atual prior distributions for the speaker-independent baseline and the speakers

with the smallest (sw4141-A / #16) and largest (sw4338-A / #19) KL distanes in

Fig. 7.13.

Primarily the prior probability of the �rst hild node seems to vary strongly between

di�erent speakers. In the ase of speaker sw4338-A, this prior has more than dou-

bled ompared to the speaker-independent estimates. This observation on�rms the

importane of prior re-estimation as an essential part of speaker adaptation in our
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Figure 7.12: KL-divergene of prior distributions at root node before and after adap-
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hierarhial onnetionist aousti model.

7.4.4 Reognition Results

Finally, we present reognition results for using the speaker-adapted hierarhial mod-

els for re-deoding the orresponding speaker's data. Table 7.2 gives individual results

for all 20 test speakers and the di�erent adaptation thresholds investigated in this

study.

Speaker adapt. unadapted word error rates for various values of C

min

ID data baseline 500 1000 2000 4000 6000 8000

sw3157-A 1'49" 39.3% 38.6% 38.6% 38.6% 38.6% 38.6% 38.6%

sw3157-B 2'21" 43.3% 41.3% 42.3% 43.3% 44.2% 44.2% 44.2%

sw3264-A 2'37" 31.8% 29.4% 29.4% 31.2% 32.7% 32.7% 32.7%

sw3380-A 2'21" 25.0% 23.0% 23.0% 22.2% 24.4% 24.4% 24.4%

sw3494-B 2'10" 41.8% 34.9% 33.6% 34.9% 35.6% 35.6% 35.6%

sw3538-A 2'38" 27.6% 21.9% 25.7% 25.7% 21.9% 21.9% 21.9%

sw3538-B 1'33" 37.9% 36.5% 34.8% 40.0% 39.1% 38.3% 38.3%

sw3822-A 1'24" 47.2% 43.8% 44.9% 46.1% 46.1% 46.1% 46.1%

sw3824-B 3'16" 37.9% 36.8% 36.8% 38.5% 36.8% 36.8% 36.8%

sw3835-A 2'29" 37.5% 35.9% 36.7% 38.3% 35.9% 35.9% 35.9%

sw3927-A 2'27" 39.8% 31.2% 32.1% 32.1% 33.0% 33.0% 33.0%

sw3940-B 1'27" 53.8% 48.7% 47.4% 50.0% 50.0% 50.0% 51.3%

sw4073-B 3'15" 39.3% 36.1% 36.1% 35.2% 33.6% 34.4% 34.4%

sw4093-A 2'19" 34.8% 31.5% 29.3% 29.3% 29.3% 29.3% 29.3%

sw4093-B 1'22" 25.2% 24.4% 22.8% 23.6% 22.8% 22.8% 29.1%

sw4141-A 2'35" 22.8% 22.8% 21.3% 22.1% 22.1% 22.1% 22.1%

sw4178-A 2'33" 35.5% 30.1% 28.0% 28.0% 30.1% 30.1% 30.1%

sw4322-A 2'15" 37.7% 30.8% 31.5% 30.8% 33.1% 33.1% 33.1%

sw4338-A 1'07" 55.5% 51.8% 52.6% 51.1% 51.1% 55.5% 55.5%

sw4373-B 1'35" 31.8% 26.4% 27.1% 26.4% 26.4% 26.4% 34.1%

Total: { 36.8% 33.4% 33.3% 33.9% 33.9% 34.1% 35.0%

Table 7.2: Results of unsupervised speaker adaptation for 20 Swithboard test set

speakers

The last row gives word error rates for the unadapted baseline and all adapted systems

averaged over all 20 test speakers. As expeted, the overall performane improves

with inreasing number of adapted tree nodes. However, there usually is a trade-o�

between inreasing the number of adapted parameters and generalization performane

in unsupervised adaptation algorithms. With inreasing number of parameters, per-

formane typially �rst improves (as we have observed here too) but then starts to
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degrade again as we gradually allow the model to perfetly reprodue the erroneous

transriptions of the adaptation data. It appears that the algorithm for adapting

hierarhial onnetionist aousti models does not su�er from this over�tting e�et.

Performane of adapted models seems to level o� with inreasing number of adapted

parameters. The di�erene between the results for C

min

= 1000 and C

min

= 500 are

not statistially signi�ant.

Conerning this kind of behavior, the robustness of our adaptation algorithm an

be attributed to the fat that we are not seeking to optimize the likelihood of all

the available adaptation data, as for example is the ase in MLLR, but the pos-

terior probability over a smaller, withheld validation set as is ommon pratie for

avoiding over�tting in the training of neural networks. As we start training on the

adaptation data with the speaker-independent network parameters and do not allow

for a derease in the performane on the validation set during adaptation, the ef-

fetive number of adapted parameters is smaller than what we would assume from

the seleted number of tree nodes. In fat, with dereasing C

min

, we only allow the

adaptation algorithm to adapt more networks in the HNN tree - we do not fore it

to really adapt all the seleted networks. As a result the adaptation algorithm is less

dependent on �nding an optimum value for C

min

.

Finally, Fig. 7.3 summarizes the reognition results we have obtained with unsuper-

vised adaptation on Swithboard data. Here, we have inluded both the adaptation

threshold used for seleting tree nodes for adaptation and the resulting average num-

ber of seleted tree nodes.

C

min

average

# seleted nodes word error rate

unadapted { 36.8%

8000 1.7 35.0%

6000 2.0 34.1%

4000 2.3 33.9%

2000 5.6 33.9%

1000 9.0 33.3%

500 20.4 33.4%

Table 7.3: Summary of results for unsupervised speaker adaptation

Compared to the unadapted baseline, unsupervised speaker adaptation on an average

of about 2 minutes of adaptation data yields an average relative redution in word

error rate of 9.5%. While this is omparable to what has been reported for regres-

sion tree based MLLR adaptation of onventional aousti models, the hierarhial

struture of the onnetionist model presented in this thesis allows for more natu-
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ral integration of speaker adaptation. No additional strutures suh as regression

lass trees are required for dealing with small amounts of adaptation data as the tree

strutured model itself realizes the required parameter sharing.
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Chapter 8

Strutural Domain Adaptation

One of the most interesting appliations of hierarhial onnetionist aousti models

is in domain-adaptive speeh reognition. We present Strutural Domain Adaptation

(SDA) [Fritsh et al. '98a, Fritsh et al. '98b℄, an approah for eÆiently and e�e-

tively downsizing and adapting the struture of a hierarhial onnetionist aousti

model for the purpose of porting a large voabulary onversational speeh reogni-

tion system to a previously unseen appliation domain. We motivate why strutural

as well as aousti adaptation is bene�ial in addition to the adaptation of the vo-

abulary and the language model of a speeh reognition system. We demonstrate

how SDA allows to build domain-adaptive speeh reognition systems that math the

performane of domain-spei� systems with only moderate requirements regarding

the amount of aousti adaptation data.

8.1 Motivation

It is well known that statistial speeh reognition systems are highly dependent on

the harateristis of the data they are trained on. To obtain reasonable performane,

one has to fous on a spei� appliation domain in order to restrit the variability

of both the aousti and the linguisti training data. Typial aspets of relevane are

� quality of aousti data (sampling rate, mirophone, AD onverters)

� reording onditions (indoor/outdoor/telephone, bakground noise)

� type of speeh (read/spontaneous/onversational, isolated/ontinuous)

� voabulary and phoneti transription of words

� a-priori probability of words and word sequenes

139
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In addition to the large variability in aousti realization of elementary speeh units,

the typially �nite size of the reognition voabulary and the language model require

to restrit the appliation domain of a speeh reognition system. The resulting lak

of universality stands in sharp ontrast to what we all experiene in human speeh

reognition. Following is a list of the most popular appliation domains for whih

speeh reognition systems are urrently built:

� Personal speeh-to-text (ditation) systems

� Interative Voie Response (IVR) systems for automated all enters

� Transription of broadast news for building searhable multimedia databases

for information retrieval

� Command & ontrol systems

� Car navigation systems

As long as statistial speeh reognition systems are being used in mathed onditions,

meaning that the appliation domain mathes the training domain, performane an

be expeted to be similar to what has been observed on a validation set during

training. However, if there are onsiderable aousti or linguisti mismathes aused

either by deploying a lab-trained system to the �eld or by applying a system to

an unseen, new appliation domain, performane often drops unaeptably (e.g.,

[Thomson '97℄).

In the following, we experimentally examine this problem by means of the Swith-

board domain (spontaneous onversational telephone speeh) as the baseline training

domain and the following two rather di�erent target domains:

� Wall Street Journal (WSJ): This domain is representing a ditation task

that onsists of read �nanial newspaper artiles. For the purposes of this thesis,

we are using a less known subset of the WSJ orpus onsisting of telephone data

(from DARPA's 1993 WSJ Spoke 6 evaluation) in order to math the reording

onditions between Swithboard and WSJ. Still, there are large di�erenes in

type of speeh, voabulary and language between these two orpora. The fous

in hoosing this partiular subset of the WSJ domain was on investigating the

problem of porting a onversational speeh reognition system to a ditation

domain.

� English Spontaneous Sheduling Task (ESST): This domain is onsisting

of high-quality (16 KHz) reordings of spontaneous onversations for sheduling

meetings. Although the di�erenes in type of speeh are less serious between
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this orpus and the Swithboard orpus, there are signi�ant di�erenes in size

of voabulary, language model and quality of aousti data. The fous in hoos-

ing this domain was on investigating the problem of porting a onversational

speeh reognition system to a domain of muh smaller and more spei� vo-

abulary.

Table 8.1 gives reognition results obtained in in-domain vs. out-of-domain onditions

on the above two orpora. These results impressively demonstrates the domain-

dependene of statistial speeh reognition systems. The �rst row gives the word

error rate for a speeh reognition system that was trained and optimized spei�ally

for the WSJ domain and tested on data from the same domain. The seond row gives

the word error rate for another system, this time trained and optimized spei�ally for

the ESST domain and tested again on in-domain data. In ontrast, the last row gives

word error rates for a system trained and optimized on the Swithboard domain

and tested without modi�ations

1

on data from the WSJ and the ESST domains,

respetively.

reognizer word error rate word error rate

training domain on WSJ domain on ESST domain

WSJ 12.5% {

ESST { 19.5%

Swithboard 45.4% 55.3%

Table 8.1: In-domain vs. out-of-domain performane of speeh reognition systems

In our senario the out-of-domain word error rate is roughly 3 times higher than what

is ahievable with dediated reognizers in mathed onditions. In addition, the out-

of-domain performane is way too poor in both ases to allow for any reasonable

appliation.

From the results above it is obvious that universal, domain-independent speeh reog-

nition is not available with today's tehnology. However, it is possible to at least

adapt or exhange the relevant omponents of a reognizer using some data from

a new domain and thereby redue the mismath between training and appliation

domain. Whereas new domain-spei� voabularies and phoneti ditionaries an

be obtained quikly and inexpensively [Geutner et al. '97℄, and new domain-spei�

language models require only that large amounts of text data are available, the adap-

tation of the aousti model is onsiderably more expensive and time- and labour-

onsuming as it also requires the availability of transribed aousti data.

1

Exept that 16 KHz data was downsampled to 8 KHz as required by the Swithboard prepro-

essing frontend.
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In addition, an analysis of state-of-the-art deision tree lustered ontext-dependent

aousti modeling reveals that there are two di�erent aspets that ause a dependene

on the training domain:

� Estimators of HMM emission probabilities depend on the aousti harateris-

tis of the training domain.

� Spei�ity of ontext modeling as represented by number and identity of pho-

neti ontext lasses depends on voabulary, phoneti ditionary and language

model of the training domain.

It is important to note that the phoneti transription of words and their a-priori

probabilities in the training orpus a�et the outome of word internal phoneti

ontext lustering. Additionally, ross-word phoneti ontext modeling is a�eted by

the probabilities of word pairs (and word triples in the ase of single-phone words) in

the training orpus. Previous approahes to domain adaptation (e.g., [Siu et al. '99℄)

have only addressed the �rst of the above items by means of some sort of supervised

aousti adaptation. The seond item is mostly ignored, as size and spei�ity of

onventional aousti models an not easily be modi�ed due to the at, independent

representation and evaluation of emission probabilities. This is quite disadvantageous

in terms of memory and omputational requirements in ases where a onsiderably

smaller amount of ontext modeling is suÆient in the target domain.

Consider for instane the extreme ase of porting a large voabulary onversational

speeh reognition (LVCSR) system (e.g., trained on the Swithboard orpus) to a

ten word voabulary digit reognition task. The very spei� aousti model of the

LVCSR system will typially onsist of several thousand ontext-dependent HMM

states and require over 20 MBytes of RAM and onsiderable amounts of omputa-

tion during deoding. Simple aousti adaptation might be e�etive in reduing the

word error rate to some extent but the model will still be too large and detailed to

be used for simple ten word digit reognition. Instead, a ompletely new aousti

model is typially lustered and trained from srath, whih requires large amounts

of transribed aousti data.

In the remainder of this hapter, we will present a tehnique that, in addition to

aousti adaptation, allows us to adapt the size and struture of hierarhial onne-

tionist aousti models to smaller requirements regarding the spei�ity of phoneti

ontext modeling. In ontrast to aousti adaptation of onventional aousti mod-

els, our approah addresses both of the disussed aspets of domain dependene and

allows to adapt the size and re-use parts of a trained hierarhial model for any new

domain, even in ases suh as the ten digit task desribed above. We will show that

domain-spei� performane an be ahieved with domain-spei� model size and

only small requirements regarding the amount of transribed aousti adaptation

data.
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8.2 Quantifying Domain Mismathes

First however, we analyze and quantify the di�erenes between appliation domains

that ause the large disrepany in performane between in-domain and out-of-

domain appliation of speeh reognition systems in more detail, using Swithboard

(SWB) as the baseline training domain and WSJ and ESST as the target appliation

domains.

8.2.1 Voabulary and Language Model

We ompare the voabulary and language model used in the SWB reognizer with

voabularies and language models built spei�ally for the WSJ and ESST domains,

respetively. The voabulary used in the SWB domain onsists of 15000 unique

words. In ontrast, the voabulary used in the WSJ domain onsists of only 5000

unique words and the voabulary used in the ESST domain onsists of only 2850

unique words. Even though both of the target domains exhibit a muh smaller

voabulary, the voabulary of the SWB domain does not over all of the words in the

target domains (see Table 8.2).

domain out-of-voabulary rate

WSJ 7.4%

ESST 0.9%

Table 8.2: Out-of-voabulary rates of SWB voabulary on WSJ and ESST test sets

On the test sets used for our experiments the Out-Of-Voabulary (OOV) rate for the

SWB voabulary is 7.4% for WSJ and 0.9% for ESST. Partiularly in the ase of

WSJ, the OOV words are expressions and proper names spei� to the domain of

�nanial news. A general rule of thumb is that eah OOV word auses between 1 and

2 word errors. Thus, the mismath in voabulary explains a signi�ant part of the

inrease in word error rate of the SWB reognizer at least in the ase of WSJ data.

A muh larger ontribution to the mismath however is aused by di�erenes in the

domain-spei� language models. Standard n-gram language models learn to predit

harateristi word sequenes that are spei� to the training domain. They typially

perform poorly on texts from a di�erent, previously unseen domain. We measure the

diÆulty of a reognition task relative to a given statistial language model and a

test set onsisting of a sequene of words w

1

; : : : ; w

n

by the perplexity

PP =

^

P (w

1

; : : : ; w

n

)

(�

1

n

)



144 Chapter 8 Strutural Domain Adaptation

where

^

P () denotes the probability of a word sequene as estimated by the language

model. The perplexity measures the average number of words between whih the

reognizer must deide when transribing a word of spoken text, relative to the given

language model. The maximum in perplexity is given by the size of the voabulary.

All other things being equal, we are interested in a language model that minimizes

the perplexity. Table 8.3 gives perplexities omputed for di�erent domain-spei�

language models on the spei� test sets from WSJ, ESST and SWB that were used

for the experiments in this hapter. Obviously, there are great di�erenes in perplexity

between in-domain and out-of-domain usage.

language model perplexity perplexity perplexity

training domain on WSJ on ESST on SWB

WSJ 68 251 148

ESST 1607 23 500

SWB 757 205 71

Table 8.3: In-domain vs. out-of-domain perplexity of various language models on

test sets used in this thesis

For the out-of-domain reognition results reported in Table 8.1, we have used the

SWB language model for reognizing speeh from WSJ and ESST. In these two

ases, the perplexity on the test sets inreased by a fator of 11 from 68 to 757 on

WSJ and by a fator of 9 from 23 to 205 on ESST!

To measure the e�et of mismathes in voabulary and language model on the word

error rate of a reognizer, we repeated the experiments from Table 8.1, this time

however with domain-spei� voabularies and language models. Table 8.4 gives

results for these experiments.

reognizer word error rate word error rate

training domain on WSJ domain on ESST domain

WSJ 12.5% {

ESST { 19.5%

SWB 17.2% 28.3%

Table 8.4: In-domain vs. out-of-domain performane of speeh reognition systems

when using domain-spei� voabularies and language models

Interestingly, 62% (WSJ) and 49% (ESST) of the mismath in word error rate between

in-domain and out-of-domain speeh reognition an be ompensated by swithing to
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domain-spei� voabularies and language models. It an be assumed, that obtaining

domain-spei� voabularies and ditionaries requires relatively little e�ort. Further-

more, training domain-spei� language models is simpli�ed by an ever inreasing

amount of available text material, for instane on the Internet.

However, there still is a signi�ant di�erene in word error rate remaining whih is

aused primarily by mismathes in aousti modeling.

8.2.2 Aousti Model

Mismathes in aousti modeling are muh harder to ompensate than mismathes

in voabularies and language models. In ontrast to the latter, replaing the original

model with a domain-spei� one is typially impratiable for aousti models as

it would require the very expensive reording and transription of several hours of

speeh data in order to obtain enough training material for robustly lustering and

training a ompletely new domain-spei� aousti model.

Before we disuss alternative, less expensive solutions to this problem, let's �rst

analyze whih fators ontribute to a mismath in aousti modeling in out-of-domain

appliations of speeh reognition systems. We have identi�ed the following three

types of mismathes that typially our jointly:

1. Aousti mismath: An aousti mismath is aused by a wide variety

of fators: di�erent mirophones, pre-ampli�ers and AD onverters, di�erent

sampling rates, di�erent reording onditions, existene/nonexistene of bak-

ground noise, di�erent dialet, age or gender of speakers. All these fators lead

to a di�erene in emission probability distributions for the basi speeh units

modeled by the HMM states in an aousti model.

2. Context spei�ity mismath: Di�erent appliation domains require dif-

ferent amounts of phoneti ontext modeling, depending on diÆulty, type of

speeh (onversational vs. read) and size of the domain voabulary. The spei-

�ity of phoneti ontext modeling is determined by the number of deision

tree lustered HMM states whih is typially �xed a-priori for a given training

domain and an not be altered easily in onventional aousti models. In out-

of-domain senarios the aousti model an either turn out to be too general

(too small, not enough allophoni variation) or too spei� (too large, over�t-

ting, many unseen HMM states) for the target domain. Even if we manage to

eliminate over�tting e�ets in ases where the model is too large and detailed

by tehniques suh as parameter tying, we still have an oversized model that

onsumes too muh memory.
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3. Prior mismath: The distribution of a-priori probabilities of a set of ontext-

dependent HMM states that were lustered on some training domain varies

signi�antly from domain to domain, mostly depending on the words in the

voabulary, their phoneti transriptions and their unigram probabilities. The

following Fig. 8.1 demonstrates this e�et by means of a deision tree lustered

model for 24k HMM states onstruted on the SWB orpus. The baseline a-
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Figure 8.1: KL-divergene of a-priori HMM state distributions between the train-

ing domain (SWB) and various appliation domains (SWB,WSJ,ESST) for di�erent

amounts of data

priori distribution of the 24k HMM states is estimated on the full SWB training

orpus. This distribution is then ompared against a-priori distributions esti-

mated from a variable amount of data from the SWB, WSJ and ESST orpora,

respetively. We use information divergene (KL-distane) to ompare two a-

priori distributions. The smaller the KL-distane, the more similar the a-priori

distributions. From left to right, the a-priori distributions beome more and

more stable as more data is being used for their estimation. As expeted, the

SWB urve approahes zero for an inreasing amount of data, as the orre-

sponding prior distribution onverges against the prior distribution estimated

on the full training orpus. However, the urves for WSJ and ESST level o�

at some o�set distane onsiderably larger than zero after about one hour of

data. Obviously, the a-priori distributions of the SWB lustered HMM states

on WSJ and ESST will never onverge to that of the SWB orpus, no matter



8.3 The SDA Algorithm 147

how muh data we use for estimating them.

In the standard approah, only the �rst type of mismathes is addressed by some

sort of supervised aousti model adaptation, for instane using regression tree based

MLLR with a mixture of Gaussians based aousti model. Mismathes in the spei-

�ity of phoneti ontext modeling and the prior distribution of HMM states are

ignored ompletely. These kind of mismathes are a result of the domain-dependene

of phoneti deision trees used for lustering basi speeh units suh as phones based

on their phoneti ontext. Size and struture of these trees are determined on the

training domain and therefore depend heavily on the spei� voabulary, phoneti

ditionary, and language model of the training domain. Out-of-domain mismathes

in these omponents therefore ause mismathes in the phoneti deision trees that

in turn ause mismathes in the spei�ity of ontext modeling and the prior distri-

bution of HMM states beause the leaf nodes of the phoneti deision trees de�ne the

set of distintly modeled HMM states.

To eliminate these mismathes, we would have to replae the set of phoneti deision

trees with a set of new ones onstruted spei�ally for the target domain. Unfortu-

nately, suh an approah implies that a ompletely new aousti model is trained on

the target domain whih is impratiable for the reasons already stated above.

8.3 The SDA Algorithm

In ontrast to onventional models, the tree struture of hierarhial onnetionist

aousti models together with their salability and multi-level representation of pho-

neti ontexts allows for eÆient and e�etive ompensation of all three kinds of

mismathes in aousti modeling (see previous setion) that our in out-of-domain

appliations of speeh reognition systems. To demonstrate this, we have devel-

oped an algorithm alled Strutural Domain Adaptation (SDA) [Fritsh et al. '98a,

Fritsh et al. '98b℄ that is based on the observation that it is always possible to redue

the spei�ity of ontext modeling in a trained hierarhial onnetionist aousti

model by removing (pruning) irrelevant substrutures from the modeling tree.

Consequently, the idea in strutural domain adaptation is to onstrut a very detailed,

highly spei� hierarhial onnetionist aousti model using phoneti deision trees

that yield a large amount of ontext resolution suh that almost all potentially signif-

iant ontexts of a partiular language are represented in the model tree. Of ourse,

this requires a training domain that exhibits a omparably large amount of phoneti

variability and a large voabulary. If there is no suh training domain available, we

an use a meta-domain omposed of several di�erent sub-domains. Starting from

the resulting large and very detailed aousti model, strutural domain adaptation

then ompensates (1) aousti and (2) strutural mismathes in a spei� target
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domain in a two step proess based on a moderate amount of transribed aousti

adaptation data (typially less than an hour). Additionally, it allows to arbitrarily

redue the overall size and spei�ity of the aousti model to derease memory and

omputational requirements.

Aousti mismathes are redued by applying the adaptation algorithm presented in

the previous hapter in supervised mode. Based on the amount of available adapta-

tion data and an adaptation threshold C

min

, this step in the algorithm dynamially

determines a set of tree nodes in the hierarhial onnetionist aousti model that

reeive enough adaptation samples for adapting the orresponding estimators of loal

posterior and prior probabilities. As these nodes are loated in the upper layers of

the tree, their estimates are ontributing to a large number of HMM states and by

adapting these nodes, we e�etively and robustly adapt all HMM states through the

tree's tying mehanism. The algorithm automatially adjusts the number of adapted

parameters to the amount of available adaptation data. Furthermore, the adaptation

step in SDA adjusts the loal prior probabilities of seleted nodes thereby ompen-

sating a large proportion of the mismath in the a-priori probability distribution

of HMM states between training and target domain. See hapter 7 for a detailed

analysis.

Strutural mismathes, i.e. di�ering loal requirements onerning the spei�ity of

ontext modeling, are ompensated by identifying and permanently deleting irrelevant

substrutures in the hierarhial model. Tree nodes are onsidered irrelevant if they

reeive less or equal than a small, empirially determined pruning threshold C

prune

of adaptation samples in the target domain (represented by the adaptation data). If

a partiular tree node is rarely used in the target domain (as indiated by a small

node ount), we an assume that the partitioning into more spei� ontext lasses

performed by this tree node no longer makes sense and an not be performed robustly

in the target domain. Fortunately, the modular omposition of HMM state posteriors

in a hierarhial onnetionist aousti model allows to remove suh nodes and thereby

redue the loal spei�ity of ontext modeling without having to adjust a single

parameter. Due to the over-spei�ity of the baseline model, ertain HMM states

will not be observed at all in the adaptation data available from the target domain.

Tree branhes leading to suh 'dead' states are pruned impliitly as a result of prior

adaptation but SDA will additionally remove obsolete nodes (nodes that lead only to

unobserved states), if existing in the model tree.

Sine we ount the number of adaptation samples for eah tree node as the �rst

step of aousti adaptation anyway, determining whether or not a node is subjet to

pruning an take plae in onjuntion with determining whether or not it is subjet

to adaptation. Of ourse, the ount thresholds must satisfy C

prune

< C

min

sine

tree nodes an not be adapted and pruned at the same time. The following Fig. 8.2

illustrates strutural domain adaptation by means of a small balaned binary example
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Figure 8.2: Strutural domain adaptation of hierarhial onnetionist aousti mod-

els
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tree. Note however that the SDA algorithm imposes no restritions on the branhing

fator and the balane of the adapted model's tree struture.

Fig. 8.3 summarizes the SDA algorithm in ompat form. Optimal values for the two

parameters C

min

and C

prune

of the algorithm must be determined empirially on the

available adaptation data. Inreasing C

prune

beyond the value that results in optimal

reognition performane on the target domain allows for ontrolled downsizing of the

hierarhial onnetionist aousti model, trading o� reognition auray against

memory and omputational requirements.

Strutural Domain Adaptation Algorithm

1. Counting: Compute state alignments of the adaptation data. For eah HMM

state (tree leaf node), ount the allotted number of adaptation samples and

propagate these ounts up through the tree struture, thereby omputing pat-

tern ounts C

i

for eah tree node.

2. Aousti Adaptation: Selet nodes subjet to adaptation by heking

whether C

i

� C

min

using a pre-de�ned adaptation threshold C

min

. Adapt

the loal estimators for onditional posterior and prior probabilities in the

seleted tree nodes.

3. Strutural Adaptation: Selet nodes subjet to pruning by heking

whether C

i

� C

prune

using a pre-de�ned pruning threshold C

prune

with

C

prune

< C

min

. Remove the seleted tree nodes and tie all dangling HMM

states in a pruned subtree to a newly reated leaf node that replaes the root

of the pruned subtree.

Figure 8.3: Algorithm for strutural domain adaptation of hierarhial onnetionist

aousti models

8.4 Domain Adaptation Experiments

In the following, we experimentally evaluate the SDA algorithm by adapting a Swith-

board reognizer to the two previously mentioned target domains. In these exper-

iments, we fous on strutural domain adaptation of the hierarhial onnetionist

aousti model, assuming that domain-spei� voabularies and language models are

available.
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8.4.1 Baseline Swithboard Reognizer

Our baseline reognizer is built and trained on 170 hours of Swithboard onversa-

tional Amerian English telephone speeh. This training orpus is overed by roughly

30000 distint words. The reognizer's training ditionary ontains 64000 pronuni-

ations for these 30000 words. Based on the training data and the pronuniation

ditionary, a ross-word ontext-dependent (pentaphone) hierarhial onnetionist

aousti model with a total of 24000 tied states distributed among 56 3-state left-

right phoneti HMMs was onstruted and trained. See Appendix B for details on

the distribution of tied states among phone models. The large number of 24000

tied HMM states was hosen in order to obtain a very detailed and over-spei� (in

terms of phoneti ontext modeling) baseline model suitable for subsequent strutural

adaptation.

On a subset of the oÆial Swithboard 1996 evaluation test set, the Swithboard

reognizer based on the onnetionist 24k HNN aousti model ahieves a word error

rate of 33.3%.

8.4.2 Seletion of Nodes for Adaptation and Pruning

In a �rst experiment, we quantify the e�ets of adaptation threshold C

min

and prun-

ing threshold C

prune

on the number of nodes seleted for adaptation and pruning,

respetively. For this purpose, we onsider an equal amount of adaptation data (45

min) from both target domains. For both target domains, we �rst ompute HMM

state ounts and HNN tree node ounts on Viterbi alignments of the available adap-

tation data. With respet to these ounts, we ompute the number of tree nodes

subjet to adaptation for di�erent values of C

min

. Fig. 8.4 shows the resulting urves

on the WSJ and ESST domains (note the logarithmi sale on the absissa). For ex-

ample, approximately 100 tree nodes are seleted for adaptation when using a value

of C

min

= 1000 frames.

Fig. 8.5 shows for di�erent pruning thresholds C

prune

how many tree nodes are re-

moved in the pruning step of strutural domain adaptation. Interestingly, these urves

do not start at 0% for C

prune

= 0, indiating that there are signi�ant amounts of

unobserved HMM states in both target domains for the given adaptation data. The

onsiderably larger amount of tree nodes pruned in the ase of ESST data an be

attributed to the smaller phoneti variety resulting from the smaller voabulary in

that domain. Furthermore, although an equal amount of adaptation data was used

for omputing the urves in Fig. 8.4 and Fig. 8.5, the WSJ data yields more nodes for

aousti adaptation and less nodes for pruning, indiating a more uniform distribution

of HMM states than in the ase of the ESST data.
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8.4.3 Adapting to WSJ Domain

We now take a loser look on strutural domain adaptation on the Wall Street Journal

(WSJ) target domain. In our experiments, we were using the WSJ'93 Spoke 6 subset,

onsisting of read Wall Street Journal artiles that were reorded through a telephone

headset. The domain spei� voabulary is three times smaller than the voabulary of

the baseline Swithboard reognizer and onsists of 5000 words. The WSJ'93 Spoke 6

subset de�nes separate adaptation and test sets that were adopted for our experiments

as they allow us to ompare our results with the oÆial evaluation results. The

following Table 8.5 provides details about these adaptation and test sets. Note that

a maximum of 45 minutes of transribed adaptation data is available for strutural

domain adaptation on the WSJ domain.

# adaptation speakers 10

amount of adaptation data 45.5 min

# adaptation frames 273500

# test set speakers 10

amount of test data 27 min

# words in test set 3865

Table 8.5: Adaptation and test sets for SDA on WSJ domain

The overage of the original 24000 tied HMM states on the 45 minutes of WSJ

adaptation data amounts to 93.3%. Using a domain spei� voabulary and language

model and after several iterations of (1) optimization of the speaker dependent VTLN

warping fators based on the �rst hypothesis transripts and (2) normalization of the

loudness of the input waveforms and (3) adjustment of the language model weight

and the word insertion penalty for optimal performane on a held out development

set onsisting of parts of the adaptation data, we ahieve a baseline word error rate

of 14.4% on the WSJ test set with the otherwise unaltered aousti model trained

on the Swithboard orpus. Note that this tuning phase already yields a signi�ant

improvement in the word error rate.

We then applied the SDA algorithm for three di�erent adaptation thresholds C

min

and varying pruning thresholds (C

prune

2 f0; 20; 40; 80; 160; : : :g). Fig. 8.6 shows the

resulting word error rates in relation to the remaining number of HNN leaf nodes

(equivalent to the number of unique HMM states). For eah of the three urves

(orresponding to the three di�erent values of C

min

investigated) in Fig. 8.6, Table

8.6 gives details about the performane and size of the resulting struturally adapted

HNN tree for the pruning threshold that yields the optimal word error rate.

The best overall result of 12.0% word error rate is ahieved for C

min

= 500 and
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C

prune

= 40. Although tree pruning yields only minor improvements in terms of the

word error rate

2

, it is very e�etive in reduing the size of the original model. For

the optimal settings, SDA prunes the original HNN tree to 65% of its original size

and improves performane by 16.7%. Using a larger value for the pruning threshold,

the size of the HNN tree an be further dereased to only about 20% of its original

size (4585 leaf nodes) with only a slight inrease in word error rate to 12.8%.
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Figure 8.6: Strutural domain adaptation on the WSJ domain

aousti # adapted # unique HNN tree word error relative

model nodes HMM states size rate gain

baseline { 24016 100% 14.4% {

SDA2000 72 16532 65% 12.7% 11.8%

SDA1000 101 20706 84% 12.2% 15.3%

SDA500 240 16532 65% 12.0% 16.7%

Table 8.6: Results for optimal strutural domain adaptation on WSJ

We ompare these results to the best oÆial evaluation result of 12.5% word error

rate, ahieved by a domain-spei� (trained on 62 hours of band-limited WSJ0 and

2

The rightmost point on the urves in Fig. 8.6 orrespond to the absene of expliit pruning with

C

prune

= 0. From there, the pruning threshold inreases towards the left of the plot.
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WSJ1 data) and telephone-adapted reognizer on the same WSJ'93 Spoke 6 evalua-

tion test set [ARP '94℄. Clearly, the SDA approah allows to math domain-spei�

performane with an out-of-domain hierarhial onnetionist aousti model and

only 45 minutes of aousti adaptation data. Table 8.7 summarizes all results dur-

ing the various phases from the original Swithboard system to the �nal struturally

adapted system for the WSJ domain.

ondition # HMM states word error rate

SWB reognizer 24016 45.4%

+ domain-spei� voab/LM 24016 17.2%

+ tuning on development set 24016 14.4%

+ optimal performane SDA 16532 12.0%

+ minimum tree SDA 4585 12.8%

WSJ reognizer N/A 12.5%

Table 8.7: Summary of domain adaptation on WSJ

Most importantly, the SDA algorithm not only yields domain-spei� reognition

performane but furthermore allows for a signi�ant derease in the spei�ity of

phoneti ontext modeling whih results in a onsiderably smaller aousti model.

8.4.4 Adapting to ESST Domain

In a seond set of experiments, we used the SDA algorithm to adapt the Swithboard

reognizer to the ESST domain. In ontrast to the WSJ'93 Spoke 6 data, the entire

ESST orpus is olleted in 16 kHz / 16 bit using high-quality Sennheiser miro-

phones. We therefore had to downsample the data to 8 kHz before feeding it into the

Swithboard reognizer. Although ESST onsists of spontaneous human-to-human

dialogs, it is onsiderably di�erent from the Swithboard domain in many respets.

The voabulary onsists of 2850 unique words whih is only 19% of the size of the

Swithboard voabulary. In ontrast to Swithboard, general artiulation is muh

learer and there are hardly any onversational phenomena suh as false starts, inter-

jetions and laughter. Finally, there is only a single topi in ESST (the sheduling of

meetings) whih restrits linguisti and phoneti variability onsiderably. We there-

fore expet that the ESST domain requires signi�antly less spei�ity in phoneti

ontext modeling than is realized in our 24k states Swithboard reognizer.

For the following domain adaptation experiments, we have ompiled an adaptation

set of 62 minutes of speeh and a test set of 18 minutes of speeh. Table 8.8 gives an

overview of these two data sets. Using the transriptions available for the adaptation

data, we �rst omputed Viterbi state alignments with the original 24000 tied states
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HNN model. In these alignments, the overage of the 24000 states amounts to 74.9%.

In other words, one forth of all HMM states were not observed in the 62 minutes of

adaptation data.

# adaptation speakers 18

amount of adaptation data 62 min

# adaptation frames 372100

# testset speakers 14

amount of test data 18 min

# words in test set 3309

Table 8.8: Adaptation and test sets for SDA on ESST domain

In ontrast to the WSJ domain, there never was an oÆial evaluation on the ESST

domain as it is an internal CMU-olleted domain. However, for omparison we had

a reognizer available that was built and optimized spei�ally for the ESST domain.

On the above test set, this domain-spei� mixtures of Gaussians based reognizer

ahieves a word error rate of 19.5% and models only 1150 tied HMM states.

In omparison, using a domain spei� voabulary and language model and the same

kind of optimizations of aousti parameters and deoding parameters already applied

in the ase of WSJ, we ahieve a baseline word error rate of 25.5% on the ESST

test set with the unaltered 24k aousti model trained on Swithboard. Thus, the

performane of the raw Swithboard aousti model is 30% worse than that of a

domain-spei� one. In addition, the Swithboard model is over-sized and over-

spei� as it models 20 times more allophoni variations (HMM states).

We then used the ESST adaptation data to apply the strutural domain adapta-

tion algorithm to the Swithboard HNN tree. As in the ase of WSJ, we applied

three di�erent adaptation thresholds (C

min

2 f500; 1000; 2000g) and varying pruning

thresholds (C

prune

2 f0; 20; 40; 80; 160; : : :g). Fig. 8.7 shows the resulting word error

rates in relation to the remaining number of HNN leaf nodes.

Again, tree pruning in addition to aousti adaptation yields only minor improve-

ments in terms of the word error rate but is very e�etive in reduing the size of

the original model, as already observed on the WSJ domain. However, there are two

remarkable di�erenes to the urves obtained on the WSJ domain. First, optimal

performane is obtained for the largest instead of for the smallest value of C

min

,

meaning that it is advantageous to adapt less tree nodes on ESST than on WSJ.

Seondly, the ESST domain allows for muh larger pruning thresholds and thereby

a onsiderably smaller size of the HNN tree. In fat, the hierarhial onnetionist

aousti model an be pruned to only about 13% of its original size before the word

error rate starts to inrease notieably.
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Figure 8.7: Strutural domain adaptation on the ESST domain

For eah of the three urves in Fig. 8.7, Table 8.9 gives details about the performane

and size of the resulting struturally adapted HNN tree for the pruning threshold

that yields the optimal word error rate.

aousti # adapted # unique HNN tree word error relative

model nodes HMM states size rate gain

baseline { 24016 100% 25.5% {

SDA500 280 12210 49% 22.0% 13.7%

SDA1000 120 12210 49% 21.3% 16.5%

SDA2000 71 8411 34% 20.8% 18.4%

Table 8.9: Results for optimal strutural domain adaptation on ESST

The best overall result of 20.8% word error rate is ahieved with C

min

= 2000 and

C

prune

= 160. For these settings, SDA prunes the original HNN tree to 34% of its

original size and improves performane by 18.4%. As mentioned before, the size of the

HNN tree an be further dereased to only about 13% of its original size with only a

slight inrease in word error rate to 21.3%. Table 8.10 summarizes all results during

the various phases from the original Swithboard system to the �nal struturally

adapted system for the ESST domain.

In omparison, the struturally adapted Swithboard system ahieves performane
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ondition # HMM states word error rate

SWB reognizer 24016 55.3%

+ domain-spei� voab/LM 24016 28.3%

+ tuning on development set 24016 25.5%

+ optimal performane SDA 8411 20.8%

+ minimum tree SDA 3051 21.3%

ESST reognizer 1150 19.5%

Table 8.10: Summary of domain adaptation on ESST

lose to a domain-spei� ESST system whih has been optimized extensively on the

given test set. While the adaptation step of SDA yields most of the gain in reogni-

tion auray, the pruning step in addition allows to prune substantial parts of the

original hierarhial onnetionist aousti model whih (a) improves generalization

by reduing the spei�ity of ontext modeling through state tying and (b) yields

signi�ant savings in memory requirements.

8.4.5 Comparison to Conventional Aousti Adaptation

In a last series of experiments, we ompare strutural domain adaptation with on-

ventional regression tree based MLLR adaptation of a mixtures of Gaussians aousti

model. In ontrast to the SDA approah, regression tree based MLLR an only be

used to aoustially adapt the existing set of ontext models. It does not allow to

redue the spei�ity of ontext modeling or the size of the aousti model to reet

the di�ering requirements in a new target domain. By omparing the two adaptation

approahes, we seek to determine whether strutural adaptation in addition to aous-

ti adaptation as performed by the SDA algorithm is bene�ial in terms of redution

of the word error rate.

For the following experiments with supervised MLLR adaptation, we were using a

Swithboard-trained ontinuous-density mixtures of Gaussians aousti model for the

same 24000 tied HMM states used in the previous setions. The mixtures of Gaus-

sians based model was taken from the Interative Systems Labs 1997 Swithboard

evaluation system (CMU-ISL) and ahieves a baseline word error rate of 31.5% on

the Swithboard test set.

Using domain-spei� voabularies and language models and some tuning of the

deoding parameters, we obtain baseline word error rates of 13.3% (WSJ) and 24.8%

(ESST) with the unadapted onventional aousti model. We then used alignments

of the available adaptation data to perform regression tree based MLLR adaptation

of the means of the approximately 100000 Gaussian densities in the system.
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To vary the number of adaptation transforms, we were experimenting with three dif-

ferent settings for C

min

(2000, 4000 and 8000). Table 8.11 gives results obtained with

the adapted models on the WSJ domain. The number of full rank linear adaptation

transforms applied to the Gaussian means ranges from 99 down to 31.

C

min

# transforms word error rate relative gain

baseline { 13.3% {

8000 31 11.6% 12.8%

4000 51 11.7% 12.0%

2000 99 12.0% 9.8%

Table 8.11: Results with regression tree based MLLR adaptation on WSJ

Optimal performane was ahieved using C

min

= 8000 whih yields a relative redu-

tion in word error rate of 12.8% ompared to the unadapted baseline. Table 8.12

gives results obtained for the same set of experiments on the ESST data.

C

min

# transforms word error rate relative gain

baseline { 24.8% {

8000 35 22.2% 10.5%

4000 63 22.0% 11.3%

2000 108 23.0% 7.3%

Table 8.12: Results with regression tree based MLLR adaptation on ESST

Again, three di�erent adaptation thresholds were investigated. As the ESST adap-

tation set is a little larger than that of the WSJ domain, the number of adaptation

transforms obtained inreased slightly. The best result was ahieved for C

min

= 4000

whih yields a relative redution in word error rate of 11.3%.

The following Table 8.13 summarizes and ompares the performane improvements

obtained with the SDA and MLLR approahes. Our results show that MLLR based

adaptation yields smaller relative improvements in word error rate, partiularly in

the ase of adapting a Swithboard model to the ESST domain.

In ontrast to MLLR based adaptation of a onventional arhiteture, the SDA ap-

proah not only ompensates for mismathes in aousti spae but furthermore adapts

to di�ering spei�ity of phoneti ontext in unseen domains by adapting node priors

and by pruning defetive parts in the modeling hierarhy. This way, di�erenes in the

a-priori probability of HMM states an be ompensated and the resolution of ontext

modeling an be adapted to the spei� requirements in the target domain. As an
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type of adaptation relative gain on

aousti model approah WSJ domain ESST domain

Hierarhy of Neural Networks SDA 16.7% 18.4%

Mixtures of Gaussians MLLR 12.8% 11.3%

Table 8.13: Comparison of relative gains obtained with SDA vs. with MLLR

important side e�et, the SDA algorithm allows to downsize a hierarhial onne-

tionist aousti model and thereby redue the memory requirements and deoding

time substantially.



Chapter 9

Mixture Trees

In previous hapters, we have seen how a large voabulary onversational speeh

reognition system bene�ts from a hierarhially organized onnetionist aousti

model. By adopting the onnetionist framework of estimating state posteriors in-

stead of state likelihoods, we were able to apply hierarhial fatoring to obtain a

tree strutured estimator with advantageous saling properties. In this hapter, we

present mixture trees, a di�erent but related tree strutured arhiteture for aousti

modeling. We demonstrate that most, but not all of the properties of a hierarhial

onnetionist aousti model an also be obtained with this likelihood based model.

9.1 Hierarhially Tied Mixture Densities

We onsider the task of estimating HMM state observation likelihoods for a set of N

deision tree lustered states s

i

using mixture densities. In a onventional ontinuous-

density HMM setting, we model eah state independently aording to

p

i

(x) = p(xjs

i

) =

K

i

�1

X

k=0



(k)

i

q

(k)

i

(x) 8i 2 f1; : : : ; Ng

where the 

(k)

i

are (aÆne) mixture weights satisfying

P

K

i

�1

k=0



(k)

i

= 1 and 

(k)

i

� 0,

and the q

(k)

i

(x) are mixture omponent densities in the spae of feature vetors x.

Mixture densities are usually preferred over simple densities beause of their universal

approximation property.

Mixture trees are motivated both by the observation that individual mixture densities

of ontext-dependent speeh models overlap onsiderably in feature spae and by

the desire for a tree strutured aousti model with all the advantageous properties

that we have disussed in previous hapters. Thus, instead of using separate sets

of omponent densities for eah mixture density, we share some of the omponent

161
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densities to allow for joint modeling of the overlapping parts of the distributions. For

instane, onsider the set of 4 mixture densities depited in Fig. 9.1.

q  (x) q  (x) q  (x) q  (x)(2)

p  (x) p  (x) p  (x)(2) p  (x)

(2) (2) (2)

(2)(2)(2)

1 2 3

0 31 2
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q  (x)

q  (x) q  (x) q  (x) q  (x)

q  (x)q  (x)q  (x)
0

0

1

1

2

2

3

3

(1)(1)(1)(1)

(0) (0) (0) (0)

Figure 9.1: Hierarhially tying mixture densities

Eah one of the densities onsists of 3 vertially organized omponent densities. In-

stead of assigning 3 omponent densities exlusively to eah mixture, we share some

of them between adjaent mixtures suh that the bottom level omponents are used

exlusively, the enter level omponents are shared between two and the top level

omponents are shared between all four densities. However, hierarhially sharing

omponent densities by itself does not yet yield a truly hierarhial model. We also

have to �nd a hierarhial representation of the mixture weights that allows to rep-

resent and evaluate hierarhially tied mixture densities in a tree struture. For that

purpose, we introdue (shared) mixture interpolation weights at eah vertial ar that

onnet omponent densities. We all the resulting tree strutured on�guration a

mixture tree [Fritsh '99b, Fritsh '99a℄ (Fig. 9.2).

Introduing depth d and branhing fator b of a mixture tree, we rewrite the state

observation likelihoods, now being estimated by the leaves of the mixture tree, as

p

i

(x) = p

(d)

i

(x) and reursively de�ne the mixture model as

p

(0)

0

(x) = q

(0)

0

(x)

p

(k)

i

(x) = �

(k)

i

q

(k)

i

(x) + (1� �

(k)

i

) p

(k�1)

bi=b

(x)

where the q

(k)

i

are (tied) omponent densities and the �

(k)

i

are loal interpolation

weights, satisfying 0 � �

(k)

i

� 1, suh that the p

i

are valid probability densities. An
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Figure 9.2: Mixture tree (d = 2; b = 2)

individual mixture density represented in the tree is evaluated top-down, starting at

the root node. Proeeding down the tree towards the orresponding leaf node, we

inrementally re�ne the urrent estimate by omputing aÆne interpolations between

the already aumulated partial mixture probability and the urrent loal omponent

density using interpolation weights �

(k)

i

. For �

(k)

i

= 0, the loal omponent density

does not ontribute at all and the mixture likelihood up to that point is determined

by all predeessors. In e�et, setting �

(k)

i

= 0 allows to skip a omponent density. In

ontrast, setting �

(k)

i

= 1 orresponds to negleting the partial mixture probability

aumulated through all the predeessor nodes. Of ourse, suh an extreme behavior

is not desired as it renders the tree struture ine�etive and is not expeted to happen

unless there is absolutely no overlap between the modeled distributions.

Hierarhially tied mixture densities, as omputed reursively by a mixture tree, an

be interpreted as onventional mixture densities

p
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i
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with tied omponents q

(k)

i

and omponent mixture weights 

(k)

i

that are omputed

from the aÆne interpolation weights aording to
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where �

(0)

i

� 1 andK

i

is the number of omponent densities for mixture p

i

, equivalent

to the depth of the orresponding leaf node in the mixture tree. Thus, the reursive
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interpolation sheme that we have proposed for mixture trees an be justi�ed by the

orrespondene to a set of onstrained onventional mixture densities.

Also, an interesting and important aspet of mixture trees is that any node (not

just the leaf nodes) omputes a valid probability density whih depends only on

predeessor nodes. This property allows to downsize the mixture tree without having

to re-estimate any of the parameters as is required with onventional aousti models

(e.g., [Hwang & Huang '98℄). In fat, the partial mixture probability omputed down

to a spei� node represents the probability of the feature vetor being generated by

any of the leaf nodes (states) in the orresponding subtree. This implies that the

root omponent density q

(0)

0

(x) models the unonditional density p(x) of the data.

9.2 Parameter Estimation

Assuming a maximum likelihood framework, the parameters of a mixture model

have to be estimated iteratively using an Expetation-Maximization (EM) algo-

rithm [Dempster et al. '77, Redner & Walker '84, MLahlan & Krishnan '97℄. Fur-

thermore, if the Forward-Bakward algorithm is used for training the HMMs, we fae

two nested probabilisti models; (1) assigning HMM states to observations and (2)

assigning mixture omponent densities within state mixtures to observations.

In the following, we will derive an EM algorithm for estimating the parameters of

a mixture tree that is applied to the estimation of HMM state emission likelihoods

in a statistial speeh reognition system. Without sari�ing universality, we �rst

present the EM algorithm for the ase of Gaussian omponent densities. The resulting

algorithm an easily be modi�ed for other types of omponent densities, even for om-

ponent densities that are mixtures themselves. We disuss both Forward-Bakward

and Viterbi based HMM training.

Irrespetive of the kind of HMM training algorithm hosen, the E-step (Expetation)

of the EM algorithm for mixture trees is idential and onsists of omputing posterior

probabilities of mixture tree nodes for eah input feature vetor x. For that purpose,

it is ruial to note that the interpolation weights �

(k)

i

represent the a-priori node

probabilities in the tree. Thus, for eah feature vetor x in the training set, we an

ompute the a-posteriori node probabilities h

(k)

i

(x) aording to

h

(k)

i

(x) =
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(k)

i
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with the exeption of h

(0)

0

(x) = 1. The h

(k)

i

(x) measure the probability with whih

the respetive node's omponent density ontributes to the partial mixture that has

been aumulated down to that node. Again, it is important to note that the node

posteriors in our model depend only on parent nodes, not on any of the hild nodes.
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For the M-step (Maximization) of the algorithm, we have to distinguish between

Forward-Bakward and Viterbi Training.

9.2.1 Forward-Bakward Training

In Forward-Bakward HMM training, we obtain HMM state oupation probabilities



i

(x) for eah HMM state s

i

and eah feature vetor x. In our ase, state oupation

probabilities translate to mixture tree leaf oupation probabilities and represent the

a-priori probabilities of leaf nodes.

In the M-step, we update the mixture weights �

(k)

i

and the parameters of the om-

ponent densities q

(k)

i

based on the expetations for all training patterns gained in the

E-step suh that the likelihood of the model given the data inreases. We obtain the

following updates for the node parameters:
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where �

(k)

i

is the mean vetor and �

(k)

i

is the ovariane matrix of the Gaussian

omponent density q

(k)

i

. The node oupation probabilities 

(k)

i

(x) an be omputed

in a bottom-up fashion from the state/leaf oupation probabilities 

i

(x) aording

to
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That is, a node oupation probability is omputed as the sum of all state oupation

probabilities of all states (leaf nodes) in the orresponding subtree.

9.2.2 Viterbi Training

In the ase of Viterbi training, a state alignment implies a one-to-one mapping be-

tween HMM states and feature vetors. Thus, for any input feature vetor, there

is exatly one state with state oupation probability 

i

(x) = 1, all other state o-

upation probabilities vanish. In a mixture tree, the Viterbi assumption leads to a
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single path of non-zero node oupation probabilities 

(k)

i

(x) = 1 from root to one of

the leaves for eah feature vetor. Therefore, node posteriors in the E-step have to

be evaluated only along the path through the mixture tree that orresponds to the

urrent pair of feature vetor and HMM state. The parameter update formulas in

the M-step simplify aordingly to
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where T

(k)

i

denotes the set of training patterns that orrespond to the respetive

tree node. In other words, T

(k)

i

onsists of the feature vetors with state labels

orresponding to one of the leaf nodes in the subtree starting at node N

(k)

i

.

9.2.3 Parameter Initialization

As with standard mixture densities, reasonable initialization of parameters is ruial

for rapid onvergene of the EM algorithm. In the ase of hierarhially tied mix-

ture densities with Gaussian omponent densities, we initialize loal mixture weights

aording to

�

(k)

i

=

1

k + 1

whih orresponds to a uniform omponent prior distribution for all mixtures in the

mixture tree as an be seen by substituting the above expression into the expression

for omputing mixture weights 
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from interpolation weights �
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in a mixture tree:
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Individual Gaussian omponent densities are initialized using the ML estimates for

the Forward-Bakward weighted data observed at the orresponding tree node:
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In ase of Viterbi training, this simpli�es to the ML estimates for all data of all states

(leaf nodes) found in the subtree of the node to be initialized.

9.2.4 Mixtures as Component Densities

Mixture omponent densities q

(k)

i

in a mixture tree an themselves be mixture den-

sities, allowing for more aurate modeling of node distributions. For instane, eah

node's omponent density may be modeled as a mixture of Gaussians:
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The easiest way to train a mixture tree with this kind of omponent densities is

to start with omponent densities that onsist of single Gaussians, train the mixture

tree until onvergene of the EM algorithm and then apply a tehnique alled mixture

splitting [Young '94℄, that replaes the single Gaussians with mixtures of M Gaus-

sians randomly positioned around the mean of the original Gaussian aording to its

variane. After inreasing the number of omponents in the mixture densities of the

mixture tree using this tehnique, we an ontinue to train the parameters aord-

ing to the EM algorithm, however now onsidering the fat that we fae two nested

probabilisti models whih requires to weight updates for the within-node omponent

densities with the node posteriors obtained in the E-step of the EM algorithm for

mixture trees.

9.3 Construting Mixture Trees

As already mentioned, an important prerequisite for the suessful appliation of

mixture trees is that state distributions overlap in feature spae, suh that mixture
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density omponents an be tied for joint modeling of the overlapping parts. While

this is usually the ase for ontext-dependent HMM models, it is not immediately

lear how to group these models to form an optimal mixture tree struture. Consid-

ering the large amount of HMM states and our experiene gained with hierarhial

onnetionist aousti models, luster algorithms appear to be viable solutions to

the task of onstruting suitable mixture trees. Also, it is in priniple possible to

adopt the struture of the phoneti ontext modeling deision trees for mixture tree

modeling as already noted in setion 5.2. However, due to the ategorial questions

asked, deision tree strutures are typially highly imbalaned, a rather undesirable

property of mixture trees. In fat, the following issues are partiularly important

aspets of mixture trees:

� Tree Balane: A mixture tree should be balaned to ensure that all embedded

mixture densities onsist of an approximately equal number of omponent den-

sities. Otherwise, we allow ertain HMM states to be modeled more aurately

than others.

� Branhing Fator: The number of omponent densities that onstitute the

mixture modeling a given state is determined by the depth of the orrespond-

ing tree leaf node. Assuming a balaned mixture tree, the average number of

omponents per mixture is determined solely by the tree branhing fator

1

. A

binary tree maximizes this number. Furthermore, the branhing fator ontrols

the degree of omponent sharing and might therefore be subjet to data-driven

optimization.

Keeping the above onstraints in mind, the agglomerative and divisive lustering

algorithms that we have presented and disussed in setion 5.3 are appliable to the

task of mixture tree onstrution without modi�ations.

9.4 Exploiting Tree Struture

The hierarhial struture of mixture tree based aousti models o�ers almost the

same advantageous properties than those of hierarhial onnetionist aousti mod-

els. With the exeption of tehniques that require estimates of (partial) posterior

probabilities suh as fast evaluation by pruning against a �xed posterior threshold,

the algorithms that we have developed for the onnetionist hierarhial model are

appliable to mixture trees as well:

1

Assuming that the number of leaf nodes/HMM states is �xed and given a-priori



9.4 Exploiting Tree Struture 169

� Strutural Adaptation: A speeh reognition system based on a very de-

tailed, highly spei� mixture tree an eÆiently and e�etively be ported to

a previously unseen domain. The di�ering voabulary and language model in

this domain typially indue a strong mismath in the a-priori distribution of

HMM states and in the spei�ity of ontext modeling required for optimal per-

formane as disussed in hapter 8. Using a small amount of adaptation data

for estimating a-priori state distributions in the new domain, we an identify

low probability states that model phoneti ontexts that are irrelevant to the

new domain and prune the orresponding branhes in the mixture tree. The

resulting tree is struturally adapted to the unseen domain and its loal esti-

mators an additionally be adapted to the di�ering aousti distributions by

means of adaptation algorithms suh as maximum likelihood linear regression

(MLLR) [Leggetter & Woodland '94℄. However, in ontrast to the onnetion-

ist ounterpart, branh priors that play an important role in adapting the tree

struture are not expliitly available in mixture trees. Therefore, strutural

adaptation of mixture trees is somewhat limited in omparison to the hierar-

hial onnetionist model.

� Speaker Adaptation: As disussed earlier, the struture of mixture trees

represents exatly the kind of information needed for tying omponent densities

for MLLR based adaptation when only a limited amount of adaptation data is

available. As suh, mixture trees an be interpreted as MLLR regression trees

that have to be onstruted additionally for onventional mixture models. As

omponent densities are already tied in a mixture tree, speaker adaptation with

a limited amount of adaptation data an be aomplished by simply seleting

those tree nodes in the viinity of the root node for whih we observe more than

a prede�ned amount of data and applying the usual linear transformation to

the parameters of the orresponding omponent densities.

� Downsizing the Tree: In order to ompute the likelihood of a spei� state

by means of a mixture tree, we have to follow the path from the root node

to the leaf orresponding to that state, re�ning estimates of the likelihood at

eah node. Instead of traversing the tree all the way down to the leaves, we

an stop omputing re�ned likelihoods at any tree level and treat all states in

the remaining subtree as a new tied state. This way, the spei�ity of ontext-

dependent modeling and the number of distintly modeled HMM states of a

trained mixture tree an be redued arbitrarily, from full ontext-dependent

modeling all the way down to ontext-independent modeling and further. Thus,

pruning of mixture trees allows to easily adapt reognizers to available memory

and/or proessor speed without having to re-train or re-luster the aousti

model.
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� Fast Model Evaluation: In ontrast to hierarhial onnetionist aousti

models, fast model evaluation an not be ahieved by pruning partial sores

against a �xed absolute threshold as this requires estimates of the partial pos-

terior probabilities. However, fast evaluation of mixture trees an be ahieved

by evaluating the tree struture in a breadth �rst manner. This way, pruning

an be delayed until partial sores are available for all nodes in a spei� tree

layer. As pruning an not be based on an absolute threshold, we may identify

promising branhes by rank ordering and seleting the n best nodes in eah tree

layer for further evaluation.

9.5 Experiments on Swithboard

For our experiments with a mixture tree based aousti model on the Swithboard

orpus, we onstruted a ontext-dependent HMM system with a total of 8000 tied

states by building about 150 phoneti deision trees, one for eah state of ontext-

independent 3 state HMM phone models. Top-down deision tree lustering was

based on split likelihood gain using diagonal Gaussians to model state distributions.

9.5.1 Constrution and Evaluation of Mixture Trees

We applied divisive lustering to onstrut a binary mixture tree for the 8000 states.

Non-uniform priors were penalized during tree onstrution in order to obtain a bal-

aned tree. The �nal mixture tree had a maximum depth of 18. Simple diagonal

Gaussians were hosen as omponent densities in eah node. After initialization a-

ording to setion 9.2.3, we trained the mixture tree for 4 iterations using Viterbi

state alignments of 170 hours of Swithboard data from a onventional reognizer.

To improve modeling auray, we then replaed the Gaussian omponent densities

in eah tree node by mixtures of 8 Gaussians that were obtained from the original

Gaussian by mixing-up as explained earlier. The resulting mixture tree, ontaining a

total of 127992 Gaussians in 15999 nodes, was trained for another 6 iterations, until

training data likelihood onverged.

Fig. 9.3 depits the initial as well as mean and standard deviation of the �nal in-

terpolation weights � in eah level of the trained mixture tree. For inreasing tree

depth, interpolation weights get smaller onsistent with the initialization strategy

and eventually level o� at a mean of around 0:3. Their variane inreases slightly

towards the bottom of the tree whih might indiate saturation of the spei�ity of

ontext-modeling in some branhes of the tree.

Next, we evaluated the performane of the trained mixture tree in reognition exper-

iments. All reognition runs used a 15k voabulary and a standard trigram language
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Figure 9.3: Distribution of interpolation weights in mixture tree

model trained on the Swithboard orpus. The results reported here were obtained

on a test set onsisting of the �rst 30 seonds from 12 representative speakers taken

from the 1997 development test set and ontained a total of 1340 words. Using the

full mixture tree with mixtures of 8 Gaussians as omponent densities in eah node,

we ahieved an unadapted word error rate (WER) of 36.6% on this test set.

Aousti Model # states # omponents # params WER

Mixture Densities 8000 16/mixture 10.1 M 36.1 %

Binary Mixture Tree 8000 8/tree node 10.0 M 36.6 %

Table 9.1: Mixture tree vs. mixture densities based aousti models

For omparison, a onventional model based on mixtures of Gaussians with an ap-

proximately equal number of parameters (using mixtures of 16 Gaussians for eah of

the 8000 states) ahieves a omparable unadapted word error rate of 36.1% on the

above test set. Table 9.1 summarizes the results of this omparison.

9.5.2 Downsizing of Mixture Trees

In this experiment, we investigated the e�ets of downsizing the mixture tree, thereby

reduing the spei�ity and amount of ontext modeling. The original tree of depth
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18 that models 8000 HMM states was suessively redued in size by removing the

lowest tree level. This way, we obtained mixture trees with depths ranging from

the original 18 down to 8. The smallest mixture tree with depth 8 lead to only 179

distintly modeled states, orresponding roughly to the number of states in a ontext-

independent system. We deoded the above test set for eah pruned mixture tree,

using the exat same deoder parameters as with the original mixture tree. Table

9.2 summarizes the results obtained with the original and the pruned trees regarding

size, overall deoding speed and word error rate (WER) on the above test set.

pruning # tied # nodes tree size speed WER

depth states in tree [%℄ [xRT℄ [%℄

{ 8000 15999 100.0 48 36.6

17 7991 15983 99.8 48 36.6

16 7897 15795 98.7 48 36.6

15 7290 14581 91.1 45 36.7

14 5722 11445 71.5 39 37.2

13 3699 7399 46.2 31 39.4

12 2109 4219 26.3 24 40.6

11 1143 2287 14.2 19 43.8

10 619 1239 7.7 17 52.0

9 331 663 4.1 16 55.4

8 179 359 2.2 16 62.5

Table 9.2: Results with downsized mixture trees

While the speed-up in evaluating likelihoods (not shown in Table 9.2) that an be

ahieved by pruning the mixture tree orresponds roughly to the redution in tree

size, the speed-up for overall reognition time depends on the proportion of time

spent in atual deoding whih an signi�antly exeed the proportion of time spent

in evaluation of aousti likelihoods. The highest speed-ups an be expeted for lose

to real-time systems. In our ase, deoding with the smallest tree was about three

times faster than deoding with the full tree.

Fig. 9.4 depits a plot of word error rate vs. mixture tree size for the results sum-

marized in Table 9.2. As expeted, the performane for the smallest tree, modeling

179 distint HMM states is omparable to what is typially reported for ontext-

independent Swithboard systems. On the other hand, the mixture tree an be

downsized to about 25% of its original size at the ost of only moderate inreases in

word error rate of about 4% absolute.
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Figure 9.4: Word error rate vs. size of pruned mixture tree

9.6 Disussion

Mixture trees represent a likelihood-based alternative to hierarhial onnetionist

aousti models with very similar strutural properties, whih an be exploited for

a variety of tasks in speeh reognition. As suh, mixture trees o�er the same ad-

vantages ompared to onventional mixture models. However, although the two tree

strutured models share a lot of properties, they di�er in the following aspets:

� Estimation Paradigm: While mixture trees diretly estimate state ondi-

tional likelihoods as required by the HMM formalism, its onnetionist ounter-

part separately estimates state posteriors and priors, whih are then ombined

via Bayes' rule to form estimates of saled likelihoods. The latter approah of-

fers advantages with respet to the training riterion and the expliit availability

of state priors and tree branh priors.

� Training Criterion: Mixture trees are trained aording to the maximum

likelihood (ML) riterion, using a variant of the EM algorithm. In ontrast, a

hierarhial onnetionist aousti model is trained aording to the maximum

a-posteriori (MAP) riterion whih leads to more disriminant models.

� Expliit Priors: The expliit availability of priors in all levels of the tree

struture allowed us to develop an algorithm for soft strutural adaptation of
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hierarhial onnetionist aousti models to unseen domains. By modifying

the priors aording to empiri distributions gained on adaptation data in the

unseen domain, we were able to gradually pinh o� ertain undesired branhes

of the tree struture. As priors are not expliitly available in a likelihood based

model, we an only deide upon keeping or removing suh branhes in a mixture

tree model.

Thus, mixture trees represent an interesting tree-strutured arhiteture for aousti

modeling with advantageous properties ompared to onventional mixture models and

a lose relationship to the hierarhial onnetionist model we have presented earlier.

While both models o�er salable phoneti ontext modeling, the onnetionist variant

exhibits unique properties that render it more suitable for strutural adaptation and

domain-adaptive speeh reognition.



Chapter 10

Aousti Model Combination

In this hapter, we disuss methods for improving speeh reognition performane by

ombining several information soures. It is well known that pattern lassi�ation

tasks bene�t from almost any kind of ombination approah as long as suÆiently

diverse representations or learners are involved. In the ase of an automati speeh

reognition system, there are three potential levels where ombination may be in-

trodued (see Fig. 10.1). First, we an ombine the probability estimates of several

aousti models before they are fed into the deoder (referred to as aousti model

ombination). Seond, we an ombine the probability estimates of several language

models before they are fed into the deoder (referred to as language model ombina-

tion) and third, we an run several omplete and independent reognizers in parallel

and ombine their output word hypotheses (referred to as hypothesis ombination).

Of ourse, ombination an our simultaneously at several of these levels.

It is now ommon pratie in evaluation systems to ombine several language models

estimated on di�erent orpora by interpolating their probability estimates. Also,

it has reently beome popular to apply a word hypothesis ombination sheme

based on voting to evaluation systems, see [Fisus '97℄ for details. Combination at

the level of aousti models is less ommonly applied but appears to yield onsid-

erable gains for onnetionist aousti models, for instane in the Meta-Pi frame-

work [Hampshire & Waibel '89℄ or when applying the mixtures of experts model

[Jaobs '95℄ to homogeneous [Waterhouse & Cook '96, Cook et al. '97b℄ and hetero-

geneous [Fritsh & Finke '97℄ aousti models. Furthermore, a variant of boosting

[Cook & Robinson '96℄ appears to yield the greatest gains in ombining several on-

netionist aousti models but is omputationally very demanding during training.

In our work, we have foused on the level of aousti modeling and developed meth-

ods for the ombination of heterogeneous aousti models [Fritsh & Finke '97℄, e.g.,

onventional Gaussian mixture models and loally disriminative models suh as the

hierarhial onnetionist aousti model presented earlier.

175
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Figure 10.1: Aousti model, language model and word hypothesis ombination
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The di�erene in training paradigms underlying these two types of models leads to

signi�antly di�erent probability estimates that exhibit less mutual dependene than

ensembles of homogeneous models. It an be expeted that heterogeneous mod-

els fous on di�erent parts of the speeh signal, resulting in greater diversity and

thus greater potential gains in ombination. However, heterogeneous aousti mod-

els require some kind of normalization as they typially estimate di�erent quantities

(likelihoods vs. saled likelihoods or posteriors).

10.1 Stati Combination

In stati ombination approahes, one assumes that only a-priori information about

the auray of individual aousti models is available. As a onsequene, the models

are ombined using onstant weighting fators. Consider m di�erent aousti models,

eah estimating HMM emission probabilities p(x

k

js

i

) for the same HMM states s

i

based on di�erent feature vetors x

k

. We an ompute ombined estimates of the

HMM emission probabilities by applying the produt rule
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where the 

k

are a-priori weights that allow to ontrol the relative ontribution of

eah aousti model to the ombined estimates. Typially, the a-priori weights are

manually tuned for maximum performane on an independent validation set.

Alternatively, ombined estimates of the HMM emission probabilities an be om-

puted by aÆne interpolation, known as linear opinion pools in statistis [Jaobs '95℄:
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Note, that a linear opinion pool results from applying the logarithm to the produt

rule, whih is interesting sine speeh reognition systems typially operate in the log

domain.

Now onsider the ase of ombining two heterogeneous aousti models, one produ-

ing estimates of the lass onditional likelihoods p(xjs

i

), the other produing esti-

mates of saled likelihoods

p(xjs

i

)

p(x)

by means of a loally disriminative onnetionist

aousti model. In a theoretially sound framework, we would either have to treat

these estimates as 'data' and apply a supra-Bayesian approah [Jaobs '95℄ or apply

some transformation to normalize the estimates of eah model to a ommon domain,

suitable for ombination. Although suh normalization beomes ruial in more elab-

orate ombination tehniques, it an be omitted in pratie for the simple ase of
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applying onstant salar weights to eah aousti model. Of ourse, the estimates

resulting from suh disregardful ombination will not be interpretable as a probability

distribution but the ombination usually improves auray nevertheless.

We have been investigating stati weighted ombination based on the produt rule

using two heterogeneous aousti models trained on the Swithboard orpus. The

�rst one was the state-of-the-art onventional Gaussian mixture model for 24000

tied HMM states that was used in the best performing system in the 1997 Hub-5

evaluation [Finke et al. '97℄. The seond model was a Hierarhy of Neural Networks

(HNN) onsisting of roughly 4000 networks, designed for the same set of 24000 HMM

states and trained on the same orpus. Fig. 10.2 depits how the word error rate

of the ombined system varies for di�erent ombination weights, when deoding a

subset of the 1996 evaluation set (all other omponents of the reognizer were kept

idential).
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Figure 10.2: Stati ombination of (1) a mixtures of Gaussians model (MOG) and

(2) a hierarhial onnetionist aousti model (HNN)

Table 10.1 shows the word error rates of the two models used stand-alone (left and

right end of plot in Fig. 10.2) and in ombination. The optimal ombination weights

turned out to be 0:6 for the Gaussian mixture model and 0:4 for the HNN. and

resulted in a relative derease in word error rate of 3.4% and 11.6% ompared to

stand-alone use of the mixtures of Gaussians and HNN model, respetively.

Up to now, we have assumed that the a-priori weighting fators are applied globally

to the ombination of estimates for all HMM states. Instead, one an generalize
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aousti model word error rate

Mixture of Gaussians (MOG) 31.5 %

Hierarhy of Neural Networks (HNN) 34.4 %

MOG+HNN, produt rule (0.6/0.4) 30.4 %

Table 10.1: Best result for stati, log-linear ombination of heterogeneous aousti

models

the above ombination rules to allow for state-dependent a-priori model weights, as

proposed in [Rogina & Waibel '94℄:
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In ontrast to the ase of global weights, the onsiderably larger number of state-

dependent weights 

k

(s

i

) an no longer be tuned manually but must be optimized on

some training set, for instane using gradient asent in log likelihood. This in turn

prevents us from diretly applying this rule to the ase of heterogeneous models and

requires to normalize the estimates of suh models prior to ombination.

10.2 Normalizing Heterogeneous Models

When attempting to ombine likelihood estimates of onventional and posterior or

saled likelihood estimates of onnetionist aousti models using state-dependent or

dynamially omputed weights, we have to transformation the estimates of one or

both types of models suh that both provide properly normalized probability dis-

tributions, suitable for subsequent ombination. In the following, we present two

suh normalization methods, one targeting a-posteriori probability distributions and

another, omputationally more eÆient one based on empiri normalization of likeli-

hoods.

10.2.1 A-Posteriori Normalization

The priniple behind our �rst approah is to require that eah aousti model provides

an a-posteriori probability distribution for the set of HMM states and to ompute

suh a distribution as a post-proessing step, if neessary. Connetionist aousti

models diretly estimate the desired probability distribution and thus an be plugged

into the model ombination step as is. Conventional mixture models on the other

hand provide estimates of the state onditioned HMM emission probabilities whih
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have to be onverted to an a-posteriori probability distribution in order to be fed

into the ombination step. The task of the ombination step then is to ompute an

aggregate a-posteriori distribution from all the inoming a-posteriori distributions.

Just as with a single onnetionist aousti model, the resulting ombined a-posteriori

distribution has to be onverted bak to saled likelihoods by dividing by state priors

in order to aommodate the HMM framework. Fig. 10.3 depits the senario for the

ombination of one onventional and one onnetionist aousti model.
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Figure 10.3: Model ombination based on normalizing to a-posteriori probabilities

It remains to disuss how we an ompute an a-posteriori probability distribution

from the state likelihoods estimated by a onventional aousti model. Aording to

Bayes' rule, the a-posteriori probability of a state s

i

given some input feature vetor

x an be omputed aording to
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whih requires the states' prior probabilities p(s

j

) in addition to the state likelihoods

p(xjs

j

). For a onventional ontinuous density model with sometimes more than

20000 unique HMM states, omputation of the a-posteriori probability distribution

aording to the above formula turns out to be omputationally very expensive due

to the sum of likelihoods in the denominator. As pointed out in [Willett et al. '98℄,

there is an eÆient way of omputing the a-posteriori distribution in the ase of

heavy mixture tying, i.e. in phonetially-tied, semi-ontinuous and disrete HMMs.

However, in the ase of a fully ontinuous density HMM system, the required amount

of omputations an beome prohibitive. A omputationally less expensive alterna-

tive is to diretly estimate p(x) in the above formula using a mixture density with a

suÆiently large number of omponent densities. New problems arise in that ase:
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how do we ensure that the resulting a-posteriori distribution is properly normalized

suh that the probabilities sum up to one? How an we eÆiently ompute a mixture

density with the large number of omponent densities that are required for au-

rately estimating p(x)? Depending on the spei� ase, we might still end up with a

omputationally very expensive proedure.

In summary, normalization to a-posteriori distributions appears to be attrative in

ases where we want to ombine only a single onventional model with one or many

onnetionist models or in ases where the onventional models employ some kind of

mixture tying suh that we an eÆiently ompute the required a-posteriori distri-

butions.

10.2.2 Empiri Normalization

We have developed an eÆient tehnique for normalizing estimates of heterogeneous

aousti models that does not even require that the models produe probability sores

at all [Fritsh & Finke '97℄. All that is required is that the emitted model sores are

ontinuous, bound to a �nite interval and that all aousti models adhere to the same

interpretation of sore ordering, for instane, that lower sores orrespond to better

aousti mathes.
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Figure 10.4: Model ombination by normalizing based on empiri probability mass

funtions

Fig. 10.4 depits the setup for empiri normalization. Here, the outputs of all aousti

models are normalized using a transformation based on the empiri probability mass

funtion (pmf) of the distribution of model sores. The resulting transformed esti-

mates are bound to the range [0; 1℄ and represent pseudo-probabilities, e.g., a value

of 0 orresponds to the worst sore while a value of 1 orresponds to the best sore

of the orresponding aousti model. This property is ahieved onsistently for all

aousti models partiipating in the ensemble and thus enables dynamially weighted

ombinations.
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The normalization funtions for eah aousti model are estimated as follows. First,

we empirially estimate the distribution of aousti sores for eah aousti model

based on some held-out training set. This is typially done by estimating a disrete,

histogram-based probability distribution. For instane, onsider the earlier ase of (1)

a onventional Gaussian mixtures model and (2) a hierarhial onnetionist aousti

model. Fig. 10.5 shows empiri distributions of aousti sores for both models.

Here, the Gaussian mixture model emits the negative logarithm of likelihoods and

the onnetionist model emits the negative logarithm of saled likelihoods.
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Figure 10.5: Distribution of likelihood sores for onnetionist and Gaussian mixtures

aousti models

While the distribution of the Gaussian mixtures sores seems to smoothly follow

a Gaussian, the distribution of the hierarhial onnetionist model sores ontains

bumps and a very strong peak near zero. This peak is attributable to the very

frequent silene model and the MAP training proedure whih leads to good disrim-

ination of silene and speeh models. Note also, that part of the distribution for the

onnetionist model reahes into the area of negative sores due to the division by

priors applied to obtain saled likelihoods.

Let Y

k

= p

k

(xjs

i

) be the random variable representing sores omputed by the k-th

aousti model for all x and s

i

. Aording to this notation, the histograms depited

in Fig. 10.5 represent p(Y = Y

k

), the probability distribution of sores. We now intro-

due a sore normalization funtion q for eah aousti model that maps the original

model-dependent sores into the range [0; 1℄ by evaluating the empiri probability
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mass funtion (pmf):

q(Y

k

) := p(Y > Y

k

)

Fig. 10.6 depits the probability mass funtions omputed from the histograms in

Fig. 10.5 for normalizing the orresponding two aousti models.
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Figure 10.6: Normalization funtions for onnetionist and Gaussian mixtures aous-

ti models

These funtions e�etively and onsistently normalize the sores of heterogeneous

aousti models. For instane, a normalized sore of 0:5 represents in both models an

original, model-dependent sore that is loated at the enter of gravity in the distri-

bution of model-dependent sores. The above normalization method orresponds to a

monotoni mapping whih preserves the order of sored models while maximizing the

entropy of the resulting normalized sores by approximating a uniform distribution.

Furthermore, the proposed method requires only a single table look-up to evaluate

the empiri, histogram-based probability mass funtion and thus plaes virtually no

additional omputational burden on aousti model ombination.

10.3 Dynami Combination

In dynami aousti model ombination, we allow for ombination weights that vary

with eah time frame, assuming that the quality of eah ontributing aousti model
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is not �xed a-priori but varies loally, maybe depending on aousti onditions or

broad lass of phoneti sound being uttered. Some models might provide aurate

estimates for vowel sounds and be unertain for stop onsonants while others behave

vie versa (additionally depending on the aousti front-ends being used). In the

remainder, we will investigate dynami aousti model ombination based on linear

opinion pools, that is, we model the ombined aousti probabilities aording to

p(xjs

i

) =

m

X

k=1

g

k

(x) p

k

(xjs

i

) with g

k

(x) � 0 and

m

X

k=1

g

k

(x) = 1

where we have ondensed potentially di�erent feature spaes into a single feature

spae for simpliity. Furthermore, we assume that heterogeneous aousti models

have been adequately normalized, for instane using one of the tehniques presented

in the previous setion, before being used in the above ombination rule. The g

k

(x)

are time-varying weighting funtions that should reet our relative on�dene into

eah one of the aousti models at eah time step. There are several potential knowl-

edge soures that might be used for deriving the above weighting funtions. The

orresponding approahes might be ategorized into the following three lasses

1. Using frame-level measures of on�dene, e.g., the entropy of the a-posteriori

distribution

2. Optimizing a frame-based training objetive (MAP)

3. Using phone-, word- or sentene-level on�dene sores

Sine frame-level auray is not neessarily orrelated with word-level reognition

auray, the frame-level measures of on�dene applied in the �rst ase an not

guarantee to improve reognition auray. The seond and third approah appear

more promising but require onsiderably more e�ort to ompute the model weighting

funtions.

10.4 Gating Networks

The appliation of a gating network for omputing weighting funtions is moti-

vated by the Meta-Pi [Hampshire & Waibel '89℄ and the mixtures of experts frame-

work [Jaobs '95℄ and its extension to hierarhies of experts [Jordan & Jaobs '92,

Jordan & Jaobs '94℄ for fusing the opinions of several experts, expressed as proba-

bility distributions, into a single probability distribution that an be used for deision

making.
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Assuming that eah aousti model (expert) omputes a valid probability distribution,

a mixture of experts omputes a ombined probability distribution through linear in-

terpolation, using an additional estimator alled a gating network that weights the

ontribution of eah expert at eah time frame based on the urrent feature vetor

(see Fig. 10.7). In order to assure that the weights produed by the gating net-

work satisfy the onstraints of a probability distribution, the output layer is typially

parameterized using the softmax funtion.

Network
Gating

AM 1 AM 2

x

Figure 10.7: Mixtures of experts approah to dynami aousti model interpolation

De�ning a global, di�erentiable training objetive, e.g., maximum-likelihood or max-

imum a-posteriori, the parameters of the gating network an be learned by bak-

propagating errors from the output of the above arhiteture to the gating network

and applying, for instane, gradient asent based optimization. Assuming that the

aousti models estimate a-posteriori distributions, the ombined system omputes

p(s

i

jx) =

m

X

k=1

g

k

(x) p

k

(s

i

jx)

In the ase of Viterbi-based MAP training, we obtain the following log-likelihood

based objetive funtion for the ombined system:

E =

X

t

log

m

X

k=1

g

k

(x) p

k

(s

(t)

jx)
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where (t) denotes the index of the HMM state that is assumed to have produed x

at time t aording to a Viterbi alignment. Furthermore assuming that the gating

network is realized as a generalized linear model (single layer with softmax output

non-linearity), we an iteratively optimize its weight matrix W using gradient asent

as follows:

W

(i+1)

= W

(i)

+ �

X

t

dE(t)

dW

where � is the learning rate and the derivative of E(t) with respet to the matrix of

weights is given by

dE(t)

dW

= (h(x)� g(x)) x

T

with the vetor of posterior probabilities h(x) onsisting of omponents

h

j

(x) =

g

j

(x) p

j

(s

(t)

jx)

P

m

k=1

g

k

(x) p

k

(s

(t)

jx)

Note that the above optimization rules an easily extended to more omplex gating

networks suh as multi-layer pereptrons by applying the hain rule as in the original

bakpropagation algorithm.

We have been investigating the viability of this approah by training a multi-layer

pereptron with a single hidden layer of 64 units as the gating network in a dynami

ombination of the two heterogeneous Swithboard models used earlier for the exper-

iments with stati ombination. Estimates of both systems were normalized using

the empiri histogram mapping approah. The gating network was trained on 28

hours from the Swithboard orpus until log-likelihood onverged. Fig. 10.2 gives

reognition results of the individual models and the gated ombination, again on a

subset of the 1996 evaluation set.

Aousti Model Word Error Rate

Mixture of Gaussians (MOG) 31.5 %

Hierarhy of Neural Networks (HNN) 34.4 %

MOG+HNN, dynamially gated

by 39-64-2 MLP 30.2 %

Table 10.2: Results of dynami aousti model ombination using a gating network

In our experiment, dynami ombination redues the word error rate by 4.1% relative

to using the best model in the ensemble in isolation. However, the gains of using
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a dynami weighting sheme over simple stati ombination are omparably small

(0.2% absolute), suggesting that the optimal weighting funtions are too omplex to

be learned adequately by a single gating network.

10.5 Disussion

In this hapter, we have been presenting tehniques for ombining the estimates of

several aousti models, fousing on the ombination of heterogeneous models, e.g.,

Gaussian mixtures and onnetionist models. In ontrast to ombinations of homoge-

neous models, we had to address the issue of sore normalization in order to be able to

dynamially ombine models that estimate di�erent quantities. We have argued for

the normalization to an a-posteriori probability distribution. However, as this kind

of normalization an beome omputationally prohibitive in large ontinuous density

HMM systems, we have presented an alternative normalization sheme based on the

probability mass funtion of the distribution of model sores. We have demonstrated

the viability of this more eÆient approah by using it to dynamially ombine a

Gaussian mixtures model with a hierarhial onnetionist model using a gating net-

work to estimate the weighting funtions. While this proved to be an e�etive method

for dynami model ombination, it turned out that simple stati ombination was al-

most as e�etive. We assume that the optimal weighting funtions in the dynami

ase are too omplex to be learned by a single hidden layer pereptron. A solution

to this problem would be to assign a separate gating network to suitable lusters of

HMM states, for instane to HMM states belonging to the same monophone.

In our approahes to aousti model ombination, we have assumed that the on-

tributing models are pre-trained and that their parameters are �xed suh that the

ombination algorithms an treat them as blak boxes. It should be noted that

approahes based on an integrated training of several aousti models suh as boost-

ing or mixtures of experts typially yield larger gains in reognition auray sine

these approahes spei�ally push towards independent experts as part of the train-

ing objetive. It has been shown [Jordan '95℄ that the degree of independene of the

estimates of an ensemble of learners is diretly orrelated with the potential gain in

auray obtained from a ombination of these learners. However, given the large and

omplex arhitetures in aousti modeling that often require several days of training,

an approah suh as the one presented in this thesis is onsidered more appropriate,

espeially when dealing with heterogeneous estimators.
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Chapter 11

Conlusions

This thesis has presented a new, prinipled framework for onnetionist aousti

modeling in large voabulary statistial speeh reognition. Based on the divide-and-

onquer paradigm, it was possible to derive a hierarhial, tree-strutured arhiteture

that deomposes the task of estimating HMM state posteriors into thousands of

smaller tasks, eah of whih being solved by a small neural network. In ontrast

to the onventional approah, this strategy allows (1) to onstrut salable aousti

models whih allow to adapt the spei�ity of ontext modeling to previously unseen

domains and to arbitrarily downsize the model without retraining, and (2) to devise

algorithms for e�etive speaker adaptation and aelerated model evaluation that

exploit the inherent hierarhial struture.

Based on the proposed hierarhial arhiteture, it was for the �rst time possible

to onstrut ompetitive onnetionist aousti models for a state-of-the-art large

voabulary onversational speeh reognition system, modeling as muh as 24000

unique HMM states using a tree struture onsisting of over 4000 neural networks.

Using unsupervised speaker adaptation, our system ahieves a word error rate of

31.8% on the Swithboard onversational telephone speeh orpus. While this result

is omparable to what we have ahieved with our best onventional, non-onnetionist

system, the hierarhial onnetionist aousti model requires only one forth the

number of parameters and deodes more than 5 times faster at about 25 times real-

time.

Furthermore, we have takled the important problem of domain dependene of aous-

ti models that usually prohibits the appliation of a speeh reognition system in

domains that di�er from its training domain beause of an unaeptable inrease

in the word error rate. This problem an be attributed to domain-spei� ontext-

dependent modeling that on the one hand appears to be inevitable for state-of-the-art

performane but on the other hand ties the aousti model to the phoneti hara-

teristis of the training orpus. The resulting trade-o� prevents us from building

189
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aurate and universal aousti models with respet to di�erent appliation domains.

However, the hierarhial arhiteture presented in this thesis allows for domain-

adaptive aousti modeling whih ahieves domain-spei� performane after only

45-60 minutes of aousti adaptation data from an unseen target domain. We devel-

oped an algorithm alled Strutural Domain Adaptation (SDA), that takes advantage

of the multi-sale representation of phoneti ontext in a hierarhial onnetionist

aousti model for adapting the spei�ity of phoneti ontext modeling to a new

domain. The e�etiveness of the SDA approah was experimentally demonstrated

by adapting a onversational telephone speeh system to two signi�antly di�erent,

previously unseen appliation domains.

In the following, we summarize the main ontributions of this thesis and give sugges-

tions for future work.

11.1 Thesis Contributions

This thesis has presented both a novel hierarhial onnetionist framework for aous-

ti modeling in large voabulary statistial speeh reognition and a seletion of algo-

rithms that exploit the unique properties of the resulting tree-strutured arhiteture

for purposes suh as fast deoding, e�etive speaker adaptation and domain-adaptive

speeh reognition. Following is a list of the spei� ontributions presented in this

thesis.

� Hierarhy of Neural Networks (HNN):

Based on hierarhially fatoring ontext-dependent HMM state posteriors, we

have derived a tree-strutured, loally-disriminative aousti model that sales

to an arbitrarily large number of HMM states. The model was termed a Hi-

erarhy of Neural Networks sine we apply small feed-forward neural networks

to the task of estimating the required loal onditional posterior probabilities

at eah internal node of the modeling tree. The most prominent advantages of

the proposed arhiteture in ontrast to existing aousti models are the multi-

sale representation of phoneti ontext and the hierarhial struture reeting

aousti similarity at various levels in the modeling tree. We have evaluated

Hierarhy of Neural Networks based aousti models on the Swithboard large

voabulary onversational telephone speeh orpus and demonstrated that the

model (1) ahieves state-of-the-art performane and (2) sales to as muh as

24000 HMM states whih was found to be bene�ial in terms of performane.

� Construtive Methods for Designing HNNs:

We have presented agglomerative (bottom-up) and divisive (top-down) lus-

tering algorithms developed spei�ally for the onstrution of a hierarhially
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strutured aousti model from seond order statistis of HMM state emis-

sions and ompared both approahes extensively on data from the Swithboard

orpus. Our algorithms have been designed to favor balaned trees and lose-to-

uniform prior distributions of hild nodes at eah tree node suh that aurate

training of loal onditional a-posteriori probabilities is failitated and the hi-

erarhial struture an be exploited most e�etively.

� Investigation of Loal Model Seletion:

Given the exponential derease in the amount of available training data from

root to leaves in an HNN tree, the size and omplexity of loal estimators

of onditional a-posteriori probabilities must be hosen arefully in order to

maximize generalization performane. We have simpli�ed the problem of model

seletion signi�antly by using single hidden layer MLPs in our HNNs. The

single degree of freedom onerning model omplexity - the number of hidden

units - allowed us to determine optimal model size in a two step proess: (1) pre-

seletion of rough model size based on available training data and (2) iteratively

inreasing or dereasing model size based on performane improvement on an

independent validation set.

� EÆient Distributed Training:

Typially, training of onnetionist aousti models is omputationally very ex-

pensive, often requiring days of training on speial hardware. In ontrast, we

have presented eÆient distributed training methods for Hierarhies of Neural

Networks that allow to train this model as fast and sometimes even faster than

a onventional, mixture density based aousti model using standard hardware.

As eah network in an HNN an be trained independently without any om-

muniation or synhronization overhead, training of the omplete model an be

easily distributed among several low-ost standard omputers, allowing training

times of less than 24 hours for the full Swithboard orpus.

� Dynami Tree Pruning for Fast Deoding:

Using simple dynami tree pruning based on partially omputed posteriors,

it is possible to signi�antly redue the amount of omputation required to

evaluate our hierarhial onnetionist aousti model during deoding. We

have demonstrated that this tehnique allows to speed-up the evaluation of

aousti sores by a fator of up to 10 with almost no measurable derease in

performane. The overall deoding time on the Swithboard orpus ould be

improved by a fator of 6 from 140 times real-time to only 24 times real-time

without an inrease in word error rate.

� E�etive Speaker Adaptation:

It has been shown that our tree-strutured aousti model inherently realizes
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parameter sharing at multiple sales aording to aousti similarity whih an

be exploited for e�etive speaker adaptation with limited amounts of adaptation

data. We have developed an algorithm for speaker adaptation that bene�ts

from this build-in struture and thus requires no additional tying strutures

suh as regression trees that are typially needed for adapting onventional

models. Using unsupervised adaptation on only up to 3 minutes of speeh from

eah speaker, our method for speaker adaptation ahieves a relative derease in

word error rate of 9.5% on a subset of 20 speakers from the 1996 Swithboard

evaluation test set.

� Strutural Domain Adaptation (SDA):

We have presented an algorithm to eÆiently and e�etively downsize and adapt

the struture of large voabulary onversational speeh reognition systems

based on the proposed hierarhial onnetionist aousti model to previously

unseen appliation domains. In ontrast to onventional, domain-dependent

models, the SDA approah allows to adapt the struture and thus the spei-

�ity of phoneti ontext modeling in an HNN based aousti model for optimal

modeling in new domains. Experimental validation of the SDA approah has

been arried out by adapting size and struture of HNN based aousti mod-

els trained on Swithboard to two quite di�erent, unseen domains, Wall Street

Journal newspaper artiles and English spontaneous sheduling onversations.

In both ases, our approah yields onsiderably downsized aousti models with

performane equal to domain-spei� models and improvements of up to 18%

over the unadapted baseline model.

� Mixture Trees:

Hierarhies of Neural Networks are based on fatoring posterior state probabil-

ities whih are not available in onventional mixture based modeling. However,

we have demonstrated that it is still possible to derive a likelihood-based tree-

strutured aousti model with properties similar to HNNs by hierarhially

tying mixture density omponents. We have derived a variant of the EM al-

gorithm for estimating the parameters of the resulting model, whih we have

alled Mixture Tree.

� Downsizing of Hierarhial Aousti Models:

Another quite attrative property of the hierarhial aousti models that we

have presented in this thesis is the possibility of downsizing the trained models

to aommodate limited proessor speed and/or memory. Downsizing an be re-

alized by simple tree trimming and allows to operate a hierarhial onnetionist

aousti model in a variety of ontext resolutions, from fully ontext-dependent

down to ontext-independent modeling. No parameter re-training is required.
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We have demonstrated the e�ets of model downsizing for the ase of mixture

trees.

� Combination of Heterogeneous Aousti Models:

We have disussed methods for the ombination of multiple, possibly heteroge-

neous aousti models and presented a novel eÆient normalization tehnique

that allows for e�etive ombination of a onventional, mixture densities based

aousti model with a hierarhial onnetionist aousti model. A ombina-

tion approah based on dynamially weighting the models using an MLP gating

network yielded a relative redution in word error rate of 4%.

11.2 Future Work

The hierarhial aousti modeling framework presented in this thesis an be extended

in various ways. We give some brief suggestions for further work on tree-strutured

aousti models in statistial speeh reognition and other appliations:

� Merging Deision Trees and Hierarhial Aousti Models:

Instead of having separate trees for lassifying and soring phoneti ontext

models as proposed in this thesis, we ould try to merge these strutures into

a single model. Of ourse, we would then have to �nd a ompromise between

the partially di�erent requirements and onstraints of eah one of the models.

� Appliation to Multilingual Speeh Reognition:

While the experiments presented in this thesis have been restrited to a single

language, hierarhial onnetionist aousti models may be onstruted and

trained on multiple languages, resulting in a multilingual aousti model whih

may be bene�ial for multilingual and rosslingual speeh reognition [Cohen

et.al. '97, Shultz & Waibel '98℄. The SDA algorithm presented in hapter 8

may then be used to adapt the model to a spei� target language.

� Appliation to Extended HMM Frameworks:

Reently, several innovative and alternative modeling frameworks have been

proposed for statistial speeh reognition and the reognition of time series in

general. Although still related to standard HMMs, approahes suh as IOHMMs

[Bengio & Frasoni '96℄, fatorial HMMs [Ghahramani & Jordan '97℄ and the

REMAP framework [Bourlard et al. '94℄ attempt to improve modeling auray

by avoiding some of the false assumptions typially found in standard models.

Both approahes might bene�t from using the arhiteture proposed in this

thesis for the purpose of probability estimation in large HMMs.
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� Boosting of Loal Estimators:

Boosting has been around for quite some time now and has been shown to

improve lassi�er performane onsiderably by ombining the estimates of sev-

eral learners trained subsequently on patterns re-weighted depending on the

errors of the predeessors. This tehnique might readily be applied to the loal

estimators in an HNN tree. To avoid exessive omputations leading to unfea-

sible long training times, boosting might be restrited to the estimators in the

viinity of the root node and still improve performane of the overall model.

� Other Appliations:

The hierarhial onnetionist model presented in this thesis is unique in its

ability to estimate posterior probabilities for a very large number of lasses. In

that respet, it might be interesting to apply our model to other tasks suh

as speaker identi�ation or fae reognition and furthermore bene�t from the

similarity groupings represented in the tree struture.



Appendix A

Connetionist Posterior

Probability Estimation

We onsider the N lass lassi�ation problem. The following proof assumes that

a lassi�er neural network of arbitrary arhiteture with N output neurons (one for

eah target lass !

i

) is trained to minimize the squared error (MSE) between network

outputs y

i

and targets t

i

. Target vetors t are enoded aording to the 1-out-of-N

sheme, meaning that the orret lass is enoded using a 1, while all others are

enoded using a 0. Furthermore, we assume ontinuous valued input vetors x.

The network error under the MSE riterion an be expressed as follows:
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whih an be further simpli�ed to
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The seond term in the above expression an be negleted sine it is independent of

the network parameters. Minimization of the mean squared error riterion an thus

be ahieved by minimizing the �rst term in the above expression whih is simply

the mean squared error between the network outputs y

j

(x) and the Bayesian a-

posteriori lass probabilities p(!

j

jx). Therefore, training a network to minimize the

MSE between outputs and 1-out-of-N targets results in the best approximation to

the true a-posteriori distribution in the sense of that riterion. However, the given

proof ontains impliit assumptions:

� The network must be trained to the global minimum of error. Sine training a

feed-forward neural network is NP-omplete, reahing the global minimum of

error an not be guaranteed in pratie. However, it was shown, that for real

world problems, loal minima often do not di�er signi�antly from the global

one.

� The network must ontain enough free parameters (plastiity) to model the

potentially omplex posterior probability distribution. For instane, a single-

layer network will not be able to model a non-Gaussian, multimodal posterior

distribution.

� An in�nite amount of training samples is available for training the network.

This assumption is of ourse not realizable but in pratie, a reasonably large

training orpus is usually suÆient as long as adding more samples improves

network performane only marginally.

It should be noted that the proof an be given for other ontinuous network opti-

mization riteria suh as relative entropy as well.

The presented proof was originally published in [Rihard & Lippmann '91℄ for the

relative entropy riterion and later in [Morgan & Bourlard '95℄ for the mean square

error riterion. A similar proof an be found in [Bridle '90℄.
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Allophoni Variation in 24000

State Swithboard Model

The following Table shows the distribution of the roughly 24000 allophoni variations

(tied states), modeled by the Hierarhy of Neural Networks used in some of the exper-

iments in this thesis, among the positions in the underlying 3-state left-right phone

models (only the phones modeling speeh sounds are shown). The 4 phones marked

with an ampersand denote speial phones for modeling interjetions. Using the split

likelihood gain riterion introdued in setion 2.4.2, phoneti deision trees were on-

struted for eah position of eah phone model based on 170 hours of training data

from the Swithboard LVCSR orpus. The number of allophoni variations shown

for begin, middle and end positions in the Table below orrespond to the number of

leaf nodes in the orresponding deision trees. Note the large variation in the num-

ber of ontext-dependent states generated for eah phone whih reets the highly

non-uniform distribution of monophone priors in the training orpus.

phone position in 3-state HMM total number

name begin middle end of tied states

T 609 421 598 1628

N 454 357 501 1312

R 415 430 440 1285

IY 327 304 435 1066

L 381 282 372 1035

AX 326 292 347 965

D 350 204 321 875

K 304 208 298 810

IX 265 230 260 755

M 288 166 275 729
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198 Appendix B Allophoni Variation in 24000 State Swithboard Model

phone position in 3-state HMM total number

name begin middle end of tied states

S 232 199 294 725

IH 244 206 263 713

AE 240 198 252 690

OW 242 177 266 685

EH 220 193 265 678

AY 196 179 245 620

EY 176 182 243 601

W 196 177 222 595

AH 191 153 207 551

UW 158 184 188 530

DH 164 186 173 523

V 172 140 180 492

Z 164 132 189 485

B 189 117 155 461

HH 170 125 151 446

P 134 122 172 428

AXR 141 112 163 416

Y 121 134 140 395

AA 114 98 153 365

F 122 109 126 357

G 129 86 121 336

ER 83 86 103 272

AO 84 75 101 260

NG 67 65 67 199

AW 64 59 63 186

&AH 60 35 68 163

TH 60 48 51 159

JH 49 59 46 154

SH 52 46 53 151

DX 57 38 50 145

CH 38 55 39 132

&M 30 43 41 114

UH 32 36 38 106

EN 20 28 25 73

OY 13 20 16 49

&HH 9 10 9 28

&OW 10 11 7 28

ZH 6 5 7 18



Bibliography

ARPA (1994). Proeedings of ARPA Spoken Language Systems Tehnology Workshop,

Prineton, NJ, 1994.

Bahl L. R., Souza de P. F., Gopalakrishnan P. S., Nahamoo D.,

A. Piheny M. (1991). Context Dependent Modeling of Phones in Contin-

uous Speeh using Deision Trees. In Proeedings of the 1991 DARPA Speeh

and Natural Language Proessing Workshop, Pai� Grove, CA, pp. 264{270,

February 1991.

Baum E. B., Haussler D. (1989). What Size Net Gives Valid Generalization.

Neural Computation, 1:151{160.

Beattie V. L., Young S. J. (1992). Hidden Markov Model State based Cepstral

Noise Compensation. In Proeedings of International Conferene on Spoken

Language Proessing (ICSLP 92), pp. 519{522, 1992.

Bengio Y., Frasoni P. (1996). Input-Output HMMs for Sequene Proessing.

IEEE Transations on Neural Networks, 7:1231{1249.

Bengio Y. (1996). Markovian Models for Sequential Data. Tehnial Report 1049,

Dept. IRO, Universit�e de Montr�eal, 1996.

Bishop C. M. (1995a). Neural Networks for Pattern Reognition. Oxford University

Press.

Bishop C. M. (1995b). Training with Noise is Equivalent to Tikhonov Regulariza-

tion. Neural Computation, 7:108{116.

Bourlard H., Morgan N. (1994). Connetionist Speeh Reognition { A Hybrid

Approah. Kluwer Aademi Press.

Bourlard H., Konig Y., Morgan N. (1994). REMAP: Reursive Estimation and

Maximization of a Posteriori Probabilities { Appliation to Transition Based

199



200 BIBLIOGRAPHY

Connetionist Speeh Reognition. Tehnial Report TR-94-064, International

Computer Siene Institute (ICSI), 1994.

Breiman L., Friedman J. H., Olshen R. A., Stone C. J. (1984). Classi�ation

and Regression Trees. Wadsworth International Group, Belmont, California.

Bridle J. (1990). Probabilisti Interpretation of Feed Forward Classi�ation Net-

work Outputs, with Relationships to Statistial Pattern Reognition. Neuro-

omputing: Algorithms, Arhitetures and Appliations.

Chow Y., Shwartz R., Rouos S., Kimball O., Prie P., Kubala F.,

Dunham M., Krasner M., Makhoul J. (1986). The Role of Word-

Dependent Coartiulatory E�ets in a Phoneme-Based Speeh Reognition Sys-

tem. In Proeedings of International Conferene on Aoustis, Speeh and Signal

Proessing (ICASSP 86), April 1986.

Cohen M., Frano H., Morgan N., Rumelhart D., Abrash V. (1992).

Context-Dependent Multiple Distribution Phoneti Modeling with MLPs. Ad-

vanes in Neural Information Proessing, 5:649{657.

Cohen J., Kamm T., Andreou A. G. (1995). Voal Trat Normalization in

Speeh Reognition: Compensation for Systemati Speaker Variability. Journal

of the Aoustial Soiety of Ameria, 97(5).

Cohen P., Dharanipragada J., Gros J., Monkowski M., Neti C., Roukos

S., Ward T. (1997). Towards a Universal Speeh Reognizer for Multiple

Languages. In Proeedings of IEEE Workshop on Automati Speeh Reognition

and Understanding (ASRU 97), Santa Barbara, CA, Deember 1997.

Cook G. D., Robinson A. J. (1996). Boosting the Performane of Connetionist

Speeh Reognition. In Proeedings of International Conferene on Spoken

Language Proessing (ICSLP 96), Philadelphia, PA, 1996.

Cook G. D., Robinson A. J. (1998). The 1997 ABBOT System for the Tran-

sription of Broadast News. In Proeedings of Broadast News Transription

and Understanding Workshop, 1998, February 1998.

Cook G. D., Kershaw D. J., Christie J. D. M., Robinson A. J. (1997a).

Transription of Broadast Television and Radio News: The 1996 ABBOT

System. In Proeedings of Broadast News Transription and Understanding

Workshop, 1998, February 1997.



BIBLIOGRAPHY 201

Cook G. D., Waterhouse S. R., Robinson A. J. (1997b). Ensemble Methods

for Connetionist Aousti Modelling. In Proeedings of Eurospeeh 97, Rhodes,

Greee, September 1997.

Cook G. D., Christie J., Ellis D., Fosler-Lussier E., Gotoh Y., Kings-

bury B., Morgan N., Renals S., Robinson A. J., Williams G. (1999).

An Overview of the SPRACH System for the Transription of Broadast News.

In Proeedings of the 1999 DARPA Broadast News Workshop, Herndon, VA,

February 1999.

DARPA (1998). Proeedings of the DARPA Broadast News Transription and Un-

derstanding Workshop, Lansdowne Conferene Resort, Lansdowne, VA, 1998.

Davis S. B., Mermelstein P. (1980). Comparison of Parametri Representations

for Monosyllabi Word Reognition in Continuously Spoken Sentenes. IEEE

Trans. Aoustis Speeh and Signal Proessing, 28(4):357{366.

Dempster A. P., Laird N. M., Rubin D. B. (1977). Maximum Likelihood

from Inomplete Data via the EM Algorithm. Journal of the Royal Statistial

Soiety, 39(1).

Duda R., Hart P. (1973). Pattern Classi�ation and Sene Analysis. John Wiley

& Sons.

Finke M., Waibel A. (1997a). Flexible Transription Alignment. In Proeedings of

IEEE Workshop on Automati Speeh Reognition and Understanding (ASRU

97), Santa Barbara, CA, Deember 1997.

Finke M., Waibel A. (1997b). Speaking Mode Dependent Pronuniation Modeling

in Large Voabulary Conversational Speeh Reognition. In Proeedings of

Eurospeeh 97, Rhodes, Greee, September 1997.

Finke M., Fritsh J., Geutner P., Ries K., Zeppenfeld T. (1997). The

JanusRTk Swithboard/Callhome 1997 Evaluation System. In Proeedings of

LVCSR Hub-5E Workshop, Linthium Heights, MD, May 1997.

Finke M., Fritsh J., Koll D., Waibel A. (1999). Modeling and EÆient

Deoding of Large Voabulary Conversational Speeh. In Proeedings of Eu-

rospeeh 99, Budapest, Hungary, September 1999.

Finke M. (1996). Mode Dependent Pronuniation Modeling in LVCSR. In Proeed-

ings of the CLSP Summer Workshop, Johns Hopkins University, Baltimore,

MD, 1996.



202 BIBLIOGRAPHY

Fisus J. G. (1997). A Post-Proessing System to Yield Redued Word Error Rates:

Reognizer Output Voting Error Redution (ROVER). In Proeedings of IEEE

Workshop on Automati Speeh Reognition and Understanding (ASRU 97),

Santa Barbara, CA, Deember 1997.

Frano H., Cohen M., Morgan N., Rumelhart D., Abrash V. (1994).

Context-Dependent Connetionist Probability Estimation in a hybrid HMM {

Neural Net Speeh Reognition System. Computer, Speeh and Language, 8.

Frano H., Weintraub M., Cohen M. (1997). Context Modeling in a Hybrid

HMM { Neural Net Speeh Reognition System. In Proeedings of International

Conferene on Neural Networks (ICNN 97), 1997.

Franzini M., Lee K. F., Waibel A. (1990). Connetionist Viterbi Training:

A New Hybrid Method for Continuous Speeh Reognition. In Proeedings of

International Conferene on Aoustis, Speeh and Signal Proessing (ICASSP

90), Albuquerque, NM, volume 1, pp. 425{428, 1990.

Fritsh J., Finke M. (1997). Improving Performane on Swithboard by Com-

bining Hybrid HME/HMM and Mixture of Gaussians Aousti Models. In

Proeedings of Eurospeeh 97, Rhodes, Greee, September 1997.

Fritsh J., Finke M. (1998a). ACID/HNN: Clustering Hierarhies of Neural Net-

works for Context-Dependent Connetionist Aousti Modeling. In Proeed-

ings of International Conferene on Aoustis, Speeh and Signal Proessing

(ICASSP 98), Seattle, WA, May 1998.

Fritsh J., Finke M. (1998b). Applying Divide and Conquer to Large Sale

Pattern Reognition Tasks. Neural Networks: Triks of the Trade, Orr, G. B.

and M�uller, K. R. (eds), LNCS series, vol. 1524, Springer, pp. 315{342.

Fritsh J., Rogina I. (1996). The Buket Box Intersetion (BBI) Algorithm for

Fast Approximative Evaluation of Diagonal Mixture Gaussians. In Proeed-

ings of International Conferene on Aoustis, Speeh and Signal Proessing

(ICASSP 96), Atlanta, GA, May 1996.

Fritsh J., Waibel A. (1998). Hierarhies of Neural Networks for Context-

Dependent Connetionist Aousti Modeling. In Proeedings of European Sym-

posium on Arti�ial Neural Networks (ESANN 98), Brugges, Belgium, April

1998.

Fritsh J., Rogina I., Sloboda T. (1995). Speeding up the Sore Computation

of HMM Speeh Reognizers with the Buket Voronoi Intersetion Algorithm.

In Proeedings of Eurospeeh 95, Madrid, Spain, September 1995.



BIBLIOGRAPHY 203

Fritsh J., Finke M., Waibel A. (1996). Adaptively Growing Hierarhial Mix-

tures of Experts. Advanes in Neural Information Proessing, 9.

Fritsh J., Finke M., Waibel A. (1997). Context-Dependent Hybrid

HME/HMM Speeh Reognition using Polyphone Clustering Deision Trees.

In Proeedings of International Conferene on Aoustis, Speeh and Signal

Proessing (ICASSP 97), Munih, Germany, April 1997.

Fritsh J., Finke M., Waibel A. (1998a). E�etive Strutural Adaptation of

LVCSR Systems to Unseen Domains Using Hierarhial Connetionist Aous-

ti Models. In Proeedings of International Conferene on Spoken Language

Proessing (ICSLP 98), Sydney, Australia, Deember 1998.

Fritsh J., Finke M., Waibel A. (1998b). Strutural Adaptation of Hierarhial

Connetionist Aousti Models to Unseen Domains. In Proeedings of LVCSR

Hub-5E Workshop, Linthium Heights, MD, September 1998.

Fritsh J. (1996). Modular Neural Networks for Speeh Reognition. Tehnial

Report CMU-CS-96-203, Carnegie Mellon University, Pittsburgh, PA, August

1996.

Fritsh J. (1997). ACID/HNN: A Framework for Hierarhial Connetionist Aous-

ti Modeling. In Proeedings of IEEE Workshop on Speeh Reognition and

Understanding (ASRU 97), Santa Barbara, CA, Deember 1997.

Fritsh J. (1999a). Mixture Trees { Hierarhially Tied Mixture Densities for Mod-

eling HMM Emission Probabilities. In Proeedings of Eurospeeh 99, Budapest,

Hungary, September 1999.

Fritsh J. (1999b). Mixture Trees { Hierarhially Tied Mixture Densities for

Salable Aousti Modeling. In Proeedings of LVCSR Hub-5E Workshop,

Linthium Heights, MD, June 1999.

Fukunaga K. (1990). Introdution to Statistial Pattern Reognition. Aademi

Press.

Geman S., Bienenstok E., Doursat R. (1992). Neural Networks and the

Bias/Variane Dilemma. Neural Computation, 4:1{52.

Gersho A., Gray R. (1992). Vetor Quantization and Signal Compression. Kluwer

Aademi Publishers.



204 BIBLIOGRAPHY

Geutner P., Finke M., Sheytt P. (1997). Hypothesis Driven Lexial Adap-

tation for Transribing Multilingual Broadast News. Tehnial Report CMU-

LTI-97-155, Carnegie Mellon University, Pittsburgh, PA, Deember 1997.

Ghahramani Z., Jordan M. I. (1997). Fatorial Hidden Markov Models. Mahine

Learning, 29:245{273.

Girosi F., Jones M., Poggio T. (1995). Regularization Theory and Neural

Network Arhitetures. Neural Computation, 7:219{269.

Godfrey J. J., C. Holliman E., MDaniel J. (1992). SWITCHBOARD: Tele-

phone Speeh Corpus for Researh and Development. In Proeedings of Inter-

national Conferene on Aoustis, Speeh and Signal Proessing (ICASSP 92),

San Franiso, CA, 1992.

Haeb-Umbah R., Ney H. (1992). Linear Disriminat Analysis for Improved

Large Voabulary Continuous Speeh Reognition. In Proeedings of Inter-

national Conferene on Aoustis, Speeh and Signal Proessing (ICASSP 92),

San Franiso, CA, 1992.

Hampshire J. B., Waibel A. H. (1989). The Meta-Pi Network: Building Dis-

tributed Knowledge Representations for Robust Pattern Reognition. Tehnial

Report CMU-CS-89-166, Carnegie Mellon University, Pittsburgh, PA, August

1989.

Hild H., Waibel A. (1993). Speaker-Independent Conneted Letter Reognition

with a Multi-State Time Delay Neural Network. In Proeedings of Eurospeeh

93, pp. 1481{1484, 1993.

Hohberg M. M., Cook G. D., Renals S. J., Robinson A. J., Shehtman

R. S. (1995). The 1994 ABBOT Hybrid Connetionist-HMM Large-Voabulary

Reognition System. In Spoken Language Systems Tehnology Workshop, 1995.

Huang X. D., Ariki Y., Jak M. A. (1990). Hidden Markov Models for Speeh

Reognition. Edinburgh University Press.

Hunt M. J., Lennig M., Mermelstein P. (1980). Experiments in Syllable-Based

Reognition of Continuous Speeh. In Proeedings of International Conferene

on Aoustis, Speeh and Signal Proessing (ICASSP 80), pp. 880{883, 1980.

Hwang M., Huang X. (1998). Dynamially Con�gurable Aousti Models for

Speeh Reognition. In Proeedings of International Conferene on Aoustis,

Speeh and Signal Proessing (ICASSP 98), Seattle, WA, May 1998.



BIBLIOGRAPHY 205

Jaobs R. A. (1988). Inreased Rates of Convergene. Neural Networks, 1(4).

Jaobs R. A. (1995). Methods for Combining Experts' Probability Assessments.

Neural Computation, 7:867{888.

Jelinek F., Merialdo B., Roukos S., Strauss M. (1991). A Dynami Lan-

guage Model for Speeh Reognition. In Proeedings of the Speeh and Natural

Language DARPA Workshop, pp. 293{295, February 1991.

Jelinek F. (1997). Statistial Methods for Speeh Reognition. MIT Press, Cam-

bridge, MA.

Jolliffe I.T. (1986). Prinipal Component Analysis. Springer, New York.

Jordan M. I., Jaobs R. A. (1992). Hierarhies of Adaptive Experts. Advanes

in Neural Information Proessing, 4:985{993.

Jordan M. I., Jaobs R. A. (1994). Hierarhial Mixtures of Experts and the

EM Algorithm. Neural Computation, 6:181{214.

Jordan M. I. (1995). Why the Logisti Funtion: A Tutorial Disussion on Prob-

abilities and Neural Networks. Tehnial Report MIT Tehnial Report 9503,

Massahusetts Institute of Tehnology, April 1995.

Kershaw D. J., M. Hohberg M., Robinson A. J. (1995). Context-Dependent

Classes in a Hybrid Reurrent Network HMM Speeh Reognition System.

Tehnial Report CUED/F-INFENG/TR-217, Cambridge University Engineer-

ing Department, Cambridge, England, 1995.

Kershaw D. J. (1997). Phoneti Context-Dependeny in a Hybrid ANN/HMM

Speeh Reognition System. PhD Thesis, St. John's College, Cambridge Uni-

versity Engineering Department, Cambridge, England, 1997.

Kneser R., Ney H. (1995). Improved Baking-O� for m-gram Language Modeling.

In Proeedings of International Conferene on Aoustis, Speeh and Signal

Proessing (ICASSP 95), Detroit, MI, pp. 181{184, 1995.

Knill K. M., Gales M. J. F., Young S. J. (1996). Use of Gaussian Seletion

in Large Voabulary Continuous Speeh Reognition Systems using HMMs. In

Proeedings of International Conferene on Spoken Language Proessing (IC-

SLP 96), Philadelphia, PA, 1996.

Kullbak S., Leibler R. A. (1951). On Information and SuÆieny. Annals of

Mathematial Statistis, 22:79{86.



206 BIBLIOGRAPHY

Lau R., Rosenfeld R., Roukos S. (1993). Trigger-based Language Models: A

Maximum Entropy Approah. In Proeedings of International Conferene on

Aoustis, Speeh and Signal Proessing (ICASSP 93), Minneapolis, MN, 1993.

Lawrene S., Burns I., Bak A., Tsoi A. C., Giles C. L. (1998). Neural

Network Classi�ation and Prior Class Probabilities. Neural Networks: Triks

of the Trade, Orr, G. B. and M�uller, K. R. (eds), LNCS series, vol. 1524,

Springer, pp. 299{313.

Lee K. F. (1988). Large-Voabulary Speaker-Independent Continuous Speeh Reog-

nition: The SPHINX System. PhD Thesis, Carnegie Mellon University, Pitts-

burgh, PA, Pittsburgh, PA, 1988.

Leggetter C. J., Woodland P. C. (1994). Speaker Adaptation of HMMs using

Linear Regression. Tehnial Report CUED/F-INFENG/TR-181, Cambridge

University Engineering Department, Cambridge, England, 1994.

Lippmann R. P. (1989). Review of Neural Networks for Speeh Reognition. Neural

Computation, 1(1):1{38.

Lippmann R. P. (1997). Speeh Reognition by Mahines and Humans. Speeh

Communiation, 22:1{33.

Martin A., Fisus J., Fisher B., Pallett D., Przyboki M. (1997). 1997

LVCSR/Hub-5E Workshop: System Desriptions & Performane Summary. In

Proeedings of LVCSR Hub-5E Workshop, Linthium Heights, MD, May 1997.

MCullagh P., Nelder J. A. (1989). Generalized Linear Models. Chapman &

Hall, London, England.

MLahlan G. J., Krishnan T. (1997). The EM Algorithm and Extensions. John

Wiley & Sons, New York, NY.

M�ller M. (1993). A Saled Conjugate Gradient Algorithm for Fast Supervised

Learning. Neural Networks, 6:525{533.

Moody J., Darken C. J. (1989). Fast Learning in Networks of Loally Tuned

Proessing Units. Neural Computation, 1(2):281{294.

Morgan N., Bourlard H. (1990). Continuous Speeh Reognition Using Multi-

layer Pereptrons with Hidden Markov Models. In Proeedings of International

Conferene on Aoustis, Speeh and Signal Proessing (ICASSP 90), Albu-

querque, NM, pp. 413{416, 1990.



BIBLIOGRAPHY 207

Morgan N., Bourlard H. (1992). Fatoring Networks by a Statistial Method.

Neural Computation, 4:835{838.

Morgan N., Bourlard H. (1995). An Introdution to Hybrid HMM / Conne-

tionist Continuous Speeh Reognition. Signal Proessing Magazine, 15:25{42.

Mori Y., Joe K. (1989). A Large Sale Neural Network whih Reognizes Handwrit-

ten Kanji Charaters. Advanes in Neural Information Proessing, 2:415{420.

Neto J., Almeida L., Hohberg M. M., Martins C., Nunes L., Renals

S. J., Robinson A. J. (1995). Speaker Adaptation for Hybrid HMM-ANN

Continuous Speeh Reognition Systems. In Proeedings of Eurospeeh 95,

Madrid, Spain, 1995.

Ney H. (1991). Speeh Reognition In A Neural Network Framework: Disriminative

Training Of Gaussian Models And Mixture Densities As Radial Basis Funtions.

In Proeedings of International Conferene on Aoustis, Speeh and Signal

Proessing (ICASSP 91), Toronto, Canada, 1991.

Niesler T. R., Woodland P. C. (1995). Variable-length Category-based n-grams

for Language Modeling. Tehnial Report CUED/F-INFENG/TR-215, Cam-

bridge University Engineering Department, Cambridge, England, April 1995.

Odell J. J. (1995). The Use of Context in Large Voabulary Speeh Reognition.

PhD Thesis, Cambridge University Engineering Department, Cambridge, Eng-

land, Cambridge, England, 1995.

Paul D. B. (1992). An EÆient A* Stak Deoder Algorithm for Continuous Speeh

Reognition. In Proeedings of International Conferene on Aoustis, Speeh

and Signal Proessing (ICASSP 92), San Franiso, CA, pp. 25{28, 1992.

Poggio T., Girosi F. (1990). Networks for Approximation and Learning. Proeed-

ings of the IEEE, 78:1481{1497.

Pye D., Woodland P. C. (1997). Experiments in Speaker Normalisation and

Adaptation for Large Voabulary Speeh Reognition. In Proeedings of Inter-

national Conferene on Aoustis, Speeh and Signal Proessing (ICASSP 97),

Munih, Germany, pp. 1047{1050, 1997.

Quinlan J. R. (1986). Indution of Deision Trees. Mahine Learning, 1:81{106.

Rabiner L. R., Juang B. H. (1993). Fundamentals of Speeh Reognition.

Prentie-Hall, Englewood Cli�s, NJ.



208 BIBLIOGRAPHY

Rabiner L. R., Shafer R. W. (1978). Digital Proessing of Speeh Signals.

Prentie-Hall, Englewood Cli�s, NJ.

Rabiner L. R. (1989). A Tutorial on Hidden Markov Models and Seleted Appli-

ations in Speeh Reognition. Proeedings of the IEEE, 77:257{285.

Ravishankar M. K. (1996). EÆient Algorithms for Speeh Reognition. PhD

Thesis, Carnegie Mellon University, Pittsburgh, PA, Pittsburgh, PA, 1996.

Redner R. A., Walker H. F. (1984). Mixture Densities, Maximum Likelihood

and the EM Algorithm. SIAM Review, 26.

Renals S., Hohberg M. (1999). Start-Synhronous Searh for Large Voabu-

lary Continuous Speeh Reognition. IEEE Transations on Speeh and Audio

Proessing, 7.

Renals S., Morgan N., Bourlard H., Frano H., Cohen M. (1991). Con-

netionist Optimization of Tied Mixture Hidden Markov Models. Advanes in

Neural Information Proessing, 4:167{174.

Renals S. (1989). Radial Basis Funtion Networks for Speeh Pattern Classi�ation.

Eletronis Letters, 25:437{439.

Renals S. (1996). Phone Deativation Pruning in Large Voabulary Continuous

Speeh Reognition. IEEE Signal Proessing Letters, 3.

Rihard M. D., Lippmann R. P. (1991). Neural Network Classi�ers Estimate

Bayesian a posteriori Probabilities. Neural Computation, 3:461{483.

Ripley B. D. (1996). Pattern Reognition and Neural Networks. Cambridge Uni-

versity Press.

Robinson A. J., Fallside F. (1991). A Reurrent Error Propagation Network

Speeh Reognition System. Computer, Speeh and Language, 5:259{274.

Robinson A. J., Hohberg M. M., Renals S. J. (1996). The Use of Reurrent

Neural Networks in Continuous Speeh Reognition. In Automati Speeh and

Speaker Reognition - Advaned Topis, Lee, C. H., Paliwal K. K. and Soong

F. K. (eds).

Robinson A. J. (1994). An Appliation of Reurrent Nets to Phone Probability

Estimation. IEEE Transations on Neural Networks, 5.



BIBLIOGRAPHY 209

Rogina I., Waibel A. (1994). Learning State-Dependent StreamWeights for Multi-

Codebook HMM Speeh Reognition Systems. In Proeedings of International

Conferene on Aoustis, Speeh and Signal Proessing (ICASSP 94), Adelaide,

Australia, 1994.

Rumelhart D. E., MClelland J. L. (eds) (1986). Parallel Distributed Pro-

essing, Vol. 1 and Vol. 2. MIT Press, Cambridge, MA.

Rumelhart D. E., Hinton G. E., Williams R. J. (1986). Learning Internal Rep-

resentations by Error Bakpropagation. In Rumelhart, D. E. and MClelland,

J. L. (eds), Parallel Distributed Proessing, Vol. 1, MIT Press, Cambridge,

MA, pp. 318{362.

Safavian S. R., Landgrebe D. (1991). A Survey of Deision Tree Classi�er

Methodology. IEEE Transations on Systems, Man and Cybernetis, 21:660{

674.

Shultz T., Waibel A. (1998). Multilingual and Crosslingual Speeh Reognition.

In Proeedings of the DARPA Broadast News Workshop 1998, Lansdowne, VA,

February 1998.

Sh

�

urmann J., Doster W. (1984). A Deision Theoreti Approah to Hierarhial

Classi�er Design. Pattern Reognition, 17.

Sh

�

urmann J. (1996). Pattern Classi�ation: A Uni�ed View of Statistial and

Neural Approahes. John Wiley & Sons.

Shuster M., Paliwal K. K. (1997). Bidiretional Reurrent Neural Networks.

IEEE Transations on Signal Proessing, 45:2673{2681.

Shwartz R., Chow Y., Kimball O., Rouos S., Krasner M., Makhoul

J. (1985). Context-Dependent Modeling for Aousti-Phoneti Reognition of

Continuous Speeh. In Proeedings of International Conferene on Aoustis,

Speeh and Signal Proessing (ICASSP 85), April 1985.

Siu M., Jonas M., Gish H. (1999). Using a Large Voabulary Continuous Speeh

Reognizer for a Constrained Domain with Limited Training. In Proeedings of

International Conferene on Aoustis, Speeh and Signal Proessing (ICASSP

99), Phoenix, AZ, Marh 1999.

Stromberg J., Zrida J., Isaksson A. (1991). Neural Trees { Using Neural Nets

in a Tree Classi�er Struture. In Proeedings of International Conferene on

Aoustis, Speeh and Signal Proessing (ICASSP 91), Toronto, Canada, 1991.



210 BIBLIOGRAPHY

Tebelskis J. (1995). Speeh Reognition using Neural Networks. PhD Thesis,

Carnegie Mellon University, Pittsburgh, PA, Pittsburgh, PA, May 1995. CMU-

CS-95-142.

Thomson D. L. (1997). Ten Case Studies of the E�et of Field Conditions on

Speeh Reognition Errors. In Proeedings of IEEE Workshop on Automati

Speeh Reognition and Understanding (ASRU 97), Santa Barbara, CA, May

1997.

Tibshirani R. (1996). Bias, Variane and Predition Error for Classi�ation Rules.

Tehnial Report, Department of Statistis, University of Toronto, 1996.

Tou J. T., Ganzales R. C. (1974). Pattern Reognition Priniples. John Wiley

& Sons.

Valthev V. (1995). Disriminative Methods in HMM based Speeh Reognition.

PhD Thesis, Cambridge University Engineering Department, 1995.

Waibel A., Lee K. F. (Eds.). Readings in Speeh Reognition. Morgan Kaufmann,

San Mateo, CA.

Waibel A., Hanazawa T., Hinton G., Shikano K., Lang K. (1987). Phoneme

Reognition Using Time-Delay Neural Networks. Tehnial Report TR-1-0006,

ATR Interpreting Telephony Researh Laboratories, Otober 1987.

Waibel A., Sawai H., Shikano K. (1988). Modularity and Saling in Large

Phonemi Neural Networks. Tehnial Report TR-I-0034, ATR Interpreting

Telephony Researh Laboratories, July 1988.

Waibel A. (1988). Connetionist Glue: Modular Design of Neural Speeh Systems.

In Touretzky D. S., Hinton G. E., Sejnowski T. J. (Eds.), Proeedings

of the 1988 Connetionist Models Summer Shool. Morgan Kaufmann, 1988.

Waibel A. (1989). Modular Constrution of Time-Delay Neural Networks for Speeh

Reognition. Neural Computation, MIT-Press, 1(1):39{46.

Waibel A. (1991). Neural Networks for Speeh Reognition. In Furui S., Sondhi

M. (Eds.), Advanes in Speeh Signal Proessing. Marel Dekker Publishers,

New York, NY, 1991.

Watanabe T., Shinoda K., Takagi K., Yamada E. (1994). Speeh Reognition

using Tree-Strutured Probability Density Funtions. In Proeedings of Inter-

national Conferene on Spoken Language Proessing (ICSLP 94), Yokohama,

Japan, 1994.



BIBLIOGRAPHY 211

Waterhouse S. R., Cook G. D. (1996). Esemble Methods for Phoneme Classi�-

ation. Advanes in Neural Information Proessing, 9.

Waterhouse S. R., Robinson A. J. (1995). Construtive Algorithms for Hi-

erarhial Mixtures of Experts. Advanes in Neural Information Proessing,

8:584{590.

Waterhouse S. R. (1997). Classi�ation and Regression using Mixtures of Experts.

PhD Thesis, Cambridge University Engineering Department, 1997.

Willett D., Neukirhen C., Rigoll G. (1998). EÆient Searh with Posterior

Probability Estimates in HMM-based Speeh Reognition. In Proeedings of

International Conferene on Aoustis, Speeh and Signal Proessing (ICASSP

98), Seattle, WA, May 1998.

Yee P. (1992). Classi�ation Experiments involving Bak Propagation and Radial

Basis Funtion Networks. Tehnial Report TR-249, Communiations Researh

Laboratory, MMaster University, Ontario, Canada., 1992.

Young S. J. (1994). The HTK Hidden Markov Model Toolkit: Design and Phi-

losophy. Tehnial Report CUED/F-INFENG/TR-152, Cambridge University

Engineering Department, Cambridge England, 1994.

Young S. J. (1996). Large Voabulary Continuous Speeh Reognition: a Review.

Tehnial Report, Cambridge University Engineering Department, Cambridge

England, 1996.

Zeppenfeld T., Finke M., Ries K., Westphal M., Waibel A. (1997). Reog-

nition of Conversational Telephone Speeh using the Janus Speeh Engine. In

Proeedings of International Conferene on Aoustis, Speeh and Signal Pro-

essing (ICASSP 97), Munih, Germany, 1997.



Index

1-out-of-N oding, 77, 81

A

�

algorithm, 23

Abbot, 32

aousti mismath, 147

aousti model, 9

heterogeneous, 175

aousti model ombination, 175, 193

ativation funtion, 30

adaptation

feature based, 120

model based, 120

supervised, 121

unsupervised, 121

adaptation data, 122, 151

limited amounts, 124

agglomerative lustering, 57, 59, 168,

190

allophoni variations, 51, 61, 197

annealing fator, 87

appliation domains, 140

approximation errors, 83

arti�ial neural networks, 29

assumption

distributional, 26

�rst-order, 15, 26

independene, 14, 25

bak-o� strategies, 21, 96

bakpropagation, 30, 75, 186

through time, 32

balaned trees, 51

Baum-Welh algorithm, 12

Bayes' rule, 9, 11, 27, 34, 91, 173, 180

beam searh, 22

beam width, 23

benhmark orpora, 39

bias unit, 74

bias-variane dilemma, 78

bidiretional reurrent neural networks,

32

boosting, 175, 194

branhing fator, 64, 168

arbitrary, 65

Broadast News, 1, 43, 140

Callhome, 42

anonial link, 31, 74

epstral mean ompensation, 10

epstrum, 10, 95

lass boundaries, 28

lass priors, 29

lassi�ation, 29

binary, 46

lassi�er neural networks, 30, 72

lustering algorithms, 54, 168

o-artiulation, 16

omponent densities, 161

on�dene measure, 121, 130, 184

onfusion matrix, 53

onjugate gradients, 82

onnetionist aousti model, 30

monolithi, 33

onnetionist arhitetures, 29

ontext-dependent modeling, 16, 19, 34

ontext-independent modeling, 19

212



INDEX 213

ovariane matrix, 15

riterion

maximum a-posteriori, 27, 173

maximum likelihood, 26, 27, 173

ross setioning, 49

ross-entropy, 32, 74

DARPA, 42

data sparsity, 122

deision trees, 45

CART, 17

phoneti, 17

deoder, 21

stak, 23

Viterbi, 22

delta-bar-delta rule, 87

dendrogram, 59, 67

design riteria, 51

ditation systems, 1, 140

disrimination, 26

disriminative modeling, 27

distane measure

Eulidean, 54

Mahalanobis, 54

distributed training, 191

divide and onquer, 45

divisive lustering, 65, 66, 168, 190

domain adaptation, 142

domain dependene, 20

downsizing, 169, 171, 192

dynami tree pruning, 109, 191

early stopping, 101

EM algorithm, 12, 164, 173

onvergene, 166

embedded training, 93, 106

empiri normalization, 181

ensemble, 33, 181

entropy, 62, 183, 184

normalized, 63, 69

ESST, 140

estimation problem, 8

expert networks, 36

exponential family, 15

fatorial HMM, 193

fault tolerane, 48

feature vetor, 9

feed-forward neural networks, 35

exible transription alignment, 96

forward algorithm, 12

forward-bakward algorithm, 12, 164

friatives, 59, 98

gating networks, 184

Gaussian, 18, 167

diagonal ovariane, 57

generalization, 78, 101, 128

generalized linear models, 74

goodness of split, 18

gradient desent, 81

Hamming window, 9, 95

heuristi pruning, 22

heuristi searh, 23

hidden layer, 74

hidden Markov model, 8

ontinuous density, 12

deoding problem, 12

disrete, 12, 180

evaluation problem, 12

�rst-order, 11, 14

left-right, 12

optimization problem, 12

phonetially tied, 180

semi-ontinuous, 180

hidden units, 30

hierarhial onnetionist aousti model,

74, 147, 156

hierarhy of neural networks, 74, 83,

109, 178, 190

histogram, 83, 183



214 INDEX

HNN, 74

Hub-5E, 42

hybrid NN/HMM systems, 30

hypothesis ombination, 175

imbalaned trees, 61

independent experts, 187

information divergene, 55, 146

information retrieval, 1, 140

interpolation, 17

interpolation weights, 162, 170

IOHMM, 193

IVR systems, 1, 140

JanusRTk, 94

k-means lustering, 65

Kolmogorov theorem, 76

Kullbak-Leibler divergene, 55, 133, 146

language model, 9, 21

language model ombination, 175

language model weight, 153

learning rate, 82, 186

global, 86

loal, 86

linear disriminant analysis, 10, 95

linear opinion pools, 177, 184

linear predition, 9

linguisti lasses, 59

load balaning, 85

loal estimator, 71

loal model seletion, 104, 191

LVCSR, 39, 142

MAP estimator, 29

mass distribution, 47

Mel-sale, 10, 95

meta-pi framework, 175, 184

MFCC, 10, 95

minimum least squares, 33

mixture oeÆients, 15

mixture omponents, 15

mixture densities, 15, 57, 161

mixture splitting, 167

mixture trees, 161, 192

mixture tying, 180

mixture weights, 162

mixtures of experts, 33, 175, 184

mixtures of Gaussians, 15, 158, 178,

182

MLLR, 120, 158, 169

model adaptation, 147

model omplexity, 76, 78

model integration, 89

modular neural networks, 33

momentum fator, 82

monolithi lassi�er, 53

monolithi neural networks, 72

monophones, 16, 61

monotoniity, 110

multi-layer pereptron, 30, 74

multi-words, 96

n-gram, 21, 143

nasals, 59

neural networks, 29

adaptation of, 127

Neural Trees, 74

Newton-Raphson method, 80

NIST, 42

node adaptation, 124

node merging algorithm, 64

node seletion, 124

out-of-voabulary rate, 143

over�tting, 36, 78, 128

partial posterior pruning, 110, 117

penalty term, 62

pentaphones, 95, 151

perplexity, 143

phone models, 11



INDEX 215

phoneti ontext, 16

ross-word, 18

within-word, 18

phoneti ontext modeling, 142

plosives, 98

polynomial regression, 73

polyphone model, 17

portability, 20

post-proessing, 179

posteriors

approximation of, 30

onditional, 35, 47, 72

fatoring, 35

power spetrum, 9

prinipal omponent analysis, 10

prior knowledge, 52

prior mismath, 145

priors, 180

onditional, 36, 92

non-uniform, 37

uniform, 63, 69

probability

emission, 11, 15

multinomial, 16, 31, 74

transition, 11, 15

probability mass, 182

produt rule, 177

projetive kernel, 30

pronuniation graph, 13

pronuniation modeling, 95

pronuniation variants, 13

pruning, 49, 147, 169

pruning beams, 108

pruning threshold, 110, 148

radial basis funtions, 32

radial kernel, 32

rank ordering, 170

real-time fator, 107, 115

reognition problem, 8

reognition setup, 94

reurrent neural networks, 32

regression, 33

regression lass tree, 123

regularization, 78

REMAP framework, 193

salability, 100

lak of, 34, 37

saled onjugate gradients, 82

saled likelihood, 28, 34, 91, 173

SDA, 147

searh errors, 108

seond order algorithms, 80

separability, 52

shortuts, 74

sigmoid funtion, 31, 74

smoothing, 17, 21

soft lassi�ation tree, 46

softmax funtion, 31, 74, 185

speaker adaptation, 119, 125, 169, 191

spei�ity of ontext modeling, 142, 169

spetral analysis, 9

split likelihood gain, 18, 56

splitting riterion, 53

state deativation pruning, 111, 118

state graph, 13

state posteriors, 27

state tying, 19

stati ombination, 177

stohasti gradient desent, 81

stohasti learning, 80

stop onsonants, 59

strutural adaptation, 169, 173

strutural domain adaptation, 147, 149,

192

strutural mismath, 147

supra-Bayesian approah, 177

Swithboard, 37, 39, 59, 89, 94, 112,

126, 140, 150, 178, 186



216 INDEX

symmetri information divergene, 55,

57

time-delay neural networks, 33

time-synhronous, 22

training

bath, 78

global, 85

independent, 87

joint, 85

o�-line, 78

on-line, 78, 101

sampling, 88

sequential, 88

transriptions, 155

transfer funtion, 30

transformation tying, 123

tree balane, 168

tree design, 50

tree struture, 46, 109, 150

binary, 61, 64

optimal, 52

tree topology, 78

trigram, 21

triphone model, 16

uniform posterior pruning, 111, 118

uniform prior distribution, 63

uniform splits, 67

universal approximation theorem, 76

validation set, 80, 128

Viterbi algorithm, 12, 22, 89, 121, 164

Viterbi assumption, 77

Viterbi beam searh, 91

voal trat length, 10

normalization, 10, 95, 120

voting, 175

Wall Street Journal, 43, 140

warping, 10, 95

warping fator, 153

waveform, 7

weighting funtions, 184

word boundaries, 18

word insertion penalty, 153


