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1 Introduction

1.1 Motivation

The goal of this research is to improve the translation performance of a
Statistical Machine Translation system.

Translation tasks can be very different in nature, because language varies
greatly depending on who uses it when and for what purpose. For exam-
ple the sentence structure and vocabulary in a children’s book, a scientific
article, a dialog between two persons, a newspaper article and an article
on medicine or sports are different. Often the same term has a different
meaning in different topics. This project tries to improve translations by
adapting the translation system to the translation task at hand.

One challenge in machine translation connected to the domain and topic
of a text is word-sense disambiguation. Every language has words that
have different meanings when used in varying contexts. In most cases
the word has to be translated into different words for each meaning.

For example the word ‘operating’ has other translations to German in
different domains. medicine: ‘operating table’ or computer related: ‘op-
erating system’. ‘Operating table’ translates to ‘Operationstisch’, while
‘operating system’ to ‘Betriebssystem’. So, ‘operating’ translates to ‘Op-
eration’ or ‘Betrieb’ depending on whether its used in a medical or a
technological domain.

A statistically built translation lexicon usually provides several transla-
tion alternatives. The challenge is to select the right translation alterna-
tive for the right domain.

Typically, the more data is used in a statistical machine translation Sys-
tem to estimate the parameters of the model, the better it approximates
the actual distributions in the language. More training data will usually
lead to a higher translation performance.



However if a significant amount of out-of-domain data is added to the
training data, translation quality may drop. One reason is that a general
translation model P(s|t) trained on in-domain and out-of-domain data
does not fit domain, topic or style of individual texts.

The use of a language model and phrase-based transducers enables the
translation system to utilize context information to select the right trans-
lation alternative. In some cases the immediate context can be enough
to determine the domain it ig used in and with it the correct translation.
In the example ‘operating’ the next word is enough to do so.

But in other cases the immediate context is not enough. For example the
word ‘shot” has several connotations depending on whether a policeman
fires a shot, a doctor gives a shot, a barkeeper serves a shot, a tourist
takes a shot or someone adventurous gives it a shot.

The doctor gave me a shot of vaccine.
The waiter gave me a shot of whiskey.
My friend gave me a shot of the Grand Canyon.

In this example the five word phrase ‘gave me a shot of” translates into
different expressions depending on words, that can not be found in the
immediate context of the word ‘shot’. German translations of these ex-
amples are all different expressions, see table 1.1. The direct translation
of *shot’ is *Schuss’” which only occurs in one of the translations.

English German

to fire a shot einen Schuss abgeben

to give a shot of vaccine impfen

a shot of alcohol ein Kurzer

a shot of the Grand Canyon | ein Foto vom Grand Canyon
to give it a shot es mal probieren

Table 1.1: German Example Translations: ‘shot’

Most commonly used language models do not exceed trigrams and it is
hard to find long matchine plirases for phrase transducers. So long term
context information is lost in these models.



1.2 Approach

This project aims to circumvent the limitations of commonly used models
by making use of long range context information. It tries to exclude
alternative translations from other domains, by training the models only
on data that fits the domain and more specific topic and style of the
translation task at hand.

To find this in-domain data in all the available training data, Information
Retrieval (IR) is a suitable tool because it finds and ranks documents of
a document collection according to their relevance to a given topic, and
this should limit them to the same domain as well.

Recent approaches in language model adaptation (Eck et al. [2004], Zhao
et al. [2004]) successfully used information retrieval technigues to find
matching data in a training CoTpus.

The ideas and results of this project have already been published in the
proceedings of EAMT 2005 Hildebrand et al. [2005].

1.3 Outline

Chapter 2, ‘Background Information on Statistical Machine Translation
and Information Retrieval briefly explains about systems. models and
algorithms used in this project. It includes some general information
on statistical machine translation, descriptions of word- and phrase-
alignment techniques for building transducers and the two similarity
measures used in this project.

Chapter 3 ‘State of the Art’ refers to research work in the fields of lan-
guage model adaptation and translation model adaptation, on which this
project is partially based.

Chapter 4 ‘Translation Model Adaptation® details the approach to trans-
lation model adaptation. It focuses on selection of similar data and
antomatic determination of selection size.

Chapter 5 is a collection of all experimental results for two experiment
settings. The main goal for the first, translating from Spanish to English,
is word sense disambiguation by finding in-domain data in a small mixed-
domain corpus. In the second, translating from Chinese to English, 1
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mainly try to make use of a very large out-of-domain bilingual corpus
without introducing too many undesired translation alternatives.



2 Background Information on
Statistical Machine
Translation and Information
Retrieval

This chapter briefly explains the models and algorithms used in this
project. It is not a complete overview of all techniques for statistical
machine translation or information retrieval.

2.1 Statistical Machine Translation

Machine translation systems try to translate a text in one language,
called the source language, into another language, the target language.
Most Statistical Machine Translation (SMT) systems do the translation
sentence-by-sentence. They estimate the probability P(T'|S) that a sen-
tence 1" in the target langnage is a valid translation nf a sentence S in
the source language.

According to Bayes’ theorem P(T]S) is:
P(T)\PLS ‘
P(T|S) = AEWBIT) (2.1)

P(8)

The decoder is the translation system component that performs the ac-
tual translation by searching for the t target language sentence T. whose
probability P(T|S) is maximum. As that maximum is independent of
the a priori probability of the source sentence P(S), we search for:

11
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T = argmaxr(P(T) - P(S

T)) (2:2)

P(T') is the a priori probability of the target sentence, which is in SMT
typically provided by a language model. P(S|T) is the translation prob-
ability of S given T', provided by the translation model.

bilingual monolingual
training data training data
training
translation language
model model
P(5|T) P(T)

source decoding target
sentence S argmax,(P(TP(ST) sentence T

Figure 2.1: SMT System

Statistical approaches to machine translation, pioneered by Brown et al.
[1990]. estimate parameters for a probabilistic model of word to word
correspondences (the translation model) and word order (the langnage
model) directly from large corpora of parallel bilingnal text.

2.1.1 Translation Model

Data for training a translation model usually consists of a collection of
texts in two languages, where each sentence in the source language is
aligned with one sentence that is its translation in the target language.
This kind of data is called a parallel bilingual corpus.

Given these pairs of sentences, the difficult task is to find which words
in the source language translate into which words in the target language.

12



This mapping is called a word alignment. Figure 2.2 shows an example for
a manual word alignment hetween a Spanish and an English sentence.

you have a broken bone called stress fracture

tendria un hueso roto llamo fractura de estrés

Figure 2.2: Word Alignment Example for a Spanish — Eneclish sentence
(=} f= o
pair

Next, a translation lexicon is extracted from these word alignments. Be-
cause languages have different structure it is beneficial to not only use
word to word translations in that lexicon, but to find bigger parts of
sentences, consisting of two, three or more words, which are translations
of each other. Such parts of sentences are called phrases. A phrase can
coincide with but is not limited to a grammatical clause of a sentence.
It can be any part of a sentence. Phrase-to-phrase translations incorpo-
rate context information and local word reordering. From the example
senfences in figure 2.2, a phrase could be the main clause: ‘vou have
a broken bone’. Examples for phrase pairs with local word reordering
would be: “broken hone’ — ‘hueso roto’ and ‘stress fracture’ — “fractura
de estrés’.

Extracted phrase translations from many sentence pairs make up the
translation lexicon, called the transducer. The transducer aligns each
source phrase with several candidate target phrases (translations) and
contains an estimated translation probability for each phrase pair and
possibly other model scores like phrase fertility.

Table 2.1 shows several transducer entries relevant to the example sen-
tence: ‘me gustaria recibir informacién con respecto a los misculos’ (ref-
erence translation: ‘i would like an information regarding muscles’,
There are several methods to align words and phrases to build trans-
ducers. Some of them are explained in the following sections 2.1.3 to
2.1.6. The transducer in table 2.1 was built using the Integrated Phrase
Segmentation and Alignment Algorithm (ISA) (section 2.1.5).

13



source phrase | target phrase | probability |
me i 0.005307
me me 0.004916
me gustaria i would like 0.555504
gustaria recibir | like to receive 1.000000
recibir receive 0.979510
informacion information 0.993545 |
informacion information desk 0.079469
con with 0.973766
con respecto regarding 0.567744
con respecto a | regarding 0.204682
respecto oWl 0.034200
a to 0.742839
a los to the 0.039452
los the 0.002374
los them 0.001832
miisciulos muscles 0.964412
los musculos muscles 0.930327
los musculos the muscles 0.230246
los misculos yvour muscles 0.764182

Table 2.1: Example Transducer Entries

Hierarchical Transducers

Hierarchical transducers are a set of transducers varying from specific
to general. These transducers are applied to the test sentences in order
from specific to general. A specific transducer’s name can be used in a
more general transducer as a label to replace a class of terms. Thus, a
phrase is generalized and can be used to translate more sentences.

An example for a specific transducer is a lexicon translating body parts.
identified by its label @BP:

@BP # head # Kopf

@EP # leg # Bein

@BP # arm # Arm

@BP # hand # Hand

@BP # finger # Finger

14



A general transducer @GTD can use the label to substitute all body
parts in its entries:

@GTD # my ©BP itches # mein @BP juckt
@GTD # does your @BP hurt ? # tut dein @BP weh 7
QGTD # can you move your @BP ? # kannst du deinen @BP bewegen ?

These transducers are applied to the source sentence in hierarchical order,
the most specific first:

=> does your leg hurt 7
=> does your @BP{leg -> Bein} hurt?
=> tut dein @BP{leg -> Bein} weh 7
=> tut dein Bein weh 7

[n this example the transducer pair can translate: ‘does your leg hurt?’,
‘does your head hurt?’ and ‘does your arm hurt?’ even though probably
only one of them was seen in the training data.

2.1.2 Decoding

Translating sentences using previously trained models is called decoding.
The decoding is divided into two steps: building the translation lattice
and best path search.

The translation lattice is built from word to word as well as phrase-to-
phrase translations. The source sentence forms the basis of the lattice.
each word one edge.

Then all transducers are applied: the decoder searches for matching
phrases between the source sentence and the transducer. The target
words and phrases are inserted into the translation lattice as new edges
over the source sentence. The phrases can overlap. The graph contains
words and translation probabilities from several different transducers.
as well as other possible scores associated with phrases and words (e.g.
co-occurrence statistics). Figure 2.3 shows a translation lattice for the
example sentence in Table 2.2, The lattice stores information about how
many and which words are already translated - the coverage information
- as well as backtracking information and cumulative scores.



source me gustarfa recibir informacion con respecto a los misculos
reference | i would like an information regarding muscles
SMT i like to receive information regarding your muscles

Table 2.2: Decoder Lattice Example Sentence

I would like regarding

regarding

your muscles

40 receive information desk

information

_ me  gustaria " recribir ~

informacién ~ con  respecto = a  los = milsculos

Figure 2.3: Decoder Lattice Example

Inn the second step. the decoder searching for the best path. it reads the
language model scores for the target langnage from the language model.

A sentence length model consists of fertility scores for words and phrases
and a sentence stretch factor for a specific langnage pair. It contains
information abut preferred length of translation or penalizes translations
that are too long or too short.

The search through the lattice is first-best search. While decoding, sev-
eral pruning techniques are applied to reduce decoding time.

Word Reordering

Decoding without word reordering is called monetone decoding. Here
local word reordering is taken care of by phrase translations only.

Decoding that reorders words is called non-monotone decoding. The tar-
get language model is the main source of information for word reordering.
There are several methods to reorder words while decoding,

The simplest but most computationally expensive is to try all permuta-
tions of words in the target sentence and then select the one with the
best language model score. To reduce decoding time, it is possible to
only try all permutations within a window of e.g. four words, instead
of the whole sentence. This reordering window slides over the sentence
during the decoding process.



Another word reordering strategy is to jump ahead in the sentence and
leave some words untranslated, then come back later to cover those gaps,
when their translations fit into the target sentence. Like all word re-
ordering strategies, this one is also computationally expensive and there
is need to restrict, for example, the maximum number of jumps per sen-
tence. It is possible to train a jump model with probabilities depending
on position or source word to only jump in certain cases.

A third word reordering strategy is to build a tree structure over the
target sentence using, for example, a grammar tagger and then swap
subtrees. This way whole subclauses can trade places. To speed up this
strategy it is possible to only allow certain swaps or only a maximum
number of swaps. Also a swap model can be trained depending on part
of speech tags or the grammar structure.

2.1.3 Translation Models: IBM Model 1

The IBM1 lexicon, which is the Model 1 introduced by Brown et al.
[1993], is a word to word translation lexicon. Tt estimates word to word
translation probabilities using the EM algorithm from a bilingual training
corpus. This simple lexicon is basis for many word alignment algorithins.
[t was used in this project as an additional transducer in the decoder.

For each word in the source sentence we have to decide how to ali gn it to
a word in the target sentence. In Model 1 all alignments for each source
word are initially assumed to be equally likely. Figure 2.4 shows an
example for an initial word alignment between a Spanish and an English
sentence.

Figure 2.4: Initial Word Alignment Example: Spanish — English sentence
pair



Then the EM algorithm is used to estimate the alignment probabilities.

EM algorithm for training an IBM1 Lexicon:

# Accumulation (over corpus)
For each sentence pair
For each source word s
Sum = 0.0
For each target word t
Sum += p(s|t)
For each target word t
Count(s,t) += p(sl|t)/Sum
# Re-estimate probabilities (over count table)
For each target word t
Sum = 0.0
For each source word s
Sum += Count(s,t)
For each source word s
p(slt) = Count(s,t)/Sum

In IBM Model 1 the alignment probability does not depend on the order
of the words in the source sentence s and the target sentence ¢ but only
on the number of times the words appear in their respective sentences,

Figure 2.5 shows how the alignment probabilities could look like after the
EM training. The connecting lines between words represent the align-
ment between the words; the strength of a line represents the aligniment
prohability estimated over all the sentence pairs in the training. Align-
ments with an aligniment probability under a certain level are dropped.

you have a broken bone called stress fracture

tendria un hueso roto llamo fractura de estrés

Figure 2.5: Word Alignment Example for an Spanish — English sentence
pair

18



The alignment probability is given in equation 2.3.

J I J I
P(s{[t]) = p(JID) [T D p(ilg. J. Dp(sslts) = (1D TT S wlsslts)
j=1 i=1 j=1 i=1

(2.3)

with:

t: target word

I: length of target sentence
i1 position in target sentence

5 source word
J: length of source sentence
J: position in source sentence

a ]’ =ay...05...a; whole alighment

IBM Model 1 supports only alignments, where each source word has
exactly one connection, multiple source words may connect to one target
word, some words in the target sentence might have no connections.
Omne possibility to cover the case where a source word should have no
connection or multiple connections, is to train an additional lexicon with
reversed language directions and then invert the resulting lexicon.

In the paper by Brown et al. [1993] they present four more models, that
use alignment probabilities from Model 1 as training basis. (Knight [1999]
is an easy to understand tutorial workbook on the topic.)

e MNodel
e MNodel

b

adds absolute position to the alignments

g

3: adds fertilities
e Model 4: adds inverted relative position alignment

e MNodel 5: is an non-deficient version of model 4

ca
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2.1.4 Translation Models: HMM alignment model

The HMM alignment model (Vogel et al. [1996]) is a word alignment
model based on a first order Hidden Markov Model (HMM) (Jelinek
[1976]).

Usually word alignments are not distributed arbitrarily over all word
positions in the sentence, but are generally close to the diagonal and
form local clusters. Figure 2.6 shows this in a word alignment for a
sentence pair from the the Spanish - English experiment setting (see
section 5.3).

fracture {

stress

called

bone

broken

a

have

you o
E o Dg »
- 72} e @
E:gBE%mﬁ
2528300

Figure 2.6: HNIM Word Alignment for an Spanish - English sentence pair

The HMNM alignment model takes this into account by modeling an align-
ment depending on the previous aligniment.

The HMNM alignment maodel is similar to the IBM Model 2. But while the
alignments of IBM Model 2 are dependent on the absolute position of the
word in the sentence, the alignments of the HMM model are dependent
on the relative position to the previous alignment.

2.1.5 Translation Models: ISA

The Integrated Phrase Segmentation and Aligniment Alsorithm (ISA)
(Zhang et al. [2003]) provides phrase-to-phrase translations. It seginents
the training sentences into phrases and aligns phrase translation pairs



in the same step, without using a pretrained word-to-word alignment
lexicon.

For each sentence pair from the training corpus. it builds a two-dimensional
matrix representing the correlation among all word pairs from the source
and the target sentence. Correlation measures such as the Point-wise Mu-
tual Information (MI) or the dependence information from a chi-square
test can be used.

1. Point-wise Mutual Information (MI) between word ; and word s;:

The higher I(t;, s;). the more likely ¢; is a translation of s;.

2. The chi-square test (Manning and Schiitze [2001]) is a test for sta-
tistical dependence of two variables, It compares the observed co-
occurrence frequencies with the frequencies expected for indepen-
dence.

Chi-square is:

- (04 — Ey)?
X% = Z LEJ_L (2.5)
i

where O;; are the cells of the table with the observed frequencies
(see table 2.3) and Ej; are the cells of the table with the expected
frequencies for independence (see table 2.4). In this example X? is
very high: X% = 456400, which shows that the occurrence of the
two words s and ¢ in the sentence pairs is highly correlated.

sin S| snotin 8
tinT 59 G
tnotinT |8 570934

Table 2.3: Example values: co-occurrence frequencies for all sentence
pairs (S, T): observed values
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sinS |snotinS
tinT 0.00763 66.99
{ not in T' | 66.99 570875

Table 2.4: Example values: co-occurrence frequencies for all sentence
pairs (S.T'): expected values

Figure 2.7 shows an ISA matrix for an example sentence pair, words of the
source sentence sp....s7 and the target sentence fy,....t;3. The grayscale
of the cells represent either the I(t;, s;) or X? values, depending on which
measure ig used.

The ISA algorithm first finds the cell with the highest value. Then it ex-
pands from that seed cell to the largest possible rectangular region, which
meets the following conditions: The value of the cells in the expanded
region is within a certain threshold to the seed cell and the expanded re-
gion would not block a free cell with higher value. After that expansion
is finished. all cells in the same rows and columns as the marked region
are marked as blocked.

more correlated

i

t & t3 t4 t5 t(, t7 tg t‘; tIO t][ t12 t|3

Figure 2.7: ISA: example sentence pair correlation matrix

This procedure is repeated until there are no free cells left.

These marked regions (see Figure 2.7) are the phrase translation pairs,
which are then included in the transducer.

~
| BN



2.1.6 Translation Models: PESA

The Phrase Extraction via Sentence Alignment (PESA) (Vogel et al.
[2004]) algorithm is another method for aligning a phrase in a source
language sentence to a phrase in the corresponding target language sen-
tence.

Given a phrase from the source sentence from left phrase boundary j; to
right phrase boundary j» PESA tries to find the best matching phrase
boundaries i; and i, in the target sentence by caleulating a modified
IBM1 sentence alignment probability P, ;,)(#]3)

A regular IBM1 sentence alignment probability P(f]§) gives the prob-
ability of sentence # being a trauslation of sentence s, regardless which
words are translations of which words exactly. Using the aligniment prob-
abilities from an IBM1 lexicon. it sums over all word to word translation
probabilities.

PU_]:} - H(ij(ﬁj:fi}) (2.6)

The modified PESA sentence aligniment probability gives the probabil-
ity that phrase (iy,73) is a translation of phrase (j;.js) and the rest of
sentence ¢ being a translation of the rest of sentence s. Using the word
translation probabilities from an IBM1 lexicon, it sums over all words
but those in ‘forbidden’ areas see figure 2.8 and equation 2.7.

Ji—1

Puivia(#18) = T] ( Z ﬂ'w-” H Z Bleyo)) H z PM]

J=1 ig(i.. J=i1 el J=ga+1 ig(i;.
f?-T)

Then it modifies the target phrase boundaries to find the ones. which
maximize the sentence alignment probability:

(ir.72) = argmag, i) { Py, iy ({15} (

%]
oo
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Sz ‘
5 | ;
t: tﬂ EEES ti] tiz s t“

Figure 2.8: PESA: modified sentence alignment

Calculating the alignment in both directions improves translation qual-
ity.

i1=1 i2 e
Pain@G18 = TIC D Pus) IIC D2 Pus) TI € Do Pusy)
i=1 jd(ir..g2) i=i1 JE(j1...02) i=ia+1 jé(j1...j2)

(2.9)

Using the probabilities from both directions the best (iq,7s) is:

-

(i1.49) = argmaz i, i) 1 (1 — €) Pliv, i2)(3]f) + cP(ir,i2)(1]3)} (2.10)

-~

All the phrases whose sentence aligniment probability is within a certain
range from the best one, are used in the transducer.



2.1.7 Language Model

A Language Model (LM) is used to predict words with associated prob-
abilities given the word sequence up to the present, the i.e. history. If
h represents the history, the language model gives a probability P(w|h)
for all words w in the vocabulary. Because nusing the whole history, e.g.
the whole document seen up to this point is intractable, the probability
is approximated using only the recent history containing a few words. In
an n-gram language model, the history h contains n — 1 words.

P(wilh) = P(w;wy, wa. wsy, ... wi—q) = Plw;|wi—uo1y... wi—q) (2.11)

Usually n is between 2 and 4, due to the increase of size of the model, the
amount of data required to train it and the time for search with increasing
n. To build an n-gram language model and determine the probabilities of
different sequences it is necessary to examine a preferably large training
corpus.

In this project all language models are trigram language models trained
with the SRI Language Model Toolkit (Stolcke [2002]).

The perplexity of a language model with respect to a sentence measures
how well the model predicts the sentence: that is, how well it fits the
sentence.,

The perplexity of a language model LM with respect to sentence s of k
words is the reciprocal of the geometric average of the probabilities of
the predictions in s:

PPL(s) = Po(s)™ % (2.12)

bJ
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2.2 Similarity Measures for Information
Retrieval

Information retrieval tries to solve the problem of finding documents in
a database, that are relevant given a query. A query can be a list of
keywords or a document. If the query is a document, the goal is to
find other documents of the same topic. One approach is to estimate
the similarity of the documents to the query and return the documents
with the highest similarity score. There are several available similarity
measures, Two common measures were used in this project. implemented

in the CMU LemurTk.

2.2.1 Okapi model

The Okapi retrieval model is based on a probabilistic model. It ranks
documents by the probability of their relevance to a query.

The Okapi BM25 term weighting function (Robertson and Walker [2000]):

”J“(ln + 1)t f . (ks + L)gtf (2.13)
Z K+tf ks + qt -
teQ.D tf s+ qtf
where:

() is the query

D is the document

t is a term (usually a word) from the query

tf is the term’s frequency in a document

qtf is the terin’s frequency in the query

N is the munber of documents in the database

df is the number of documents that contain the term

dl is the document length

avdl is the average document length

wl) is the Robertson/Sparck Jones weight of  in @)

1) = : (r+0.5)/(F—r+0.5)
B myr‘ru'--r-+u.r|)/(‘N—aif—ﬁ+r+n.5
R is the number of documents relevant to a specific topic
r is the number of relevant documents containing the terin
- o dl
K 15 J’n(l —b) ‘i‘hm

ky. b and ks are constants



Relevance information is not available for the data used in this project.
Without relevance information (R = r = 0) the Robertson/Sparck Jones
weight (Robertson and Sparck-Jones [1976]) reduces to an inverse doc-
ument frequency weight (Robertson et al. [1994]), which leads to the
document scoring function:

N—=gf 400 (ky + 1)tf (ks + 1gtf .
Z In , — . 2 : (2.14)
teQ.D df +0.5 (Bi(l = 0)+bSt) +2f kg +gtf

with Ay between 1.0-2.0, b = 0.75 and ks between 1 — 1000. The Lemur
tk default values used in this project are by = 1.2, b= 0.75 and k3 = 7.

2.2.2 TF-IDF model

The TF-IDF model (Term Frequency - Inverse Document Frequency) is a
vector space model for document representation. It uses a cosine distance
to estimate document similarity.

Fach text, documents in the database or a query, is represented as a vec-
tor. The vector space has one dimension for every term in the document
collection. A term is usually a word, but it is also possible to use bigrams
etc. If a term #; occurs in the text, the corresponding dimension in the
vector representing the text is assigned a non zero value, for example the
count of the word in the document r;. The similarity between a query
and a document can then be determined by the distance of the document
vector d = (x1, 22,...,2,) and the query vector = (y1. 9o, ....y,) (n is
the munber of terms in the document collection) in the vector space.

To emphasize the words that contribute to the topic and weaken the in-
fluence of very comimon words that oceur in every document. all terms
are weighted by a term weighing function. The weight has two compo-
nents: the document term frequency (TF) ¢y, which is usually the count
of the term in the document, and the inverse document frequency (IDF)
log(N/df;), where N is the nuimber of documents in the database and the
document term frequency df; is the number of documents that contain
term 7.



The weighted vectors d and ¢ are:

0= (tfaler)idf (t1), tfa(wa)idf (t2), ...t a(n)idf (ts) (
§= (tF,(y)idf (1), o (y2)idf (82), . .., tfo(ya)idf (£0)) (

The score of document d for query ¢ is given by the cosine distance
]'){1’t.\7\'(3€’11 f.l.l(.‘ vectors:

(@) =Y thalw) - th(y) -idf (4 (2.17)

In this project I used the Lemur TF-IDF model (Zhai [2001]). It uses
the Okapi TF formula as document TF function ¢ f:

b
z+k(1—b+ ba:{fﬂ

tfa(z) = (2.18)

The Lemur tk default values used in this project are by =1 and b = 0.3
for the document ¢ f; and k; = 1000 and b = 0 for the query tf,.



3 State of the Art

3.1 Language Model Adaptation

The idea to use information retrieval to select data that matches the test
data’s domain and topic is based on work that was done by Mahajan et al.
[1999] for language models for speech recognition. Because standard
3-gram language models cannot model long-term context information,
Mahajan et al. use information retrieval to adapt the language model
to the topic of discussion. They use the known history of the document
as a query against the database of all training data. The known history
can be the recognition result from a first pass a multi-pass systein, or the
already recognized first part of a document in a one-pass system. The
top ranking retrieved documents are then used to train a topic-specific
language model, which is then interpolated with a general language model
built from all data. To answer the question of how many of the retrieved
documents to use, they trained several specific language models from the
top 50. 100, 200 and 400 documents and interpolated all of them with
the general language model.

These concepts were applied to statistical machine translation by Eck
et al. [2004]. They used a first pass translation as qurey to retrieve top
n documents and then built a new adapted language model from the
retrieved data. They made experiments with story- and sentence-based
retrieval, and compared different similarity measures and techniques like
the use of stemmers or stopword lists for information retrieval. They had
the best results training an adapted language model for each sentence
from the test data. Similarity measures other than TF-IDF, stemming
and stopwords did not give any improvement., To determine the optimal
munber of sentences to train the adapted language model, they tried
using several sets of top sentences between the top 100 and the top 50000
sentences,
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Zhao et al. [2004] extend this approach by using several ways to gener-
ate the query. For the query they used the best hypothesis, the n-best
hypotheses and all possible translations from the translation model. For
these three options they generated bag-of-word queries and structured
queries. that incorporate information about word order and proximity
information.

Kim and Khudanpur [2003] used a similar idea for language model adap-
tation for speech recognition in a language with sparse data. They trans-
late a first speech recognition result into a language with a lot of available
data. then retrieve stories of the same topic using information retrieval.
These stories are translated into the langnage with insufficient training
data and then are used to train a better language model for recognition
in that language. Kim and Khudanpur use the likelihood of the test
data against the adapted language model to find its optimal size. They
calculate the likelihood of the test data against the language model built
from different sets of retrieved and translated documents. This way they
find the optimal number of documents to use.

3.2 Translation Model Adaptation

Little work has been done on adaptating the translation model for Statis-
tical Machine Translation. One method for the adaptation was proposed
by Wu and Wang [2003]. They focus on the actual word alignment and
improve it by training different alignment models from in-domain and
out-of-domain data and interpolate them. It is necessary for this ap-
proach to have at least a small separate amount of in-domain training
data available. They do not adapt to the test set,
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4 Translation Model Adaptation

Generally statistical systems perform better when trained on more data
and also on higher quality data. Training data quality improves if the
data is less noisy and when it better fits the translation task. For ex-
ample, in natural language processing domain specific systems usually
outperform general domain systems. Another possibility to better fit the
syvstem to the task is to adapt it to the specific test data. E.g. off-the-shelf
speech recognition systems are often adapted to one specific speaker.

In a statistical machine translation system adaptation to the text to be
translated could be done on various levels. Figure 4.1 illustrates possi-
bilities of different adaptation approaches:

selection n-gram re-scoring
interpolation
data weights

mono- 2 post processing
lingual language
training model
corpus g M

ﬂ'ﬂlnlng : : dmllﬂr i translation
bilingual : translation
training modal
corpus | on

....... tuning model weights

selection phrase re-scoring

Figure 4.1: Possible ways of Adaptation in the Translation Process
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e Selection:
Choose those parts of the training data, that are especially fitting
to the task, for training the language model and the translation
model.

e Data Weights:
Use the more adequate training data with a greater weight in train-
ing.

e Phrase and N-gram re-scoring:
Manipulate the model scores directly, to change the ranking of cer-
tain phrase translations or n-grams.

e [nterpolation:
Train several specific and general translation or language models
and interpolate them.

e Tuning Model Weights and System Parameters:
Adjust the weights for different models and other parameters used
in the decoder to perform best for a certain development test set.

e Postprocessing:
R(._:s_'“"rit(: or I)Hraphl‘aﬂ@ t]](.:\ tl'i-lll!"s'].n‘:'i‘“.()n to remove (,‘1()lllelill—i‘il'.\'].)i(‘.u]
formulations.

In this project the translation model is adapted to the test set by selecting
a part of the parallel corpus for training using Information Retrieval.

The idea is to find data in the training corpus that matches the test
data’s domain or, more specifically, topic and style. The translation
systemn is trained only on this reduced selection of training data. Out-of-
domain data might hurt translation quality: by excluding it, we hope to
et translations that come from the same domain as the test set.

Algorithm:

1. for each test sentence
use test sentence to select n most similar sentences
from the training data
2. build translation model using only the training sentences
found for each test sentence
3. translate with adapted translation model



Because information retrieval solves the problem of finding documents in
a database that match the topic of a query, it was chosen as a tool to
find and rank similar sentences,

4.1 Sentence Selection using
Information Retrieval

For all information retrieval tasks in this project, I used tools provided
by The Lemur Toolkit for Language Modeling and Information Retrieval
(LemurTk).

The document collection consists of the source language part of all avail-
able bilingual training data. each sentence representing one dociunent.
Using only the source language to build the retrieval index has the advan-
tage, that it is independent from the quality of the translation system,
as no first pass translation is necessary.

Each sentence from the test data was used as one separate query.

In Information retrieval there are several methods to score a document
against a query. Cosine distance with TF-IDF term weights, Okapi sim-
ilarity measure or Kulbach-Leibler distance are some popular ones.

For the first experiment setting, Spanish — English (see chapter 5.3), 1
compared the retrieval results for cosine distance similarity measure with
TF-IDF term weights (see section 2.2.2) to those of probabilistic docu-
ment similarity model with Okapi term weighing function (see section
2.2.1). There was no significant difference,

For individual queries. the portion of TF-IDF retrieved documents that
oceur in the Okapi retrieval result ranges from 30% to 60%. For the whole
test data, this overlap increases to over 75% for the top 300 sentences
per query and over 90% for the top 1000 retrieved sentences per query.

It is not surprising that the translation scores for experiments using TF-
IDF and Okapi similarity measures show no significant differences (see
section 5.3.4). For this reason only TF-IDF retrieval was used for all
further experiments.

33



Information Retrieval
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Figure 4.2: Adaptation based on Information Retrieval

4.2 Adapted Translation System

After selecting the top n similar sentences for each individual sentence
from the test data. they were used together to train an adapted transla-
tion model.

The main reason for not training individual translation models for each
sentence is that a translation model trained on only a few hundred sen-
tences is unlikely to give robust probabilities. If the whole test data is
from one domain, it can be expected that a phrase or word translation.



that was right for one sentence in the test data, will be correct for other
sentences as well. If a particular test set consists of parts from differ-
ent domains, a solution could be to train separate translation models for
these parts of the test data.

The combined selected training data usually contains duplicate sentences,
as the same sentences from the document collection might recur in the
top n retrieval results for different test sentences, especially for sentences
from the same topic or domain. There are more duplicates the smaller the
document collection is and with higher values of n. For example in the
first experiment setting (see section: 5.3), which uses a small dociment
collection, the combined training set already contained 37.5% duplicates
for n = 50 and as much as 74% for n = 1000.

It is not clear if the duplicates help the translation performance. The
duplicates force the translation probabilities towards the more often ob-
served words, which could help. So [ compared the translation per-
formance of systems trained on training sets with and without the du-
plicates. As to be expected the translation scores differ for individual
selections, but overall there is no obvious tendency towards one or the
other alternative (see section 5.3).

In this project the target language model used in the decoder was always
trained only on the target language part of the bilingual training corpus
- no further monolingual training data was added. When this language
model is not adapted it might contradict a correct translation from the
adapted translation model. So it virtually suggested itself to adapt the
language model with the same technique. T used the English part of the
adapted training set to train a new adapted language model. This gave
an improvement in all experiments.

4.3 Language Model Perplexity as Measure to
Determine Selection Size and Re-rank

As shown in the experiments (see chapter: 5). the optimal amount of
selected data varies for different language pairs, training corpora or test
sets. It would be very useful not to be forced to do a time consuming
grid search each time we change the setting, to determine the best size
of the adapted training corpus.



To do a grid search for the optimal selection size, it is necessary to trans-
late the test set each time, to compare the translation scores for the
different selections. It is only possible to compare translation scores for
a development test set with reference translations. The estimate for the
optimal selection size then has to be transferable to the actual test set.

The optimal number of sentences to select for training might also vary
for each individual test sentence. It is easy to imagine, that there are
not too many useful sentences to be found for a test sentence like ‘Good
morning Mr. Smith’, but with a sentence like ‘I want to get off at the
bus stop in front of the Saks Fifth Avenue department store, so could
vou tell me when we get there’ it is a whole different situation.

Looking at the TF-IDF scores for some example queries (Figure 4.3)
shows that they are not comparable, as the top sentences for a short
query have much lower scores than the ones for a longer query.

TF-IDF scores “0

for some queries 35 © i RIS e e

very short query: 459 ©

2 words
~-query: 8 words % 250 'y -
=—very long query: [ apq ‘l\ : AL

58 words &

~ query: 20 words = 150, v AT
100 “ L. = : .. =i L it it R AT e
2 . C S S R AT —
0 50 100 150 200 250 300 350 400 450 500

Figure 4.3: TF-IDF scores for some queries

Therefore it is not easy to define a score threshold for including retrieved
sentences in the selection. Also, the scores fall smoothly for most sen-
tences, so there is no indication where to stop including the retrieved
sentences in the adapted training corpus. A certain range from the top
score or a percentage of the score scope is not a lot better than using the
top n retrieval results and would have to be determined by a grid search
as well.
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Kim and Khudanpur [2003] presented an idea to use the likelihood of the
test data for measuring the quality of the language model built from a
selection.

Idea:

To judge how well a selection of training data fits the test sentence,
measure the perplexity of a language model built from this selection
against the test sentence. Find the perplexity minimum to determine
the optimal selection size for each test sentence.

Figure 4.4 shows the behavior of the perplexity of the language model
built from a selection for one test sentence against the respective test
sentence. The perplexity was measured for the top 10, 20....1000 sen-
tences, as they were returned by the TF-IDF retrieval. (For the diagram
I chose four sentences from the Spanish — English experiment (see chapter
5.3).)
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Figure 4.4: perplexity for different selections for some queries

Unfortunately the perplexity curve does not show a nice, convex shape for
most sentences. There are even sentences where the perplexity minimum
is at the first or second batch. The previous experiments showed that
the optimal selection size is definitely bigger than 10 sentences per test
sentence. So it seems that picking the selection with the lowest perplexity
is not the best method in many cases.



Because information retrieval ranks the sentences according to their term
weights, while language model perplexity gives information about match-
ing word order, some of the 10-sentence-batches added early to the selec-
tion make the perplexity worse, while some 10-sentence-batches ranked
lower in the TF-IDF retrieval improve the perplexity.

To exploit that additional information, I use the perplexity change that
each batch of sentences causes as an additional measure for ranking sen-
tences on the top n sentences retrieved by TF-IDF (see Figure 4.5).

Perplexity Re-ranking
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sentences according to the
perplexity change they cause
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20 ,bad* batches to the back
=
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i '.'T'“"'!' Perplexity Minimum

Final Selection: | ‘ | PPL after
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t=—————— Top 1000 TF-IDF Sentences ——————>

Figure 4.5: Perplexity Re-ranking

Because the size of the selection increases over the testing run, the
changes in perplexity are not comparable - to add e.g. a ten sentence
batch might change the perplexity considerably at the beginning, when
the selection has only 50 sentences but the same batch will only decrease
or increase the perplexity a little when added to an 800 sentence selec-
tion. So, the batches cannot be completely re-ranked according to the



perplexity change. They are only classified as ‘good’ or *had’ during the
pass. To get batches that improve the perplexity into the selection, the
batches are re-ranked. All the ‘bad’ batches are taken out of the list and
shuffled to the end. Still the main selection criterion is TF-IDF infor-
mation retrieval, as [ look only at the e.g. top 1000 sentences ranked by
TF-IDF. Also, the original TF-IDF ranking is kept among the good as
well as the bad hatches.

After one re-ranking pass the shape of the perplexity curve for 10 sen-
tence batches is already smoother and has a considerably lower perplexity
minimum than the original order. After re-ranking a second time. the
measured perplexities are even lower (Figure 4.6 and 4.7).
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Figure 4.6: Perplexity Re-ranking Results: query 1

On average. like for test sentence number 1 (Figure 4.6). the selection
chosen after re-ranking is smaller than without re-ranking. For an ex-
treme example like test sentence number 4 (Figure 4.7), which had the
perplexity minimum at the first batch before the re-ranking, more sen-
tences get into the selection after re-ranking. After re-ranking twice there
are already nearly no ‘bad’ batches before the perplexity minimum and
‘good” batches after it, so it’s not worth the computation time to re-rank
a third time.

After re-ranking I determined the selection size for each sentence by
picking the selection with the lowest perplexity.
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Figure 4.7: Perplexity Re-ranking Results: query 4

This technique can do without any translation run or development test
data with reference translations to determine the selection size for the
translation model adaptation.

4.4 In-Domain/Out-Of-Domain Data
Weights

In the Chinese — English experiment setting (section 5.4), the ratio be-
tween the in-domain and the out-of-domain training data is extreme: 20
thousand lines in-domain to 9 million lines out-of-domain data. Adding
ouly a small fraction of this additional data to the in-domain data, e.g.
1%, already reduces translation quality. This is probably because the
out-of-domain data is so different that it overrides the correct in-domain
translations from the in-domain data. On the other hand it is desirable
to make use of as much additional data as possible to cover more words
and to estimate comimen words more robust.

To address this problem, I assigned a higher weight to the in-domain
data in the training for the IBM1 lexica, which are used by the PESA
algorithim to score the phrase translations.

Initial experiments with a weight of 3:1 showed. that the translation
scores improve and that more out-of-domain data can be added without
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loosing translation quality.

To find the optimal weight for the in-domain data I did a grid search for
three selections picked by the automatic PPL selection size determina-
tion. Here it is still an unsolved question how to determine the optimal
weight automatically. Omne possibility would be to train two different
lexica and tune weighing factors for them during decoding time. Unfor-
tunately, then some beneficial effects of training the lexica from all data
would be lost.

As a rule of thumb the weight w for the in-domain data: w = H“"‘”‘" bt _”"”""”'i'”—l

#lines in—domain
which means balancing the number of lines of in-domain and out-of-
domain data. worked considerably well.
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5 Experiments

5.1 Overview

The techniques described before were tested on two different corpora and
setups.

In the first setup, Spanish to English, the training data is a mixture
of data from the medical domain and tourism domain. Both types of
data are rather similar in style, as they both consist of dialogs with short
sentences. The relatively small retrieval index was built from all available
data. In this setup the task was to find the in-domain data in a mixed
document collection.

I then applied the ideas to a different scenario. In the experiment trans-
lating Chinese to English the amount of out-of-domain data is much
larger than the available in-domain data. Also the style is consider-
ably different. The in-domain data consists of tourism dialogs with
short sentences, the out-of-domain data is mostly Chinese news wires
and speeches. Words that are covered by the available in-domain data
can be translated fairly well. Here the major goal of the adaptation is to
cover unknown words without loosing translation quality by adding too
much out-of-domain data.

In both cases just adding the larger amount of out-of-domain training
data to the small amount of in-domain data does either not significantly
improve the performance of a baseline system that was trained on the
in-domain data only or hurts translation quality considerably.
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Test In- Out-of- Main Goal

Data domain | domain
Spanish - | doctor - | 25k lines | 125k lines | find & extract
English patient | medical | tourism in-domain data for
dialogs (BTEC) word sense

disambiguation
Chinese - | tourism | 20k lines | 9Mio lines | cover unknown
English | phrases | BTEC news & words without
tourism | speeches | introducing undesired
(TIDES) | translation
alternatives

Table 5.1: Experiment Settings Overview

5.2 Translation System

All experiments were conducted with the CMU statistical machine trans-
lation system (Vogel et al. [2003]).

The decoder can integrate several translation lexica and transducers in
the translation process. In the Spanish — English experiment setting
I used IBM1 lexica and HMM and ISA transducers (see section 2.1.3

2.1.5). In the Chinese — English experiments I used the new PESA
transducer (see section 2.1.6) to show. that the adaptation technique
still gives improvement with the latest translation system. The PESA
aleorithm uses IBM1 lexica for phrase scoring. In both cases the language
model is a trigram language model with Kneser-Ney-discounting built
with the SRI Language Modeling Toolkit (Stolcke [2002]) using only the
English part of the bilingual corpus.

The best scores for NIST (Doddington [2001]) or BLEU (Papineni et al.
[2002]) evaluation metrics are usually achieved using considerably differ-
ent tuning parameters for the translation system. In the experiments
for the Spanish ~ English translation the system was only tuned towards
NIST. in the Chinese — English experiments I tuned the system towards
both NIST and BLEU respectively.
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5.3 Setting 1: Spanish - English, mixed
domain data

5.3.1 Test and Training Data

The test data for the Spanish — English experiments consists of 329 lines
of medical dialogs (6 doctor-patient dialogs). It contains 3,065 Spanish
words and 3.399 English words (tokens) with one reference translation.
I had three different corpora of bilingual training data available. 25,077
lines of medical dialogs can be regarded as in-domain data. Additional
out-of-domain data are 2,323 lines of tourism dialogs and 123,416 lines
of BTEC (Basic Travel Expression Corpus) data described in Takezawa
et al. [2002] (see Table 5.2), which is also from the tourism domain.

Training set #lines | #words English | #words Spanish
Medical dialogs | 25,077 218,788 208.604
(in-domain)

Tourism dialogs | 2,323 26.600 24375
(out-of-domain)

BTEC data 123,416 903,525 852,364
(out-of-domain)

Overall 150,816 1,148,913 1,085,343

Table 5.2: Training Data Sizes for Experiments Spanish — English

5.3.2 Baseline Systems

[ compared all adapted systems to two baseline systems. The first one
was trained on the medical data only, the second baseline system uses
all available training data. The score of the first baseline can be seen as
an oracle score, as in this setting the goal of the adaption is to find the
in-domain data in an mixed training corpus.

In this experiment the translation system was only tuned towards the
NIST score.

The scores in table 5.3 show, that the baseline system that only uses the
available in-domain data is not necessarily better than the system that



System #Lines | NIST

only in-domain data 25k | 5.1820
in-domain and out-of-domain data 150k | 5.2074

Table 5.3: Bageline System results, Spanish — English

nses all data. The best NIST score is actually a little, but not significantly
higher for the second baseline system. There are three possible reasons
for the improvement using the additional data:

1. It covers 27% of the previously unknown words (36 of 132).

2. 1t consists of dialogs like the medical data. Those dialogs cover
primarily a different topic, but they still might be helpful for the
translation as the sentence structure is fairly similar.

3. Some of the tourism data is actually in-domain, as there are dialogs
in this corpus, where tourists have a medical problem and ask for
a doctor.

5.3.3 Distinct and Non-distinct Training Corpus

For the Spanish — English setting I built the information retrieval in-
dex using the Spanish part of all available in-domain and out-of-domain
data. (I used the Lemur Toolkit (LemurTk) for all Information retrieval
tasks.)

The top n similar sentences for each Spanish test sentence for n =
30, 50, 100, 200, 300. .. 1000 were retrieved from the index, using TF-IDF
as the similarity measure (see section 2.2.2). For n = 50 the selection
for the entire test set contained 40% duplicates in 16,196 lines, 75% for
n=1000 in 313,201 lines.

The information retrieval sometimes retrieves fewer sentences than asked
for. This happens especially for short sentences, when all remaining sen-

tences have a zero TF-IDF score because not even one word matches.

These retrieved sentences form the reduced training set. which was used
to train the new adapted translation models. The LM was trained on
the entire training data.
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_ non-distinct [ distinct

Figure 5.1: Distinet and non-distinet retrieval for Spanish — English
(NIST)

Figure 5.1 illustrates the results. The numbers in parentheses on the
x-axis denote the number of distinet sentences that were used to train
this particular system. The non-distinet training set contained some of
those sentences more than once.

The highest NIST score for this experiment in the non-distinct case was
5.3026 at top 800 retrieved sentences. This training set has about 75,000
different sentences which is about half of the original training data and
about 250,000 sentences with duplicates. When the duplicate sentences
were removed for the actual training the highest NIST score was 5.2878
for top 900 (about 80,000 sentences).

5.3.4 Okapi IR

To see how much impact a different IR similarity measure has on trans-
lation results, I compared TF-IDF and Okapi retrieval.

For individual queries the portion of retrieved documents from the TF-
IDF retrieval, that can be found in the Okapi retrieval result range from
30% to 60%. Looking at the retrival result for the whole testset the
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Figure 5.2: Okapi retrieval for Spanish — English (NIST scores)

overlap increases to over 75% for the top 300 sentences per query and
over 90% for the top 1000 retrieved sentences per query.

So it is not surprising, that even though the translation scores differ in
individual cases, in general none of the alternatives is significantly better
than the other.

5.3.5 TM and LM Adaptation

Up to this point T always used the general language model of baseline 2
(all available training data) for the translations.

In this next set of translation runs I used the English part of the adapted
training corpus to train a new adapted language model.

This further improved the best NIST score to 5.3264 (Top 200 with about
(4.000 sentences of overall training data and just about 32,000 distinct
sentences). It had a bigger impact on the smaller systems, as the adapted
and the general LM become more similar for larger selection sizes.
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Diagrams 5.3 and 5.4 compare the NIST scores for translation with and
without additional LM adaptation for the distincet as well as the non-
distinet training corpus. Both show the same behavior: The matching
LM adaptation improves translation quality in all cases, especially for
smaller selection sizes, where the adapted LM differs the most from the
general LM.

5.3.6 Perplexity based Selection Size Determination

To find the optimal selection size for the adapted training corpus au-
tomatically T used the LM perplexity curve calculated for the top 1000
sentences retrieved via TF-IDF retrieval. The perplexity was calculated
after adding sentences in batches of 10. Then I re-ranked those 10 sen-
tence batches twice according to the perplexity change they caused.

T this experiment I always built the language model from the adapted
training data, as this worked well for the previous experiments.

Diagram 5.5 shows the NIST scores for selection sizes picked at the per-
plexity minimum before re-ranking and after re-ranking once and twice
in comparison to the baselines and the best scores from the previous ex-
periments. The best NIST score of 5.3807 was reached after re-ranking
twice.
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Figure 5.6 shows histograms for the number of sentences that get selected
per test sentence by the PPL selection size determination after the re-
spective re-ranking runs. By re-ranking the most frequent selection size
moves from the second batch, which equals 20 sentences, up to 50 sen-
tences and the biggest selections picked ever move from over 800 down
to around 400,
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Figure 5.6: Selection sizes per sentence

5.3.7 Summary

The differences between the systems with or without duplicate sentences
are not significant. The highest NIST score was reached using a training
set that contained duplicates.

Training the language model on a matching adapted data selection clea rly
improves the performance, especially on smaller selection sizes as the
adapted LM differs more from the general LM.

The selection automatically found by perplexity driven selection size de-
termination was able to achieve about the same scores as the best one
from the grid search. Perplexity re-ranking improved slightly over them.
The selections picked by the PPL based selection size determination are
considerably smaller than the ones, that achieved previously the best
scores. Probably because the perplexity provides another source of in-
formation to further exclude non-matching sentences.
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System #Lines | NIST
baseline 1: in-domain data 25k | 5.1820
baseline 2: all data 150k | 5.2074
best TF-IDF with duplicates 7ok | 5.3026
“hest TF-IDF distinct 84k | 5.2878
best Okapi with duplicates 88k | 5.3431
hest Okapi distinct 39k | 5.2902
" best with LM adaptation 7Hk | 5.3264
best with PPL selection size 23k | 5.3032
best with PPL re-ranking 20k | 5.3807

Table 5.4: Results for each experiment: Spanish — English

The final improvement of 3.3% from 5.20 NIST to 5.38 NIST was achieved
by a selection of only 20 thousand lines, which is only 13% of the data
from baseline 2 and even smaller than the in-domain-only first baseline.
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5.4 Setting 2: Chinese - English,
in- /out-of-domain data scenario

5.4.1 Test and Training data

The test data for the Chinese — English experiments consists of 506 lines
of tourism dialogs. It contains 3,510 Chinese words. There are 16 En-
glish reference translations per test sentence available. The in-domain
training data consists of exactly 20,000 lines of tourismm dialogs from the
BTEC corpus (Takezawa et al. [2002]). The index for retrieving addi-
tional data was built from about 9.1 million lines of Chinese newswire
and speeches,

Training set #lines | #words English | ##words Chinese

in-domain 20.000 188,935 175,284
(BTEC)
out-of-domain | 9.1 million 144 million 135 million

(newswires &

speeches)

Table 5.5: Training Data Sizes for Experiments Chinese — English

5.4.2 Baseline System

The baseline system was trained on the available in-domain data only
and had a NIST score of 8.1129 achieved a BLEU score of 0.4621.

It was known from earlier results that a system using all available train-
ing data does not perform well on this BTEC test set. The vocabulary
coverage certainly improves (89 unknown words in the baseline, 4 with
the complete TIDES corpus) but the out-of-domain data introduces too
many wrong translations as the TIDES corpus is very different from the
test set. The ISI/USC machine translation group for example reported
at IWSLT 2004 (Ettelaie et al. [2004]) BLEU scores of 0.243 for the un-
restricted track and a BLEU score of 0.4405 for the additional data track
with in-domain data weights of 5:1. (I used the data from the additional
data track at IWSLT 2004 (Akiba et al. [2004]) for this project). I did
not explicitly train another baseline from all data for this reason.



[n this in-/out-of-domain data scenario one could argue, that adding
some data to the small initial system will improve the translation perfor-
mance, no matter what data is selected. So I selected different numbers
of sentences randomly from the complete training corpus as additional
training data and compared the translation results to the adaptive se-
lection. From different random selections only small ones could improve
over the baseline, where the amount of additional data was not bigger
than the in-domain-data. Already at 75 thousand lines additional data,
which is less than 1% of the 9 million lines available data, the translation
scores drop. Two examples are given in table 5.6.

System #Added Lines | BLEU | NIST
In-domain data only (20k lines) 0.4621 | 8.1129 |
best random selection 15k | 0.4850 | 8.2262
largest random selection 75k | 0.4501 | 7.9482
ISI system. additional. weight 5:1 N Million | 0.4405

ISI system, unrestricted N Million 0.243 -

Table 5.6: Baseline System Results: Chinese — English

This shows the trade-off between a small domain-specific model that can
not cover all words and a larger system that might introduce wrong out-
of-domain translations.

5.4.3 In-domain/out-of domain data scenario

With this small amount of in-domain training data at hand the IR index
was huilt for the out-of-domain data only. The top n similar sentences for
each Chinese test sentence for n = 10, 20, 30, ..., 300 were then retrieved
from the index, using cosine distance with TF-IDF term weights as the
similarity measure (see section 2.2.2).

Then I added the retrieved sentences from the out-of-domain data to the
in-domain data to train the translation model.

As [ felt that the available in-domain data was too poorly represented
especially when adding more and more training data for a larger number
of retrieved n 1 removed the duplicates in all cases. In diagrams 5.7 can
be seen and 5.8 that both translation scores start to drop clearly as soon
as the out-of-domain data outweighs the in-domain data.
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To get more robust probabilities for the words already known to be in-
domain and to be able to add more out-of-domain data without choosing
out-of-domain translation alternatives I trained the IBM1 lexica used by
the PESA transducer with data weights 3:1 for in-domain:out-of-domain
training data. As expected this especially helped with the larger selection
sizes. In our system it is not possible to give fractures as weights for
training data in the IBM]1 lexicon training. Whole numbers as weights ave
accomplished by duplicating the in-domain data in the training corpus
for IBM1 training.

weighted 1:1 = weighted 3:1
84 8,34 8,33 8,34

82 g11—

76 B

7.4

i el

Ok 6k 10k 15k 20k 30k 35k 40k 50k 60k 75k 85k 98k 120k 143k
# lines additional data

7.2

Figure 5.9: Chinese-English: Comparison 1:1 and 3:1 data weights
(NIST)

The best scores were 8.3398 (NIST) and 0.4931 (BLEU). Both scores were
accomplished with the changed weight for the in-domain data, the best
NIST score for the Top 60 retrieved sentences, the best BLEU score for
the Top 80 retrieved sentences. In diagrams 5.9 and 5.10 the number on
the x-axis denotes the number of lines of training data that was added to
the available in-domain data of 20,000 lines to form the training corpus.
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Figure 5.10: Chinese-English: Comparison 1:1 and 3:1 data weights
(BLEU)

5.4.4 Perplexity driven Selection Size Determination

In this data setting I used a batch size of 20 instead of 10 for the per-
plexity driven selection size determination and re-ranked only the top 800
retrieved sentences in the first and the top 600 in the second perplexity
re-ranking. These parameter settings seemed to be necessary because of
runtime issues due to the big data collection and vocabulary size.

Diagrams 5.11 and 5.12 show the NIST and BLEU scores for selection
sizes picked at the perplexity minimum before re-ranking and after re-
ranking once and twice in comparison to the baselines and the best scores
from the previous experiments.

In this experiment setting the automatic determination of the selection
size was able to reach the same results achieved by trying various selection
sizes but the re-ranking itself gave no real improvement. The reason
might be, that the 3:1 weight for in- and out-of-domain data is far from
optimal for these selection sizes. The weighing had a big impact on the
scores, drowning out the possibly positive effect of re-ranking. Another
reason might be that the double batch size of 20 is not a good choice for
Chinese data, especially as here the sentences are generally much longer
than in the previous experiment setting.
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Surprisingly the automatically determined selections are in most cases
much larger than the ones found to be best in the grid search, espe-
cially for the best BLEU scores. In the Spanish — English the automati-
cally found selections were always smaller than the manually determined

ones,
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Figure 5.13: Selection sizes per sentence

Figure 5.13 shows histograms for how many sentences get selected per
test sentence by the PPL selection size determination after the respective
re-ranking runs. Before re-ranking the perplexity minimum is either at
the first or second batch for over 100 of the 500 test sentences. Here the
original TF-IDF ranking of the sentences seems to totally disagree with
the perplexity quality measure. By re-ranking the most frequent selection
size moves visgibly up to 140 sentences and the biggest selections picked
ever move from 800 down to 400.
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5.4.5 In-domain/Out-of-domain data weights

As the previous experiments show, it is beneficial to weigh the in-domain
data stronger than the additional out-of~domain data. To show how much
improvement in translation quality could be gained by finding the optimal
weight, I trained the IBM1 lexica used by the PESA algorithm with a
whole set of different weights. I used the three selections of additional
out-of-domain data from the previous experiment.

The system used in these experiments does not provide the possibility to
assign individual fractured weights to training data or tune these weights
automatically. So the experiments were restricted to whole weights from
1:1 up to G:1.

8,86 no re-ranking
(72k)
8.4 [ re-ranked
once (54k)
8.2 311 M re-ranked
twice (50k)
= 8
2}
=
7,8
76
74
72

baseline 11 2:1 31 4:1 54 6:1
data weights - in-domain : out of domain

Figure 5.14: Chinese-English: Data Weights for PPL re-ranked selections
(NIST)

Diagrams 5.14 and 5.14 show, that by weighing the in-domain data
stronger over the out of domain data especially the NIST score can be
improved further. Still the smaller selections after perplextiy re-ranking
do not significantly outperform the initial selection picked without re-
ranking.
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5.4.6 Summary

This experiment setup shows. how fast it can be harmful to just add huge
amounts of training data, if the additional data comes from a different
domain. The more important is it to carefully select the data to use
in training. The best results were achieved with rather small selection
sizes.

The perplexity driven selection size determination was able to achieve
similar scores as the manual grid search. The perplexity re-ranking could
not improve over that. The amount of automatically selected data here
is rather big, like the bigger ones in the grid search. This is probably the
reason why the scores for the 1:1 data weight are not good. Also the too
big batch size of 20 is probably responsible for the poor performance of
the re-ranking.

Weighing the in-domain data stronger than the out-of-domain data gives
opportunity to add more data to cover more words without loosing trans-
lation quality.
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System # Added lines | BLEU | NIST
haseline: in-domain data only 0.4621 | 8.1129
best random 15k | 0.4850 | 8.2262
best with weight 1:1 15k / 30k | 0.4871 | 8.2132
best with weight 3:1 40k / 75k | 0.4931 | 8.3398
hest with PPL selection size b4k / T2k | 0.4924 | 8.3812
optimal weights (4:1/5:1) 72k / 72k | 0.4942 | 8.5060

Table 5.7: Results for each experiment: Chinese — English

The overall improvement of 4.8% in BLEU score, from 0.462 to 0.494
and 6.9% in NIST score, from 8.11 to 8.50 shows that translation model
adaptation using IR can be succesfully applied in an in-domain / out-of-
domain data scenario.

5.4.7 Example translations

As scores like NIST or BLEU provide the possibility to automatically
evaluate and compare different translation systems and techniques, they
can not give a human reader an idea of how good the performance of a
translation system really is. The translation examples in table 5.8 show
the improvements in translation quality in a human readable form. Of
course not each and every sentence translation improves, the last two
examples show sentences, whose translation is worse with the adapted
svatein,



Reference

no-gmoking, please

Baseline i 'd like a seat please
Best system | i 'd like a no smoking seat please
Reference can i have a medical certificate
Baseline could you give me a medical open
Best system | could vou give me a medical certificate
Reference three glasses of melon juice, please
Baseline please give me three of those melon juice please
Best system | please give me three glasses of melon juice please
Reference where can 1 buy accessories
Baseline where can i get it
Best system | where can i buy jewellery
Reference so , where is the dining room
Baseline well restaurant where
Best system | then where ‘s the dining room
Reference which would you like | tea or coffee
Baseline do you have coffee
Best system | would you like tea or coffee
Reference boarding for delta airlines flight six two three is delaved
Baseline grand chanel tower is six two three flight be delayed boarding time
Best system | delta airlines flight two three six will delay departure time
Reference excuse me. could you tell me
how to get to the getty museum?
Baseline excuse me could yvou tell me

Best system

the way to the art musenm yosemite san diego please
excuse me could vou tell me
how to get to the museum

Reference please send a bellboy for my bageage .

Baseline please send a bellboy to my baggage

Best system | please call me carry my baggage health services
Reference i have no time

Baseline no time

Best system

a little more time either

Table 5.8: Example Translations: Chinese — English
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6 Conclusions and Future Work

This project shows that it is possible to adapt translation models for sta-
tistical machine translation by selecting similar sentences from the avail-
able training data. There are improvements in translation performance
on two different language pairs and overall different test conditions.

The results show that it is helpful to support this adaptation method by
analogically adapting the language model as this further improves the
translation quality.

Using language model perplexity to determine the selection size automat-
ically renders a development test set with reference translations unnec-
essary. Re-ranking the retrieval result according to LM perplexity even
improved translation quality sliehtly in one of the cases.

The combined methods of TF-IDF selection and perplexity driven selec-
tion size determination can be applied to a training corpus and a test set
fully unsupervised. There is no need to run a translation system or for a
development test set. Although it might be helpful to use a development
test set and the translation systemn to determine the optimal number of
re-ranking passes, a good batch size and the best weighing factor for the
in-domain / ont-of-domain data.

Advantages

e Uses the source language side only
No first pass translation (with errors) needed.

e Uses the real test set
No transfer from a development test set and no danger of overfit-
ting.

e Works for open domain systems too
We don't necessarily have to know which data is in-domain.



Disadvantages

e Needs the test data before training the system.

e Adaptation can not be applied on the fly to a running system.

Future Work

Different things could be done to further investigate this approach to
translation model adaptation.

GG

e Sentence based translation models

The information retrieval and the perplexity driven selection size
determination are both done for each sentence from the test set
seperately. So it would be possible to train individual translation
models for each sentence. This would be especially interesting, if
the test set is not very homogeneous.

Determine data weights automatically

It might also be beneficial to use training algorithins that allow sen-
tences to have fractional weights. Section 5.4.3 showed that tuning
weights for in- and out-of domain data can give improvements. To
be able to determine the best weight in each situation automatically
wonld certainly be helpful.

Tnvestigate batch size and number of re-ranking passes for PPL
driven selection size determination

Up to this point I did not compare the impact of changing the batch
size for the perplexity driven selection size determination. Also in
some cases more than 2 re-ranking passes could be helpful.

Improve IR

There are some more similarity measures for information retrieval
than the two [ used - TF-1DF and Okapi, maybe another one would
be even more suited to this problem. The ones I used focus only
on unigrams. It could be helpful to develop a more sophisticated
similarity measure that matches phrases, too. It was demonstrated
in Zhao et al. [2004] that language model adaptation could ben-
efit from such an advanced similarity measure and it is certainly
possible to apply these ideas here. Other information retrieval tech-
niques like stemmers or the usage of a stop-word list could be ap-
plied, too. I used only the default parameters for the IR, maybe
some improvement could be achieved by tuning them.



e [R pseudo feedback
Pseudo feedback could be applied in two different ways: In the
regular way, using the first n best retrieval results to expand the
query to broaden the result. As the data is available as bilingual
corpus, the corresponding target language sentences from the first
retrieval step on the source side could be used as queries for a
retrieval on the target side.

e Further LM adaptation
The corresponding target language sentences from the source side
retrieval could be used as queries to find more matching data in
additional monolingual data for training the target language LML
This has the advantage, that no first pass translation containing
translation errors woud be needed.

67



G5



Bibliography

Yasuhiro Akiba, Marcello Federico. Noriko Kando., Hiromi Nakaiwa,
Michael Paul, and Jun'ichi Tsujii. Overview of the IWSLT04 eval-
uation campaign. In Proceedings of the International Workshop on
Spoken Language Translation, pages 1-12, Kyoto, Japan, 2004.

Peter F. Brown, J. Cocke, S. Della Pietra, V. Della Pietra. F. Jelinek.
J. Lafferty, R. Mercer, and P. Roossin. A statistical approach to ma-
chine translation. In Computational Linguistics, page 16(2), 1990.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and
Robert L. Mercer. The mathematics of statistical machine translation:
Parameter estimation. In Computational Linguistics, pages 19(2):263-
311, 1993.

George Doddington. Evaluation of machine translation quality using n-
gram cooccurrence statistics. In NIST Washington. DC. USA., 2001.

Matthias Eck, Stephan Vogel, and Alex Waibel. Language model adapta-
tion for statistical machine translation based on information retrieval.

In Proceedings of LREC 2004, Lisbon, Portugal, May 2004.

Emil Ettelaie, Kevin Knight, Daniel Marcu, Dragos Stefan Munteanu.
Franz J. Och. Ignacio Thayer, and Quamrul Tipu. The ISI/USC MT
system. In Proc. of the International Workshop on Spoken Language
Translation, pages 59-60, Kyoto, Japan, 2004.

Almut Silja Hildebrand. Matthias Eck, Stephan Vogel, and Alex Waibel.
Adaptation of the translation model for statistical machine translation
based on information retrieval. In Proceedings of EAMT 2005 (10th
Annual Conference of the European Association for Machine Transla-
tion), Budapest, Hungary, May 2005.

69



Frederik Jelinek. Speech recognition by statistical methods. In Proceed-
ings of the IEEE, pages Vol. 64, 532-556, April 1976.

Woosung Kim and Sanjeev Khudanpur. Language model adaptation
using cross-lingual information. In Proceedings of Eurospeech, Geneva,
Switzerland, September 2003.

Kevin Knight. A Statistical MT Tutorial Workbook. In JHU summer
workshop, Denver. Colorado. April 1999.

LemurTk. The lemur toolkit for language modeling and information
retrieval. School of Computer Science, Carnegie Mellon University.
URL http://www.cs.cmu.edu/~lemur/.

Milind Mahajan, Dough Beeferman, and X.D. Huang. Improved topic-
dependent language modeling using information retrieval techniques.
In IEEE International Conference on Acoustics. Speech and Signal
Processing, Phoenix, Arizona, 1999.

Christopher D. Manning and Hinrich Schiitze. Foundations of statistical
natural langnage processing. pages 169-172, 2001.

Kishore Papineni, Salim Poukos. Todd Ward, and Wei-Jing Zhu. BLEU:
a method for automatic evaluation of machine translation. In Proceed-
ings of the ACL 2002. Philadelphia. USA, 2002.

Stephen E. Robertson and Karen Sparck-Jones. Relevance weighting of
search terms. Journal of the American Society for Information Science
27, pages 129-146, May-June 1976.

Stephen E. Robertson and Steve Walker., Okapi/keenbow at TREC-8. In
The Eighth Text REtrieval Conference (TREC-8), 2000.

Stephen E. Robertson, Steve Walker, Susan Jones, Micheline Hancock-
Beaulien. and Mike Gatford. Okapi at TREC-3. In The Third Text
REtricval Conference (TREC-3), 1994,

Andreas Stolcke. Srilm - an extensible language modeling toolkit. In
Proceedings International Conference for Spoken Language Processing.
Denver, Colorado, September 2002,

Toshivuki Takezawa, Eiichiro Sumita, Fumiaki Sugaya, Hirofumi Ya-
mamoto, and Seiichi Yamamoto. Toward a broad-coverage bilingual
corpus for speech translation of travel conversation in the real world. In

70



LREC 2002 (Third International Conference on Language Resources
and Evaluation). pages Vol.1, pp.147-152, 2002.

Stephan Vogel, Sanjika Hewavitharana, Muntsin Kolss. and Alex Waibel.
The ISL statistical translation system for spoken language transla-
tion. In Proceedings of the International Workshop on Spoken Lan-
quage Translation, pages 65-72, Kyoto, Japan. 2004.

Stephan Vogel, Hermann Ney, and Christoph Tillmann. HMM-based
word alignment in statistical translation. Lehrstuhl fiir Informatik VI,
RWTH Aachen, 1996.

Stephan Vogel, Ying Zhang, Fei Huang, Alicia Tribble, Ashish Venu-
gopal, Bing Zhao, and Alex Waibel. The CMU statistical translation
system. In Proceedings of MT Summit IX. New Orleans. LA, Septem-
ber 2003.

Hua Wu and Haifeng Wang. TImproving domain-specific word align-
ment for computer assisted translation. In Proceedings of ACL 2004,
Barcelona, Spain, July 2003.

Chengxiang Zhai. Notes on the Lemur TF-IDF model. Technical report,

4

School of Computer Science, Carnegie Mellon University, 2001.

Ying Zhang, Stephan Vogel, and Alex Waibel. Integrated phrase seg-
mentation and alignment algorithm for statistical machine translation.
School of Computer Science, Carnegie Mellon University, 2003.

Bing Zhao, Matthias Eck, and Stephan Vogel. Language model adap-
tation for statistical machine translation via structured query models.
In Proceedings of COLING 2004, Geneva, Switzerland. August 2004.






