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Abstract

A great deal of research has been done developing parsers for natura.llanguage. but ade-
quate solutions for some of the particular problems involved in spoken language are still
in their infancy. Among the unsolved problems are: difficulty in constructing lask-spe-
cific grammars, lack of tolerance to noisy input, and inability to effectively utilize com-
plimentary non-symbolic information.

This thesis describes PAR5EC-a system for generating connectionist parsing networks
from example parses. PARSEC networks exhibit three strengths:

They automatically learn to parse, and they generalize well compared to hand.
coded grammars.

They tolerate several types of noise without any explicit noise-modeling.

They can learn to use multi-modal input. e.g. a combination of inlonation, syntax
and semantics.

The PARSEC network architecture relies on a variation of supervised back-propagation
learning. The architecture differs from other connectionist approaches in that it is highly
structured. both at the macroscopic level of modules. and at the microscopic level of
connections. SbUcture is exploited to enhance system perfonnance .

Conference registration dialogs formed the primary development testbed for PARSEC.
A separate simultaneous effon. in speech recognition and uanslation for conference reg.
istration provided a useful data source for performance comparisons .

Presented in this thesis are the PARSEC architecture. its training algorithms. and
detailed performaoce analyses along several dimensions that concretely demonstrate
PARSEC's advantages.
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1 Introduction

The problem of spoken language processing spans a large number of sub-problems,
each of which is substantial in scope. These range from speech recognition at the lowest
level to language understanding at the highest. One of the critical pieces of a spoken lan-
guage system is its parser. The parser bridges the gap between word sequences and
meaningful structures. It must communicate with the highest and lO'Nest level process-
ing components.

While a great deal of research has been done developing parsers for natural language,
existing solutions for some of the particular problems involved in spoken language are
limited. This dissertation describes PARSECl• a connectionist parsing system geared
toward the difficulties encountered in spoken language processing. The main testbed for
lIle parser is a conversational speech translation task.

I am primarily concerned with demonstrating mar. connectionist computational models
are capable of solving problems in parsing that other more traditional methods are
unable to do. The focus is not on modeling human learning perfonnance or underslaIld-
ing how humans process language. In this thesis. connectionist models are viewed as a
tool 00solve various problems in parsing.

1.1 Why Connectionist?-------

Traditional met1lods employed in parsing natural language have focused on developing
powerful fonnalisms to represent syntactic and semantic structure along with rules for
transfonning language into these fonnalisms. Such systems generally rely on rules or

I. The name PARSEC was derived from pieces of parsing, speech. and COfUU!CziOl1ist.

1



1: Introduction

hand-coded programs to pedonn their tasks, and system designers must accurately
anticipate all of the language constructs that the systems will encounter, Spoken lan-
guage adds complexity to the language understanding problem. It is more slrictly
sequential than wriuen language. One cannot look ahead in on-line real-time tasks such
as simultaneous interpretation. Often, output is desired before sentences are complete.
Also, spoken language has a loose slrUcOJre that is not easily captured in fonnal gram.
mar systems, This is compounded by errors in word recognition. Phenomena such as
ungrammaticality, stuttering, interjections, and hesitation are possible, Speech signals
also contain a rich variety of currently unexploited non-symbolic infonnation (e.g. pitch
or energy patterns). Indepcndem of these factors, systems that can be efficiently pr0-
duced for specific linguistic domains are desirable, Parsing methodologies designed to
cope with these requirements are needed.

Connectionist networks have three main computational strengths that are useful in such
domains:

1. They learn and can generalize from examples. This offers a potential solution to the
difficult problem of constructing grammars for spoken language.

2. Connectionist networks tend to be tolerant of noisy input as is present in real
speech.

3. By virtue of lhe learning algorithms they employ, connectionist networks can
exploit statistical regularities across different modalities (e.g. syntactic information
and prosodic information).

The subjcct of this thesis is a connectionist parsing system that demonstrates these ben-
efits.

1.2 Conference Registration-------
Conference registration dialogs have been proposed as a testbed for developing real-
time bi-dircctional speech'lO-speech uanslation systems. A conversational conference
registration task fonns the primary development testbed for this work, Here is an exam.
pie conversation:

2

CALLER:

OFFICE:

CALLER:

OFACE:

CALLER:

OFFICE:

CALLER:

OFFICE:

CALLER:

OFACE:

Hello, is this lhe office for the confaence?

Yes, that's right.

I 'WOukllike to register for the conference.

Do you already have a registration form?

No, not yet.

I see. Then. I'll send you a registration form. Could you give me your name
and address?

The address is 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15236. The
name is David Johnson.

I see. I'll send you • registration fonn immediately. If thae Me any questions,
please ask me at any time.

Thank you. Goodbye.

Goodbye.



FIGURE 1.1

1.3: The PARSEC System

Example input and output of PARSEC.

PARSEC Network

Iwill send you a form.

~ ,
([decl-stalement]

([main-clausel
(Iagent] I)
(action] will send)
(recip.] you)
(patient] a form)))

The conference registration dialog task (referred to later as the CR task) consists of 12
conversations using a vocabulary of slightly more than 400 words. There are over 200
unique sentences in the corpus. Appendix B contains me full text of the conversations.
In addition to the text of the corpw, recordings of multiple speakers reading the conver.
sations have been made as pan of a speech recognition effort.

1.3 The PARSEC System------
The PARSEC system consists of a number of tools for creating connectionist parsing
networks that learn to parse from exposure to training sentences and their desired
parses. A ttained PARSEC network takes single sentences (presented word by word) as
input. and produces a case-bascd synlaCtic/semantic interpretation as outpuL Figure 1.1
shows an example of PARSEC's output for "I will send you a fonn."

PARSEC networks are stroctured. modular. and hierarchically organized. They use a
variant of back-propagation learning (Rumelhart, Hinton, and Williams 1986). and have
been augmented with special non-connectionist mechanisms for processing symbolic
structures. Building a PARSEC network requires four steps:

1. Creating a ttaining parse file.

2. Creating a lexicon.

3. Training the network's modules.

4. Assembling the modules into a full PARSEC network.

Of these. only me first two steps require substantial human effort. but this effort is less
than mal required to write a grammar by hand. Writing a grammar by hand entails defin-
ing a lexicon and deciding on parses for an example scI. In addition. the grammar rules
must be wrilten and debugged. The last two steps for creating a PARSEC network

3
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1: Introduction

(training of the modules and assembly into a full PARSEC network) are automated and
require no human supervision. This is possible through the use of a constructive learn.
ing algorithm that progressively increases the power of the networks as required by the
training tasks.

1.4 Performance

I characterize PARSEC's performance along three dimensions:

1. Learning ability: generalization perfonnance on novel sentences and ease of train-
ing.

2. Noise tolerance: performance on noisy sentences (sentences including speech rec-
ognition errors and ungrammaticality).

3. Abilily to utilize nOIHymbolic infonnation: perfonnance on sentence mood disam.
biguation where intonation is the detennining factor.

1.4.1 Learning and Generalization

Oearly, any system thai learns must be evaluated with respect to generalization, other-
wise table-lookup strategies can masquerade as true learning. 1 report on several experi-
ments designed to measure the generalization capability of PARSEC's learning
algorithms.

Straightforward training of PARSEC networks results in very poor generalization per_
fonnance. However, there are several ways in which knowledge about parsing and about
language structure can be used to improve PARSEC's generalization performance.
Using these techniques, PARSEC is able to perfonn well compared with traditional
hand-coded grammars in tests of coverage.

Aoothec critical issue in characterizing learning performance is how difficuh it is to
make the system learn well. If a learning system requires a highly specialized expert to
train it, it isn't much of an improvement over a hand-coded system. This is an especially
important area where connectionist learning algorithms are concerned, since they are
often difficult to control and tend to be slow learners. PARSEC's learning procedmes
are highly automated, and an expcn is not requited to fine-tune parameters in order to
produce a satisfactory resulL

1.4.2 Noise Tolerance

Parsing is an interesting domain in which to consider the effects of noise. One doesn'l
see noise of the same son as is found in signal processing where it is possible to observe
subtle "smearing" or other non-eatastrophic events. In the case of parsing, since the
input is symbolic, the effects of noise tend to be harsh: words are inserted, deleted, sub.
stituted, or are incorrect from a grammatical standpoint Although there has been some
recent success in making grammar-based parsers more noise tolerant, many are some.
what brittle in the face of noise, and they often fail on slightly deficient input



1.5: Outline of the Thesis

1evaluale PARSEC on three types of noise:

1. Noise from speech recognition errors.

2. Synthetic ungrammaticality.

3. Noise occurring in spontaneous speech (e.g. reslaJ1S and ungrammaticality).

PARSEC exhibits better noise tolerance than some grammar-ba'iCd systems, but it is not
an exhaustive solution to the noise problem.

1.4.3 Mu"I~modallnput

Synergistic combination of multiple input modalities is a desirable goal of speech pro-
cessing syslems. An obvious area in which this ability is required is the case of utter-
ances where senlence mood is affected by intonation:

• "Okay." -a confirmation .

• "Okay?" -a request for confirmation.

I show that PARSEC has the ability to inlegrate pitch contour infonnation with syntactic
and semantic information to disambiguate mood in short utterances. This is a first step
towards the goal of inlegrating prosodic and symbolic cues.

1.5 Outline of the Thesis

Chapt8l" 2: Related Work
The field of connectionist language processing is fairly young, and despile a recent
explosion in inlerest, I present a reasonably complete overview. Of course, the entire
field of NLP is related, but I summarize only those systems and results that have panic-
ularly imponant implications fer speech processing.

Chapter 3: Connectionist ParsIng
Chapter 3 begins with a discussion of some of the general issues involved in an applica-
tion of connectionist models to the parsing problem. The issues mainly relate to the use
of symbols in a sequential task as opposed to non-symbolic static recognition tasks.
Representation is discussed as it impacts leamability and performance. The methods for
representing sentence structure in this thesis are also introduced. Instead of relying on
recursive objects, I develop a system of non-recursive sentence representation that is
more amenable to direct implementation in a connectionist network.

A number of computational issues are also discussed. Simple actions such as assign-
ment. which aren't issues in modem programming languages, are more complex in con-
nectionist networks. I introduce lhe idea of adding structure in terms of additional
hardware to a network in order to facilitate better symbol processing.

The last pan of the chapter describes an early connectionist parsing architeclure that
was lhe basis for this thesis work. I discuss some of the weaknesses of this early archi-
tecture, and this provides a foundation from which to define lhe refined PARSEC archi-
tecture.

5



6

1: Introduction

Chapter 4: PARSEC Architecture
This chapter introduces the conference registtation task, and I describe PARSEC archi.
tecum using the CR task as an example domain. Most of the chapter is a detailed
description of the six modules of the baseline architecture. I also describe enhancements
to the baseline architecture that were made during the course of the work. Lastly, I show
an actual PARSEC network parsing some sentences and discuss its dynamic behavior.

Chapter 5: PARSEC Training
I present the Programmed Constructive Learning algorithm that was developed to
enhance PARSEC's generalization ability. PCL is embedded in a three phase training
procedure that controls allleaming parameters automatically. This enables non.expettS
to train the modules of PARSEC. I summarize the four steps involved in producing a
PARSEC network. J also discuss an experiment in which a non.expen successfully
trained a PARSEC network for a novel task. A successful application of PARSEC to a
new language (German) concludes the chapter.

Chapter 6: Generalization Experiments
This chapter is devoted to describing PARSEC's generalization performance. First, I
describe the evaluation procedure, then analyze the poor performance of the first PAR-
SEC parser for the CR task. J show three additional CR parsers, each with progressively
benee performance. By incorporating the techniques described in Chaplers 4 and 5, the
final version of PARSEC is shown to produce a network with nearly 70% generalization
perfonnance.

To provide points of comparison, the performance of three hand-eoded grammars is
analyzed on the same CR generalization task. Two of the grammars were constructed as
part of a contest with a large cash prize for best generalization. The generalization per.
fonnance of the hand-coded grammars ranges from 5% to 38%--a favorable result for
the PARSEC system, whose knowledge of English is far more restricted than that of the
human grammar-writers.

Chapter 7: Speech Translation and Noise Tolerance
This chapter repons PARSEC's performance on noisy inpul J present an application of
PARSEC to the JANUS speech-to-speech translation system. Using data that include
speech recognition errors, a comparison is made between PARSEC and a hand-COOed
grammar implemented using an LR parser. The PARSEC network outperfonns the LR
parser on panicularly noisy speech recognition output, but it shows an inability to assign
preferences to competing sentence hypotheses. J also cover experiments using synthetic
ungrammatical sentences and a limited experiment involving transcribed spontaneous
utterances.

Chapter 8: Prosodic Information

Here I report on an experiment in which a PARSEC network is augmented to utilize
pitch information from speech signals in order to disambiguate the mood of shan utter.
ances in which syntax alone is insufficienL

Chapter 9: Conclusion

I summarize the results and contributions of the thesis. I discuss the sflOncomings of
PARSEC, and present some ideas about future work with panicular attention to extend-
ing PARSEC to larger parsing tasks.



1.5:OutJln. of the Th•• I.

Appendix A: Network Formalism
This appendix comains the equations that define the behavior of connectionist units in
the networks used throughout this thesis.

Appendix B: Conferenee RegistratIon DIalogs
Conlains the full text of the CR lask's 12 conversations.

Appendix C: Conference RegIstratIon TestIng Corpus
Conlains sentences used for the generalization tests of Chapter 5.

Appendix D: ATIS Sentences
Conlains the sentences of the ATIS task used for the automatic learning test and some
noise experiments.

AppendIx E: Pitch Experiment Data
Contains some examples of the data used in the pitch augmentation to PARSEC.

7
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2 Related Work

A large OOdyof work. is related to this thesis. ranging from other connectionist models
to stochastic approaches to language processing. This chapter reviews the major connec-
tionist work. in the area and places the pieces of research in a broad context In spite of a
recent explosion of interest in connectionist NLP, the coverage is fairly complete. Of
course. many non-connectionist systems have been proposed that address some of the
issues in speech processing that PARSEC targets. J will trleOy review some of these
systems as wen, The chapter concludes with some remarks about PARSEC's relation-
ship to the reviewed work.

2.1 Early Work In Connectionist Natural Language Processing-------
One of the major thrusts was implementing fannal grammar sYSlem.Sin paraIJel net-
works. Other early work in connectionist NLP was quite diverse, with emphasis on
semantic issues as well as learning.

2.1.1 COnnectionist Networks as ImplementaUon Devices

These systems placed strong emphasis on exploiting parallelism and cooperative com.
putation, with tinlc emphasis on learning. They implemented well-Known fonnal gram-
mar systems using parallel connectionist hardware.

Selman (1985; Selman and Hirst 1985) developed a JXll'Serbased on a Boltzmann-
machine-like connectionist formalism in which grammar rules were directly incorpo-
rated into a connectionist network. The bottom layer of the network contained units that
corresponded to the terminals of a context free grammar. A network representing the
parse trees of all non-terminal strings not exceeding the length of the input was con-
nected to the bottom layer-similar substructures were not redundantly represented.

9
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2: Related Work

Two types of units were present: main units representing the tenninal and noo.tenninaI
symbols of the grammar and binder units representing how the main units could be
related. A string was parsed by clamping the appropriate input units and running the sto-
chastic network according 10 an annealing schedule. Selman's model showed that con.
nectionist systems could implement rule-based processing and offered advantages due
10 lheir parallel nature.

Fanty (1985; 1986) developed a technique for producing a determin.istic connectionist
parsing network given any context-free grammar without epsilon productions. A net.
work corresponded to a particular grammar parsed grammatical strings of a fixed (arbi.
trary) length quickly and detenninistically. Fanty's networks contained three types of
interconnected units: tenninal units, non.tenninal units, and match units. The former
two types corresponded to the symbols of the grammar in each p:>ssible position. Match
units essentially implemented the productions in the grammar. A string was presented to
the network by stimulating the appropriate tenninal units in the proper positions. After a
fixed number of update cycles (the upper bound was linear in the length of the input),
the active units of the networl:: represented the parse of the input string. Fanty's system
exploited the leverage of parallelism without requiring a lengthy relaxation process. He
also explored some schemes for disambiguating multiple JW'SeSand limited learning of
new grammar productions.

Chamiak and Santos (1987) proposed a parsing system (CONPARSE) that strains the
notion of what is "connectioniSL" They constructed a parsing networl:: from a context-
free grammar that required neither the length limitation nor the lengthy relaxation pr0-
cess of the systems described above. A parser was represented as a table of fixed width
and height with processing units occupying the slots. The parser shifted in pans of
speech from the lower right comer of the table. Units representing non.terminals and
bindings between them were updated for a fixed nwnber of cycles for each input token.
The left and top portions of parses of long sentences were shifted out of the table and
were concatenated Onto the final parse. The pnxess was deterministic and quite fast.
However, due to the fixed table size, the parser couId not properly process all sentences
with center..embedded constructions.

Each of the systems described in this section involved implementing a fonnal syntactic
grammar system in a connectionist formalism. These systems did not address semantic
language issues nor did they acquire their grammars. However they demonsuate<l that
~Iel networks using simple processing units could provide leverage in syntactic
parsing tasks.

2.1.2 Other Earty Connectionist Models of Language

Spreading Activation Models

Cottrell's work (1989; Cottrell and Small 1983) focused on word sense disambiguation.
He used a spreading activation/lateral inhibition model to combine semantic and syntac.
tic information. There were four components 10 his system: the lexical level (each word
had an input unit), the word sense level (each word unit from the previous level con-
nected to a number of word senses), the case level (.line.grained semantic case roles),
and the syntax level (intended to interact with the case level, but not well-developed).
After stimulating lexical units, the other units in the network were allowed to react and
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compete for activation. lnfonnation spread both laterally within each level as well as
vertically to allow for interaction between different levels. The interactive activation
process eventually led to an interpretation of the appropriate word senses as well as
case-role bindings. This work scratched the surface of possibilities in using connection-
ist models for semantic language tasks.

Waltz and Pollack (1985) follow-ed Cottrell's work. They agreed with Cottrell that all
aspects of language interpretation should interact at each stage of processing. Using a
similar spreading actiwtion/latera1 inhibition paradigm, they constructed a model in
which context. syntax, and semantics were combined to produce semantic interpreta-
tions. For example, the sentence "John shOl some bucks" has different meanings in the
context of gambling venus hunting. Their system used activatioo between related nodes
(e.g. verb category for "shot" was linked to verb senses "fire" and "waste" and hunting
context was linked to "fire'). Inhibitory links were present between lIle sense nodes for
each word (e.g. "fire" and "waste" inhibit each other). Thus, in me conte~:l of hunting,
the sentence was interpreted to mean that John fired a gun at some male deer and slTUck
them. They proposed that a microfcature representational scheme could be used for the
activation/inhibition processes.

Models Ih.1 Learned
McClelland and Kawamoto (l986) used semantic feature representations as input and
output for a case role assignment network that processed single sentences. They trained
a two layer network to produce case role assignments for simple single clause sentences
consisting of a subject, verb, object, and an optional prepositional phrase. The network
was trained to perform some lexical ambiguity resolution as well. Despite the simplicity
of the lask, the experiment was an important advance for connectionist models of lan-
guage. The networks learned to combine both semantic and syntactic information to
produce interpretations of sentences with some interaction among the constituents.

The introduction of back-propagation (Rumelhart. Hinton, and Williams 1986) offered a
method to train deterministic multi-layer networks to perfoon very complex mappings.
Hanson and Kegl (1987) developed an aulo-associative connectionist model called
PARSNIP. This contrasted with the supervised model of McClelland and Kawamoto.
The input (and output) to PARSNIP were syntactically tagged sentences from the
Brown Corpus. The architecture was a simple three layer back-propagation network that
required a 7: I compression to encode the input pattern across the hidden units. The
trained network generalized quite well and exhibited a number of interesting features
including: completion of sentence fragments, preference for syntactically correct sen-
tences, and recognition of novel sentences. PARSNIP was also able to reproduce novel
sentences with one level deep center-embedded patterns but had difficulty with deeper
embeddings that b'Ouble human language users. Using a simple architecture with unsu-
pervised training, PARSNIP captured several aspects of English language structure.

2.2 Recent Work In Connectionist NLP

This section begins with some extensions to the work above-alteratives to the parallel
network implementation of grammars and funher development of the microfeature rep-
resentational scheme. The remainder of the section includes recurrent network architec.
mres and hybrid schemes.

11
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2.2.1 extensions of Early Work

Nijholt (1990) funher developed Fanty's style of connectionist parsing. Nijholt defined
meta-parsing as the process of building a connectionist parsing network for a particular
grammar. He showed how 10 construct a connectionist Earley parser using this idea. He
placed more emphasis on network construction than on parsing, but the resultant net-
works had the same properties as those of Fanty-speed and detenninism. NiJlloU's
approach was stiU subject to a limitation on input length. As with the earlier work,
learning was not the focus in Nijhholt's work.

Howell's (1988) wak on VITAL was similar to Fanty's work and that of Selman. How.
ever, Howell's parser dynamically generated a network as needed during the parsing
process. Nodes in VITAL were "templates" containing a single grammar rule plus
pointers to related rules and likelihoods of rule application. An input sentence was pr0-
cessed by instantiating highly active terminal nodes corresponding to the words of the
sentence. Additional nodes were added as indicated by the infonnation in the templates.
Activation values varied during a relaxation process where nodes competed for activa.
tion as it spread through a network, both bottom.up and top-down. Early in processing,
networks grew rapidly. Then, nodes were pruned as they lost activation to more plausi.
ble alternatives. Ultimately, VITAL would settle on a single parse. Nakagawa and Morl
(1988) produced a similar model based on sigma-pi units.

Gallant (1990) extended the work of Waltz and Pollack with respect to microfeature rep-.
resentatioos. He supported using feawre vectors to represent semantic context instead of
relying on a complex spreading activation process. In Gallant's model, words in a lexi.
con had some number of integer valued feature numbers re~senting the extent to
which the words were associated with a particular feature (e.g. human). These femmes
were entered by hand or from a lexicon. He defined a computationally simple dynamic
context vector for use in word sense disambiguation. Disambiguation was possible
using comparisms of the inner ~ucts of word sense feature vectors with the current
dynamic context vector. By vinue of being computationally tractable, Gallant's scheme
could be of pragmatic imponance in a number of language problems.

Miikkulainen and Dyer (1989) showed how to learn input/output representations of the
sort inlroduced by McClelland and Kawamoto to represent words in a case.role assign.
ment task. They introduced the FGREP architecture. In FGREP, initially aU words had
random real.va1ued feature values. The representations were modified by extending
back.propagation into the lexicon. The input and output of their networks changed until
the case-role assignment task was learned. The va representations reflected the usage of
"",rds in the task to be learned. Through hierarchical cluster analysis, they showed that
the words formed sensible clusters (e.g. humans fonned a cluster and breakable objects
formed a cluster). FGRE? offered a method whereby microfeature representations could
be automatically produced. However, FGREP reQuired a large amount of training data
to fonn useful representations.

2.2.2 Recurrent Networks

Elman (l988, 1990) introduced the Simple Recurrent Network-an innovation that pro_
duced a number of interesting results in connectionist NLP. An SRN is simply a stan-
dard back-propagation network with an augmented input layer that includes the
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previous activation pattern of the hidden layer. An SRN processes sequences of input
tokens, and is able 10 learn to encode temporn.l context in its hidden units' representa-
tions. Elman's initial experiments were simple prediction tasks, but he showed that the
SRN could learn to encode complex concepts such as lexical classes.

Elman (1989) evaluated the SRN with respect to what types of language phenomena
were learnable. He showed that the SRN could model aspects of sentence processing
that required complex structural representation. For eAample, an SRN was trained on a
word prediction task for sentences that included relative clauses. The network leamed to
encode long-distance dependencies such as subject/verb agreement across relative
clauses. The SRN was a simple, but general, sequentialleaming architecture. However,
the work of Cleeremans, Servan-Schreibcr, and McClelland (1989) pointed out some
potential deficiencies in the memory capacity of the SRN. In particular, in prediction
tasks using simple grammars, the SRN seemed incapable of encoding dependencies
across context independent intervening sequences.

Miillulainen (199Oa) explored the use of the SRN to model script paraphrasing. By
combining the FGREP architecture with the SRN, and adding a module that processed
case-role descriptions of sentences, he was able to teach (in parallel) a set of four sepa-
mte subnetworks to paraphrase simple stories. The system was able to make inferences
about missing events in stories.

Miikkulainen (199Ob) also applied the SRN to the problem of parsing embedded
clauses. The system, CLAUSES, was able to learn to process sentences containing
embeddings that were presented as fragments (i.e. clausal boundaries were tagged).
Q.AUSES constructed case-role representations of multiple acts. While achieving
interesting results, Miikkulainen suggested that more highly structured leaning para.
digms might be necessary 10produce satisfactory perfonnance. He pointed out that with
distributed networks, intttpolation between familiar examples is natural, but recognition
of an input pattern as a combination of familiar pieces is somewhat beyond them.

Allen (1991) experimented with the SRN using connectionist agents to answer ques-
tions about lcinship relations. Networks were trained to answer sequemially presented
questions (e.g. "whois daughterof mary"), and they showed some ability to generalize-
albeit with extremely low ratios of test set size 10 training set size. TIle internal represen-
tations of the SRN during processing reflected the semantics of the questions that were
asked. Allen also used Jordan's (1986) sequential recurrent networks for language tasks
in CLUES (Allen 1990). Here, he trained connectionist agents to answer questions
about a microworJd of simple objects.

SL John and McClelland (1990) applied Jordan's sequential recurrent network to other
language tasks. They trained a two-stage architecture to form "sentence gestalts" of sin-
gle clause sentences and probed the gestalts for information such as case.role assign-
menL Later, 51. John (1990) extended the architecture to process stories. Without using
SRN's, Dolan (1989) developed the CRAM system, a learning system based on tensor
manipulation networks. It sought to unify the symbolic and subsymbolic processing par-
adigms. CRAM learned 10 read simple one.paragraph stories and could produce a sum-
mary of the story or a plan for a character in the slOry.

13



'4

2: R.I.t.ct Work

Wang and Waibel (1991) applied the SRN to the problem of script uaeking in the con-
text of dialog understanding. Following the work of Miikkulainen and Dyer, they
trained a modular network to keep lnlck of a script of events for conference registration.
Using limited initial information. networks fonned useful internal representations to
leam the task.

Each of these approaches involved application of a recurrent learning architecture to
some a'q)eCt of language processing. While showing some (X>lential. most of the
approaches raise questions about the amounl of training data that they require.

2.2.3 Recursive AutO-Associative Memory

Pollack's introduction of the RAAM architecture may prove to be as imponant as
Elman's SRN (Pollack 1990). RAAM offers a way to use distributed representations of
fixed width to encode recursive structures such as trees. One constructs a RAAM by
simultaneously training encoder and decoder networks that push representations
through a fixed-width bottleneck. One can then use hidden layer activations as new ter-
minal symbols and thereby encode nested structures such as trees within fixed-width
vector representations. This has great potential for natural language applications.

Berg (1991) applied a combination of the RAAM idea and the SRN to parsing in
XERIC. XERIC used phrase templates (composed of a specifier. head, and up to two
complements) to encode syntax. The input to XERIC was a feature-based word repre-
sentation along with the encoding of the left context of the word (the previous activation
of the hidden layer). The hidden layer would sequentially develop a compact representa-
tion of the entire sentence. A decodec module was able to iteratively unroll the full
structure of the parsed sentence as a series of phrase templates. XERIC was unable to
handle a number of constructions (e.g. adjectives in NPs). and it had difficulty remem.
bering and reproducing the features of individual wOlds. However. it was one of the first
connectionist language processors that could handle recursive language suuctures of
varying length within a fixed architecture.

2.2.4 Hybrid Systems

Kwasny and Faisal (1990) developed COP, a hybrid extension to Marcus's PARSIFAL
system (Marcus 1980). They uained a bad;:.propagation network to indicate actions to
be performed on the usual symbolic data SlIUctures of a PARSIFAL parser (an input
bufTec and a stack). COP was uained in two ways-deductively and inductively. In the
deductive training scheme. rule-templates were created from a grammar. and the nel-
work learned to associale actions with the templates. In the inductive scheme. traces of
grammar-based parses were used. and the network learned to capture the behavioral
characteristics of the rules from the grammar used for the trace. The deductive scheme
generally had higher performance. They showed. some noise tolerance in their network-
based parser over that of the purely grammar-based parser. whose actions their network
was trained to reproduce.

Santos (1989) exlended his earlier wort with Chamiak (Chamiak and Santos 1987). He
augmented the CONPARSE architeelW'C with PALS (Parsing and Learning System).
PALS adjusted weights associated with rules in CONPARSE. The rules were derived
from a grammar. and PALS learned how to apply the rules. Sentences of arbitrary length
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could be parsed. but some embedded conslIUCtions were not parsable due to fixed table
size. As with COP, the idea was to improve upon a grammar using learning.

2.3 Other Non-Traditional Systems

The two systems covered in this section are not strictly connectionist. but they are not
traditional approaches to language processing either.

Phi-DmDialog was a parallel marker-passing system that was applied to the conference
registration dialog task. (Kitano et al. 1989). It lay somewhere between the symbolic
approach and the connectionist approach. The system was organized into a hierarchy of
levels, beginning with morphophonetics at the bottom and proceeding up to pIan hierar-
chies. Information flowed using several types of markers that spread, collided. and com-
bined to produce side-effects. The side-effects processed the input. produced the output.
and integrated predictive information with observed input. The system did nO! employ
learning. althoogh it showed a new approach to information combination among inter-
acting data sources.

Gorin et al. (1990) developed a system that automatically acquired a language model for
a particular task from semantic-level information. The system had no predefined vocab-
ulary or synl.U.. but it learned to perfonn a small number of actions based on interaction
with users. The system was demonstrated on a department store inward-call manage-
ment task where the actions were telephone connections to any of several deparunents.
Words and phrases were represented in the architecture as nodes. The lowest layer of
nodes corresponded to words. the next level to word pairs (phrnses). and the last layer to
the semantic actions that the system could take. Connection weights between nodes
denoted a measure of mutual information. For example, the connection between the
phrasaI node ''buy dress" and the action "connect to women's clothing" acquired a
strong weight. Using mutual information for connection weights allowed for single pass
training. Although currently unable to handle complex language constructs, the
approach shows promise as an alternative to both the pure PDP paradigm and traditional
NLP systems.

2.4 Symbolic Systems

NLP is a vast field. and there are many current research efforts that target phenomena
relevant to this thesis. However. I will only review a few key approaches here.

2.4.1 MINDS

The MINDS system (MulLi.-modal INteractive Dialog System) was developed at CMU
(Young et al. 1989). The goal of the research was to incorporate high-level knowledge
sources into speech recognition sysre:ms to make them robust and easily usable. MINDS
operated on a resource management task where a user was querying a database verbally.
The system sought to directly reduce the search space for the speech recognition system
by making predictions about utterances based on high-level expectations. By modeling
the current state of an intecactive dialog, the system would generate a temporary reduced
lexicon for use by the speech recognition system. In MINDS, predictive models of the
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domain. goal ttees. and a user's stalc-of.mind were constructed by hand. MINDS
achieved substantial perplexity reductions. and the system enhanced speech recognition
results .

.2.4.2 Statistical Models

Statistical augmentations to symbolic systems offer the potential for more robust disam-
biguation. better language modeling, and faster parsing. They also avoid some of the
computational cost of connectionist learning algorithms. However. they seek to rt!fine
the behavior of hand-coded systems through training, not to elimiMl~hand-coding.

Fujisaki ~tal. (1991) were able to augment a context-free grammar with probabilities.
They devised efficient versions of oisting parsing algorithms to perfonn the probability
estimation and to implement the parser once the probabilities were known. They dem.
onstrated fairly robust parse disambiguation on sentences from several sources using
only probabilistic syntactic rules.

Seneff (1989) developed a different technique in the TINA system. A context.free gram.
mar was converted into a shared network structure. Probabilities were associated with
arcs in the network. The approach described above attached probabilities to the actual
roles of the grammar. By irntead attaching probabilities to arcs. different probabilities
could be associated with identical units that were present in different contexts. For
example, the probability of an adjective following a detenniner was sensitive to whether
or not the detenniner was sentence-initial. The probabilities helped with perplexity
reduction in speech tasks as well as with disambiguation. TINA was quite successful in
its application to the SUMMIT and VOYAGER speech applications (Zue et al.
1990a,I990b).

Church et aI. (1991) have proposed that simple collocational corntraints should playa
more important role in natutallanguage par.;ers. and that semantic modeling may nO!.
always be necessary. By computing mutual information statistics between word.~ in syn.
tactically tagged corpora, they show that it is possible to learn. for example. what things
are likely to be objects of"dJink." Interestingly. some of the same types of effects can be
captured in some of the connectionist models discussed so far. albeit on a smaller scale
(e.g. Waltz and Pollack 1985).

Magerman and Marcus (1991) developed a stochastic parser called Pearl. They incorpo.
rated a number of probabilistic components (e.g. a pan-of.speech recognition module
and an unknown word module) into a coherent chart-parsing framework. Pearl esti.
mated conte,;:t.sensitive probabilities from training data and was more sophisticated
than Seneff's TINA system in its use of probabilities. For example. Pearl took into
account the probabilities of lexical interpretations (e.g. "'ove" as a verb versus noun) in
addition to orner context in calculating the likelihocx:l of a particular imezpretation of a
sentence. Magennan and Marcus reported favorable preliminary results using data from
the VOYAGER system.

2.4.3 Prosody

Steedman (1991) introduced Combinatory Grammars as a possible method for making
use of intonational information along with syntax in grammar-based parsers. He fol.



2.5: Where do •• PARSEC fit In1

lowed the notation of Pierrehumbcn (1975) for annotating sentences with intonational
infonnation. In many cases, intonational contour is of help in disambiguating multiple
parses. However, as yet, it is no! possible to automatically extract the proper intonational
annotations from real speech.

Huber (1989) investigated the use of prosodic information extracted from real speech in
parsing. He showed how prosody could be exploited to benefit an island-driven parsing
strategy. He developed a speech segmentation algorithm to produce intonational units.
From these, he identified areas of prominence that were used as reliable islands from
which further processing spread. The system required extensive programming and
design of appropriate segmentation algorithms and information usage strategies, but it
was one of the first significant efforts in using prosodic infonnation in parsing.

2.5 Where does PARSECfilln?

PARSEC is only tangentially related to the early work in connectionist parsing that
recast grammar-based fcrmalisms into parallel networks as a method of implementa-
tion. PARSEC shares the parallelism but places a strong emphasis on learning.

The work of McOelland and Kawamoto (1986) was the basis of my very early experi-
ments in connectionist parsing. 1 adopted a similar case-role parsing task and extended it
to sequentially parse real sentences (lain 1989). The current work represents the third
generation of parsing models that I have developed. Each generation brought additional
structure and more complicated tasks. 1lIough PARSEC does not au.aek the semantic
aspect of language processing with the same vigor as some of the other early connec-
tionist worle., it shares the notion of combining syntax and semantics in a unifying
framework.

Kwasny and Faisal's COP system is the most closely related to this work in spirit. We
both use symbolic manipulation in combination with subsymbolic computation, but
there is a key difference. COP requires the existence oC a hand-coded grammar Crom
which to induce (or deduce) a connectionist grammar. PARSEC induces its grammar
from example parses without any existing rule-based grammar to model.

From a philosophical perspective, the work that has sprung from Elman's Simple Recur-
rent Network is the mOSI distant from PARSEC. PARSEC emphasizes struClure and
explicit symbol manipulation/representation to boost perfonnance, but work with the
SRN has emphasized distributed representations using architectures with minimal pre-
defined structure. These paradigms are not irreconcilable, and each will likely begin to
borrow from the other. MiikkuIainen's work using the SRN for processing sentences
with embedded clauses was a step in that direction. The next chapter will discuss the
issue of structure in more detail.

Touretzky (1991) defined a hierarchy oC connectionist models based on the types of
mapping they learn:

• Categonzers: these are essentially N class forced.choice recognition machines.

Associative memories: these models fonn internal class-based represemations of
pauems.

17
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• Panem lI3nsfonners: these have a very large number of outpUt panems (exponential
with length of inpul); most possible output patterns can't be seen in training.

Dynamic inferencers: these models exhibit novel intermediate states in response to
novel inputs; they can compose new combinations of information; the structure of
the models reflects the systematicity of the compositionality requiremenL

They key difference between pattern transfonners and dynamic inferencers is that the
fonner require an unreasonably large proportion of possible patterns as uaining exam.
pies because they are not able to break problems down into subpartS and reassemble the
solutions. A dynamic inferencer, by virtue of having dealt with the problem of composi-
tianality. requires far fewer training examples. PARSEC may not be a full-fledged
dynamic inferencer. but it does not fall cleanly into the other categories either. The con.
clusion addresses this question in more detail.

•



3 Connectionist Parsing

This chapleC is an inlroduction to connectionist parsing as implemented in the PARSEC
system. I will introduce some general issues facing connectionist parsing systems and
present the major design choices regarding representation and type of connectionist
computation that were made for this work. A connectionist parser developed for a 000-
speech problem will be presented to illustrate the basics of the approach to parsing taken
in this thesis.

A word about the cenb'al focus of this work is in order. As mentioned in the introduc-
tion, I am primarily concerned with demonstrating thar. connectionist computational
models are capable of solving problems in parsing that other more traditional methods
are unable 10 do. The focus is not on modeling human learning perfonnance or under-
slanding how humans process language. Thus, questions about biological plausibility or
comparisons to human perlormance are not a major concern. In this thesis. connection-
ist models are viewed as a tool to solve various problems in parsing. That they are to an
exlent biologically inspired is interesting, but not crucial. In me discussion mal follows,
performance concerns will dictate me design choices.

3.1 Connecllonlst Parsing-------
Parsing is an inherently symbolic and sequential task. Bolli aspects make it a particu-
larly difficult task to approach using connectionist computational mooe1s, which are
more easily applied to static recognition tasks. In particular, several issues arise:

How should symbols be represented?

How should symbols be manipulated?

How should temporal contel;t be captured?

• Is recurrence necessary or beneficial? What kind?
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FIGURE 3.1 Task to network mappings in a connectionist network.
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There are some additional considerations stemming from the problems of training con-
nectionist networks. This work involves relatively small corpora of text (on the order of
hundreds of sentences), but the networks required are quite large (tens of thousands of
connections) relative to our current computational resources. Achieving good genern.li.
zation from small training sets and minimizing training time for large networks are key
concerns of this work.

3.1.1 Representation

In any connectionist network that learns some task through a supervised procedure, one
must decide how to represent the input and output of the network. This involves setting
up bi-directional mappings from the task's input and output to patterns of activation
across input and output units in a netW(l'"k(see Figure 3.1). The choice of mapping can
have a significant impact on many aspects of network perfonnance (e.g. learning speed
and generalization performance).

In tasks where similar input patterns are to be mapped to similar output patterns, back-
propagation networks will tend to generalize well. Some tasks that do not have this
propeny can be modified by simply remapping the input patterns. An example will illus-
trate this point Imagine a simple augmentation to the XOR problem. Instead of two
binary inputs, there are five inputs, each with three possible values: 0, I, and 0.5. The
first few inputs take on extreme values, and the remaining ones have a value of 0.5. The
task is to produce the XOR of the first value and the rightmost value that is not 0.5. The
intervening values are to be ignored.

Figure 3.2 shows two representations of the problem. In the straightforward representa-
tion, the network must learn to identify the extreme bits, ignore the intervening bits, and
produce the XOR of the first and last bits. One can augment the representation by add.
ing another unit whose value is that of the last non-O.5 Wlit With this new representa.
tion, the network need only learn to XOR the two imponant bits. The second input
representation provides an easier task to learn. This is not a statement about whether or
not it is right (in some sense) to use the augmented representation. This is only an iIIus.
tration that representational changes can have an impact on the leamability of tasks. The
effects of representational modifications on generalization will be shown in Chapter 6.

In a connectionist parsing network, choices about the input word representation and the
output parse representation are critical to ensure adequate performance.
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3.1: Connectionist Parsing

Alternate representations of augmented XOR problem.
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How should words be represented in a connectionist parsing network? The first question
to answer is whether the representation should be learned or should be encoded from
some external lexicon. The answer depends on the parsing task, and in particular how
much data is available. For computationally tractable tasks with a sufficient amount of
training data, it is possible to learn word representations through their usage. Various
approaches have been explored (see Chapter 2 for more details), ranging from simple
recurrent networks to modification of input word representation by extending back.
propagation (Elman 1988; Miikkulainen and Dyer 1989).

If uaining data is not abundant, one faces a serious problem of undergeneralization. For
example, in any reasonable representation, the words "a" and "an" should have the same
or very similar representations (ignoring the lener.name sense of "a"). Suppose though.
that "a" and "an" do not appear in the same contexts in a training corpus because of its
size. 11is likely that a network will arrive at different representations for the two words.
This will adversely affect the performance of the network when it is required to perform
on novel input By making use of existing lexical knowledge, one can avoid the expense
of acquiring such information through training and ensure that the word representations
are uniform and general.

The tasks that 1 am interested in are designed for use in spoken language processing.
Consequently, the training corpora are limited in size and vocabulary complexity. This
makes learning good word representations difficult, but it also reduces the burden of
hand constructing lexicons of word representations. For this work, I have used hand-
crafted word representations.
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In cases where it is necessary to design and construct a lexicon for the words in a task,
several new issues arise:

• What features should be used?

• TIght encoding or loose encoding?

How should multiple word senses be handled?

Figw'e 3.3 shows the structure of the word representation. The meanings of words are
encoded as prespecified feature patterns (similar to McClelland and Kawamoto 1986).
These can, in principle, contain any type of information, but for now, assume that the
infonnation is primarily syntactic and is encoded as binary patterns. The word patterns
are divided into two parts: the idtnJijication pan and the featUTe part. The ID pan is an
arbitrary tag, and the feature pan encodes the meaning of the word. The network is only
able to "see" the feature parts of the Vt'Ofds.This prevents parsing networks from learn-
ing overly specific rules about particular words instead of general rules about major
parts of speech. I

The encoding is fairly "loose" -a single feature bit does not change the meanings of a
number of orno- feature bits.21be feature bits have both gross features (e.g. noun, verb,
adjective .•• ) and detailed features (e.g. plural, first p:rson, proper ... ). Multiple word
senses (e.g. "refund" as a verb versus a noun) are handled by superimposing the differ.
ent feature patterns (logical OR). This would not result in meaningful feature patterns
were it not for the loose encodings. PARSEC networks do not explicitly indicate which
word sense is being used in their output; it is implicit in the parse representation and can
be inferred easily. Of course, in more substantial domains where lexical ambiguity is a
more serious problem than in speech domains. more effort would be required to handle
this problem. (See Chapter 9 for more discussion of lexical ambiguity.)

1. It upossible 10 allow the use oflD information. and it might be useful in cues where shades of
meaning Ire not captured by the features of words. This has nOI been bie({ in thU work.

2. There u some anecdoul evidence lhal tight encoding of word meaning in language tasks hurts
generali1..ation (personal communication, Ye-Yi Wang). This is ~laled 10 the poinl about the aug-
mented XOR problem. One wants 10 avoid forcing a network to work very hard 10 figure out the
meaning of its inpul representation. The COSIof a loose encoding is a larger network.



3.1: Connectionist Parsing

Given a panicular representation for individual words, there are different ways to repre-
sent sequences of words. For example, a word sequence can be represented spatially
across several sets of word representation units. Alternatively, a word sequence can be
presented to a network by using a dynamically changing activation pattern across one
group of units that encodes the meanings of single words in a sequence. I have used both
types of input representation in different parsers, and this will be discussed IalCr.

Parse representation

Certain structures are more easily modeled within connectionist networks than others.
For example, nested recursive structures of varied depth (the sort that are favored by lin-
guists in representing syntax) are not easy to represent in connectionist networks.3
'''Flal'' structures are preferred.

I have chosen a case.based representation (e.g. Fillmore 1968; Bruce 1975) 8Ild have
augmented it somewhaL Case representations are appealing for two reasons. They pro_
duce similar representations for syntactic variants like "Mary hit John" and "John was
hit by Mary."1bey offer a compact way of representing several of the central semantic
relationships in sentences. In domains such as human-machine interfaces or in specch-
to-speech translation, it is more important to capture information about meaning than
about syntax alone. Also, case representations are easily augmented and specialized for
different domains; one can add a new case-role if there is a need for one.

The werle. I am reporting here involves real English sentences with complex noun
phrases and verb constructions.4 Real sentences require a representation for phrases in
the parse representation, but the traditional linguistic ootion of a phrase involves unde.
sirable recursion. The representation used by PARSEC relies on a non.traditional lin-
guistic unit~ed a phrase block. In the following sentences, the phrase blocks are
delimited by brackets:

[The man) [gave] [his dog) [a cookie].

me big blue whale] [was swimming) [to the boat].

Phrase blocks are simple English phrases consisting of contiguous sequences of words
(e.g. the piece of a noun phrase from the detennmer to the head noun is a phrase block).
They are very similar to what Abley has tenned "chunks" (Abney 1991a., 1991b). Fig-
me 3.4 shows the difference between traditional linguistic phrase structure and phrase
block structure. From the connectionist perspective, the non-recursive nature of phrase
blocks is their key feature. Related phrase blocks can be attached using external labels
instead of using nesting. Abney has compiled psycho-linguistic and other data to sup.
port the notion of non.recursive chunks. being a sensible unit of language, bull adopted
phrase blocks primarily because the representation obviates a number of difficult repre-
sentational issues in connectionist parsing.

3. This is not 10 say that it is imrossible. See Chapter 2 for I description of Pollack's RAAM
architecture

4. Much connecrionist NI.P WOI"k has avoided some of the complexity of real language by focus-
ing on content words within single clauses (e.g. '"Tarzan love Jane"). In such systems, phrase level
rep-esenlations are not needed.
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3: Connectionist Paralng

FIGURE 3.4 Two views of phrase strudufe.

lilie mg I W~ Iputting Ihis gold IIunder Ithe bathtub III

Ithe mgllw~ putting /I his gold IIunder the bathtub/

•
FIGURE 3.5 Altemate parse representations.

NP

the mg

VP VP I: gold I pp I: bathtub Iw~ putting under

~

~

ACTION

was putting
~

~

LOCATION

under the bathtub

Figure 3.5 shows alternate )XlrSeS of the sentences from Figure 3.4. The top parse is a
more or less standard parse tree (under-specified to save space). The bottom representa-
tion is an eAample oCme type of oUlput that PARSEC produces. It is a simple non-recur-
sive, semantic representation that is amcnable to connectionist implementation.

3.1.2 Computational Issues

A connectionist network is a very diffcrenl computing engine than LISP. In modem pro_
gramming languages, questions about how to capture temp:>ral context are easily
answered. In connectionist networks, there are several ways to capture temporal Context,
and each has important performance consequences. Temporal context may be repre-
sented spatially as in TDNNs for speech recognition (Waibel et aJ. 1989). It is also pos-
sible for networks to learn to capture temporal context using recurrent structures (Elman
1990; C1eeremans. Servan-Schreibec, and McClelland 1989).

Consider a simple task: assignment of symbol values to slots. In a programming lan-
guage, there is an assignment Operator, but in connectionist nctworks, even after one
decides how to represent symbols and slots, the notion of "assignment" is still foreign to
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FIGURE 3.6

3.1: Connectionist Persing

Conditional symbol assignment: two strategies.
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a simple collection of units with connections. The assignment operator must be learned
by the network unless some mechanism inside the network is able to perform assign-
ment.

Network Formalism

J have developed a network fonnalism specifically for problems involving sequentially
processed symbols (Appendix A describes the formalism, but for additional details. see
Jain 1989). The major features aCme formalism are:

• WeJl-behaved symbol buffers are constructed using groups of units.

Units have temporal slate; they integrate their inputs over time. and decay toward
zero.

• Units produce the usual sigmoidal oulput value and a velocity output value. Units
are responsive to both the static activation values of other units and their dynamic
changes.

The formalism supports recurrent nctworks.:5

Learning is done through gradient descem using a mean-squared error ffieBSurCas with
standard back-propagation learning (Rumelhart, Hinton, and Williams 1986).

Symbol ManIpulation

Direct support of symbol manipulation is perhaps the most controversial aspect of the
fonnalism and deserves an illustrative example of its benefits. Figure 3.6 shows two
solutions to a conditional symbol assignment problem. The pattern of activation over the
input units represents a symbol that is supposed to be atomic. It is to be mapped onto the
oulput units when a particular condition occurs over the combination of the input and
context units.

5. Recurrence is explored in several parsing networks. but it does not appear in the flnal PARSEC
archita:ture.
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3: Connectionist ParsIng

In the first case, the network must learn the condition placed on assignment of the input
pauem to the output units and a complex auto-encoding problem to achieve the proper
output pattern. In the second case. between the input and output units there are fixed-
weight connections. Ignoring the gating unit's effects, the fixed-weight connections
cause the output units to take on the same pattern as the input units. However, when the
gating unit has low activation, the cUlTCntpattern across the output units is frozen, and
no activation flows from the input to output units. When the gating unit has high activa-
tion, the output units decay towards low resting values, and activation nows from the
input to output units. The network learns the task through supervised training of the gat-
ing unit's behavior. Thus, by using the gating unit, the network need only learn the con-
dition placed on assignment, and the symbol assignment results from the effect of the
gating unit.

Training the first version of the module is more difficult, requiring more time and more
data. It also has an additional failure mode. It may learn the appropriate conditions for
the assignment but may undergeneralize the aUlO-encoding and fail to make the proper
symbol assignment.6 By supporting manipulation of symbol patterns directly. it is possi-
ble to simulUlneously decrease training time and improve generalization.

3.2 Structure: Learned or Engineered

There are two approaches that lead to task-dependent structure in connectionist net-
works. 1be first is learning-based, and the second is explicit inclusion of structure by a
network architect In the leaming approach, structure emerges through training general
purpose architectures such as those used by Elman (1990). While such efforts have met
with some success, the architectures have not been shown to be powerful enough to han-
dle the complexity of the tasks in this work. They also tend to require a great deal of
training data to show any generalization.

Certainly, it is desirable to see connectionist learning algorithms that cause complex
structures to emerge sporlUlneously from Wlstructured networks. However. it seems sen-
sible in pursuing such learning algorithms to first find out what types of structure are
required or desired from a penonnance perspective. There is also a more pragmatic
issue in building real systems. When useful infonnation is available about a domain, it is
often more efficient to simply provide the infonnation to a network rather than expect a
network to learn it. For example, in image recognition, translation invariance is easy to
engineer (use weight-sharing), but it can be very difficult to learn using computationally
tractable training sets.

3.3 Early Parsing Architecture-------
In this section, I will outline the structure of the first substantial connectionist parser that
was developed during this work (Jain 1991). This is intended to make the foregoing dis-

6. This is similar to the effect described in Chapter 2 that Berg experienced with XERIC (Berg
199t). It tended 10 "forget" detailed features.
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3.3: Early P.r.ln; Archltaetur.

FIGURE 3.7 Parser'soutputrepresentationof anexamplesentence,

[Clause " [Phrase Block " The dog (RECIPIENT) ]
(Phrase Block 2, was given (ACTION) J
(Phrase Block 3, • bone (PATIENT)] ]

(Clause 2, [Phrase Block " who (AGENT)]
[Phrase Block 2, ate (ACTION)]• [Phrase Block 3, the snake (PATIENT) ]

(RELATIVE: "who" refers to Clause 1, Phrase Block 1) )

cussion of representation and computation more concrete. The next chapter will
describe PARSEC's architecture-a generalization of the architecture outlined here.

The three main goals of this early architecture were to show:

1. That connectionist networks could learn to incrementally pome non-trivial sen.
tences.

2. How modularity and structure could be exploited in building complex networks
with relatively little training data.

3. Generalization ability and noise tolerance suggestive of application to more sub-
stantial problems.

The training corpus consisted of a set of sentences with up to three clauses, including
sentences with center-ernbedding and passive constructions. It contained over 200 sen-
tences.' These sentences were grammatically interesting, but they did not reflect the sta.
tistical structure of common speech. Here are some example sentences:

• Fide dug up a bone near the b'ee in the garden .

• I know the man who John says Mary gave the book.

The dog who ate the snal:e was given a bone.

Given the input, one word at a time, the network's task was to incrementally build a rep.
resenlation of the sentence that included the following infonnalion: phrase block SUllC.

tore, clause structure, case-role assignment, and intercIause relationships. Figure 3.7
shows a representation of the desired parse of "The dog who ate the snake wa'l given a
bone." The sentence is represented as two clauses made up of phrase blocks to which
role labels are assigned. The embedded relative clause is also labeled.

7. These were taken from the example set of a parser based on a left associative grammar devel-
oped by Hausser (1989)
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3: Connectlonlat Persing

FIGURE 3.8 Early parsing architecture.
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3.3.1 Network Architecture and Data Flow

Figure 3.8 shows the network. architecture. Infonnation flows through the network. as
follows. beginning with the lowest level and continuing up the hierarchy. Each of the
modules of this architecture uses recurrent connections between the hidden units and the
output units (similar to Jordan 1986). The delailed internal structure of each module is
not shown in the figure.

The Word level contains all of the infonnation about word meanings that the network
has. A \\lOrd is presented by stimulating its associated word unit for a shon time. This
produces a pattern of activation across the fearw-e units that represent the meaning of the
word. As mentioned in Section 3.1.1. learning adequate word representations from
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3.3: Ealrly Perelng Architecture

small training sets is problematic. Therefore. the connections from the word units to the
feature units. which encode semantic and syntactic information about words. arc com.
piled into the network from hand-specified feature representations.

The Phrase module contains gating units that learn the proper conditional assignment
behavior to capture word feature patterns in the phrase blocks (see Figure 3.6 for a
detailed diagram of the conditional symbol assignment task). Phrase blocks are matrices
of units that contain room for up to four words. Each of the word slots in the phrase
blocks (a row of units) has an associated gating unit within the Phrase module. The gat-
ing units are trained to respond to the current input word in the context of the partial
sentence. The proper sequence of gating unit activations produces the following phrase
block structure for the example sentence: "[The dog] [who] [ate] [the snake] {was given]
[a bone]."

The Clause Mapping module assigns phrase blocks to clauses. For example, "[The dog]
[who] (ate] [the snake] [was given] [a bone]," is mapped into "[The dog] [was given] [a
bone]" and "[who] [ate) [the snake]." Each phrase block has three clause mapping units
associated with it. This allows for up to three clauses in an input sentence. The unit with
the highest activation "wins" the phrase block for its clause. The pattern of winners
given by "I 2 2 2 1 I" produces the mapping shown in the figure. During the course of
processing. the phrase blocks are remapped into clause-specific phrase blocks by sub-
routine according to the activation of the Mapping units. In the example, the embedded
clause "(who] [ate] {the snake]" is marked as belonging to clause 2, with the remainder
assigned to clause I.

The Role lAbeling module produces labels for the roles and relationships of the phrase
blocks in each clause of the sentence (e.g. Agent, Action. Patient, etc.). For each clause.
there is a matrix of units that represent role labels and attachments (X dimension corre-
sponds to phrase block number, Y dimension corresponds to label). For the CJ\ample
sentence, the Role Labeling module assigns Recipient/Action/Patient and Agenl/Action/
Patient to the phrase blocks of the respective clauses.

The InJerclause Labeling module represents the interrelationships among the clauses
making up a sentence. This again is represented using a matrix of units. In the e.'l:ample,
the Inrerclause module indicates that clause 2 ("[who] [ate] [the snake]") is relative to
phrase block I of clause I (••[the dog]").

3.3.2 Dynamic Behavior

The dynamic behavior of a trained network will be illustrated on the example sentence
from Figures 3.7 and 3.8: 'The dog who ate the snake was given a bone." This sentence
was not in the training set of the network.

Initially, all of the units in the network are at their resting values. The units of the phrase
blocks all have low activation. The word unit corresponding to ''the'' is stimulated. caus-
ing its 'WOrdfeature representation to become active across the Feature units. The gating
unit associated with slot 1 of phrao;e block 1 becomes active. which in rum causes the
feature representation of "the" to be assigned to the sloL The representation for "the"
(and each subsequent word) is stimulated for 10 network update cycles to allow for ade-
quate processing time within the rCClUTCntmodules. The gate closes as "dog" is pre-
sented. As the gate is closing. the gate for slot 2 of phrase block I recognizes "dog" as
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FIGURE 3.9
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Clause Mapping dynamic: behavior.
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pan of the current phrase block.. and it opens. When "who" is presented. the gate for slOl
I of phrase block 2 recognizes it as beginning a new phrase block. The remaining words
of the sentence are processed similarly. resulting in the final representation shown in
Figure 3.8. While this is occmring. the higher levels of the network. are processing the
evolving representation across the phrase blocks.

The behavior of some of the output units of the Clause Mapping module is shown in
Figure 3.9. The figure shows the time-varying activations of a 6x2 subset of the IOx3
Clause Mapping malrix. In the figure. the columns correspond to clause number and the
rows to phrase blocks. Early in the presentation of the first word. the activation levels of
the second column of units for phrases 2-4 rise sharply. The Clause Mapping module is
hypothesizing that the first four phrase blocks will belong to the first clause-reflecting
the dominance of single clause sentences in the training set. After "the" is processed.
this hypothesis is revised. TIle network then believes mat there is an embedded clause of
three (pJssibly four) phrase blocks following the first phrase block. As a hypothesis is
revised, the clause-specific phrase blocks immediately reflect the new interpretation of
the sentence fragment.

The predictive behavior emerged spontaneously from the training procedure (a majority
of sentences in the training set beginning with a detcnniner had embedded clauses afler
the first phra~e block). The next two words ("dog woo") confinn the network's expecta.
lion. The word "ate" allows the network to finnly decide on an embedded clause of
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FIGURE 3.10

3.3: Early ParsIng Architecture

Dynamic behavior of Role Labeling units.
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three phrase blocks wilhin the main clause. This is the correct clausal structure of the
sentence and is confinned by the remainder of the input TIle Interclause level (not
shown in Figure 3.9) indicates that the embedded clause is relative to the first phrase
block of the main clause. This happens at the same time that the clause module predicts
the embedded clause.

The Role Labeling module processes the individual clauses as they are mapped through
the Oause Mapping module. The output units for clause I initially hypolhesize an
Agent/Action/Patient role structure with some competition from a Recipient/Action!
Patient role structure (the role labeling units' activation uaees for clause I are shown in
Figure 3.10). This prediction occurs because active constructs oumumbcred passive
ones during training. The final decision about role structure is postpOned until just after
the embedded clause is presented. 1bc input tokens ''was given" immediately cause the
Recipient/Action/Patient role structure to dominate. The network also indicates that a
fourth phrase block (e.g. "by Mary") is expected to be the Agent (not shown). For clause
2 ("[who) [ate] [the snake]"). an Agent/Action/Patient role structure is again predicted;
this time the prediction is borne out (not shown).
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3.3.3 Discussion of Performance

I have outlined a modular. hierarchical connectionist network architecture that learns to
parse using back-propagation. It is able to parse complex sentences. including passive
constructions and center embedded clauses.

The key features of the dynamic behavior are:

The network successfully combines syntactic. semantic. and word order informa-
tion.

The network is predictive.

The network responds quickly to right conteXt infonnation.

Uncertainty is manifested by competing Wlits. Units that correspond to different
interpretations of a single constituent show opposing activity. which sometimes
oscillates.

Analysis of genernlization perfonnance and noise tolerance for this network were not
detailed. but some suggestive results were obtained. Novel sentences whose feature rep-
resentation corresponded to training sentences (eAcluding ID bits) were processed cor-
rectly. as expected due to the word representation. In sentences with novel syntax
(overall feature representations not from the training set). performance was oot as good.
Substitution of single words in training sentences resulting in meaningful novel sen-
tences was tolerated almost without exception. However. substitution of entire phrase
blocks caused some errors on structural assignment.

The trained network correctly processed sentences in which verbs were made ungram.
matical (e.g. "We am happy.i. More substantial corruptions often produced reasonable
behavior. For example. the sentence •••[Peter) [was gave] [a bone) [to Fidol," received an
AgenllAction/Patienl/Recipient role structure. This corresponded to an interpretation of
"was gave" as "gave" or"has given." Single clause sentences in which determiners were
randomly deleted (to simulate speech recognition errors) were processed correctly 85%
of the time. Multiple clause sentences produced more errors.

This architecture is limited in some respects. The networlc was extremely difficult to
train. There was no genernl method that produced robust convergence for each of the
modules. Decisions about number of hidden units and learning rates were made in an ad
hoc fashion. The Phrac;e module was particularly difficult to train. The gating units had
vcry complex dynamic behavior. requiring recurrent connections to learn the task. With.
out general methods for reliable convergence. application to additional tasks would be
difficult.

The architecture suffers from an additional computational inadequacy. Using gating
units for assigning words to phrase blocks requires that it is always possible to decide
which phrase block an input word belongs to at the time it is presented. A gating unit
must assign an input word to some phrase block during the time course of its presenta.
lion. and no right conleJ(t information can be used. For the particular task that the net.
work was trained for. this was not a problem.



3.4: Summary

In general, it is not always possible to decide questions of phrase block membership
without right context For example, constructions of "[verb + particleJ" (e.g. "[fill in]
[the form]") versus "(verbJ + [prepositional phrase)" (e.g. "[summarized] [in the
announcement]") are of len more easily disambiguated using the additional information
to the right of the panicle/preposition. A more general mechanism for symbol assign-
ment is needed.

3.4 Summary-------
In this chapter, I introduced some of the problems facing connectionist parsing and set
out the major design choices:

• Representation: words are represented as prcspecified binary feature patterns;
parses use a case-based representation built on non-recursive sub-units .

• Computation: symbol manipulation primitives are built into the connectionist net-
work formalism, rather than learned.

The preliminary parsing architecture presented in this chapter, while being able to
model complex language, lacks generality in some respects.
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4 PARSEC Architecture

This chapter covers the PARSEC connectionist parsing archileClUre. The PARSEC sys-
tem addresses the shortcomings of the connectionist architecture described in the previ-
ous chapter.

4.1 Conference Registration Task

Conference registration dialogs fonn a nice domain for developing speech-to-speech
uanslation systems. At eMU, there were several parallel efforts on various aspects of
the problem using conference registration. Here is a sample example conversation,
repeated from Section 1.2:

CALLER: Hello, is this the office for the conference?

OFFICE: Yes,!hat'sright.

CALLER: J would like to regislet for the conference.

OFFICE: Do you already have a registration form?

CALLER: No, nOI yet.

OFFICE: I see. Then, I'U send you. registration form. Could you give me your name
and address?

CALLER: The address is 5000 Forbes Avenue, Pittsburgh. Pennsylvania, 15236. The
name is David Johnson.

OFFICE: I see. I'U send you a registration form immediately. If there are any questions,
please ask me at any time.

CALLER: Thank you. Goodbye.

OFFICE: Goodbye.
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The conference registration dialog task COIpUS consisted of 12 conversations using a
vocabulary of slightly more than 400 words. There were over 200 unique sentences in
the corpus (Appendix B contains the full text of all 12 conversations). In addition to the
text of the corpus, recordings of multiple speakers reading the conversations in an office
environment were made as part of a speech recognition effon.

As with the task described in the previous chapter, the CR task included multiple-elause
sentences, with both active and passive constructions. In addition, it contained ques-
tions, imperatives, conditionals, and conjunctions. It also contained domain-specific lan-
guage such as telephone greetings and American addresses. Overall, the CR task used
substantially more complex and varied language than was used to train the previous
parser, but it did not have substantially more sentences available for training a parser.

4.2 Baseline PARSECParsing Architecture

Using the previous parsing architecture as a starting point, with the CR task as a testing
platfonn, the PARSEC architecture was developed. In this section I will describe the
baseline PARSEC architecture. In the next section, key enhancements to this architec-
ture will be presented. The quantitative effects of the enhancements on generalization
performance are discussed in Chapter 6.

Figure 4.1 is a high.level diagram of the architecture. Each of the modules perfonns a
subpart of the total parsing task. The design of these modules was guided by a central
principle: a connectionist network should not be required to learn mliJlOOM behaviors,
especially if such behaviors are difficult to learn. TIte network: should only be required
to learn those picces of the problem that can't be solved by other methods. If a llllldule is
supposed to transfonn a sequence of words into a set of separate phrase blocks, the
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FIGURE 4.2

4.2: Baseline PARSEC Parelng Archhecture
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interesting pan is deciding where me phrase block boundaries are. not in performing the
actual transformation from the input units to the output units.

The input to PARSEC is a sequence of words corresponding to an English sentence. 1lJe
mapping from word.sequence to network input is shown in Figtue 4.2. As wilh the pre.
vious parsing architecture. the meanings of words are encoded as unlearned feature pat.
terns (in later figures. mock unit activations will be replaced by the actual words mat are
being represented across lhe units). This architecture differs in the way lhe sequence of
words is represented. Each word is looked up in a lexicon, and the activation pattern that
encodes the word's meaning is applied to the proper set of input units in sequcncc. The
input units are arranged in a 20 grid, with each row corresponding to a single slot. This
input representation eliminates the need for the network to make immediate decisions
about the current input word. Since the words are stored in a stable mauix of units, the
network: can postpone decisions when necessary by looking ahead in thc input butTer.

Each of the modules has the basic structure shown in Figure 4.3. The input units reflect
some intennediate representation of the developing parse. The output units can be
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trained to either assign a label to a particular set of input units. or cause a data transfor-
matioo to occur. There are recurrent connections from the output units to the hidden
units. The data transformation is carried out by non-eonnectionist software. This is a
generalization of the gating type of behavior that was described in the previous architec-
wre. Instead of only allowing gating behavior. complex data transformations are possi-
ble through the use of clerical subroutines. PARSEC uses two types of uansformation:

6 Replacement of marked structures.

• Breaking structures at marked boundaries.

The bottom three modules of the PARSEC architecture (see Figure 4.1) perform data
transformations, and the lop three label the transformed resulL I will describe the mod-
ules bottom-up.

The first module (called the Prep module) is an optional task-dependent preprocessing
module (see Figmc 4.4). It can be trained to perfonn simple filtering operations on the
incoming teJ[1to simplify the operation of the other modules. Input word representations
are placed in slots sequentially (see Figure 4.2). The output units make their decisions
dynamically, and the result of their decisions is a (sometimes) modified representation
that appears across the input units of the next module. In the-CR task. the Prep Module
is used to replace alphanumeric strings (like phone numbers) with a single special wurd
"alphanum." This eliminates a potential difficully in representing arbitrarily long alpha.
numeric strings. Note that this is noLalways a triviallask since words like "a" and "one"
are lexically ambiguous.



FIGURE 4.5
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The Phrase module (Figure 4.5) is responsible for transfonning a sequence of words
into phrase blocks (phrase blocks are described in Section 3.3). The input 10 the Phrase
module is the evolving input sentence as transfonned by the Prep module. The input is
es.~ntially the same as that shown in Figure 4.2, except that the words are coming from
the CMltputof the Prep module instead of from the environment At a given time, the
input matrix of the Phrase module reflects the Prep module's interpretation of the partial
sentence. The output units of the Phrase module mark phrase block boundaries with
high output. and other inter-word boundaries with Jow output The effects of the CMllput
units appear immediately across phrase block representational units. An output value of
0.5 is the transition between non-boundary and boundary. The transformations are car-
ried out by subroutine immediately as transitions are made. The key difference from the
previous architeewre is that the Phrase module need not learn complex dynamic behav-
ior. Only the recognitwn of phrase boundaries is important. For the CR task. phrase
blocks could contain up to five words.

The Clause Mapping module (abbreviated "Clause modulej transfonns the sequence of
phrase blocks into separate clauses, similar to the Phrase mooule transforming the word
sequence into separate phrase blocks (see Figure 4.6). The input is the phra.••e block rep-
resentation of the sentence as indicated by the Phrase module. In the baseline architec-
ture, the output units of the Clause module have the same Stnlctw"c and function as for
the parser described in Chapter 3. Each phrase block has a set of associated mapping
units that assign the phrase block to a particular clause. If a phrase block belongs to
clause I, the first unit in that phrase block's column of mapping units will have high
activation. The decisions made by (he mapping units are implemented by a subroutine in
the simulation program. The transformed output is a new phrase block arrangement
where each clause's phrase blocks are grouped together. Thi.••new representation is used
by the labeling modules. In the CR task, up to four clauses were present. and each had
room for up to seven phrase blocks.
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The three labeling modules use the output of the Clause Mapping module (the remapped
phrase blocks) as input The Role Labeling module (abbreviated "Roles module") must
label the phrase blocks of each clause with the proper case.role or assign an attachment
label that relates a ptuase block to anathec phrase block. There are no side-effects with
this module. The labeling is represemed as a matrix of units (one column for each
phrase block of a clause and one row for each label). Note that particular case-roles are
fixed only for a particular parstt. not for the general architecture. The choice of labels
(both number and type) depends on the task. Fer the CR task, there were twelve labels
(sec Section 4.4).

The Imerclause Labeling module is very similar to the Roles module. It performs a
labeling and attachment task at the level of clauses. The output of the Interelause mod-
ule is represented as a matrix of units as with the Roles module (one column for each
clause and one row for each label). Again, note that these labels are specified for a par_
ticular parser in some specific domain.

The Mood Labeling module (abbreviated Mood module) labels the input sentence's
mood (e.g. declarative. interrogative, imperative... ). There is a single output unit for
each possible mood.

4.3 Architectural Enhancements

During the course of development, the PARSEC architecture underwent two major rep-
resentational changes from the baseline architecture just described. Architectural con-
straints on connectivity within the modules were also added. The key principle
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FIGURE 4.7
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embodied in these enhancements is: wherevu possible, incorporau domain knowledge
to maJz the learning task easier. The impact of these changes on performance will be
discussed in Chapter 6.

4.3.1 Clause Mapping Representation

The representation of the Clause Mapping units was changed from the baseline system.
Instead of being required to produce the clause identity of each phrase (as in Figure 4.6),
the new output representation was required to indicate the inter-phrase points that begin
new clauses and close embedded clauses. This allows for purely local decisions. For
each inter.phrase junction, there are two units in the new representation: one indicating
new clause boundaries, and the other closure of embedded clauses.

Figure 4.7 shows the two representations for "[IJ [would likeJ [to register} [for the con.
ference)." In the baseline representation, the output unit responsible for assigning "[for
the conference)" to its clause needs to learn about what is happening in other previous
phrase blocks in order to identify the n~r of the clause. In the new representation,
each output unit only has to learn about local areas. For example, the unit that marks the
clause boundary after "[would like)" only needs to look at the phrases "[would like]"
and "[to register)" to make the proper decision. It does not matter where the previous
phrase blocks are assigned.

An interesting effect of the new representation is that center embedding is now more
limited than before. The old representation allowed arbitrary clause membership as long
as one did not exceed the total number of clauses. Thus, "[The dog] [that] [the rat] [lhat]
(the cat] fchao;ed] [bitJ [yelped]," is representable as the column winners "} 2 2 3 3 3 2
I" across the clause mapping units. However, the new representation is incapable of
consistently representing that sentence along with "[The dog] [that] [was] [near the rat]
[that] (the cat] [chased) [yelped]" with column winners under the old representation of
"} 2 2 2 3 3 3 I." In the fIrst case, the closure of "the cat chased" returns to "the ntt"
(clause 2), but in the second case, "the cat chased" returns to ''the dog" (clause 1).

In PARSEC, I have adopted the convention that closure of an embedded clause always
returns to the main clause. This allows for processing of sentences like "[The dog] [that]
[was] [ncar the rat] fthat] [the cal} [chased] [yelped]." But sentences like "[The dog)
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FIGURE 4.8
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[thatJ Lthe ratJ lthatJ (the catj [chascdJ lbitJ LyelpedJ'" are not representable. This is nOl
wueasonable behavior considering which of the two sentences is more likely to be
uttered and understood by a human.

4.3.2 Phrase Block Representation

Using the baseline phrase block representation. lhe task tha1 PARSEC must learn is
needlessly complicated. The main "content word" of a phrase moves around depending
on the phrase. For example, consider "the fonn" and "the registration form." In the first
case, ''form'' appem, in position 2 of the phrase. but in the second case, "form" appears
in position 3 of the phrase.

Figw-e 4.8 illustrates the baseline and enhanced phrase block representations. On the left
is the baseline version--simply a sequence of words constituting a phrase block. lbe
head of the phrase moves around depending on the word sequence (e.g. "My telephone
number" vs. "My number"). Any unit interested in making decisions based on the head
of the phrase must learn to do so for each of the possible positions of the head. On the
right is a modified representation. lbe last word in the phrase block. is mapped into a
canonical position (implemented by subroutine). The modified representation provides
the network with a reliable salient information source.

4.3.3 Architectural Constraints

In addition to the representational changes, two restrictions on network. connectivity
were added to some modules of the architocture:

1. Localized input connectivity: to prevent distant context from affecting decisions
that should be made locally.

2. Weight-sharing: to force position insensitivity.

To illusuate the points, consider the unit in the Phrase module responsible for learning
how to mark the boundary between words 3 and 4 of the input. There is no reason 10
expect that information about word 9 should be useful in making this decision. How.
ever, if the infonnation is available via connections (as in Figure 4.5), spurious correIa.
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lions might cause the unit for boundary 3-4 to base decisions in part on word 9. Also.
the boundary detector for 3-4 will only learn about the consttuctions it sees al that posi.
tion. Since each of the phrase boundary detectors is essentially performing the same
task. it is possible to force position invariance by sharing weights in analogous posi.
tions.

Chapter 6 discusses the issues of localized input connectivity and weight-sharing in
more detail in the context of generalizalion perfonnance. The combination of represen.
tational enhancements and architectural constraints improves the coverage of PARSEC
on novel sentences from less than 20% to nearly 70% on the CR task.

4.3.4 Recurrent Connections

In the baseline architecture. there are recurrent connections from the output units to the
hidden units of each module. In the final PARSEC architecture, this recurrence is elimi-
naled. The recurrent connections are not required to leam the parsing task (in contrast to
the previous architecture). and due to an implementation issue, they hinder efficient net-
work training. Section 6.6 discusses this issue further.

4.4 Constructing a Parser-------
There are four steps to constructing a PARSEC network:

,. Create a training file comaining the target parses of the training sentences.

2. Create a lexicon containing the word features for the full vocabulary.

3. Train the individual modules of the parser.

4. Assemble the modules together to form the full parser.

Chapter 5 will discuss the details of parser construction. Much of the work is automated
and takes little human time.

4.4.1 Example Parses

PARSEC requires example parses to learn. and they must be produced by hand. The
syntax of the example parses is simple:

(lstatement]
([clause](Ia",,,n)

( recipient]
( patient]
( timeJ

The opening parenthesis begins a parse for a single sentence. There is a label that indi-
cates the mood of the sentence (e.g. [statement] or [question)). Next is a list of clauses,
each with a label indicating the function of the clause. In this case. the [clause] label
indicates that it is a main clause (see the list of labels for the CR task on page 45).
Within each clause is a list of labeled phrase blocks. The label on a phrase block indi-
cates the semantic (and sometimes syntactic) function of the words in the phrase block.
The parser builder may choose any labels that he wishes to use for the particular task.
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The example parse captures the required transformation and labeling infonnation in
PARSEC's modules.

Here is an example of a two clause sentence:

([statement]
([clause)~::~rJnt]

Upatient]
([relatlVel

([actIOn]
([time]

The second clause is a reduced relative clause and is understood to modify the phrase
block immediately preceding it in the input. If it isn't the case that mis is true for a par-
ticular task, one can either change the interpretation of the "relativc"label to some other
consistent meaning or use multiple labels to indicate relative clause attachment to differ-
ent parts of the main clause.

The parse below shows an example of prepositional modification (marked "mod.)") as
well as lUlunusual clause label ("greet"). For the CR task, syntactic subjects in existen-
tial constructions were labeled with "agent," but another label could have been used at
lhe COstof some additionalleaming in the Roles mooule.

([question]
([greet)

([mise]
([clause)

~
:~e~W
patient)
mod-'}

The next parse shows an example of a subordinate clause (marked "suf>..I"):

([statement]
([clause)

([ag~ntl
«adlOn)

([sub-1)
([adion]

The last example parse shows a typical yes/oo question structure with subject/aux inver.
sion (the inverted auxiliary is marked "iaux"'). The labels can indicate syntactic struc-
tW"CSas well as semantic relationships:

([question]

CIClaU~~~;~t)

( adlOnJ
(patient]

In the CR task, for the Roles module, these were the )2 labels used:

• AGENT: me agent in lhe sentence that is perfonning the action, "[I] [gave] [lhe
fonn] [to you]."

• ACTION: the action being performed, "[1] (ga\'e] [the fonn] [to you)."
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• PATIENT: the object being acted upon. "rn [gave] (the form] [to you]."
• RECIPIENT: the recipient of the action. "[I) [gave] [the fonn] [to you]."

• LOCATION: location or destination. "[Meet] [me} [at the conference site}."

• TIME: the time of the action. "{I] [will send} [it] (by March twentieth}."
• STATE: staLCofbeing. "(I] (am] (fine)."

HOW-ACT: the "how" in a how question: "(How] [can] m [apply]?"

• ADVERB: modification of verb. "[Thank] (you] [very much]."

• IAUX: auxiliary in subjecl/aux. inversion-a purely syntactic mmer. For example.
"(Can] {I] [help] [you]?"

• MOD-I: modification of the previous phrase block (relative to current phrase
block): "[This] {is] [the office] [for the conference]."

• MISC: miscellaneous role. This is a catch-all for certain very low-frequency and/or
unusual cases. e.g. [Yes]. [HeUo]. [If]. However. most of the phrase blocks that are
labeled with MISC belong to clauses that have special labels that indicate lheir
function (e.g. a clause containing "hello" receives a GREET label).

For the Interclause module. these were the 8 labels:

• CLAUSE: marks independent or main clauses. "{[IJ (would) (like]) ([to register]
[for the conference]) .••.

• SUB-I: marks clauses that are subordinate to the previous clause. "{{I] [would]
[HkeJJ {(to register] [for the conference]}."

• CONn: marks clauses that are conditions of the main clause. "{(If] (there] [are]
(any questions]) {[callJ (me] [alany time])."

• RELATIVE: means thai the curtent clause is relative to the head of the phra~ block
immediately preceding it. "{[Send] [me] (the form]} {{J) [shoukl] [fill outn,"

• GREET: marks clauses that function as greetings. "([Hello]) {[this] [is] [the confer-
enceoffice]]."

• YES: marks clauses that function as affinnative answers. "([YesD ([you] [can]l."

NO: marks clauses that function as negative answers. "{[No]} {[the fee) {isn+l]
[refundablell."

• OK: marks clauses that function as confirmatory answers. "{(OkayD {[I] [under-
slandl) ."

In the Mood module. dec1aratives and interrogatives were distinguished:

• STATEMENT: marks declanltive sentences (also marks imperatives) .
• QUESTION: marks interrogatives.

Note that PARSEC is not dependent on a panicular labeling scheme. It has no built-in
knowledge aboul the labels. It simply learns to assign them based on example parses.

4.4.2 A COmpleted PARSEC Network

The parsing network for the CR task with the best generalization pcrfonnance had
15.390 non-learning units (used for the input matrix. Prep module output result, phrase
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TABLE 4.1 Number of units per module in a CR parsing network.

Module Input Rep. Labevrrlll\Sform Hidden

""" 1197 21 63
1'Mu, 1197 21 84
Cl,~ 3420 40 to
Roles 9576 336 308
In"" • 32 36
Mood • 2 4

blocks, and Clause Mapping output result), 432 labeling and transformational units, 5U5
hidden units, and 63,654 modifiable connections. Note that many of these connections
were shared, and the true number of free connections was much less than this total
(.1>00'6000) .

• Words were represented as 57 bit feature patterns (9 ID bits + 48 feature bits). The
input array aJlowed for up to 21 words per sentence.

• Phrase blocks contained up to five words. The phrase block representation units
allowed up to ten phrase blocks per sentence.

Causes contained up to seven phrase blocks. lbe clause representation arrays
allowed up to four clauses per sentence.

The unit counts are broken down in Table 4.1. An asterisk indicates that the module
shared those units with the previous module.

4.4.3 Example Runs

This section shows example runs of a trained PARSEC network:. Each of the figures for
the first example sentence is a screen dump of the PARSEC program's display during
testing of a sentence. Omitted from the displays are all hidden units, the Preprocessing
module, and the intennediate representational units for all but the first clause. This was
necessary because of space considerations.

The next several figures show PARSEC parsing the sentence, "I will send you a fonn
immediately." Each word is presented in sequence, and the network is allowed six
update cycles before the next word is presented. Each of the small black rectangles rep-
resents the activation of a single uniL Block size indicates activation.

Note that the figures show a network using the enhanced architecture. and thus the rep.
resentational changes discussed earlier appear in the figures. The "PARSEC Text Win-
dow" indicates the partial parse of the sentence. It shows words occupying the head slots
of phrase blocks in parentheses.
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The following is an explanation of each of the blocks of units in the figures:

WORD: the set of units that fonns the inputlO the Phrase module. It is the result of
the Prep mcxlule (not shown). Each row can hold the feature representation of a sin-
gle word.

PHRASE; the output units of the Phrase module. These are a single column of units
that indicate junctions between phrase blocks.

PHRASEn: the nth phrase block representational units. Note that the first row is the
special head slot mentioned earlier. This is the input to the aause module.

CLAUSE: the output units of the Clause module. They mark beginnings of new
clauses (top row) and closure of embedded ones (bottom row) .

• CLAUSE-MOOn-PHRASEm: the mth phrase block of the nth clause in the sen-
tence. Only the first 5 phrase blocks of clause 0 are shown in the figures. These are
pan of the input for the labeling mcxlules.

ROLES-MOOn: the output units of the Roles module for the nth clause (columns
correspond to clause-specific phrase blocks and rows correspond 10 labels) .

• INTER: the Interclause labeling Wlits (columns correspond to clauses and rows cor-
respond 10 labels) •

• MOOD: the Mood labeling units (lOp unit indicates STATEMENT, bottom indio
cates QUESTION).
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Example run.
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In Figure 4.9, the PARSEC network has just been cleared. Nearly all of the units have
low activation. Some have learned high bias tenns and have high output in the absence
of input stimulation. For example. in the Mood module. the unit that indicates a declara-
tive sentence has high initial activation.
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FIGURE 4.10 Example run.
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FigW'e 4.10 shows the state of the parse after "I" has been processed. After the features
for the word "r have been stimulated (and retained) across the proper slOl of the Word
W1its,the network has decided the following:

"I" ends a phrase block. and the next word probably is pan of a two word phrase .
• "I" is an AGENT. and the ncxt phrase block will be an AcrION .
• So far, there is only a single clause (no activity in the Clause Mapping units), and it
is a main clause.
The mood of the sentence is declarative (a statement).

Representation of words and phrase blocks across the different intennediate units is
instantaneous. As soon as any transformational unit crosses threshold. its effect is trans-
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milled throughout the network. Note that "I" appears across both the fITSIand second
rows or Ihe phrase block representation because ii's Ihe flTSlelemem of the phrase block
and it's also the head The top row is the remapped head slot In Ihe printed representa-
tion, head words are indicated in parentheses.

Figure 4.1 t shows Ihe state of the parse after "I will" has been processed. The word
"will" is incorporated inlo the parse in a new phrase block, and it receives an ACTION
label, as predicted from Ihe previous nelWod state.
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In Figure 4.12, after receiving "send," the network predicts another constituent to the
"[will send)" phrase block-perhaps a particle like "in," This is reflected by the two
consecutive low-activation units in the Phrase module. This expectation will turn out to
be wrong.

In the second phrase block, the head slot now reflects the features of "send" instead of
"will" as in the previous figure, The simulation program responds immediately to new
infonnation, and performs remappings as needed.
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Example run.
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As seen in Figure 4.13, the word "you" begins a new phrase block, and it is assigned the
RECIPIENT label. The network now seems to expect a two word phrase block to follow
(it's right, but in the next figure, the expectation changes to a three word phrase block).
Ncxe that the network. continues to show a STAlEMENT mood and indicates that the
sole clause is a main clause.
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FIGURE 4.14 Example run.
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When the network processes "a" (Figure4.14), it believes that the new phrase block it is
constructing should contain three words (e.g. "(a registration fonn]). Such construc-
tions were quite common in the training corpus. However, in this case, the prediction
proves false. The network correctly labels the panially built phrase block as the
PATIENT. The network makes a spurious prediction for phrase block 6 (STATE label)
that persists until the end of the parse, but it does not affect the intelpretation since the
phrase block is empty.

Initially, the head slot for phrase block 4 contains the representation for "a," but as with
"will send," this will change with the next word.
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Example run.
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Not much happens with "fonn" (Figure 4.15), but the network still has not decided that
"fonn" terminates a phrase block. This is because, as far as the network is able to tell
from its sparse features, "form" might be part of a noun compound with the next word.
If the network knew more about individual words, it would be able to close the phrase
block at this point •
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FIGURE 4.16 Example run.
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In the final figure of the example run (Figure 4.]6). "immediately" is incorporated into
the parse. The figure shows the correct final parse of the sentence.

The previous example was fairly simple. PARSEC networks exhibit more complex
behavior on multi-clause sentences. In what follows. I will discuss the behavior of PAR.
SEC on the sentence "The titles of papers to be presented at the conference are printed
in the second version of the announcement." Note that there is an embedded relative
clause within a passively constructed main clause. There arc also some prepositional
phrases. In the inlerest of saving space. screen displays will not be shown. The partial
parses of the sentences that the PARSEC network produces contain most of the interest-
ing information.
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4: PARSEC Architecture

the)))(the)

Very early in the parse, while processing "the," the network produces the following par_
tial parse:

«statement 0.81)
«clause 0.98)

((agent 0.30)

Note that there is only panial activation of the AGENT label. The activation paucms are
still settling.

In the following update cycle. the label changes to PATIENT:

((statsmsnt 0.80)
«clause 0.9~)

«patient 0.38) (the) ths)))

tho)))(the)

Within a few more time steps, the network settles on the assignment of AGENT for this
fragment. The assignment is incorrect, but the network will revise this initial guess.

«slatemsnt 0.86)
((clause 0.99)

((agent 0.71)

the titles)))(titles)

As the next word's representation becomes active, it is incorporated into the first phrase
block, initially with no change of label:

(statement 0.88)
((clause 1.00)

«(agent 0.79)

the titles)))(tilles)

However, the network soon assigns both AGENT and PATIENT labels to the phrase
block:

((statemsnt 0.89)
«(clause 0.99)

«agent 0.63)
(patient 0.60)

This is followed by a loss of support for the AGENT label, probably since "titles" is not
animalC:

((statement 0.89)
«clause 0.99)

((palient 0.64) (titles) the titles)))

the titles)
of)))ltitleS)of)

The word "of" is immediately labeled as part of an attached prepositional phrase:

((statement 0.88)
((clause 0.99)

l(patient 0.81)(mod-10.89)

the titles)
of papers)))

(titles)
(papers)

The current representation solidifies with slightly higher activation prior to the next
wofd The word "papers" does nOI affect the structure moch:

h:'icilement 0.86)
((clause 0.99)

((patient 0.84)
((mod-' 0.99)
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tolll

the titles)
of papers»

(titles)
(papers)

(to)

"To" begins the embedded relative clause. The new clause is immediately recognized,
but born the label of the new clause and the label of the new phrase block are incorrect
partial activations:

({statement 0.88)
((clause 0.99)

«patient 0.83)
«mod-10.98)

(lclause 0.26])
«patient 0.48)

tolll

the titles)
of papers»

(to)

ltitres)papers)

This changes to a more reasonable interpretation rapidly. Now, the new clause is labeled
as being subordinate (probably because most subordinate clauses begin with "to''). The
new phrase block is labeled as possibly an ACTION or a RECIPIENT -both reasonable
possibilities for "to" if local context dominates.

((statement 0.71)
«clause 0.9!})

«patient 0.83)
((mod-' 0.98)

«subo1 0.97)
«action 0.52)
(recipient 0.63)

The network settles on the ACfION interpretation of "to" below.

((statement 0.58~
«clausa 0.9 )

upatient 0.83) !titleS) the titles)
mod.10.98) papers) of papers»

«sub-10.99)
«action 0.69) (to) tolll

The word "be" resuiLSin a sequence of shifts:

«question 0.51)
«clause 0.99)

((patient 0.83) (titles) thetitJes)
«mod-' 0.98) (papers) of papers))

«sutr10.99)
«action 0.56) (be) to belli

((statement 0.63~
«clause 0.9 )

HPatient 0.83) !titleS) the titles)
modo' 0.98) papers) of papers»

«sutr10.95)
«recipient 0.48) (be) to be»)

((statement 0.71)
«clause 0.99)

fpatient 0.83) (titles) the titles)
(mod.1 0.98) (papers) of papers»

«rei of papers) 0.43»
((action 0.86) (be) to be)))

The Mood module reSJXlndswith a spurious but small fluctuation in the overall sentence
mood. 11lc Intel'Clause module produces the correct label for the embedded clause. The
Roles module produces the correct ACTION label with high confidence after tempo.
rarily labeling "to be" as a RECIPIENT. The network arrives at a stable interpretation of
the sentence fragment in which the second clause is correctly labeled as being relative to
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the titles)
of papers»

to be presented)))(presented)

ltitleS)papers)

"of papers." The network incorporates "presented" wilh no difficulty, and it solidifies its
current predicted structure.

((statement 0.92)
((clause 0.99)

llpatient 0.83)mod.l0.98)
«rei (of papers) 0.85)

((action 0.95)

After temporarily assigning "at" to a new phrase block labeled RECIPIENT, lhe net.
work arrives at the proper result.

((statement 0.94)
((clause 0.99)

«patient 0.83)

l(mod.' 0.98)((rei of papers) 0.82)

l(adion 0.97)
(location 0.56)

(titles)
(papers)

lpresented)at)

the titles)
of papers))

to be presented)
at»)

the titles)
of papers))

to be presented)
at the conference)))

(titles)
(papers)

(presented)
(conference)

The words "the conference" are processed with little revision of network predictions:

«statement 0.92)
{(clause 0.99)

l(patient 0.83)(mod.' 0.98)
((reI of papers) 0.81)

(adion 0.96)
((location 0.10)

the titles)
of papers»

to be presented)
at the conference are)))

the titles)
of papers)
are»

to be presented)
at the conference)))

(titles)
(papers)

(presented)
(are)

(titles)
(papers)
(are)

(presented)
(conference)

The word "are" is initially placed in the wrong phrase block along with "at the confer.
ence." Then it is propc7ly assigned to its own phrase block and to the proper clause.
Eventually, the correct role label becomes most active as well:

(statement 0.92)
«clause 0.99)

!(patient 0.83)(mod.' 0.98)
«rei of papers) 0.80)

((adion 0.95)
«(location 0.84)

«statement 0.91)
«clause 0.99)

((patient 0.67)
«mod-l0.94)
((action 0.96)

«rei (of papers) 0.80)
((ado" 0.96)
«location 0.S2)

the titles)
of papers)
are printed»

to be presented)
at the conference»)

(titles)
(papa •• )
(printed)

(presented)
(conference)

The word "printed" solidifies the current partial parse:

«statement 0.91)
((clause 0.99)

I!
palient 0.92)
mod-l0.99)
adion 0.99)

((rei (of papers) 0.80)
(adion 0.95)
((location 0.84)
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"In" is processed and produces a MOD-I label initially, which loses out to the LOCA-
TION label very quickly. As "the" is processed, the correct interpretation gains suppon:

((statement 0.91)
«clause 0.99)

((patient 0.93)
((mod-' 0.99)
«aelion 0.99)
«location 0.54)
(mod-l0.52)

((rei (of papers) 0.80)
«aelion 0.95)
«location 0.84)

((statement 0.91)
«clause 0.99)

«patient 0.93)
((mod-1 0.99)
«aelion 0.99)
«location 0.90)

«reI (of papers) 0.80)
((aelion 0.95)
«location 0.84)

(titles)
(papers)
(printed)

(in)

(presented)
(conference)

(titles)
(papers)
(printed)
(in)

(presented)
(conference)

the titles)
of papers)
are printed)

in))

to be presented)
at the oonference)))

the titles)
of papers)
are printed)
in the»

to be presented)
at the oonference)))

The current phrase block is completed with "second version."

«statement 0.79)
«clause 0.99)

((patient 0.93)
((mod-' 0.98)
«aelion 0.99)
«location 0.86)

(rei (of papers) 0.80)
«aelion 0.95)
«location 0.84)

(titles)
(papers)
(printed)
(version)

(presented)
(conference)

the litles)
of papers)
are printed)
in the second version»

to be presented)
at the conference)))

The last phrase block is also processed with no major shifts in interpretation. The fmal
parse of the sentence is shown below.

((statement 0.79)
((clause 0.99)

«patient 0.93)
«mod-10.98)
((action 1.00)
«location 0.90)
«mod-11.00)

«rei (of papers) 0.80)
((action 0.95)
((location 0.84)

(titles)
(papers)
(printed)
(version)
(announcement)

(presented)
(conference)

the titles)
of papers)
are printed)
in the second version)
of the announcement))

to be presented)
at the conference)))

The dynamic behavior of the PARSEC network was qualitatively similar to that of the
early parsing architecture as discussed in the previous chapter. It made predictions about
sentence structure based on partial sentences, and it revised them as more information
became available.
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4.5 Summary

In this chaptu, I described the baseline PARSEC architecture along with some key
enhancements whose performance impact will be discussed in Chapter 6. The two guid-
ing design principles were:

1. To avoid forcing networa to learn mundane transfonnational operations.

2. To incorporate domain knowledge into the architecture rather than expecting the
architecture to learn il from limited training data.

The architecture is modular. Each module can perform one of two actions: transfonna-
boo or labeling. 1be modules are set up to perfam three successive tnmsfonnations and
then to label the result using another three modules.

The architecture is quite general in principle, since any combination of transformation
and labeling steps are possible. In this work though, only Ihe size of the various modules
and the labels that are awlied vary.

The dynamic behavior of trained netwttks is quite complex. It arises from training
using an incremental parsing paradigm wilh the requirement thallhe parsing networks
always attempt to produce the final parse of partial sentences.



•

5 PARSEC Training

The previous chapter described the PARSEC architecture. but without robust learning
algorithms. the architecture would prove to be of little value. In this chapter. I will
describe the constrUCtive learning technique that PARSEC uses-Programmed Con-
structive uarning (PQ.). The techniques used in PARSEC's automatic training algo-
rilhm will also be presented.

There were four critical areas in training PARSEC networks:

1. Generalization: learning algorilhms to produce networks thai generalize well.

2. Learning speed: minimization of network size. algorithms lO make "'earning to
completion" possible.

3. Robustness: methods to ensure that networks would reliably converge.

4. Automation: a single generalized training aIgorilhm for use by non-experts who
cannot be expected to fine.rune parameters or architectures.

The PCL technique addresses the generalization issue, but does not solve other prob.
lems. Back-propagation learning is a gradient-descent method that is of len slow in prac-
tice. There are many factors that influence learning speed in such networks. including:

a Network size: the bigger the network (especiaUy in tenos of number of modifiable
connections), the longer it takes to train it.

Parameter tuning: if a lot of human parameter tuning is required, the learning pro-
cess can slow down (sometimes the human makes non-optimal decisions. and the
learning process cannot be constantly monitored).

Local minima: while generally not considered to be a problem in high-dimensional
input spaces, this can be a problem when one attempts to train to completion.

61



5: PARSEC Training

In early experiments. completely ad hoc solutions were used foc each of these problems,
and while I was able to produce acceptable networks. the amount of labor and Wlcer-
tainty involved were unacceptable.

The next section describes the PCL algorithm. Following that is a discussion of learning
effects that impact back-propagation. Then PARSEC's overall learning algorithm is
described. The chapter concludes with an experiment in which a non-expen success-
fully trained a PARSEC network for a novel parsing task and an application of PARSEC
to another language: German.

5.1 Programmed Constructive Learning------
To address the generalization perfonnance issue. I developed a new fonn of constructive
learning (similar to Fahlman and Lebiere 1990), which is called Programmed Construc.
rive uarning (PCL). It differs from other constructive techniques in that a specific
seq~"ceof new hidden unit types is used. Hidden unit types are specified by a network
designer based on domain knowledge. and they typically have progressively widening
receptive fields.

The first unit added (from type 0) relies on very local infonnation and learns as much as
it can. More units of the same type are added until no significant improvement is real.
ized. Then, units from the next type are added in a similar manner. This process contin-
ues until the training corpus is exhausted or until no further improvement is desired.
This process is automatic except for the description of the hidden unit types, which must
be done for a particular domain just once.

Figure 5.1 shows some hidden unit types for PARSEC's Phrase module. Type 0 units
have input connections from the word units preceding the boundary that their output
Wlits are supposed to detect Type 1 Wlits receive input from both sides of the word junc-
tion. Type 2 units have an even wider input field. Type 0 units are likely to learn things
like "prepositions usually don't end phrases." The important point is that they can learn
this using narrow, local infonnation. This technique reduces free parameters in the sys.
tern as well as enforcing a suonger locality consbaint than in networks trained without
PCL.

Using PCL, generalization perlonnance of the Phrase module increased from 79% to
95%. The impact of PCL on generalization is described in detail in Chapter 6.

5.2 Learning Effects------

5.2.1 The Herd Effect

Fahlman (1988,1990) has described a phenomenon called the "herd effecL" One sees
this when there are a number of hidden units in a network that all start out with small,
random weights. In a fully connected network, the hidden units tend to change their
weights in the same ways. This results in a herd of hidden units that are aU doing the
same thing-attempting to minimize the principal source of error.
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5.1: Progremmed Constructive leernlng

FIGURE 5.1 Pel hidden unit types for the Phrase module.

Phrase boundary

word -2

- word -1• word +1
word +2

(Hidden Unit Type 0)

(Hidden Unit Type 1)

word-2

:::: word -1
*' word +1

word +2

Phrase boundary
•

(Hidden Unit Type 2)€€ word-2
word -1
word +1
word +2

Phrase boundary

I have found three ways to overcome this problem:

1. Don'I use full connectivity between the output and hidden units. Give output units
"private" hidden units.

2. Don't use full connectivity between the input units and the hidden units. Randomly
connect some proportion of the input units to each hidden unit

3. Use consuuetive learning techniques where hidden units are added one at a time.
Each hidden unit then sees very different error corrections.

Of these methods. the third one is best It eliminates the herd effect, and it also solves
the network: resource problem. The network size depends on the task at hand, and no ad
hoc decisions need to be made. Usually the networks grow slightly larger than is
required, but not excessively large. An added feature is that much of the learning takes
place with relatively small networks and is thus faster per epoch than for larger net.
works .

•

•
5.2.2 The Wasted Hidden Unit Effect

This effect manifests itself when a network's output units are far from an obvious local
minimum at the beginning of training. Consider a binary task where, most of the time,
the network's output units are to have the low value, but their initial bias is 0 (and so
their resting output is an intennediate value). There is a local minimum in weight-space
where the network simple produces low values for all outputs. Often. a back-propaga-
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FIGURE 5.2

5: PARSEC Tnllnlng

Typical learning curve in a back-propagation network.

l~ .

Epochs

lion network will move to this minimum early in ttaining by placing negative weights on
the hidden 10output connections.

Even though the bias tenn is modifiable. it is quicker for the output units to modify their
multiple input connections to achieve the local minimum than it is 10 modify the bias
tenns optimally. The simple solution for this is to stan the output units off at the obvious
minimum. where their initial resting output values are exactly that of the low binary
value. While this may seem trivial. it does save lime and resources.
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5.2.3 The CompreUon Effect and Forgenlng

In most instances of back-propagation karning. one does not attempt to train the net-
works to completion. However. the case of learning to parse a corpus of well-famed
sentences is different than the more typical application of back-propagation. where it is
• likely that some of the training exemplars are noisy (e.g. speech recognition or hand-
written digit recognition). It is not unreasonable to expect that a parsing system that
learns should, in principle. be able to learn all of the example parses presented 10 it

It is true that generalization performance suffers when training to completion (see Sec.
tion 6.6). However. it is useful to be able 10do so in order 10make better comparisons to
hand-wrinen grammars. where one can add rules until an example set is covered. In
practice. it is unwise to train parsing networks to completion. since one is more likely to
see novel sentences than training sentences.

In training the networks. the observed learning curve was the familiar asymptote (see
Figure 5.2). The vast majority of uaining examples could be learned in short order.
However. the last few were usually very stubborn. and this created an interesting gaming
situation. In the obvious strategy of going through the training examples one at a time.
during the final epochs most of the time is wasted on tokens that are learned satisfacto-
rily. However. one cannot force the network to completely concentrate on the unlearned
tokens. because the network would then forget previously learned examples.
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I tried numerous methods to overcome this problem:

Skipping learned tokens: each of the tokens that was processed successfully was
skipped a number of times in fUlUre epochs depending on the number of times it
had been correctly processed. This focused anention on tokens that were close to
decision boundaries.

Focusing attention: each of the unlearned tokens received more presenlations per
epoch than learned tokens.

Learning rate manipulation: by adjusting the learning rate, the idea was to minimize
the damage done to learned tokens while allowing unlearned tokens to be gently
pushed to the proper side of the decision boundaries.

Weight freezing: weights in trained portions of a partially built network were frozen
to prevent forgetting.

Combination methods: atLCmptsat combining these methods in various ways were
also attempted.

UnfortlD1ately, most of the methods had problems:

• Skipping tokens: while being effective at focusing aaention on unlearned tokens,
the problem of forgetting was magnified unacceptably .

• Focusing attention: it was difficult to canuel the parameters that adjusted the num.
ber of presentations simultaneously with adjustment of the learning taLC.

• Learning rate adjustment: see above.

• Weight freezing: this was also somewhat effective, however, it produced larger net.
works than needed.

The next section describes the PARSEC leaming algorithm in the context of the effects
enumerated here. 1be algorithm is a three phase approach that uses learning rate manip-
ulation. attention focusing, and token skipping in different ways in each of the phases.

5.3 PARSEC LearnIng Algorithm

I use several tenns in what follows:

• tOUf!: a single training example for a single module.

~poch:a single pass through an entire set of tokens for a single module.

success: after a forward propagation step. if the output units of the module are
within some epsilon of their target values, it is called a success .

• failure: not a success.

The learning algorithm has three phases:

Phase 1: In this initial phase of learning, most of the tokens are learned.

Phase 2: Begins when all of the tokens in the training file can be learned (at least
temporari1y) during a single epoch.

Phase 3: Begins when there are very few tokens that are processed incorrectly.
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There are four key parameter'S that control the learning:

1.1earningJale: A multiplicative factor that controls how steep the gradient-
descent is.

2. modify _on _success: ITtrue. modify weights for this token after both success and
failure.

3. maxYr'es-'lumber: The maximum number of presentations per training token.

4.jailJUe yroporrion: The fraction of training tokens that are processed incorrectly
by the current network.

5.3.1 Main learning Procedure

This procedure is responsible for implementing the PCL algorithm. Hidden units are
added one at a time. After adding a unit.. the network is trained to quiescence. and an
evaluation of performance is made. ITthere is improvement. another hidden unit of the
same type is added. otherwise. the next hidden unit type is selected. Here is the algo-
rithm:

)

Build the initial network (no hidden units).
Loop {

Try to add a hidden unit of the current type (initially 0).
It out of types, terminate.

Read parameters for current hidden unit type.
Call leam_one_unit.

Check performance on the training examples.
11no failures. retum.

Check If the current hidden unit improved performance significantly.
11not. Increment hidden unit type.
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The parameters that the procedure reads are specified by the hidden unitlype designer.
They include the minimwn and maximwn nwnber of units to add to a network and the
initial learning rate. 1bese are available to allow for additional control of the network
architecture. but in practice. the algorithm does not typically run into the bounds on hid-
den units. Also, for all but the first hidden unit added, the learning rate comes from
adaptive adjusunem during the previous hidden unit's learning period.

Note that PARSEC keeps the last hidden unit of each type that is added. even though
those hidden tmits do not appreciably affect perfonnance (as measured after they reach a
plateau). However. there is no weight-freezing in this algorithm. and these units con.
tinue to adapt after units of new types are added. Although no fonnal comparisons were
done between this algorithm and one in which the units were eliminated, the additional
freedom in the extra units seemed to help learning. From a generalization performance
perspective. an extra unit of an early more local type is preferable to an additional unit
of a later type.



}
Restore weights of previous best.net. Return.

r

5.3: PARSEC L•• mlng Algotltkm

5.3.2 Primary Subroutine: Jeam_one_unlt

This subroutine attempts to cu::hievethe best possible performance with the current net.
work:. II is called immediately after each new hidden unit is added. No weight freezing
of early hidden units is used.

Check performance.
Set the max...,Pres_"ulT1ber. 2/ failureJ)roportion.
For each epoch {

For each token {
For each presentation (up to maxJ)res_"umber) {

Process token.
If unsuccessful, or modify_on_success. modify weights.

}
If all tokens became successful during the epoch, begin Phase 2.
If Phase 2, and all tokens became successful, decrease learning rate.
If Phase 2, and not all tokens became successful, increase rale.
Check the performance of the net (return if 0 failures).
If new best.net, store weights.
If faiJure...,proportion is small, begin Phase 3,

and sel modify-on_success to False.
If 3 epochs elapse without improving average error or # failures, break.

Once a phase change occurs, the algorithm will not revert to the previous phase. There is
no interaction between phase changes and changes of hidden units types.

5.3.3 Detailed Explanations

The learning algorithm just presented is robust for the different parsing tasks with which
I have used it. but the focus of this thesis has been on solving problems in parsing. and
oot in solving problems with connectionist learning. The rules that are incorporated into
PARSEC's learning algorithm represent heuristics that my experience has supponed.
and they seem to be well motivated. Additional experiments would be requited to verify
the precise advantages of the various techniques.

Muhlple Token PresentaHon

This allows the network to concentrate on problem examples without completely skip-
ping learned examples (as in one of the earlier variations of the algorithm). Examples
that have been recently "forgotten" are relearned with very few presentations. Difficult
tokens require many presentations. Variation of the maximum number of presentations
keeps the number of weights changes nearly constant per epoch.

learning Rate Adjustment
This allows the network to concentrate the most effort on difficult tokens as compared
with easy tokens. After all tokens can be temporarily learned on.line, generally, most of
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the tokens have been learned well (i.e. they remain successful even at the end of an
epoch and not just temp:>rarily). By reducing the learning rate, progressively more
weight adjustments are made on non.leamed tokens than on learned tokens. On a token
that is processed successfully, on initial presentation. at most a single weight adjustment
is made (during Phase 1 and 2). On an unsuccessful token, many weight adjustments are
made. When the learning rate decreases. it requires more weight adjustments to achieve
success for difficult tokens. and they receive proportionately more weight mcxl.ifications.

Modification Dn Success

One might believe that it would be a good idea to nevtr modify weights following a suc.
cessfully processed token. However, an oscillation problem emerges when this is done.
Large classes of correctly processed tokens suddenly become incorrectly processed.
Then. substantial effort pushes them back, but tends to destroy the learning that
occurred before.

However, in Phase 3. there are very few remaining Wllearned tokens. and weights are
not modified following successful processing of a token. Since there are very few
unlearned tokens. and since the learned tokens have been repeatedly pushed away from
decision boWldaries, the oscillation problem becomes less significant compared with the
benefit of concentrating all of the effort on the last remaining Wlleamed tokens.

Often. the last few tokens fonn a learning sub-problem where higher.arder predicates
are involved and where local minima may be a problem. For example, in the Phrase
module. for the CR task, there are very few examples of "[verb + particle]"' construc.
dons. but there are numerous "[verb (or noun)] + [prepositional phrase]"' constructions.
The network quickly learns that prepositions like "in" begin new phrase blocks, but
there is an infrequent exception when "in" is used as a particle with a verb like "send."
Phase 3 allows the network to concentrate on the very difficult last tokens while making
the most minimal possible changes to the decision boundaries.

Weight Freezing

As mentioned trie1ly above. there is no weight freezing in the algorithm. It seemed to
help a little with the problem of forgetting. but it produced larger networks than needed.
In particular, additional hidden units were required at the later stages, where more com-
plex hidden unit types are used. This tended to hurt generalization performance. Also.
with only a single hidden unit participating in learning, the system was more sensitive to
local minima

5.4 TraIning a PARSEC Network-------
The actual process of training a PARSEC netwcrk deserves some discussion. Much of
the work is automated by the PARSEC Parser Generator (see Figure 5.3). The four steps
for producing a PARSEC network for a particular task are:

,. Create an example parse file.

2. Create a lexicon.

3. Train the 6 network modules.

4. Assemble the full nClwork.
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FIGURE 5.3 Producing a PARSEC network.

PARSEC Parser
Generator

( .:='. )

PARSEC Network

Lexicon
Example
Parse File

The majority of human effOr1is spent in the first two steps. although neither step takes
too much time (approximately 1 day's work total for a task similar in size to the CR
task). The uaining step takes the most actual time, but little supervision is required. A
DecSlation 3100 has been adequate for the tasks in this thesis.

5.4.1 Example Parses

PARSEC needs to see some parses in order to learn its task. The more parses available,
the better the parser. Section 4.4.1 shows examples of training parses. The main issues
in producing a parse file are consistency and simpliciry.

One must avoid parsing similar sentences in different v.oaysif they have acceptable inter.
pretations that are similar. If a particular construct is parsed differently in two places, the
PARSEC network will not be able to learn both examples if there is no distinguishing
infonnation within PARSEC's contextual boundaries. Excessive numbers of labels
should be avoided. Labels that appear only a few times in the examples can cause under.
generalization. TIle PARSEC network will not be able to Conn good decision "rules" for
the labels.

5.4.2 Building the lexicon

PARSEC networks require that the words they process be defined as binary feature vec-
tors. For the tasks discussed thus far, these features have been primarily syntactic, with
some semantic features (e.g. animate vs. inanimate nouns). HO"Never,any features can
be used. There is a utility program (referred to as "deC. lex" below) that aids in the lexi.
can generation process.

69
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lexicon definition utility program window.
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Def.lex looks at a list of the words in the training file along with some infarnation
about how they are used in the task (e.g. the role labels of the phrase blocks in which
word participales). Def-Iex is an Xll~based program that allows a user to simply click
on buttons to define the words (see Figure 5.4). The job of defining the feamres is made
easier in three ways:

1. Other words with similar features are displayed as features are selected.

2. To define the current word. one can copy features from an already defined word.

3. Def.lex prints out infCl'mationai files to help find inconsistencies in a lexicon.

DeC.lex is initialized with a core set of 41 features that should be useful for any English
task (see the figure for those features). It also has a core set of words (both very common
function words and some examples of different types of less common wOrds). The user
can also create features. For example. if the user believes that it is critical for PARSEC
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to know about a class of objects that can fly (e.g. if a role label depends on this property
of a ooun), a feature can be created for that

As with the example parses, the two critical propenies of the lexicon are consistency
and simplicity. Three things should be avoided:

1.Multiple words with different syntactic/semantic function that have identical fea-
tures.

2. Too many fearures for the number of example parses.

3. Words with different features that have the same function.

Of these, the first is the most important. PARSEC may not be able to learn cenain can-
sU'Uctsvery well if it doesn't have reliable features for the words in the construct.

5.4.3 Training the modules

There is a utility to process the parse file and produce the actual training files for each of
the six module. This program also produces architecrure description files for the net.
work modules and the pa.. hidden unit types.

The most time consuming task is training the actual modules of the PARSEC network.
Fortunately, this is almost completely automated. The user must start up six separate
runs, one for each module, but they tend themselves (as described in the previous sec-
tion). All of the parameters for controlling the learning process are automatically set by
the PARSEC training program.

5.4.4 Building the full network

Recall the addition of weight.sharing to the architecture from Chapter 4. During train-
ing, the modules are not trained as full networks, but, for efficiency, they are trained as
single subnetworks. The modules that result from the previous three steps are not in
their final form: they must go through a replication step.

Here are some notes about the structure of the six modules during training f(X'"the final
PARSEC architecture (these details are transparent to the user):

1. Preprocessor: trained as a full module with weight.sharing as shown in Figure 5.2.

2.Phras~:trained as a single subnetwork that requires replication following training.
This is a very small network. Only one phrase boundary unit is present, and only
the minimal amount of word context is present. The network is trained by "shifting"
the sentences of the corpus through it. This saves many units during training.

3. ClallS~: same as the Phra.o;emodule.

4.Rol~s: trained as a single subnetwork. This module requires replication to account
for multiple phrase blocks in a clause. and to account for multiple clauses.

5./nrerclau.se: trained as a full module. no weight-sharing.

6.Mood: same as the Interclause module.

71



5: PARSEC Tr.lnlng

The replication utility takes care of assembling and replicating all of the SlrUctures for
the full parsing network. It builds a network. just big enough to accommodate the most
complex training sentences.

With the full network assembled, the user is free to test the PARSEC parser on any sen-
tences that conform to the vocabulary and network size limitations. The lexicon may be
augmented if necessary. It is also possible to genetale a network that is larger in some
modules than required for the training corpus. However, one cannot increase the total
number of clauses without causing some difficulty at the Mood level. and one must
retrain the Interdause module.

5.5 Ease 01Training-------
To demonstrate that generating a PARSEC network for a new task is not an unreason-
ably difficult task, requiring an expen. I selected a volunteer to train a parsing network
for a novel domain--a subset of the sentences from DARPA's's Airline Travel Informa.
tion System task.

I provided the user with brief written instructions. along with the PARSEC software.
Each of the directories containing PARSEC software included additional ex.amples and
slightly more detailed usage notes than are presented here.

A set of 125 well. formed sentences was seIected-73 sentences for training, and 52 for
testing generalization. The set was split by random selection. Here are some example
sentences:

• Show me all the non-stop tlights from Dallas to Denver.

• What does V U slash one mean?

• What do the transport abbreviations mean?

Appendix D lists all of the sentences used.

5.5.1 Training the NetWOrk

The volunteer was able to train the network to completion on the training set with little
difficulty. Most of the problems arose from inexperience with computers and English
(the volunteer was an early.year Gennan graduate student in Compurational Linguis.
tics). Here is a breakdown of his effon:

• Initial parse file: 3 hours.

Initial lexicon: 2 hours.

Evaluation and debugging of parse file and lexicon: 3 hours.

Training of the modules went smoothly, with occasional problems arising from incon-
sistent labeling of sentences or features of words. After fixing inconsistencies, training
runs were completed
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5.5.2 Perfonnance

The completed network: was evaluated on the test sentences that were reserved out of the
initial sentences. Note that the test set contained novel lexical entries. For each of the
new words. PARSEC's lexicon was augmented. but the new words had not been used
during training. The network: achieved 67% correct on the lest set (75% including near-
misses). This was very similar to the ~rfonnance level achieved by an expert network
builder for the CR task (see Chapter 6).

5.5.3 Gennan Language Task

Another volunteer used PARSEC to produce a network: for parsing a subset of the CR
task in Gennan. PARSEC's architecture did not require any changes. The ttaining pro.
cedure followed the same steps used for training PARSEC on a new English task. The
network: successfully leamed the training set (the first three German CR conversations).
but no perfonnance evaluations were carried out Application of PARSEC to non-
English tasks will be an interesting area of futme research.

5.6 Summary

In this chapter. I presented the algorithms for training PARSEC networks. In addition to
describing the Programmed Consttuctive Learning algorithm. general difficulties facing
back-propagation learning were discussed. Learning speed. network: size. robust conver.
gence, and algorithm automation were key factors in the development of the three phase
training regime. The four step process of building a PARSEC network for a novel
domain is automated wherever JX)SSibleand does not require an expen. PARSEC's
robust training algorithms should facilitate further application to new domains and lan-
guages.
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6 Generalization Performance

Achieving good generalization in large connectionist networks is of len a difficult task.
The difficulty is compounded by small. statiSticalll unbalanced training Corpora in
domains where it is desirable to train to completion. This is exactly the case for PAR-
SEC as applied to the CR task.

In this chapter. I will characterize PARSEC's generalization performance in delai!. First.
I discuss the evaluation procedure for measuring generalization and analyze the perfor.
mance of the baseline PARSEC parser. Then. the effects of lhe architectural enhance.
ments and training techniques discussed in the previous two chapters are analyzed on
four parsing networks produced by PARSEC. The chapter concludes with a comparison
of the generalization perfOlITlance of PARSEC's best parsing network lO an LR parser
using three independently hand-constructed grammars.

6.1 Measuring Generallzallon Performance-------
In order to assess the generalization perfonnance of PARSEC on the CR task, it was
necessary to obtain a substantial corpus of sentences that were disjoint from lhe twelve
conversations that define the CR training corpus. Two generalization sets were col.
lected. The sentences for both sets were generated by people who were not familiar wilh
PARSEC.

1. It is common for grammar wrilers to be given some corpus of sente:neesthat must be covered
by • grammar. I! is lheir goal to write a grammar that coven the sentences in the corpus in the
most general way possible. In connectionist modeling, training a network to produce perfect per_
fonnance on a training co~s huns generalization perlonnance, and this constraint was relllltoo
to produce optimal generalization performance (see Section 6.6).
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6: Generallntlon Performance

For the first set, volunteers were asked to read the twelve conversations of the CR task,
then write down similar sentences that used the same vocabulary. The volunteers were
asked to produce novel sentences using words found only in the CR task. However, they
were not required to ensure that their senlences were novel or that they did not include
words outside of the CR training vocabulary. This set was used during the development
of the PARSEC system and, in particular, its generalization enhancements. In the sec.
tions that evaluate the different versions of PARSEC, the coverage tests were performed
on this seL

The second set was generated in a less restricted manner and was not collected until
after all parsers 10 be evaluated had been constructed. A large group of people were
asked to each write down an imaginal)' conference registration dialog. They were not
restricted in any way. This resulted in over 20 dialogs that included sentences of greater
variety than those collected previously: e.g. sentence fragments, ungrammatical sen.
tences, and some foreign language sentences. This second test set was used to perfonn a
final comparison of the best PARSEC parsing network and the best hand-written gram-

""".
The raw sentences were edited for vocabulary. Those sentences that could be coerced
into the restricted CR vocabulary by minimal changes to 2 or fewer words were so mod-
ified, and the remainder were dropped. Then, repeated sentences were eliminated along
with sentences that occurred in the CR training corpus.

The first set had 127 sentences initially, and afta com:cting vocabulary and eliminating
duplicates, there were 117 sentences. The second set had 253 unique word strings with 2
or fewer out-of-voc.abu1ary words. After eliminating non.sentences, ungrammatical sen-
tences, and those that could not be corrected for vocabulary without significantly dis-
torting synlax, there were ISO sentences.

Both sets are listed in Appendix C along with the parse score for each sentence of PAR-
SEC's best network, and the best hand-coded grammar for the CR task.

6.2 Generalization Techniques-------
In the previous chapters I described the basic structure of PARSEC's architecture and
training algorithms. along with techniques used to improve gene:alization. These fall
into three categories:

• Representational techniQues-methods used to represent symbols and symbol
structures.

• Architectural conSll3ints-restrictions on input receptive fields, weight sharing .

• Training techniques-incremental uaining, incremental addition of hidden units.

Two techniques for forcing genmlization were used in aU versions of PARSEC. First,
separation of word representations into iikntijication portions and lea/un portions was
used throughouL Second, PARSEC's four Role Labeling modules (one for each possible
clause) shared weights.
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FIGURE 6.1

6.3: Conference Registration Paraer: PARSEC V.1

Basic structure of the six modules (early PARSEC versions).

Output
Units

give)
me)
your name)
please)

6.3 Conference Registration Parser: PARSEC V.1-------
For the sake of brevity, in what follows, "CRn" should be taken to mean "the PARSEC
Version n parsing network for the Conference Regislration IaSk."

PARSEC Version I was the baseline architecture, corresponding to the description in
Section 4.2. Beyond the two techniques described above, no additional attempts were
made to enhance generalization. Each network module had essentially the same struc-
ture, as shOYlnin Figure 6.1. The output units received input from the hidden units. Hid-
den units received input from all input units (exclusive of ID units) and all output units.
This recurrent structure is similar to that described by Jordan (1986).

CRl's generalization perfonnance was characterized by performance on the 117 sen-
tence leSting corpus. Correct parses are those that are perfect in all particulars. Some
small percentage of parses are close enough 10 warrant a category of near-misses. The
remainder are labeled incorrecL Below are two examples of near-misses.

Here the network failed 10 label the "please" (no units corresponding to role labels for
that phrase block exceeded an oUlput of 0.5), but it doesn't make a critical difference in
the interpretation:

([statement}
aclause]

M
d"n]
recipient]
alient]

In the next parse, the network auached "after September thinieth •• to "five hundred dol-
lars" instead of labeling it TIME:

([statement]
([clause]

~

ag~nl]
( adon]
patient]
mod.1J

the fee)
is)
five hundred dollars)
aher september thirtieth)))

Note that the near-miss category docs not make a qualitative difference in the perfor-
mance comparisons between PARSEC and hand-coded grammars.
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TABLE 6.1 CR1 performance.

N='" Percentage

Conoe< 19 16% ] 23%
Near Miss • ,•.- 90 77"

TABLE 6.2 CR1 failures broken down by module.

Em".
PREP 11

PHRASE 63

CLAUSE 8
ROLES IS

lNTERCLAUSE 1
MOOD 0

Responsibilil)'

11"

OS"

•••
15••

1"

•••

p",~
91••

41••

81••

"•.
95••
1••••
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au generalized poorly (Table 6.1). The ovoall success rate was 16%. Table 6.2 shows
how the errors were dislributed among the modules. Since the architecture is hierarchi-
cal, failw-es were counted for the firsr module that failed. In this table, near misses were
counted as failures. For each module, two rates are reported. The first is the percentage
of errors fer which the module is primarily responsible. 100 second is the module's per_
formance on sentences in which it received COITCCtinput from the previous module. For
CRt, the biggest source of failure was from the Phrase module. However, the perfor-
mance of both the Phrase module and the Roles module was substantially worse than
that for the other modules--41 % and 57% respectively.

Here are two examples of Cailw-es in the Phrase module (asterisk indicates missed
phrase boundaries);

• rCould] [you] [tell] [me" the deadline] [for the conference] .

• [Is] [there] [8 discount] rfor members •. of the Information Processing Society].

In these examples. the Phrase module failed to recognize a boundary. This was most
likely caused by position sensitivity acquired during training. The units that failed were
tuned only to recognize those phrasal boundaries that had occurred in those specific
positions in the training set. The unit responsible for marking a phrasal boundary
between words 4 and 5 was not able to recognize that "tell me the deadline" requires a
boundary between "me" and "the."

There were two basic reasons for the poor result:

1. Too many free parameters in the system given the amount of training data.

2. Output units were given access to unreliable non.local information.



FIGURE 6.2

15.4: Conferenc. Registration Pllrser: PARSEC V.2

Diagram of localized input connections with weight-sharing.

Input Units Hidden Units

etc.

Output Units

o

Regarding lhe first point. back-propagation learning is opponunistic. If it is possible !O
"memorize" a training pattern using excess freedom in its connections. a back-propaga-
tion network will do so. In the baseline architecture. each of the output units of the
Phrase module was responsible only for learning a particular position. but they had
access to a large number of hidden units with relatively little uaining dara Regarding
the second point. the unit responsible foc indicating a phrase boundary between word 3
and word 4 was spuriously influenced (through lhe hidden units) by words at very dis-
tam positions. As mentioned in Chapter 4, architecturnl constraints in the fonn of local-
ized receptive fields and weight-sharing were added to PARSEC.

6.4 Conference Reglstrallon Parser: PARSEC V.2-------
There was a greal deal of improvement to be made from PARSEC Version 1. Most nota-
bly. failures at the lowest three levels accounted for 84% of the errors for CR 1. PARSEC
Version 2 differed from Version I in its lower three modules.

To address the performance difficulties experienced in CR I. PARSEC's Phrase and Prep
modules were modified using local receptive fields and weight-sharing. Each output unit
was given its own set of hidden units thai had limited, position-specific receptive fields.
t.ocallzed input receptive fields prevent networks from making decisions based on dis-
tam input information that can be unreliable.

In addition. weights were shared among analogous units that differed in position. Figure
6.2 diagrams this structure. The black weights have the same values as the analogous
sets of gray weights. Each output unit is "looking at" a differem piece of the input in the
same way as the others. This is similar to weight-sharing in Tlffle.DeIay Neural Net-
works (Waibel et al. 1989). In this type of network. each of the decision making mod-
ules is required to use local infonnation. Fwthennore. everything learned from one
position is shared among aU positiorn. There is a net reduction in free paramelers.
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TABLE 6.3 CR2 pertormance.

Como,

Near Miss

32
IO

"

Percenuge

2'% ] 3'%.%
64%

TABLE 6.4 CR2 failures broken down by module.

Err""
PREP 3

PHRASE 24

CLAUSE 2
ROLES 52

INTERCLAUSE 2

MOOD 2

Rc:sponsibilily Performance

4% 97%

28% 79%

2% 98%
61% 41%

2% 94%

2% 94%
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PARSEC's new Clause module was also constructed using these two techniques. In
mer to make this possible, the representation of the output units was changed. Recall
the enhanced Clause module architecture from Chapter 4. Instead of being required to
produce the clause idefllity of each phrase, it was required to indicale the ifller-phrase
points that begin new clauses and close embedded clauses. This allowed for local deci-
sions, and hence weight-sharing. See Section 4.3.1 for additional details.

The perfonnance of CR2 (Table 6.3) was nearly twice as good as CR1's performance
(27% vs. 16%). Replacing CRl's bottom three modules had the effect of reducing the
number of errors from those modules from 82 to 29-8 reduction of 65%. The most dra.
matic improvement was in the phrase module. In CR I. it was 65% responsible for fail-
ures as compared to 28% in CR2. Its performance increased from 41% to 79%. The
dramatic improvement of the early modules shifled the failure responsibility mainly to
the Roles module. In CRl, the Roles module was responsible for 15% of the failures,
but in CR2. it was responsible for 61%. It is interesting to note that different modules
tended to fail on the same sets of sentences. Those sentences that caused problems at the
bouom three levels caused problems at the Roles level in CR2.

The e:wnple sentences discussed in the previous section were COl'lUtly processed by
the Phrase module of CR2:

• [Could] (you) [tell] (meJ [the dcadJine] (for the conference].

[Is] {there] (a discount] [for members] [of the Infonnation Processing Society].
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6.5: Conference RegistratIon Par"r: PARSEC V.3

The first sentence then was correctly processed by the remaining modules. However.
correct processing of the second sentence by the Phrase module exposed an error in the
Roles module (marked by an asterisk):

[ACIlON is] [AGENT there] [PATIENT a discount] (MOD-) for members]
["RECIPIENT aCthe Information Processing Society).

The phrase "of the Information Processing Society" should be labeled with MOD-) to
indicate attachment 10 "{or members." The unilS responsible for performing case-role
labeling had a very difficult job to learn. They had to combine information from many
locations to assign any of several possible labels given relatively few training exemplars.

The task: was complicated by the representation of phrase blocks. The main "content
word" of the phrase moved around depending on the phrase. For example. consider "the
{ann" and "the registration form." In lhe first case, "{onn" appears in position two of the
phrase block. but in the second case, "Corm" appears in position three. Without ample
training data. the Roles module became sensitive to head word position without being
able to generally learn head word conr~nl.

6.5 Conference Reglstretlon Perser: PARSEC V.3------
The only change from PARSEC Version 2 to 3 was in the representation for the phrase
blocks in the Roles module. In the baseline phrase block representation, words were
represented as a sequence. with each wocd in a phrase block occupying a single row of
units. In the augmented representation. the head words of phrase blocks were mapped
into a canonical place. The augmented phrase block representation was introduced in
Section 4.3.2.

Generalization perfonnance in the Roles module of CR3 increased from 41% to 67%
with this simple modification.2 The performance of CR3 (Table 6.5) was 44% correct
overall. Table 6.6 shows the performance of CR3 broken down by module. In CR3. all
of the mCKtules performed better than 90% except the Phrase module (79%) and the
Roles module (67%).

The example sentence that caused failure in CR2 (see above) was processed correctly by
CR3, but CR3's perfonnance stiD left a good deal of room for improvemenL In the final
version of PARSEC. I applied all of the generalization techniques used in CRI-3 plus a
few more-most importantly the PCL technique introduced in Chapter 5.

6.6 Conference Registration Parser: PARSEC V.4 (final)------
In PARSEC Version 3. the three principal techniques for enhancing generalization were:

2 More elaborale representational changes irrYoJvinglearned mappings from simple phrase
blocks to highly regular phrase suuenares (e.g. explicit slots (or detenniners. nouns. main verbs.
auxiliaries, etc.) were not anempted due to computational considerations. although they might
prove useful.
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TABLE 6.5

6: Generalization Performance

CR3 performance.

Corr~l
Near Miss

In==<

N=ba

51
13

53

Pcruntage

44'" ] "'"
11'"

.,'"
TABLE 6.6 CA3 failUres broken down by module.

PREP 3

PHRASE 24

CLAUSE 2

ROLES 30
INTERCLAUSE 6
MOOD I

Respomibilily Performance

5% 97%

36% 79%

3% 98%

4.5% 67%

••• 90%

2% 98%
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Reduction of free parameters through weight sharing in the lower three moclules.

• Localized input connections to enhance information reliability in the lower lhree
modules.

• Representational changes to reduce task complexity for the Roles module.

For liIe final version of PARSEC, I used each applicable generalization technique for
each module of the parser. In particular, weight-sharing and localized input 6elds were
used in lIle lower folD'moclules (including lhe Roles module), and the augmemed phrase
block representation was used in the Clause Mapping module as well as the Roles mod.
ule. Most importantly, the PCL technique was used in PARSEC Version 4.

Another key difference in the final PARSEC architecture is lhat it uses no reclUTtnc~
between output and hidden units, whereas all previous PARSEC versions used recUrrent
connections from the modules' output units to lheir hidden units. The reasons for dr0p-
ping recurrence were not related to generalization performance, but rather are related to
an implementation issue.

For efficiency, it is best to train single subnelworks insread of full networks that require
on.line weight sharing. There is a lower memory requirement, and many fewer opera.
tions are wasted on redundant units during processing. For example, in a full Phrase
module network, there might be 20 SIOlS for words, but for most sentences, only the first
few might be used. However, all of the unils must be updated anyway. Training on a sin.
gle subnetwork eliminates the possibility for interesting recurrence from a set of output
units to hidden units. The single output unit in lIle subnetwork does not provide new
information to lhe hidden units.



TABLE 6.7
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CR4ICR4.com perlormance.

Con=

Near Miss

In"""",

N="'"
78 (68)

13 (10)

26 (39)

Percentage

67% (58%)

11% (9%)

22% (33%)

] 78% (67%)

TABLE 6.8 CR4ICR4.com failures broken down by module.

&ron Responsibility Performance
PREP 0(0) 0%(0%) 100%(100%)
PHRASE 6 (10) 15% (20%) 95% (91%)
CLAUSE 11 (16) 28% (32%) 90%(85%)
ROLES 17 (18) 44% (38%) 83% (80%)
INTERCLAUSE 3 (4) 8% (8%) 96%(95%)
MOOD 2 (I) 5% (2%) 97% (99%)

In PARSEC, as opposed to the parsing architecture described in Chapter 3, recurrence is
not necessary to learn the task. In the previous architecture (in the Phrase module), input
word feanues were available only for a brief duration, and hidden units had to have
access to the output values of both the gating units and the intermediate representational
tmits that captured phrase blocks. In PARSEC, input to each module is buffered and sta-
ble. It contains sufficient infonnation fa' ourput units to leam their tasks.

In CR4, the modules were not trained to completion. They were nained until they
reached a plateau of performance above a training performance threshold of 90%. This
made a small difference in each module's performance (e.g. 91% vs. 95% generalization
in the Phrase module), but the cumulative effect was imponant. Since modules feed into
one-another, performance rates have multiplicative effects. Another CR parser
(CR4.com) was trained to completion.

Table 6.7 shOws the performance ofCR4 and CR4.com. Numbers in parentheses are for
CR4.com. A breakdown by module is shown in Table 6.8. The overall perfonnance of
CR4 was 67% (78% including near misses). This was a dramatic improvement over the
performance of CR1 (it had just 16% correct in the generalization test). The perfor-
mance ofCR4.com dropped to 58%. Additional failures in the Phrase and Clause Map-
ping module cause most of the additional errors in CR4.com.

The weakest module was the Roles module (44% responsible for failures). It is easy ID
understand why this was the case. The complexity of the task relative to the amount of
training data was the most unfavorable among all of the modules. For each phrase blOCk,
there was a choice of several role labels that had 10 be made. Compared with the Clause
module (two choices per phrase block) and the Phrase module (one choice per word
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FIGURE 6.2

6: G.n.r.llzatlon PerforrNInce

Plot 01generalization performance VS.number of connections.

100%

boundary and Jess than three words per phrase block on average}. one can see the reJa.
tive difficulty in assigning twelve role labels. some of which occur infrequently. Also.
role labels are more context dependent than the boundary decisions.

6.7 DIscussion 01CR Parsing Networks------

Figure 6.3 shows a plot of network performance versus number of modifiable connec-
tions (counting shared connections only once). The four dark points are from CRl-
CR4. As the nmnber of free connections decreases. perfOmlance increases. However.
the gray point falls sharply outside the ClD'Ve.It corresponds to CR4.com (the PARSEC
Version 4 parser uained to completion). It has more connections than both CR2 and
CR3. but its performance comes close to thaI ofCR4. The key is thatCR4 and CR4.com
were trained using the PC!.. technique. In PCL. hidden units with broad input connectiv.
ity are only added after much of the training set has been learned. The late hidden units
of CR4.com accounted for a large number of pot~ntia/lyharmful connections. but those
connections never became excessively sensitive 10 non-general features.

The errors that CR4 made fell into two categories: undergeneralizations and lDlavoid.
able errors. Undergenemlizations result from inadequate exposure to such sentences in
the uaining corpus. Unavoidable errors result from a IOtallack of exposure to novel con-
structs. An example of the former is "Please fill out the form which I will send you." In
this case. CR4 failed to properly label the relative clause (it labeled it as an independent
clause). 1bere was only one relative clause introduced by "which" in the training cor-
pus. and such undergeneraJizations are expected. A network has no good way of know-
ing exactly what is supposed to be novel about a new construct Any feature that
differentiates a new construct from other ones is picked up by back.propagation. Unless

84



6.B: Comparison to Grammar-Ba •• d Panler.

there are a few training examples, a network might just guess wrong. Additional training
examples would correct deficiencies of this kind..

An example of a sentence that uses a novel construct is, "How do I go about this?" The
phrase "go about" uses "about" in a different way than any of the training examples.
One cannot expect PARSEC 10get truly novel constructs righl J Of course. many gener.
alization failures fall into a gray area. but the distinction between the two types of fail.
ures is useful. In failures of the first type, additional examples of sentences similar 10
those already in the training corpus would probably solve the problem. In the second
case, the novel sentence falls more completely outside the realm of expertise of the
parser. The failures for CR4 were fairly evenly mixed between the two cases, with 51%
arising from undergeneralizations, and 49% arising from novel constructs.

6.8 Comparison 10Grammar-Based Parsers

In the previous sections. I described a number of generalization techniques and analyzed
their impact on the perfonnance of parsers generated by PARSEC. The section will
place the generalization perfonnance numbers in context by comparing them 10the per.
fonnance of a parser using three hand-coded grammars for the CR task. The comparison
was made to a Generalized LR parser implemented using Tomita's algorithm (Tomita
1985,1991).

The first grammar was wriucn for use in the JANUS speech-to-speech translation sys-
tem (see Chapter 7 for more details about JANUS). The other two grammars were writ-
ten as part of a contest A large cash prize ($700) was awarded for best coverage of the
I J7 sentence CR test set (the second place finisher received 5300). All grammar writers
were experienced (one a Computational Linguistics graduate student, the other two
were active research staffers in the Center for Machine Translation at CMU).

6.8.1 Grammar 1

A grammar was written in a Lexical Functional Grammar fonnalism that allOWed for
combining syntax and semantics to produce a frame-based output parse (see Chapter 7
for more information about the output representation). Its output was somewhat differ.
ent than that produced by PARSEC. The LR parser with this grammar (LRI) prodiJced
information about tense and detailed anaIyses of noun phrases. Apart from that. it gener.
ated essentially the same information as PARSEC. It was able to parse only 5% of the
117 test sentences correctly. To be fair, the grammar was created under time-pressure (it
still required many hours of work to complete). Also, it was not constructed specifically
with coverage considerations in mind. Jt still provides an interesting data point though.
It illustrates that grammar.based formalisms are highly dependent on their grammar.
writers and the conditions under which they are required to work.

3. Often. partial parses contain some useful infonnation. but it can be unreliable. The is a parse
failure heuristic that is fairly good at detecting when a pane should be good (see Sections 6.8.3
and 7.13).
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6.8.2 Grammars 2 and 3

The following two grammars were the result of a motivated effort to produce grammars
with good coverage. Each grammar took approximately 8 weeks of effort to produce,
although the grammar writers were not working on them full-time. Note that the gram_
mar writers wece not forced to use any particular grammar or parsing fonnalism; they
were only required to use an existing fonnaI-grammar based parsing system. They made
their choices based on ease of implementation in the CMU environmem coupled with a
desire to win the contest

Grammar 2 consisted of context free pseudo-unification grammar rules. IllOOk approxi-
mately 60 total hours to produce. Rule writing and debugging took the majority of the
time. The LR parser using this grammar (LR2) parsed 25% of the testing sentences cor-
rectly (26% including near misses). Of the incorrect parses. 80% were Nll. outputs. and
20% were non-NIL but incorrect in a major way (e.g. sentence mood or major missing
or incorrectly labeled constituent). Fully 60% of the test sentences were rejected as
unparsable.

Grammar 3 was also a context free grammar and took approximately the same amount
of time to produce as Grammar 2. However, it used a slightly different grammar formal-
ism, with some special rules for handling particles. LR3 parsed 38% of the test sen-
tences correctly (39% including near-misses). Of the incorrect parses, 89% were Na
resulLS, and 11% were non-Na but deficient. Here again, a large portion of the test set
was rejected as WlpalSable (54%),

6.8.3 DIscussion

The performance comparison is quite clearly in PARSEC's favor. The large difference
between PARSEC's best performance and the best performance of the hand-coded
grammars deserves some discussion. (Appendix C shows the test sentences along with
the scores CR4 and LR3.)

LR3 agreed to some degree with CR4 on whiCh sentences were "difficult" (i.e. those
that resulted in poor parses). Of the sentences for which CR4 prodUct'4 poor or near-
miss parses, 72% of them produced poor or near-miss parses in l.R3. Just 28% of CR4's
problem sentences were Processed correctly by LR3. Conversely, CR4 parsed 62% of
l.R3's problem sentences correctly-accowlIing for the large perlormance disparity.
Those sentences that caused problems for PARSEC tended to cause problems with the
hand-code<J grammar, but the reverse did not hold to nearly the same degree.

One key feature of all the hand-coded grammars is that they reject so many sentences as
unparsable. This can occur in two situations:

1. The grammar does not recognize its final state as being a legal sentence termina-
tion.

2. The grammar fails to model some constroct in a sentence.

In the both cases PARSEC has systematic advantages. First, PARSEC is trained to
jncrt!~ntal/y parse sentences as they develop. That is, PARSEC is trained to try to
parse initial sentence fragments properly. Second, due to the various techniques for
enhancing generalization that cause PARSEC to rely on local infonnation. the decision.
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making units of PARSEC are less likely to become sensitive 10minor variations in semi.
distant constiwems. Localized receptive fields and weight-sharing both act to prevent
PARSEC from t~omin& overly s:,~s!tive 10irrelevant information.

Another interesting comparison is in the classificaLion of incorrect parses. A critical
issue is how 10detect such parses. Of the three grammar-based parsers, the percentage
of easily detectable (NIL) parses ranged from 80% (LR2) to 100% (LRl). Using a sim-
ple heuristic for detecting obviously wrong parses that is based on the output values of
the labeling units of a PARSEC network: (see Section 7.1.3), it is possible lO reject 81%
of the incorrect PARSEC parses as such. This heuristic also rejects 50% of the near
misses as being incorrect parses. While PARSEC's ability to reject poor parses is not up
to that of all the hand-coded grammars, it does faU within the range. However, there
must be some trade-off between robust generalization and "'tightness." This will be dis-
cussed in more detail in Chapter 7.

6.9 Final Generalization Comparison------
Since the performance comparison in the fa-going section so heavily favored PARSEC,
it seemed possible that the testing set was in some sense "'tainted" since it had been
available during PARSEC's development As mentioned in Section 6.2, a second test set
\II3S collected after all of the comparisons had been completed using the initial test set.
This set was both.larger (180 sentences) and more diverse.

CR4 achieved 66% comet on this set (73% including near-misses).l..R3 achieved. 41%
on this set (no near misses). These figures are not significantly different than the earlier
figures. Additional analyses also paralJel the foregoing discussion.

6.10 Summary------
In this chapter, 1 have analyzed the generalization perfonnance of PARSEC and com-
pared it to more standard parsing methods. In order to improve PARSEC's baseline gen.
eraliza1.ion three techniques were used:

1. Representational techniques: augmented phrase block representation.
2. Architectural constraints: localized receptive fields and weight-sharing.
3. Training techniques: programmed constructive learning.

These had an im~ct on:

• The number of free parameters to train .

• The relative imponance of local versus non-local information.

• The types of infonnation available to the network to make decisions .
• The task complexity for each of the modules.

Table 6.9 is a summary of generalization perfonnance for each of the parsers described
in this chapter, ordered by type (pARSEC or human generaled) and perfonnance on the
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TABLE 6.9 Comparison 01all parsors on tho 117 SQntonco sot.

Co~ct Correcl+N~ Sharing PCL APR Computiotl
CR4 67% "'" I..ower 4 mods y" y" No
CR4.com "'" 67'" Lower 4 mods y" y" y"
CR3 44'" "'" Lower 3 mod5 No y" y"
CR2 27'" 36'" Lower 3 mods No No y"
CRI "'" 23'" None. No No y"
LR3 38% 39'" (Yes)
LR2 15'" 26'" (Yes)
LRI '''' '''' (Yes)

117 sentence testing set. PC!. stands tor Programmed Constructive Learning, and APR
stands for "augmented phrase representation."

The performance of PARSEC's best parser for the CR task was nearly 70% (discoWlting
near-misses). This compares very favorably with about 40% for the best of the gram_
mar-based parsers. PARSEC learned its "grammar" from little more than 200 English
sentences whereas the human grammar writers had the full knowledge of English in
addition to the sentences they were required to parse correctly.

A key lesson from this chapter is that each of the enhancements in tenns of representa-
tiooaJ changes and architectural constraints were facilitated by explicit structure in the
architecture. In a monolithic network, it is difficult to see how one could make a serious
impact on generalization penormance. In the structured, modular approach presented
here, it is possible to enginuT a connectionist network and produce dramatic perfor-
mance increases.



7 Speech Translation and
Noise Tolerance

This chapter covers experiments that tested PARSEC's tolerance of various [)'pes of
noise. including an application to the JANUS speec:h-to-speech uanslation system
(Waibel elal, 1991; Jain et al. 1991). Parsing is an interesting area in which to explore
noise tolerance for two reasons. One, the grammar-based approaches to parsing lend to
be brittle in the face of noise. Simple problems in a sentence such as subject/verb num.
ber disagreement can trip up many grammar-based parsers. Two. the input is symbolic
and Btomie--nO( real-valued and fuzzy. The noise that is encountered often involves
non-subtle changes to input patterns.

PARSEC was tested on three sources of noise:

1.Speech recognition errors in JANUS.

2. Ungrammatical sentences (synthetically generated) from the CR domain.
3. Transcriptions of verbal user intemction from the ATIS corpus.

lTaditional grammars tend to reject irregular input. panty by design and partly because
their nature predisposes them to regular structures. PARSEC offers some degree of
noise tolerance without any explicit modeling. Some researchecs have developed more
noise-tolerant grammar-based systems (e.g. Saito and Tomita 1988. Ward 1990), but the
explicit noise-modeling that they built into their systems can be trained into PARSEC
networks.

7.1 PARSEC In Speech-la-Speech Translation------
The main goal of PARSEC's application within JANUS was to compare the perfor-
mance of PARSEC with a grammar-based parser on noisy output from a speech rcrog-
nizer. A secondary goal was to show a real application of a PARSEC parsing network.
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FIGURE 7.1
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High.level structure of the JANUS syslEim.

English
Utterance

LPNNSpeech
System

( LRPa~r )-
Language
Generator

Panasonk
EV.3

Japanese
Utterance

German
Utterance
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JANUS is a speech-to-speech transIatioo system developed at CMU that operates on the
conference registration task. It is built in a modular fashion and allows for evaluation of
components that use alternative computational strategies.

JANUS translates continuously spoken English speech utterances into Japanese and
Gennan speech utterances. Figure 7. J shows the overall structure of the JANUS system.
Jt can utilize two processing pathways---cne with a PARSEC network as a parsing front-
end, and one with an LR parser.

7.1.1 Speech Recognition and SynthesIs

Speech recognition in the JANUS system is JrOvided by a connectionist. continuous,
large vocabulary, Linked Predictive Neural Network (LPNN) system (febelskis el a1.
199J). This system. as used in JANUS, is speaker-dependent, has a vocabulary of 400
English words, and uses a statistical bigram grammar of perplexity 5. The LPNN mod.
ule can produce either a single hypothesized textual sentence or the N best hypotheses
(at a substantial COStin processing lime). This system, when using the bigram grammar.
produces the correct sentence as one of the top three choices in 90% of the cases, with
additional gains within the top nine choices (for this W(X'k,N = 9). However. the system
achieves only about 70% correct on the single best hypothesis.

In single-hypothesis mode (F-best), the parsing component must attempt to process the
best LPNN hypothesis. With multiple hypotheses (N-best mode), the p8r5er passes the
first parsable h)'JX)thesis to the language generator (or returns failure if there are no par.
sable hypotheses).
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7.1: PARSEC In Speech-to-Speech Translation

Speech synthesis is provided by two commercially available devices, a Digilal DEClalk
DTCOI system for Gennan output, and the Panasonic Text-to-Speech System EV-3 for
Japanese output. Each of these systems U1kesa textual or phonetic represenlation of a
sentence as input, and produces the sounds of the spoken utterance through an audio
speaker. The following section describes the allemative translation modules.

7.1.2 Knowledge Based Machine Translation

JANUS's translation module is based on the Universal Parser ArchileCture (UPA) (Tom-
ita and Carbonell 1987). It is a knowledge-based machine translation system that is
capable of performing effidem multi-lingual translation. The system consislS of a pars_
ing component and a generation component. The pamng componem is arbitrary (as
long as it produces oUl:pUtin the appropriate form).

In one version of JANUS, Tomita's efficient generalized LR parsing algorithm is used as
the basis for the parser (Tomita 1985). After pre--compilation of a grammar, fast table-
loolcup operntions are alI thai is necessary to parse utterances. The performance of this
module approaches real-time. Language generation also approaches real-time. It is per-
formed by a system that compiles a generation grammar into USP functions (Tomita
and Nyberg 1988).

The standard UPA system requires a hand-written grammar for each language to be used
for parsing and generation. The system uses a Lexical Functional Grammar formalism,
and both syntactic and semantic rules are encoded in the grammar. Multi.lingual parsing
is achieved by writing grammars for each of several languages. The universal parser
takes text input in the source language and produces an "interlingual representation"-a
language-independent frame-based representation of the meaning of the input sentence.
The universal generator takes this as input, and uses the generation grammar to make the
transfonnation into the appropriate text in the target language. Figure 7.2 shows an
example of the input, interlingual representation, and the output of the JANUS system.

7.1.3 USing PARSEC In JANUS

There are two problems in flying to apply PARSEC to the JANUS system:

• PARSEC's output is not suitable for direct processing by the language generation
module.

PARSEC networks have no internal failure indicator; they will process any sentence
and produce an OUtpuL

Transfonnation of PARSEC's output into the interlingual representation required by the
generation module is accomplished by a separate program. It operates top-down using
simple match rules to instantiate case-frames and their slots. The slots of the case.
frames are then filled using more match rules. The algorithm is opportunistic in that il
attempts to create a reasonable interlingual output representation from any input. Occa-
sionally, the intertingua.l representation will cause the language generation module 10
produce a NIT. outpUl This is reported as a parsing failure.
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FIGURE 7.2

7: Speech Translation and Nol•• Tol.rane.

Example of input, interlingua. and output 01JANUS.

Input
Hello is this the office for the conference.

Interllngual Representation
«CFNAME *is-this-phone)
(MOOD *interrogative)
(OBJECT ((NUMBER sg) (DET the)

(CFNAME *conf-offce»)
(SADJUNCTl «CFNAME 'hello»»

Output
Japanese: MOSm MOSm KAlGI nMUKYOKU DESUKA
Gennan: HAU.O 1ST DIES DAS KONFERENZBUERO

The second problem is more easily solved. A set of simple heuristics are able 10 reject
many of PARSEC's bad parses. TIle four main rules are:

1. All phrase blocks must be legally labeled. A Role labeling unit must have activation
of greater than 0.5 to be considered legal.

2. No phrase block should have multiple labels.

3. Each clause must have a phrase block with either an ACTION or MISe label.

4. Roles requiring an ACTION (e.g. PATIENT as opposed to MISe) must be present
with an ACI10N.

1 also experimented with real-valued parse metrics derived from output unit activations,
and this is discussed later.
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7.1.4 Performance Comparison

The two versions of the JANUS system (each with a different parser) were tested on a
single reading of all 204 sentences of the CR task by the speaker that the system was
trained on. This was a restricted test due to limitations in the LPNN system. Sentences
from outside the twelvc conversat.ions were not tested.

JANUS-LR

Table 7.1 shows the performance of JANUS using the UPA parsing/translation compo-
nent (IANUS-LR) on the full database of twelve conversations in F-best and N-best
modes.



TABLE 7.1

7.1: PARSEC In SPHCh-to.Sp.8Ch Trenslallan

Performance of JANUS using an LA parser.

Correct recognition N: 173
and translation F: 140 N:176 N:86%
LPNN error N:3 F: 143 F:7O%
but OK translation F: 3

Incorrect recognition N: 14
and translation F: 10 N:28 N: 14%
Incorrect recognition N: 14 F:6! F:30%no parsable utterance F: 51

There are four possible outcomes for processing an utterance:

1.Correct recognition and translation: the LPNN produced exactly the right word
sequence as a hypothesis. and it was selected and correctly processed by the par.;er
and generatew.

2.lncttreet recognition. but OK translation: the parser chose an incorrect recognitiOn
hypomesis. but JANUS produced me proper translation anyway.

3. Incorrect recognition and translation: on choosing an incorrect recognition hypom-
esis. JANUS produced me wrong translation.

4.locaTeCt recognition and no parsable utterance: 00 parsable hypotheses.

The perfonnance was 86% correct translation in N-best mode. This number included a
small number of type two outcomes; The 13% of cases where JANUS-LR failed were
almost evenly split between outcomes of types three and four.

The FltSt-best pcrlormance was substantially worse than the N-best pcrlonnance (drop-
ping from 86% to 70%). In this mode, the parsin~uanslation components were forced
to use incorrect recognition results quite often. and the performance degradation was
expected. Although. in a real system. one would probably never force the system to use
only the first hypothesis. it was interesting to examine how this affected the different
parsers. In F.best mode, the errors from me LPNN more closely modeled a more realis.
tic testing condition in which either the testing utterances or the speaker would be differ.
ent from the training conditions.

JANU5-NN (JANUS using PARSEC)
Thble 7.2 shows lhe performance of JANUS using PARSEC (JANUS-NN) in lhe two
operation modes. The network that was used was CR4.com (see Chapter 6 for details
about this particular network). The N.best performance was worse than that for JANUS.
LR. JANUS-NN often returned parses for incorrect h)'JXltheses. These were frequently
rejected as poor candidates by JANUS-LR. Thus JANUS-LR. with its tighter language
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TABLE 7.2

7: Speech TranslaUon and Nol •• Tol.rance

Performance of JANUS using PARSEC.

Correct recognition N: 149
and translation F: 140 N: 164 N:80%
LPNN error N: 15 F: 157 F:77%
but OK translation F: 15

Incorrect recognition N: 31
and translation F:35 N:4O N:20%
Incorrect recognition N: 9 F:47 F:23%no parsable utterance F: 12

model, had 8 performance edge. h was able to robustly reject initial hypotheses and find
the correct utterance. The PARSEC network was unable to reject incorrect recognition
results as robustly as the LR parser.

However, the perfonnance of JANUS.NN in First-best mode did nOl degrade nearly as
much as for JANUS-LR. In fact. JANUS.NN outperfttmed JANUS-LR in First-best
mode (77% versus 70%). The performance difference arose from the number of incor.
rect recognition hypotheses that JANUS.NN parsed and translated correctly.

7.1.5 Discussion

In First-best mode, both systems correctly processed the correct recognition results.
This accounted for 140 tokens. JANUS-NN outperformed JANUS.LR by more often
producing correct translations when the LPNN hypothesis was incorrect The major dif-
ference between the two systems was that JANUS-NN was more likely to successfully
parse an utterance that did not correspond to the actual spoken utterance. Here are two
examples of incorrect recognition that were translated correctly by JANUS.NN but nOl
lANUS.LR:

• LPNN:
ACTUAl.;

• LPNN:
ACTUAl.;

Will be expecting you .
We'll be expecting you.

We have a speciaIforms for the summary .
We have a special fonn for the summary.
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In both cases, the LR parser failed to return a parse. The flexibility of the PARSEC net-
work is reflected in several ways in Tables 7.] and 7.2. JANUS-LR reponed many more
failw-es in First.best mode than in N.bem mode. When forced to use an imperfect uner.
ance, JANUS-LR was more likely to fail to parse it than was JANUS-NN. JANUS-NN
reponed parsing failure much less often in First.best mode-PARSEC was able to
"make do" with imperfect utterances.
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The other side to this behavior occurred in N.best mode. The flexibility of the PARSEC
network in JANUS-NN caused a performance loss because it sometimes did not look far
enough down the hypothesis list to find the correct utterance. It simply stopped and
returned a parse of an incorrect hypothesis. It's possible that more stringent parse.failure
heuristics would allow JANUS-NN to more closely parallel the perfonnance of JANUS.
LR in N.best mode. However, significantly more stringent parse heuristics would begin
10 look somewhat task.specific. The set of heuristics that were used were well moti-
vaU><!.

Of course. errors in speech recognition were the root cause of incorrect translations in
this test. It was known a priori that correct hypotheses would be properly parsed and
translated, since each parser was either trained or built specifically for the 12 conversa-
tions. Currently, a number of improvements to the speech recognition componenl are
being evaluated. These range from enhancements at the acoustic level to better language
modeling (Tebelskiseral. 1991).

Non-Binary Par •• Molrles
I attempted to develop non-binary parse evaluation schemes that made use of the con.
nectionist parrer's real-valued OUtputs.One scoring metric was the avernge of the activa-
tion values for labeling units whose outputs exceeded 0.5. Higher scores indicated
higher confidence in a parse. The idea was to use a real-valued parse-metric and evalu-
ate ail N hypotheses. then choose the best one instead of selecting the first acceptable
hypothesis. Unfonunately, none of the reaI.valued parse melrics improved JANUS.
NN's performance.

There are several reasons for this. The LPNN system did not produce acoustic scoring
information for its hypotheses. only rankings. This made it very difficult to know when
to throw out a higher ranked h)llOthesis in favor of a lower ooe. With acoustic scoring,
in a case where one LPNN hypothesis had very high acoustic score compared to the oth-
ers. one could discount small differences in the parse scoring metric.

Also. since the tnining corpus was fairly small yet highly diverse, many of the sen-
tences were "outliers" in some characteristic. Therefore, a large number of conect
hypotheses necessarily received quite low parse scores, and lower ranked hypotheses
often yielded better parse scores.

Lastly, the language model used to constrain the LPNN's search was an unsmoothed
bigram grammar that was trained using only the 204 sentences of the CR task. It tended
to produce either correct hypotheses or substantially different hypotheses that happened
to be close to other sentences in the corpus. So. often, incorrect hypotheses would
receive high parse scores. A language model that was less biased to the CR training set
might have produced more divergent incorrect hypotheses, leading to lower parse
"CO •••••

Performance and Grammar nghtness
RecaU the generalization perfonnance comparisons of Chapter 5. The grammar used in
the LR parser for JANUS was "Grammar 1." The PARSEC network used for JANUS
(CR4.com) generalized more than ten times better than the LR parser. Given this. it's
not surprising that JANUS-LR was able to outperfonn JANUS-NN in N.best mode.
JANUS-LR essentially had a table of the 204 sentences, and it could reject almost any.
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thing that deviated from the table. Note. however, that it is possible to write grammars
that incorporate techniques that allow them to handle more varied input including noise
(Saito and Tomita 1988). In this case though. the PARSEC network: was at a substantial
disadvantage because of the difference in coverage.

7.2 Synthetic Ungrammallcallty------
This section covetS an experiment in which PARSEC and its competing grammars were
evaluated 00 synthetic ungrammatical sentences from the CR task. Table 7.3 shows 50
ungrammatical sentences. Each is a corrupted version of a sentence from the twelve
conversations of the CR task. I chose to modify sentences from the actual training cor.
pus of the PARSEC network in order to decouple the noise issue and the generalization
issue.

The corruptioos ranged from making very minor changes such as replacing "a" for "an"
(e.g. sentence I) to modifying verb phrases as some foreign speakers tend to (e.g. by
using "to + infinitive verb" instead of "properly conjugated verb" as in sentence 19).
There were no spontaneous language phenomena such as restarts or interjections. Each
of the sentences in the table has a reasonable interpretation that is very close to that of
the original uncorrupted sentence. Some of the sentences may seem silly or artificial.
boll some people acwally use similar COnstructions (especially in certain dialects of
American English and the English of non.native speakers).

CR4.com (the PARSEC network used in JANUS) produced reasonable parses for 33 of
the SO sentences, arguably reasonable parses for 2. and poor parses for 15. Using the
simple parse failure heuristic from Chapter 7. II of the 14 poor parses were recognized
as such, 2 of the acceptable parses were labeled as poor. and the near misses were both
rejected. This is fairly robust recognition of parse acceptability (about 90%).

Recall the three hand-coded grammars from Chapter 5. Their performance was:

• Grammar 1: I correct parses. 49 Nll. outputs.

• Grammar 2: 19 correct parses. 19 NIL outputs. 12 incorrect parses.

• Grammar 3: 17 correct parses. 32 NIL outputs. 1 incorrect parse.

Grammar] was able to parse 8 single sentence whose only change was a replacement of
"8" for "an." Grammar 2 came closest to PARSEC's performance. but still fell far shon
(38% versus 66% correct). Grammar 3, the best hand-coded grammar from a coverage
standpoint. correctly parsed nearly as many sentences as did Grammar 2. When it failed,
it nearly always failed by producing a NIL output instead of a poor parse. As with the
grammatical coverage experiments from Chapter 5. the hand-eoded grammars behaved
in very different ways. This appears to be a problem with the process of hand-writing
grammars. One cannot predict with certainty how such grammars will behave when
suessed, since they depend so heavily on the grammar-writers.

Several seemingly simple grammatical irregularities, which PARSEC p:med well,
caused problems LR2:

• "Yes, that are right" (subject/verb number disagreement)
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TABLE 7.3

7.2: Synthetic Ungrammatlcelfty

Tabla of corrupted CR santencas.

I. hello is this a office for the conference
2. yes that are right
3. i would have li.k:eto register for the confer-
~~

4. do you already have a registration forms
5. then i+ll sent you a registration form
6. could you to give me your name and

"""'~
7. the address lITe five thousand forbes ave.
nue pittsburgh pennsylvania one five two
three sill:

8. i+ll send you special form immediately
9. if there is any questions please ask me at
any time

10. thanks you
11. lhis are the office for the conference
12. what should idid
13. first you must register with registration
f~

14. do you aIRad)' gOI a regislrl1Kln fonn
IS. not yet please send i a fonn
16. name is judy simpson
17. is a attendance: fee required
18. yes two hund.red doUan per person is

required as registration fee
19. may i to help you
20. i like attend the conference
21. how can i to apply
22. please fill a regislratKln form
23. do you have a one
24. okay then i send you a registration form
2.5. name is harry bovic
26. wouk! you spell last name please
27. me got it

28. hello this is conference office
29. could you give me some information

_bout application fee
30. how much will it COSIif i apply in the con-

ference right now
31. bm if you are apply nut month it will COSI

you three hundred Iwenly five dollm
32. the proceedings and the reception is

included in the application fee
33. i am member of the information process-

ing society
34. are there a discounl for members
3S. how can i to pay
36. payment be made by bank transfer
37. please remit to our bank acCOUntwhich be

mentioned in the announcemenl
38. deadline are the end of the year
39. you is welcome
40. i would like to contribute a paper to con-
f~

41. me tell you the topic of the conference
42. conference covers a wide lITeaof research

related to intc:rpreting telephony
43. we be ell:pecting linguists and psycholo_

gists as participanu
44. whal is ofliciallanguage of the conference
4S. i don+! to understand japanese at all
46. yn there be 5imultaneous interpretation

service into english
47. thai are helpful for me
48. iwould like mow details of conference
49. do you have conference announo:;ement
50. would you mind tell me your name and

"""'~

"00 you already have a regisbation fooos'!" (plural with deteooiner)

"If there is any questions, please ask me at any time." (object/verb disagreement)

More difficult grammatical irregularities caused problems for both systems. These sen.
tence were incorrectly processed by CR4.com and LR2:

"I like attend the conference." (instead of "would like to attend")

"Would you mind tell me your name and address?" (instead of "telJing")
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There was nol much agreement between the various parsers about which sentences were
difficult, in contrast to the coverage lesLS.There were cases in which PARSEC produced
poor parses. but LR2 produced good parses. For example:

• "I'll send you special form immediately." (missing determiner)

"Not yet. please send I a form." (instead of "me)

Note that each of the hand-coded grammars was constructed without irregular input in
mind. However. the PARSEC network: was only trained on grammatical sentences (the
same as those that the grammar 'Nriten were required to cover). In applications where
one must attempl to process any input with few rejections (e.g. in human-machine inter-
faces). PARSEC's behavior is desirable.

PARSEC networks show some tolerance for ungrammaticalily without el;plicit noise
modeling. But if one views grammars as models of language, grammars (or grammar-
less parsing networks) that accepl ungrammatical input could be considered tmdesir.
able. Building prescriptive models of language was not the focus of this work.

7.3 Spontaneous Speech Effects: The ATIS Task-------
DARPA's ATIS task uses a machine interface paradigm where users verbatly query an
airline reservation system for infonnation and book nighLS. Pan of the ATIS effort
involves detailed transcriptions of the interaction including spontaneous language phe-
nomena. Whereas in all of the previous experiments with PARSEC. the networks were
trained on grammatical input, this experiment included noisy input in the training and
testing SCLS.

Another key difference between this and previous PARSEC parsing networks was that
this network was trained to produce primarily semantic domain specific parses instead
of the more general parse structure used previously. This was done 10 more closely
approl;imate the SQL queries required for the full ATIS task of database information
retrieval. Here is an el;ample of a training parse for this experiment:

([sla'ement)
Wisl-f1ights)

([lly]
([model
(['rave~
([arr-lime]
([lo-iocJ

show me)
nonstop)
flights)
arriving at three pm)
to denver)))

The case-role labels reflecl the semantics of the constiruenLS lhal they label. The suuc-
lUre is amenable lO conversion into an SQL query of a database of airline information.
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This is much different than the parse would have been under the previous parse repre-
sentation (e.g. as used by the novice PARSEC trainer in Chapter 5 for ATIS):

([statement)
([clause]

([action] Show)
((recipient] me)
((patient) nonstop tlights)
([mod-l) to denver))

([rei (nonstop tlights))
([action] arriving)
([time) at three pm)))

Despite the substantial differences between the parse representations, the PARSEC sys-
tem needed no revision. The parse file and lexicon for the new task simply reflected Ihe
characteristics of lhe new parse representation. Note that the notion of phrase block is
somewhat different-eorresponding to semantic chuclcs instead of more syntactically
oriented chunlcs. The pane file had many domain-specific role labels, and the lexicon
had additional lexical features such as "can-Oy."

Currently there are several thousand utterances available in the ATIS corpus. However,
only 100 were used for training the PARSEC network. here. The coverage of the trained
network on novel sentences was nOI particularly impressive (63% adequatel parses of a
test set that included some novel lexical entries), but the network. learned to process the
noisy training sentences without difficulty. In a limited evaluation on novel noisy sen-
tences,1.he network seemed more sensitive to novel consuucts than noise per re. Sub-
stantially more sentences would be needed for training and testing to fully understand
the effects of noise in this domain. However, in principle it is possible to model noise
effects directly within the PARSEC framework.

7.4 Summary-------
In this chapter, I explored PARSEC's behavior on three kinds of noisy input In the flfSt
test. on data including speech recognition errors in the JANUS system, PARSEC was
able to outperfonn an LR parser on particularly noisy data. But it showed an inability to
assign preferences to sets of competing hypotheses, and its perfonnance was worse than
that of an LR parser when each system was given access to multiple candidate hypothe-
se.••.However, the LR parser had the advantage of an extremely tight grammar that aided
in robust hypothesis selection.

In the second test, on synthetic ungrammatical sentences from the CR task, PARSEC
was able to outperform three hand-wriuen grammars. In this test, the network was
trained on grammatical input only, but it showed some noise tolerance without any
explicit modeling. The third test suggested that further improvements on parsing noisy
sentences might be possible by explicitly training on noisy examples.

1. This numm included parses that were not perfect in all particulars. but were good enough so
that a proper response could be generated within the ATIS paradigm.
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8 Prosodic Information

The utility of prosodic information in speech processing systems is clearly established.
For example. Waibel (1988) showed that speech recognition systems could benefit from
several types of supra-segmental information: e.g. duration. pitch, imensily, and stress.
However. building systems that make effective use of prosody has proved difficult.
Sleedman (1991) developed a grammar formalism that made use of intonational annota-
tions to aid in parsing. While being an important step, there is still no known method to
automatically extract the intonational information that his system used. In order to begin
to make effective use of prosody, Systems must be able to use what is available in the
speech wavefonn. Hubel (l98B) made some srogress using prosodic information
derived from speech data. but his system was hand-designed.

This chapter describes a lirniled experiment demonstnning that PARSEC is able to
effectively learn to utilize intonation derived automatically from actual speech wave.
forms.

8.1 Task

In conversations (especially over the phone), it is common for people to intone sen-
tences that are grammatically declarative to indicate that they are seeking confumation
of the dec1arat.ive statement For example, consider this conversation fragment:
Secretary: Hdlo.

Caller. Hello, my name is Harry Bovie.

Secretcy: How can 1hdp you?

Caller: I've registered already, bull haven't received II packel yet.

Secretary: I see.. , Yourname is Bovie?
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In the last sentence, in the absence of intonational infonnation (and without dialog-level
context), a parser will assign a declarative mood-this is incorrect The secretary is
attempting to confirm the name of the caller not trying to tell him his name.

1 lrained PARSEC to utilize pitch contours extracted from actual speech wavefonns so
that trained networks could disambiguate shan declarative sentences intoned as state-
ments from those intoned as questions. The netwcrk was trained such that in the absence
of any pitch infonnation, it would assume the declarative mood.

8.2 Data

I collected multiple utterances of several shan sentences (up to three words) from two
speakers for the majority of the data. The recordings were made under benign condi-
tions with a 16KHz sample rate and 16 bit samples. Each of the utterances was spoken
as a statement and as an intoned question ten times by two speakers (one male and one
female). These were the unerances:

,. "Okay"
2. "Right"

3. 'That's right"

4. "You have one"

5. '!ha['S okay"

6. "Conference office"

This amounted to 240 utterances. Some other utterances were recorded for additional
testing, and these will be described later.

8.3 Signal Analysis-------
Pitch detection is not a solved problem in speech analysis. It is a very complex percep_
tual phenomenon. A pitch detector must select those peaks in an input waveform COrre-
SJX)Odingto the primary harmonic signal in voiced regions of the waveform. 1 was
fonunale to be able to use a neural network based speaker-independent pitch tracker
developed at CMU and at the Oregon Graduate Center (Barnard er ai. 1991; Zhau
199J). The pitch tracker was trained using high-quality speech (as was recorded for this
work), but it was trained on a different database (TIMIT data) than was used here.

The input to the pitch tracker is an unprocessed digital waveform, and the output is a list
of wavefonn sample numbers that correspond to valid pitch pulses. Computation of the
pitch frequencies from this is a simple matler. One nice property of the pitch tracker is
that it indicates no pitch pulses for unvoiced regions of an utterance. This saves an addi.
tional and JX>SSiblytroublesome step in the pitch calculation. Recognition of voiced
regions is non-trivial.

Figure 8.1 shows an example pitch output for a male speaker on "Okay?" There are
some problems with noisy pitch values, but overall, the pitch contour is quite nice. 1be
majority of incorrect pitch values come from pitch doubling and from unvoiced regions
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FIGURE 8.1

FIGURE 8.2

8.3: Signal Analy.l.

Example of unsmoothed prtch contour.

FILE: q.O.O MOkay?" duration", 377.0 msec, mean freq '" 137.3
111151«lOTHlO
L<
I. J •

'"L'
L'
•••0.' ••••••..,
•••..,
•••..,..,
•••

Example of smoothed prtch contour ("'Okay?).

FILE: q.O.O MOkay?M duration _ 377.0 msec, mean freq _ 137.3-~.••••••
0.4 ••••..,..,
0.1 •••••••• • •••••••••••••••••
O.C •••••••••••••••••••••••••••

where the pilCh tracker failed to suppress pitch peak detection. In Figure 8.1, the area
where mere are few pitch poinLSploued corresponds to the unvoiced "k" in "okay." Pitch
doubling occurs when peaks in me waveform corresponding to higher order harmonics
are misrecognized as being part of the primary hannonic signal.

I devised a very simple meltlOd to process and smooth the pilCh contour to make PAR-
SEC's job a little easier:

Pitch pulses whose neighbors give very different pitch values are deleted.

The entire pitch contour is normalized according to lhe average pilCh, and it is
remapped onto a fixed-width one-dimensional vector (length 75) .

• The vector is smoothed using a window average. Pomons of the vector with no
pitch values receive window average values from the neighboring right and left
areas with pilCh values.

Figure 8.2 shows a smoothed contour. Note that the smoothed contours are translated
such mat their minimum pitch value is O. The Y axis of the figure corresponds to the
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8: Prosodic InformaHon

FIGURE 8.3 Example of smoothed pitch contour ("Okay.;.

FILE: 5.0.0 ~Okay.~ duration - 409.1 msec, mean freq _ 113.2
SHOOTIl!O
0.1 •••••••••••

C.O •••••••••••••••••••••••••••••••••••••••••••••••••
.............

FIGURE 8.4 Augmented Mood Module.
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value 1hat PARSEC receives as inpuL Figure 8.3 shows the smoothed contour for
"Okay." The variation is actually sma1la than the somewhat coarse graph indicates.
Appendix E shows additional raw and smoothed pilCh contours for two speakers (one
male, one female). Generally, the cleaned pilCh COntours are visually recognizable as
coming from statements vs. questions.

8.4 Extensions to PARSEC------

PARSEC required minimal augmentation. Using the fully trained Mood module (pAR-
SEC Version 4 network.) as a starting point, I added an additional set of input units to
represent the time-evolving pitch contour of an utterance (see Figure 8.4). These units
(the PilCh units) corresponded to the fixed.width pitch contour vector (75 units). I also
defined a new PCL hidden unit type for the Mood level that received input connections
from the Pitch units.

The Pitch units' values were simply the smoothed, oormalized veclor values from the
pitch uaeker. The pitch vector varied over the course of processing an input utterance to
simulate an on-line pitch inpuL At each time step in the processing, the PilCh units were
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updated with a new pitch vector corresponding to the portion of the wavefonn being
processed.

For each of the following experiments, an augmented Mood module was trained with a
data set that included training data with no pilCh infonnation (from the inilial pitch.free
lI'aining) plus differeOl combinations of the pilCh-labeled utterances listed in (he Data
section.

NOle that it was cenainly possible to lI'ain a new Mood module from scratch, but (he
demonstration (hat additional infonnation from entirely new modalities could be added
to a pre.-existing module is useful. The new infonnation source was utilized to the extent
needed to learn novel training patterns wilhoUl forgetting old ones.

8.5 Experiments

Three experiments were performed which measured PARSEC's lOlerance to different
variations in test conditions.

8.5.1 Novel Gender/Speaker

The training set consisted of 80% of the utterances for the male speaker. and testing was
done on the remaining 20% of the male speaker's utterances and alI of the female speak.
er's utterances. PARSEC added only one additional hidden unit to the existing Mood
module to learn all of the training (Okens. The trained augmented Mood module pro-
cessed 100% of lhe test tokens correctly.

This result was somewhat surprising given that generally, in speech recognition applica.
tions, perfonnance on new speakers (especially across genders) is substantially lower
than on the speaker that was used for training.

The excellent result arises from a few reasons. First. the pilCh contours are nonnalized
for average pilCh and for length. This eliminates a large source of variation between
speakers. Second, the differences between pilCh contours fer nonnal declarative state.
ments and declarative statements intoned to be questions are substantial and fairly con.
SistenL Third, since lhe network was able to see example contours for each of the
utterances, it didn't really have a very difficult task to learn.

8.5.2 Novel Utterances

For this experiment, the training set consisted of 80% of four utterances for both speak-
ers. The testing set was the remainder-including all of the examples of the two utter.
ances not preseOl in the training seL Note that in Ihis experiment, PARSEC was able to
see examples of both speaker's utterances. Again, PARSEC added only one additional
hidden unit to the Mood module.

PARSEC processed all of the testing tokens correctly in this case as well. This was
somewhat surprising. The pilCh contours for one of the testing Ulterances ("'Conference
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FIGURE 8.5 Different pitch contours for questions.

. .. .
................

FILE: q.5.0 YConference office?Y duration _ 692.4 msec. mean fraq '" 225.8
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0.0 •••••••••••••••••
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•• • ...................
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FILE: q.3.0 "You have one?M duration _ 627.6 msec, mean Ireq .• 273.8
SIKlOTIl!D..,
••••• ••••..,
•••..,
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office?") appears to be quite different than the others (see Figw-e 8.5). It is markedly
more step-like. but this variatioo did not affect the augmented Mood module. The con-
tour was still much different than that of statements. but the nerwork captured the rele-
vant differences without becoming sensitive to the particular question contours observed
during training.

8.5.3 Combination

To test the system under an even more difficult condition. some additional utterances
were coUected from two male speakers (intoned as statements and questions. with three
repetitions):

"Your name is Bovic"

"You have a fonn already"

• "Two hundred dollars"

• "Pittsburgh"

• "Is that correct"

• "May I help you"

These sentences are quite different from the earlier sentences in both length and syntac-
tic content 1be final two sentences are constrained grammatically to be questions
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FIGURE 8.6 Weakly inflected utterance of male speaker.

FilE: q.6.0 "Your name is Bovic?R duration. 685.0 msec, mean freq = 101.2~-._,
0.1 •••••••••••••••••••• • ••••••
0.0 ••••••••••••••••••••••••••••••••••••••••••

FIGURE 8.7 Normally inflected utterance.

FILE: q.6.0 "Your name is Bovic?M duration'"' 741.8 msec, mean Iraq", 117.7~-•••••••• ••••..,..,
0.0 ••••••••••••••••••••••••••••••••••••••••••••••

regardless of inlOnation, but the speakers were insuueted to attempt a very flat intona-
tion in one case, and a natural intonation in another case.

A network: was trained to process all utterances of the female spealcer-all of these were
different lhan those listed above. On the first male speaker's novel utterances, the net.
work had l()()% performance. The second male speaker pnxluced weakly inflected
utterances, and the network: was able to properly process 72% of the utterances.! AlI of
the failures were on utterances that were supposed to be recognized as questions. Of
these. a fair proportion cause human listeners to produce incorrect or inconsistent
answers. Figure 8.6 shows an example of one of the more challenging unerances. There
pitch rise is extremely weak as compared with the same utterance of the first male
speaker (F;g= 8.7).

To test the hypothesis that it was the walkness of the second speaker's pitch rises that
caused the failure, the criterion for recognition was modified slightly. Under the new cri-
terion, an utterance was labeled as a statement only if the network's output was greater
than 0.7 for the Mood module's statement unit. Otherwise, the utterance was labeled as
a question. Using this criterion, the perfonnance of the network. on speaker 2 was 97%,
and it remained at 100% for speaker l. But for the weakness of the second speaker's
pitch rises, it seems that the network would have achieved excellent performance. Alter-
natively, if the network had seen some eumples of weak pitch rises in intoned questions
during training (the female speaker produced sharp rises consistently) it probably would
have achieved high perfonnance.

1. The second male speaker wu somewhat ill at the time of the recording. This affected Iris vocal
abiliry to I degree.
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The last two of these utterances were those lhat were grammatically constrained to be
questions. The network was not trained on any such utterances using any pilch informa-
tion, but these sentences were all recognized correctly as questions. There was a slight
difference in the Mood module's question unit output value in the two different utter-
ance conditions. In cases where an utterance was intoned "flatly," the output was less
extreme than in cases where an utterance was intoned with a natural pitch risc.

The network had to distinguish between grammatical statements whose mood could be
affected by intonation and grammatical questions whose mood could not be affected by
intonation. The network learned to combine the syntactic and intonational information
and generalized to a novel case when tested using new speakers of a different gender.

8.6 Application 10Speech-Ie-Speech Translation-------

Withom any additional modification to the existing JANUS system, JANUS using the
augmented PARSEC network was able to produce the proper translations of statements
that had been intoned to be questions (see Figures 9.8 and 9.9 for an exarnple).The fig-
mes show: the netwcrl:: activity, PARSEC parses, and JANUS-produced Japanese trans-
lations for "This is the conference office" intoned as a statement and then as a Question.

The layout of the figures is the same as that in Chapter 4. except that there is a group of
units marked "vector." These units are PARSEC's input representation for the pitch con-
tour of the utterance. The activation pattern in the Mood module of Figure 8.8 shows a
high activation for the top unit (indicating a statement mood). In Figure 8.9, the activa-
tion pattern in the Mood module is inverted, with high activation in the bottom unit
(indicating a question).

The following (correct) translations resulted:

• 'This is the conference office." was translated to "Kaigi jimukyobJ desu."

• 'This is the conference office?" was translated to "Kaigi jimukyoku desuhiJ"

8.7 Summary-------

While being a somewhat modest demonstration in a limited domain, the result is
impressive. Using a straightforward augmentation to an existing trained PARSEC net-
work. it was possible to teach the network to utilize an entirely new data source from a
non-symbolic modality. This new data source was immediately useful in the JANUS
system.

PARSEC networks are not affected by their input modality. If the information is consis-
tent, PARSEC can make use of it without the complex schemes required of many sym-
bolic systems. In principle, it should be possible to utilize other types of information
from the speech signal (such as energy patterns) to aid in different aspeclS of parsing.
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FIGURE 8.8

8.6: Application to Sp •• eh.to-Speech Translation
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PARSEC parseflranslation of "This is the c:onfefence office?-
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9 Conclusion

The goal of this work was lOdevelop a connectionist parsing system that demonstrated
three central advantages over more traditional parsing systems:

• Ability to learn general grammars from exposure to example parses .

• Tolerance to noise of the kinds found in speech tasks.

• Ability to incorporare multi-modal input

The PARSEC connectionist parsing system meets these requirements. In lhis chapler,
first J summarize the primary results of the thesis. I then reintroduce the question
brought up in Chapter 2 regarding whtte PARSEC fits wilhin the hierarchy of computa.
tional models. NeAt is a discussion of the contributiorn of the work lOthe fields of Mm-
rallanguage processing, connectionism, and speech processing. Afler that. some of lhe
shortcomings of the PARSEC system are enumerated. The chapter concludes with some
ideas about future research directions.

9.1 Results

The full PARSEC system includes a connectionist ~ing archilCCture. training algo-
rithms. and utility programs to make parser generation relatively efficient The PARSEC
system was extensively evaluated and compared with grammar-based parsers. This sec-
tion briefly reviews the key features of PARSEC along with a summary of the perfor-
mance results.

9.1.1 Architecture

The architecture is highly structured. The architecwre is composed of two stages, a
transformational stage and a labeling stage. each of which are made up of three mod-
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u1es. The first stage is a series of thru transformational modules where PARSEC builds
the basic structure of an input sentence. The second stage is a set of three parallel mod-
ules for labeling the constituents of a sentence. The m<XI.ulesare trained using a variant
of back-propagation learning.

The two central principles in designing the final PARSEC architecture were:

1. Don't force networks 10learn mundane transformations that can be done through
the use of clerical programs.

2. Where possible, inject domain knowledge into the architecture.

The PARSEC architecture is a hybrid of symbolic and sub-symbolic representation and
computation. Words are represented as prepmgrammed binary feature patterns, but the
network modules use sub-symbolic hidden representations for making decisions. PAR-
SEC relies on connectionist learning for those tasks where the means of achieving
desired behavior are not obvious.

9,1.2 Learning

The two key aspects of learning are:

1. Generaliz.ation: Does the system Jearn something useful, or has it just memorized
its uaining examples?

2. Automation: Does it require excessive effon to train for a particular task?

Generallutlon

If trained in the most straightforward manner, a PARSEC network exhibits poor general-
ization. By incorporating knowledge about Janguage, parsing, and connectionist learn.
ing into the architecture and learning algorithms, PARSEC is able to generalize very
well as compared with tJaditiooaI hand-written grammar-based parsers. On the CR task,
PARSEC's best network achieved 67% generalization, and the best hand-eoded gram.
mar achieved 38% (discounting near-misses).

J used four techniques to enhance PARSEC's generalization perfoonance:

1. Weighl.sharing in aNJ1ogollS subnetworks: This reduces free parameters and ere-
ales position insensitivity in those modules where it is applicable.

2.Localized rtuptivefields: This prevents units from using distant, unreliable infor-
mation to make decisions.

3. Progra.rnm.ed constrlUtive learning: This forces PARSEC to learn more general
"rules" initially and less general ones for exceptional cases.

4. Representational conventions: Where possible, intemal network representations are
structured so that PARSEC can locate and exploit reliable information sources (e.g.
the augmented phrase block representation with a special head slot).

These techniques are not specific the CR task or even to parsing per se, and some oCthe
techniques should be applicable to very diverse domains.
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Automation

PARSEC's performance results would be of little practical value without a reliable auto-
mated way for generating trained networks. The training algorithms are highly aulO-
mated and robust A non-eJL:pcrtwas able to train a PARSEC network for a novel task
with little difficulty, and the resultant parser performed well. In another experiment,
PARSEC was able to learn a small German parsing task:-a surprising result considering
that PARSEC was designed only with English in mind.

9.1.3 Noise Tolerance

PARSEC networks offer a degree of noise tolerance "for free." That is. one can train a
network on a set of well.formed example sentences and expect the trained network to
show a degree of noise tolerance. Networks do not become sensitive to fine.grained
grammatical regularities such as subject/verb agreement. This is in contrast to the bdt.
tleness of grammar-ruIe.based parsing systems. Networks also show tolerance to some
speech recognition errors.

In the JANUS spcech-to-spcech translation system, using the speech recognition sys-
tem's best hypothesis (often noisy), a PARSEC network was able to increase perfor-
mance from 70% to 77% over a hand-coded grammar. PARSEC was not able to robustly
select from multiple ranked hypotheses, and its performance was worse than that for the
hand-coded grammar in multiple-hypothesis mode (80% vs. 86%). In other experiments
on synthetically generated ungrammatical sentences, PARSEC showed a wider toler-
ance to loose grammar than did traditional systems.

The AllS task was used as a data source for testing tolerance to real spontaneous speech
effects and ungrammatical input from actual transcriptions. In this experiment, a PAR-
SEC network was trained on a mixed set of sentences that included some noise. The
trained network showed some noise tolerance. but more extensive evaluations using
larger data sets are needed .

9.1.4 Multl-modallnput

A goal in speech processing has been to be able to develop systems that effectively com-
bine textual information with acoustic information. Connectionist learning algorithms
simply respond to statistical regularities in the activation patterns of their input units.
PARSEC is able to use pitch information from a speech signal in order to disambiguate
mood in short utterances where syntax alone is insufficient. This work opens the door
for more ambitious attempts at synergistically combining multiple information sources
in speech processing.

9.2 Is PARSEC a Dynamic Inferencer?

J now return to the discussion of whether or not PARSEC fits Touretzky's notion of a
dynamic inferencer (fouretzlcy 1991). To review, a dynamic inferencer is a model in
which:

• The nwnbet of input patterns is exponential in the length of the input, and in which
the model must have a similar number of internal states.
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• Training set size is at most polynomial in vocabulary size.

The model is able to use novel intennediate states in response to novel combina-
tions of input patterns.

PARSEC seems to fall shon of being able to deal with involved compositionality of the
son one would like to see in a DUedynamic inferencer. For example, Touretzky shows
an example of a PP attachment problem where a PP attachment influences the attach-
ment of the parent PP:

• the car in the junkyard with the dog

• the car in the junkyard with the dog on the hood

In the first case, the preferred anachment is "the dog" to "the junkyard." In the second
case, the preferred attachment changes. Attaching "the hood" to ''the dog" changes its
preferred attachment to "the car." PARSEC could cenainly learn to perfonn the proper
attachment for a panicular set of cases, but it probably wouldn't develop the ability to
generalize the behavior to truly novel situations.

Interestingly, each of PARSEC's modules is essentially a categorizer (the simplest of
Touretzky's models), but through a clever representation of the input words that main-
tains the type/token distinction, and the hierarchical modular structure, PARSEC fulfills
some of the requirements of a dynamic inferencer.

9.3 Contributions of the Thesis

This wort: makes contributions in natural language processing, connectionism, and
speech processing.

9.3.1 Natural language Processing

This work recasts the parsing problem as a series of pattern recognition subproblems,
and it offers a non-rule-based method to solve the problems. This is in sharp contrast to
traditional grammar.based parsing systems. In uaditional systems, decisions about
phrase structure are made by application of rigid rules. In PARSEC, such decisions are
made without rules within a back-propagation hidden layer. Instead of advocating the
elimination of rules or using back-propagation networks exclusively in parsing, I would
interpret PARSEC's success as an opportunity for more researchers to develop parsers
that rely on softer decisions.

PARSEC networks reliably induce general grammars from exposure to example parses.
With additional work to extend PARSEC to more substantial domains, it may prove to
be more robust than writing grammars by hand. Humans don't have the capacity to write
rules of the complexity that PARSEC can learn. PARSEC can learn to combine very
diverse features (syntactic, semantic, statistical, and acoustic) in subtle ways that might
not occur to a hwnan. In large corpora, there might be sufficient regularity to induce
robust complex behavior of a very different nature than has been explored so far.

One aspect of performance that has nOl been emphasized in the thesis is parsing speed.
PARSEC networks produce parses in linear time with respect to input length. This com-
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pares very well with theoretical bounds on most grammar-based parsers. In the current
implementation. on serial hardware. typical parses take several seconds. as compared
with near real-time speed for the LR parser that was used for perfonnance comparisons.
However. owing to the parallel nature of connectionist networks. it should be possible to
implement real-time versions of PARSEC networks on many typeS of parallel hardware.

9.3.2 Connectionism

PARSEC is a successful application of connectionist techniques to a real problem. In
such a young field as connectionism that has produced high expectations and few real
demonstrations, this alone is an important contribution. However. there are some addi-
tional areas in which PARSEC makes a contribution.

Structure end Conneetlonlst Engineering

Probably the single most salient feature of the PARSEC architecture is its structure, both
al a macroscopic level in tenns of modules and at a finer level in tenns of consuaints
placed on connectivity within modules. This feature differentiates PARSEC from many
other connectionist architectures for language processing. 1be contrast is not merely
cosmetic. Imagine an unstructured back-propagation network for parsing. The inpul and
output could be essentially the same as PARSEC's. but the network would be required to
learn the complex transfonnational and labeling steps with no guidance. Although I
have not built such a network. I feel confident thai it would perfonn very poorly on
novel sentences.

By using structure in PARSEC. I was able to tnginur the architecture. In response to
positional sensitivity in the Phrase module, I added weight-sharing and local receptive
fields. In response to poor generalization in the Roles module, I augmented the phrase
block representation with head slots. These types of engineering improvements are diffi-
cult to imagine being learned in an amorphous parsing network. The lesson is that struc-
tllre should be viewed as a tool to enhance perfonnance.

Constructive learning

Constructive learning techniques were very effective in PARSEC. They helped elimi-
nate a variety of thorny learning problems and provided a way to Create an automatic
task-independent PARSEC parser generator. Using fully connected networks with pre-
detennined architectw-es for serious performance oriented tasks may not be a wise
approach to take. Of course, some hand-lUning of automatically generated architectures
might afford performance improvements. but at least the consttuctive techniques pr0-
vide a good starting point

The Programmed Constructive l..eaming technique developed during this work brought
a surprisingly substantial improvement in generalization perfonnance. The principle is
simple-to prevent a network from utilizing excess freedom in its hidden units' input
connections, use hidden units in sequence with progressively wider input connectivity.
The PCL technique should have useful applications in other domains. Any task in which
a network designer has a principled idea (or even just a good hunch) of which input
units have more reliable information than others is a candidate for some version of this
LeChnique.
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9.3.3 Speech Processing

The two primary conuibutions of this thesis regarding speech processing are a method
for building task-specific parsers that exhibit noise tolerance and a method for utilizing
acoustic information at the language level. The former problem has traditionally been
left to linguists, and while highly trained linguists can produce very good grammars, the
process is time-consuming and is not without uncertainty as far as the quality of finished
product.

The latter problem of incorporating acoustic information has not been adequately
addressed by earlier work, nor do I claim that this work solves the problem. However,
the augmented PARSEC system that uses pitch information takes an imIXIrtant step. It
was possible for PARSEC to learn to use real pitch contours with an exucmely straight-
forward augmentation. No complex schemes for knowledge combination were required.

9.4 Shortcomings-------
PARSEC does not attempt to solve many of the open problems in natural language pr0-
cessing. Notably. its method for handling lexical ambiguity would be insufficient for
more substantial domains. Also, no attempt was made to attack anaphora resolution or
other deep problems in NLP.

The resaictions on vocabulary are not too suingenl because of the feature representa-
tion. but restrictions on the size of corpora that PARSEC can handle at this time are lim-
iting. More powerful computers or better learning algcrithms are probably necessary
before PARSEC can attack substantially larger tasks. To make very strong claims about
PARSEC relative to established Nl..P systems. corpora of thousands of sentences must
be pro<e=d.

An undesirable aspect of PARSEC's architeetme is the length constraints placed on the
input and int.ermediate representational structures (e.g. in the CR task. phrase blocks
could contain up to five words). However. many of the constraints can be eliminated
since most of the modules are coostructed by replication. Instead of replicating the hard-
ware. it is possible to either dynamically generate needed hardware. or to use single
copies of the small subnetworks and appeal to external hardware to manage buffering
and memory. Even so. there are other consuaints n(l( so easily relaxed such as the level
of center-embedding possible. This must be predetermined. I

9.5 Future Work

1bere are many possible directions to pursue. Each of lhe difficulties mentioned in the
previous section opens an avenue of research. Of those problems. I feel that approaching
larger corpora using PARSEC is the most important. It would require better solutions to
the other problems. and it would allow for evaluation of PARSEC with more convincing

l. This aspecl of PARSEC's behavior may not be particularly undesirable since humans seem 10
have a fixed cerller-embedding depth, beyond which they tend 10 fail to parse properly.
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comparisons to other parsing formalisms. In particular, the problem of lexical ambiguity
is interesting.

I envision a possible extension 10 PARSEC in which words are modeled using multiple
distinct word senses as in some of the early connectionist work in NLP. However, using
the same engineering approach to robust back-propagation as in the rest of PARSEC, it
might be possible to learn to choose proper word senses. The word sense units could be
provided with a number of pieces of information, ranging from direct connections from
other word units to important pieces of the current parse. Lexical priming effects. syn-
tactic constraints, and semantic interactions among words might emerge in a computa.
tionally useful way. TIle issue of scale is a serious one though. The obvious localisl
approach may prove to be computationally intractable for some time.

Another interesting possibility is tighter coupling between PARSEC and speech recog.
nition. The possibility for synergistic interaction is especially hopeful for connectionist
speech systems. The idea of exploring the use of other acoustic information types than
pitch is especially appealing. Vmually any acoustic feature might prove useful to solv-
ing some aspects of the parsing problem, and PARSEC may be able to make use many
types of acoustic information.

In contrast to making stronger links with lower-level processing, it is also possible to
pursue the other direction-that of dialog or conversation level interaction. For exam-
ple, in domains such as Conference Registration. speaker identity (caller or secretary)
contains useful information. In principle, PARSEC should be able to make use of dialog
level information to guide the parse in much the same manner as it made use of acoustic
information.
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A Network Formalism

•

This appendix contains the equations that define the behavior of units in the networks
used throughout this thesis (for additional details. see Jain 1989). The key features of
the network fonnalism are:

Well-behaved symbol buffers are consU'Ucted using groups of units .

• Units have temporal state: they integrate their inputs over time, and decay toward
zero.

Units produce the usual sigmoidal output value and a velocity output value. Units
are responsive to both the static activation values of other units and their dynamic
changes .

• The formalism suppons recurrent networks.

Learning is done through gradient descent using a mean-squared error measure as with
srandard back-propagation learning.

A network is a collection of arbitIarily connected units. Tune (denoted by t) is discrete.
and units are updated synchronously. Fa- each unit i. the following are defined:

a:. output
v:.velocity
a:;;; activity

d;sdecay

,Cr.!!!damping factor•
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A: Network FormaUam

S: I! stimulation

For each connection from unitj to unit i, there are two weighLS:

wi). output weight IDi fromj

W:j!!E veloci[)' weight to i fromj

At time t '" 0, the velocity and activity of each unit is zero. The bias and decay of a unit
are not time dependent. The remaining quantities are updated as follows:

o~ '" ora' + b-). "

1a(x)",-
l+e-.

(1)

(2)

(3)

(')

(S)

(')
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Equations 1 and 2 define the values of a unit i at time t that are externally available via
output connections. Equation 3 shows how a unit behaves as it is updated. The activity
is the sum of two terms: the residual activation and the damped stimulation. The resid.
ual activation is the activity remaining at time t from the activity at time '.1. If the decay
value is near one, most of the activity remaining is retained; if the decay is near zero, Ht-
tle c, the activity is retained. The stimulatioo comes from a unit's input connections.
The damping factor prevenLS activation values from getting very large. Equation 1 adds
in the bias term for the unit-essentially the resting activation value.

The constant M is set large enough to allow activity to be pushed into the flat region of
the sigmoid function (Equation 6), but not too far. This type of unit degenerates into a
standard back-propagation unit if M is infinite, all velocity weights are zero, and the
decay is zero. In this work., M was 20, the decay for learning uniLSwas 0.3, and the
decay for input and buffering uniLSwas 1.

The standard derivation for back-propagation learning, with some minor modifications
for the temporal factors, produces the weight update equations.



B Conference Registration Dialogs

This appendix lists the 12 COnversatiOMthat fonn the corpus for the CMU/ATR Confer-
ence Registration Task.

Conversation 1

CALLER: HeUo. is this the office for the conference?
OFFICE: Yes,lhat's right.
CALLER: I would like to register for the conference.
OFFICE: Do you already have a registration fonn?
CALLER: No. not yet
OFFICE: 1 see, Then. I'll send you a registration fonn. Could you give me your name

and address?
CALLER: The address is SOOOForbes Avenue. Pittsburgh, Pennsylvania, 15236. The

name is David Johnson.
OffiCE: I see. I'll send you a regisuation form immediately. If there are any ques-

tions. please ask me at any time.
CALLER: Thank you. Goodbye.
OFFICE: Goodbye.

Conversation 2

CALLER: Hello.
OFFICE: This is the office for the Conference.
CALLER: I would like to rake pan in the conference. What should I do?
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OFFlCE: First. you must register with a registration form. Do you already have a reg-
istration form?

CALLER: Not yet, please send me a fonn.
OFFlCE: Then, could you give me your name and address?

CALLER: The address is 12 Grant Street, Pittsburgh, Pennsylvania, 15133. The name is
Judy Simpson.

OFFICE: I see.

CALLER; Is an attendance fee required?

OFFlCE: Yes, $200 per person is required as a registration fee.
CALLER: I see. Thank you very much.
OFFICE: Goodbye.

Conversation 3

CALLER: Hello, is this the conference office?
OFFICE: Yes, that's right. May I help you?

CALLER: I would like to attend the cooference. How can I apply?
OFFICE: Please fill out a registration fonn. Do you have one?
CALLER; No, not yet

OFFlCE: OK, then I'll send you a registration fonn. Would you please give me your
name and address?

CALLER: My address is 114 Beechwood Avenue, Squirrel Hill, Pennsylvania, 15213.
My name is Harry Bovic.

OFFlCE; Would you spell your last name please?
CALLER: It's B-O-V-I-e.

OFFICE; I've got it. I'll send you the form immediately.
CALLER: 1bank you very much. Goodbye.

Conversation 4

OFFICE: Hello, this is the conference office.

CALLER: CouId you give me some information about the application fee for the con.
ference? How much will it cost if I apply for the conference right now?

OFFlCE: Well, let's see. It costs $250 per person. But if you apply next month, it will
cost you $325. The proceedings and the reception are included in the appli-
cation fee.

CALLER: I am a member of the Information Processing Society. Is there a discount for
members?

OFFlCE: No, there is no discowlt this time.
CALLER; I undcrstand. How can I pay?

OFFlCE: Payment should be made by bank transfer. Please remit to our bank account
which is mentioned in the announcement. The deadline is the end of the year.

CALLER: OK, thank you very much.



OFFICE: You're welcome. Please feel free to ask if there's anything you don't under-
stand. Goodbye.

Conversation 5

OFFICE: Hello, conference office.
CALLER: I would like to conuibute a paper to the conference. Would you please tell

me the topic of the conference?
OFFICE: This conference covers a wide area of research related to Interpreting Tele.

phony. We are also expecting linguists and psychologislS as panicipams.
CALLER: Fine. By the way, what is the official language of the conference?
OFFICE: English and Japanese.
CALLER: I don't understand Japanese at all. Is there simultaneous interpretation into

English when the presentation is made in Japanese?
OFFICE: Yes, we have simultaneous interpretation service into English.
CALLER: That would be helpful for me. Thank you very much. Goodbye.

Conversation 6

OFFICE: Conference office.
CALLER: I would like to know the details of the conference.
OFFlCE: Do you have a conference announcement?
CALLER: No, I don't

OFFICE: OK, the conference will take place from August 2200 to the 25th at the New
York World Trude Center. The fee for participation is $500. If you intend to
present a paper, please submit a summary by March 20th. I'll send the con.
ference annOtmcement to you today. Would you mind telling me your name
and address?

CALLER: My name is Eric Thompson. My address is 1412 Smithfield Street. Pius.
burgh, Pennsylvania, 15237.

OFFICE: Would you spell your last name for me?
CALLER: Sure, it's T.H.O.M-P.S.O.N.
OFFICE: OK. Could I have your phone number too?
CALLER: Yes. 372 8418.
OFFICE: 372 8148, is that correct?
CALLER: No, it's 8418.
OFFICE: 372 8418, right?
CALLER: Yes, it is. Thank you very much, goodbye.

Conversation 7

OFFICE: Hello, conference office.
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CALLER: I wonder if you could help me. I sent in the regisuation form for the confer-
ence. But I can't attend the conference, so I would like to cancel.

OFFICE: CouId you please give me your name?
CALLER: Yes, this is Dan Cooper from Bell Labs.
OFFlCE: Mr. Cooper, you have already paid S400 for your regisuation fee, haven't

you?

CALLER: Yes, I have. Is it possible for you to refund the registration fee?
OFFICE: I am sorry we can't. As noted in the announcement, cancellation after Sep-

tember 27th precludes a refund. We'll send you the programs and proceed-
ings later.

CALLER: WLII somebOOy else be able to attend instead of me, then?
OFFICE: Yes, that's all right. Please lei me know in advance who is going to attend

instead of you.

CALLER: Good, I'll let you know when it's decided. Goodbye.

Conversation 8

OFFlCE: Hello, conference office.

CALLER: I've heard that you have a city tour during the conference. Can we still take
part in it?

OFFICE: Yes, you can. We will visit Heinz Hall, Mount Washington. and the Mellon
Museum on the afternoon of August 5th. Would you like to join us?

CALLER: How much does it cost?
OFFlCE: $35, that includes dinner.
CALLER: Are the speakers also participating?
OFFlCE: Some of them are supposed to.
CALLER: Then I would also like to go.

OFFICE: OK. Please give me your name and the number of people in your party.
CALLER: My name is Christopher Ohara. My wife will be coming too.
OFFlCE: Would you spell your first name for me, Mr. Ohara?
CALLER: Sure, Christopher, C-H-R-I-S-T.Q..P-H-E_R.

OFFlCE: We'll meet in front of the reception desk. Please pay the lOur fee there when
you arrive.

CALLER: OK, thank you very much.
OFFlCE: We'll be expecting you.

Conversation 9

OFFlCE: Hello, conference office.

CALLER: I have a question about topics in the conference.
OFFICE: Yes, what is it?

CALLER: There is a topic called Machine Translation in the announcement Specifi-
cally, whal is it aboul?



OFFICE: I'm sorry. I'm really unable 10 answer any technical questions. The tilles of
papers to be presemed at the conference are printed in the second version of
the announcement Would you please take a look at it?

CALLER: Yes, I will. Please mail me the announcement as soon as possible. My
address is 34 DaytOn Drive, Edison, New Jersey, 37814. My name is John
Mathis.

OFFlCE: 34 DaytOn Drive, Edison, New Jersey, 37814, John Mathis, correct?
CALLER: Yes.

OFFICE: Would you spell your last name for me please?
CALLER: Sure, it's M.A-T-H.I-S.

OFFlCE: I'll send one as soon as possible. Is there anything else I can help you with?
CALLER: No, that's alIlhanks. Goodbye.

Conversation 10

OFFICE: Conference office.

CALLER: Can I ask you a few questions? I would like 10 contribute a paper to the con-
ference. How can I apply?

OFACE: First., you should send us a 200 word summary by March 20th. The summary
will be reviewed here and we will send you a reply by May 20th. If your
paper is accepted, we'U also enclose special foons for your paper. Please
send lhem back to us by June 30th.

CALLER: Fine, what kind oUorm do I have to write the summary on?

OFFlCE: We have a special fonn for lhe summary. Please fill it in. Then, we'll send
you the application fonn. May I have your name and address please?

CALLER: AU right, my name is George VanParis from AI Labs. My address is 34 Park
Avenue, New York, New York. 234 15.

OFFlCE; Mr. George VanParis from AI Labs, right? Your address is 34 Park Avenue,
New York, New York, 234]5. Is that correct?

CALLER.: Yes, it is. Please send me an application form.
OFFlCE: Sure, I'll send it to you immediately. Goodbye,

Conversation 11

CALLER: Is this the conference office?
OFFICE: Yes, this is the conference office. May I help you?

CALLER: Please teU me haw 10 get to the conference site. I'm at Station Square now.
OFFlCE: Please take the subway to the U.S. Steel building, downtown. From there

there is a bus to the conference center. Of course, you'll also be able to take a
taxi from the downtown area.

CALLER: How much is it from Station Square to the conference center by taxi?
OFFICE: From Station Square it will cost you about S12.
CALLER: And how much does it cost from downtown?
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OFFlCE: From downtown, it will cost you approximately S5.

CALLER: OK, thank you very much.

OFFICE: Not at all. You're welcome.

Conversation 12

CALLER: HeUo.

OFFlCE: HeUo, this is the conference office.

CALLER: I would like to ask you about hotel accommodations for the conference. Do
you have a service that can help me find a place 10 stay?

OFFICE: Yes, we do. The hotels we can help you with are the Hilton HOlel and Crystal
Hotel. A single room wiU cost you from S80 to SilO per night. A twin room
ranges from $95 to $150 per nighl

CALLER: Fine, which hotel is closer 10 the conference center?

OFFICE: I'm sorry, whal did you say?

CALLER: I said "Which hotel is closer to the conference centeT? ••

OFFICE: Oh, the Hilton HOlel is closet 10 the conference center.

CALLER: Then I would like to make a reservation for the Hilron HOlel. Can I leave the
hotel reservation to you?

OFFICE: Sure. We'll be able 10 reserve rooms for you at either the Hilron Hotel or the
Crystal Hotel.

CALLER: That's fine. Well, could you reserve an $80 single room at the Hilron Hotel?

OFFICE: OK. An $80 single room at the Hilron Hotel. Right?
CALLER: Yes. That's righl

OFFlCE: When will you check in?

CALLER: The evening of August 4th. OJ.ecking out the morning of the 8th.

OFFICE: OK, please wait a moment. I am going 10 check to see if there is a vacancy.
Yes, there is. Please give me your name and address.

CALLER: My name is Joe Bradshaw. The address is 54 8th Avenue. Pittsburgh, Penn-
syl'Wtia. 15238.

OFFICE: Would you speU your last name please?

CALLER: It's B-R-A-D-S.H-A.W.

OFFICE: And your phone number please?

CALLER: Myphonenumberis3312521.

OFFICE: OK. I've reserved a single room al the Hilton HOIeI frml. August 4th to the
8th.

CALLER: Thanks very much. Goodbye.
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c Conference Registration
Testing Sets

This appendix contains the two generalization test sets. The sentences are distinct from
the 12 conversations. These sentences were generated by people not associated wilh the
development of the connectionist parser. Performance for the best PARSEC network
(CR4) and the best hand.written LR grammar (Grammar 3) are shown in the two col.
umns alright. Fer CR4 (first column), the markings are: GOOD. CLOSE. and BAD. For
LR3 (second column), the markings are: GOOD, CLOSE, BAD, and NIL (to distinguim
NIL parses from incorrect non-NIL parses).

Test Sentences

(please send me the summary immediately)
(you should send it immediately)
(i will arrive on the twenty second)
(is lhere a discount for members of the information pr0-
cessing society)

(by the 'Waywhat is lhe official language)
(how much wilJ it cost)
(if iapply now will you send me a form immediately)
(i like to register)
(please register me for the conference)
(who are the linguists)
(you must submit a twenty word summary by august)
(when should isend the summary)
(could you tell me lile deadline for registration)
(can ido that)
(please give me your name)

CR4

GOOD
CLOSE
BAD
GOOD

CLOSE
GOOD
BAD
GOOD
BAD
GOOD
GOOD
GOOD
GOOD
GOOD
GOOD

LR3

GOOD
GOOD
GOOD
GOOD

GOOD
GOOD
NIL
CLOSE
NIL
GOOD
NIL
GOOD
NIL
NIL
GOOD
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c: Conference Registration TestIng sets

(i am not sure)
(please fill out the fonn which i will send you)
(i don+t like regislration forms)
(give me your name please)
(how much is the registration f~)
(what is your address)
(please fill out the fonn i send you)
(please fill the fonn that i will send you)
(can you mail me an announcement)
(can i join the City tour)
(what papers will be presented on august tweOlYsecond)
(can you make a reservation for me)
(i don+t understand)
(how much does the tour cost)
(go to the registration desk to meet your party)
(i would like a registration fonn for the conference)
(i would like a hotel room)
(how can i get the proceedings)
(i+m expecting to attend the ai conference but i don+t
have a registration form)

(could you please send me one)
(i would like hotel infonnatioo)
(do you have the name of hotels)
(what is a possible place to stay)
(an: some rooms free)
(when is the first registJation deadline)
(have imade it)
(how much do ihave to pay if i regisrer later)
(are there any accommodations at this conference)
(how much is it)
(can i register at the desk)
(how can i get the proceedings if i don+t register for it)
(how much do the proceedings cost)
(can you send me a conference announcement)
(when is harry bovic panicipating)
(do speakers get free registJatioo)
(hello my name is harry bovic)
(i would like to register for the ai conference)
(i will send you an application)
(what is your name please)
(my name is harry bovic b 0 v ic)
(i also noted your address and phone number)
(my address is five four four two grant Street pittsburgh
pennsylvania one five two three two)

(the phone number is five five five five five five five)

CR4
BAD
BAD
GOOD
CLOSE
GOOD
GOOD
BAD
CLOSE
GOOD
GOOD
BAD
GOOD
GOOD
GOOD
GOOD
GOOD
GOOD
GOOD
BAD

GOOD
GOOD
GOOD
CLOSE
GOOD
GOOD
BAD
BAD
CLOSE
GOOD
GOOD
GOOD
GOOD
GOOD
CLOSE
CLOSE
GOOD
GOOD
GOOD
GOOD
GOOD
GOOD
GOOD

GOOD

LR3
NIL
NIL
NIL
GOOD
GOOD
GOOD
BAD
NIL
GOOD
GOOD
NIL
GOOD
BAD
NIL
NIL
NIL
NIL
NIL
NIL

GOOD
NIL
GOOD
CLOSE
NIL
NIL
GOOD
NIL
NIL
GOOD
NIL
NIL
GOOD
GOOD
NIL
NIL
GOOD
NIL
NIL
NIL
NIL
NIL
NIL

GOOD



CR4 LR3
(do you have any technical questions aoout the con- GOOD BAD
ference)

(yes ido) GOOD GOOD
(are you able to help me make a reservation at a hotel) CLOSE NIL
(yes i am) GOOD GOOD
(there are two hotels the cryslal and lhe hilton) BAD NIL
(i would like a single room in the hotel closer to the GOOD NIL
coofe:coce)

(fine that would be the hilton) BAD NIL
(that is okay) GOOD BAD
(can igive you any information about the conference) GOOD BAD
(i would like a discount on the proceedings) GOOD NIL
(that will be included in the papers with your applica. BAD NIL
tion)

(what are the possible forms of payment) BAD BAD
(the correct form of payment for the conference is BAD BAD
bank transfer)

(i am also panicipating in the city tour) GOOD GOOD
(you can register for that lOur on the fust afternoon of GOOD NIL
the conference)

(tour registration will be accepted during the first GOOD NIL
~~oonoftheconrerenc~

(is there subway service at the hotel) GOOD NIL
(will any speakers be panicipating in the tour of the BAD NIL
city)

(what is the conference fee) GOOD NIL
(i have already paid my fee for the conference) GOOD GOOD
(i can+t attend) GOOD GOOD
{could my wire attend lhe conference in my place} GOOD GOOD
(my wife is mentioned in the announcement) BAD GOOD
(may iget a summary of the topics) GOOD NIL
(i would like 10 submit a paper to the conference) GOOD GOOD
(how do i go about this) BAD GOOD
(i will send you the fann to fill out) CLOSE GOOD
(you should have included a three hundred word sum- GOOD NIL
mary)

(which is that) GOOD GOOD
(we must get your summary by may twentieth) BAD NIL
(no it is closer) GOOD GOOD
(can you make the hotel reservation) GOOD GOOD
(i am a member of the ai society) GOOD NIL
(will iget any discount) GOOD NIL
(yes there is a discount for members) GOOD GOOD
(is this the office for conference registrntion) GOOD NIL
(i will take your name and address and send you the CLOSE NIL
correct forms)
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c: Conference Registration Testing Set.

(what is your phone number please)
(yes how may i help you)
(would you like to register for the conference)
(your summary must arrive soon)
(that hotel is closer to the conference site)
(the hotel mentioned a discount for conference memo
bers)

(titles of papers wiU be included in the infonnation
fonns)

(topics to be presented will be included in the forms)
(how do you spell that)
(what is that)
(i said may twentielh)
(the name of the hotel is the hilton)
(pay the fee by bank transfer)
(the fee is three hundred fifty dollars)
(yes that includes the reception)
(no the fee does not pay the city tour)
(thai will be made later)
(the fee is five hundred dollars after september thirti.
eth)

(i will send you the application today)
(feel free to ask any special questions)
(i will be able to answer any questions)
(send your application on september thirtieth)

CR4
GOOD
BAD
CLOSE
GOOD
GOOD
BAD

GOOD

BAD
BAD
GOOD
GOOD
GOOD
BAD
GOOD
GOOD
GOOD
GOOD
CLOSE

GOOD
BAD
GOOD
BAD

LR3
Nil.
GOOD
Nil.
Nil.
Nil.
Nil.

Nil.

GOOD
GOOD
GOOD
Nil.
Nil.
Nil.
GOOD
GOOD
Nil.
GOOD
BAD

Nil.
Nil.
Nil.
Nil.



Testing Sentences (Flnel Set) CR4 LR3
(i do not understand you) GOOD NIL
(then iwould like to have some information about the CLOSE BAD
conference)

(how can ihelp you) GOOD GOOD
(what is the fee for the regisuation) GOOD NIL
(the registration fee is three hundred fifty dollars per GOOD NIL
person)

(can you send me a registration form) GOOD GOOD
(my name is heinz thompson) GOOD NIL
(could you spell your last name please) GOOD GOOD
(i will send you a form immediately) GOOD GOOD
(thank you goodbye) GOOD GOOD
(office for the conference can ihelp you) GOOD NIL
(i+ve sent a paper but haven+! heard from you) BAD NIL
(could you please wait) GOOD GOOD
(when have you sent your paper) BAD NIL
(oh i see) BAD GOOD
(thal+S free) GOOD NIL
(do you have any questions) GOOD BAD
(what will yOll do nOVo' with lhe paper isent you) BAD NIL
(i will send your paper right back as soon as i see it) BAD NIL
(am i lelling to the office for the conference regislta- BAD NIL
lion)

(yes you are) GOOD GOOD
{how can ihelp you) GOOD GOOD
(what do ihave to do) BAD NIL
(you should fill out a conference regisuation form) GOOD NIL
(can+t we do thai right now on the phone) BAD NIL
(i am sorry we caJl+t) GOOD GOOD
(how can iget a conference application fonn) GOOD NIL
(i am sure you can send me one) GOOD NIL
(yes of course) GOOD NIL
(if you give me your address) GOOD NIL
(i+1I send you a form and some information about the GOOD BAD
confcrence)

(is there anything else i can do for you) BAD NIL
(so iwould like you to spell very specifically) BAD NIL
(i would like to register for the ai conference) GOOD NIL
(could you say this please) BAD GOOD
(could you please say it) GOOD GOOD
(is there a special discount for thc participants of the GOOD GOOD
conference)

(yes it+s ninclY dollars) GOOD GOOD
(you have to register soon) CLOSE NIL
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CR4 LR3
(there is a deadline) GOOD GOOD
(when is it) GOOD GOOD
(how can i send you the registration fee) GOOD GOOD
(fine could you also reserve a room for me) GOOD GOOD
(do you have the number) GOOD GOOD
(yes ido) GOOD GOOD
(i am included now) GOOD NIL
(yes you are) GOOD GOOD
(hello can you give me some infonnation about lhe ai CLOSE NIL
conference)

(is it still possible to get a hotel room) CLOSE NIL
(please wait) GOOD GOOD
(can you reserve a hotel room for me) GOOD NIL
(i can make a reservation for you if you give me your BAD NILnumber)
(i would like to register for the conference but idon+t BAD NILknow how much the fee is)
(it+s two hundred dollars per person if you register BAD NILimmediately)
(is there any participation discount) GOOD NIL
(yes for linguists it+s two hundred dollars per person) GOOD NIL
(do you have a regislJation form) GOOD GOOD
(if you could give me your name and address then i+U GOOD NILsend you ooe immediately)
(i+1I speD it for you) GOOD GOOD(il+Slilosloboda) CLOSE GOOD
(sorry could you please spell the name too) CLOSE NIL
(do we have two registration forms) GOOD NIL
(can you give me an address please) CLOSE GOOD
(then i+U send you the two forms immediately) GOOD GOOD
(could you send us some information about rooms GOOD GOOD100)

(yes i+U enclose some hotel information) GOOD NIL
(are you a member of the ai society) GOOD NIL
(can you spell your last name forme) GOOD GOOD(yes it+s te bel sk i s) GOOD GOOD(oh i+m sorry) GOOD GOOD(is that right) GOOD GOOD
(what kind of a name is that) CLOSE GOOD(yes j know) GOOD GOOD(let+s see here) GOOD GOOD
(there will be a registration fee of forty dollars) BAD NIL
(what kind of payment do you have) CLOSE NIL
(can you give me the number) GOOD GOOD
(that is eight five seven three four two nine four) GOOD BAD
(you+re all right) GOOD NIL



CR4 LR3
(you should gel it in about a month) GOOD NIL
(which do you say would be the last) BAD NIL
(are you able to make a reservation there for me) BAD NIL
(no but ican give you the number) GOOD GOOD
(it+s eight four six eight two two four) GOOD GOOD
(the hilton is at eight three two four two nine eight) GOOD NIL
(is there anything else) GOOD GOOD
(no idon+t know) GOOD BAD
(are you a member of the ai society) GOOD NIL
(we+ll send you a registration form as well if you+re BAD NIL
not)

(no thanks) GOOD GOOD
(i+m already a member) GOOD NIL
(send us a check for three hundred dollars in the next BAD NIL
month)

(but idid not) GOOD GOOD
(okay) GOOD GOOD
(how should we send the information) CLOSE NIL
(we+1I get thaI right out to you) BAD NIL
(is there anything else you would like) BAD BAD
(can yOll tell me which hotel is closer to the confer- BAD GOOD
ence site)

(do you still have rooms) GOOD GOOD
(thanks i+ll tell them right now) GOOD NIL
(hello iwould like 10register to the ai conference) BAD NIL
(how do you spell mellon) BAD NIL
(have a good one) GOOD GOOD
(thanks) GOOD GOOD
(may i help you) GOOD NIL
(when is the deadline for a conference registration CLOSE NIL
please)

(are you a member of the ai society mister) GOOD NIL
(i am a member of the information processing society GOOD GOOD
of the bank)

Oet+s see) GOOD GOOD
(the registration fee is three hundred dollars) GOOD NIL
(you get fifty dollars if you register immediately) GOOD GOOD
(i would like 10register) BAD BAD
(please tell me how can i pay) BAD NIL
(will you be able 10mail it if i send it by bus this after. GOOD BAD
noon)

(could you tell me your name and address please) GOOD GOOD
(my name is john johnson) GOOD GOOD
(no) GOOD NIL
(my correct address is one two three four forbes ave- GOOD GOOD
nue)
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c: Cont.r.nce R.glatr.llon Testing Seta

CR4 LR3
(is this correct) GOOD GOOD
(no lhank you very much) GOOD NIL
(i would like to register for ai ninety two) GOOD GOOD
(all right what is your name) GOOD GOOD
(okay your registration fee is five hundred twelve dol- GOOD NIL,=)
(okay what is your payment number) GOOD GOOD
(yes i would like to register for the conference) GOOD GOOD
(can you spell that) GOOD NIL
(ai conference office may i help you) BAD NIL
(all of the details will be in the forms we send you) CLOSE NIL
(beUo i would like to get some information on the GOOD EEC
conference)

(is this the right number for it) BAD NIL
(okay first i would like to know the deadline for the GOOD NIL
regisuation so that i can get the discount registra-
tion fee)

(sure the deadline is may thiny first) BAD GOOD
(by the way what is the conference site) GOOD NIL
(the conference site is the heinz center) GOOD NIL
(oh is it closer to the museum) BAD NIL
(is there any interpreting in the conference) BAD NIL
(oh really that+s too good) GOOD GOOD
(is there an office of the conference) GOOD GOOD
(j would like to attend for the conference) BAD GOOD(are you a member) GOOD GOOD(what is your name) BAD NIL(i+m not sure) GOOD NIL
(i said i1+s one five two zero six) GOOD NIL
(tbat+s the conference fee) GOOD NIL(you are welcome) BAD NIL
(how much will be in your party) BAD NIL
(we have rooms at the crystal and the hilton) BAD NIL
(which would you like) GOOD NIL(no thank you) GOOD GOOD
(would you like to pay now or be called) BAD NIL(please tell me) GOOD GOOD
(you will be called with information about the confer- CLOSE NILence)
(that is a fee of four hundred fifty dollars) GOOD GOOD
(that+s fine then) BAD NIL
(could you send me information on the hotels in the GOOD GOOD=a)
(would you like to make accommodations there) BAD NIL
(yes that would be fine) GOOD GOOD



CR4 LR3
(i would like to get five rooms with four people to a BAD NIL
room)

(all we have now is your name address and phone BAD NIL
number)

(lhat+s five four people rooms at the hilton that will be BAD NIL
reserved with your name)

(the number is four one two two six eight three nme GOOD BAD
seven)

(if you have any questions please feel free to ask) GOOD GOOD•
(could you give me your fee) GOOD GOOD
(can igctlhere by taxi) BAD NIL
(how do you like to be paid) BAD NIL
(can i make a reservation for a room for september GOOD NIL
sevcmh)

(yes can ihave your name please) CLOSE GOOD
(thank you iwill) BAD BAD
(heno hilton hotel) GOOD NIL
(how may ihelp you) GOOD GOOD
(i+m expecting a conference today) GOOD GOOD
(do you have anything that would be possible) BAD BAD
(is there a desk in the hotel) GOOD NIL
(your rooms are reserved) GOOD NIL
(could i have your phone nwnber please) GOOD NIL
(no that+s fine) GOOD GOOD
(i would Jike some infonnation from you) BAD NIL
(my number is seven one eight five five five one five GOOD BAD
four three)

(today j can be called at seven one eight five five five GOOD NIL
seven six five five)

(thanks for your help) BAD NIL
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D ATIS Sentences: Novice User Test

This appendix contains the uaining and testing sentences that were used by the non.
expert for the ATIS task.

Training Sentences

(what airline is C0)

(show me all the nonstop flights from denver to san francisco leaving about three
<>+clockin the afternoon)

(show me the distance from the denver airpon to downtown)
(show me the nonstop flights from san francisco to d f w before noon)
(show me the airfares on flights from d f w 10denver before nine a m)
(what is restriction a p slash eighty)
(what is resuicuon v u slash one)
(what is class y)
(what is the fare on american airlines Councen fony three flight)
(what type of aircraft is flying united airlines flight nine fifty three)
(show me flight nine fifty three+s arrival time and what type of meal it has)
(show me which airline flight leaves from denver to san francisco at eighlCen len)
(show me the rught that leaves san francisco for d f w at nine a m)
(book reservations for five from dallas to baltimore on may twelfth at two hundred and

eighty eight dollars one-way)
(book reservations for five from dallas to baltimore on flight three fourteen on may

twelfth)

(purchase tickets for five from dallas to baltimore on flight three founeen on may
twelfth)

(make reservations)

(show me all the flights from baltimore to philadelphia on may nineteenth)
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0: ATIS sentences: Novice Usar T.st

(Show me the fares)
(show me all the flights from baltimore to philadelphia on may twenty sixth)
(what does f a mean)
(show me all the flights and their fares from san francisco to boston on june second)
(show me all the flights from boston to d f w on june ninth)
(show me their fares)
(show me all the flights from boston to s f 0 on june second)
(show me all the flights from s f 0 to d f w on june nine)
(what do the transport abbreviations mean)
(please give me a list of flights from dallas to boston leaving on salUrday mornings

before noon)
(i need ilight limes from boSlOn to dallas leaving on sunday afternoon after three

O+c1ock)
(what is a y class and what does the d I under f a column mean)
(what does the d I under the column f a mean)
(are there any advance purchase fares from dallas to boston for round-trip tickets)
(give me a list of all flights from dallas to boston that only have one stop between dallas

and boSlOn)
(give me all flights from dallas to boston)
(give me a list of all airfares for round-trip tickets from dallas to boston flying on ameri-

can airlines)
(show me 8 list of all flights from dallas 10philadelphia)
(give me a list for all round-trip flights ftying from dallas to philadelphia on american

airlines)

(give me 8 list for all round-trip flights flying from dallas to san francisco on american
airlines)

(give me a list of all flights from daI.Ias to san francisco)
Oet me see aU the information from dallas fon worth to atlanta)
(what does a I mean)
(show me flights from dallas 10atlanta)
(what does I h mean)
(show me the different flights)
(list the days and its meanings)
(show me a list of codes for the meals)
(what does e q p stand for)
(does american have any specials)
(what does restriction v u slash one mean)
(how much does the flight from dallas fon wonb to atlanta round-Uip cost)
(what does restriction a p slash eighty mean)
(what does class y n mean)
(do you have to take a y n flight only at night)
Oist all information about flights from dallas fort worth 10 atlanta)
(how much does flight number eighty three cost one-way)
(show me the meanings of the classes again)
(show me the fares for each type of ground transportation in atlanta)
(show me all flight information from atlanta to san francisco)
(what+s the price of a one-way ticket on flight number one thirty seven)
(what does resUiction a p slash sixty eight mean)
(show me the restrictions on flight number one thiny seven)
(show me ground transportation in san francisco)



(what type of aircrafl is used on night number one thirty seven)
(show me all information about aircraft type lockheed lone zero one one)
(show me all infonnation about aircraft type boeing seven six seven)
(show me all the nonstop nights from boston to atlanta)
(give me a general description of flight number five four seven)
(what type of aircraft is flight number five four seven)
(what is the coach fare for one-way flight on number five four seven)
(what is restriction v u on flight number five fOlD"seven)
(what types of ground transportations services are available from the airpon in atlanta to

downtown atlanta)
(what is transport J)
(what is transport r)

Testing Sentences

(show me all the nonstop flights from atlanta to dallas)
(what type of aircraft is flight four fOlD"seven)
(what is flight code one zero two one four seven)
(what is the rught day of flight number five four seven)
(what type of ground transponation is available from d f w airport to downtown dallas)
(what is the one-way coach fare on flight number four four seven)
(what is the one-way first class fare on flight number fOlD"four seven)
(show me all the nonstop flights from dallas to san francisco)
(what type of aircraft is flight number four five nine)
(what ground transportation is available from the san francisco airport to downlown san

francisco)
(what is the name of the airport in san francisco)
(what is the name of the airpon in atlanta)
(show me all the nonstop flights from dallas to denver early in the morning)
(show me all the flights from denver to san francisco between two p m and seven p m)
(show me the distance from san francisco airpon to downtown)
(what is the fare on flight eleven forty nine from continental airlines)
(what is the fare on united airlines nine fifty three)
(show me the airfare on flight eight eight zero for united airlines)
(show me the airfares on u a+s flight five one one)
(show me all the flights from dallas to baltimore on may twelfth)
(show me the prices for flights from daUas to baltimore on may twelfth)
(show me the price for .flight three fourteen on may twelfth from dallas to baltimore)
(show me all the flights from philadelphia to boston on may twenty sixth)
(what airline is m I)
(show me the transportation from s f a to downtown san francisco)
(i need information on airlines servicing boston flying from dallas)
(is there more than one airport in the boston area that american and delta service)
(are there any excursion fares for round-lrip tickets from dallas to boston)
(give me all nonstop flights from dallas to boston)
(describe each of the different classes for airfares)
(show me infonnation that wiD take me from dallas 10atlanta)
(what does d I mean)
(on the days is a one equal to sunday)
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(does american airlines have any special fares)
(show me time lables of fare code seven one zero zero two six two)
(show me flight numbers of american from dallas fon worth to atlanta)
(show me ground transportation types in allanla)
(show me classes for flight number one lhirty seven and restrictions and what they

mean)
(how much is flight number one thirty seven with a class y)
(is five hundred and fifty two dollars the cheapest fare from san francisco to dallas fort

wonh)
(show me capacity seatings for the boeing seven sixty seven)
(what is the capacity of Oigh! number five four seven)
(Oight five four seven is pan of what airline)
(what is restriction a p fifty seven on flight number five four seven)
(under the category gtOWld transportation what is transpon a)
(what is the capacity of flight four four seven)
(what types of meals are available on flight number four four seven)
(what types of meals are available on flight number five four seven)
(what is the capacity of flight number four five nine)
(what is the one-way coach fare for flight number four five nine)
(what ground transportation is available from the airpon in boston to downtown boston)
(what is the name of the airpon in boston)
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E Pitch Experiment Data

This appendix contains some of the data that was used for the experiments discussed in
Chapter 8. Note thal the plots tend to accentuate small differences in pitch values since
they are quite coane. A single example of 6 utterances, pronounced as statements and
as Questions. for two speakers (one male and one female) are included.

Speaker 1

These contours are from speaker ANJ (male).

FILE: 5.0.0 MCkay: duration. 409.1 msec, mean freq •• 113.2
••••SIlOOfHUl

L'•••
L'
L'
L'
L'
'-'l. 2 •
'"1.0 ••••••

••••• •..,
•••..,.....,
•••..,
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0.1 ••••••••••• •••••••••••••
0.0 •••••••••••••••••••••••••••••••••••••••••••••••••
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E: Pitch Experiment Data

FilE: q.O.O "Okay?"
tJIIS>IO:)tltEll".",•••...
u
o .•
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o. ,
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0.'
0.'
o ••
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0.'•••
0.0 ...........................

FILE: s.1.0 -Right.- duration. 176.4 msec, mean freq _ 107.7
UMSNOOtJtU\

'"•••,.,
•••".•••o .•..,
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FILE: q.l.0 "Right?"
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FilE: 5.2.0 "That's right. ~ duration. 416.1 msec, mean fraq '" 111.0
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FILE: q.2.0 "That's rightr duration", 405.7 msec, mean freq "" 142.2
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FILE: 5.3.0 "You have one.. duration. 653.6 msec, mean fraq • 123.3
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~~o
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FILE: q.3.0 "You have one?~
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FILE: 5.4.0 "That's okay."
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FILE: q.4.0 "That's okay?" duration = 574.9 msec, mean fraq. 149.6
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FILE: 5.5.0 -Conference office," duration _ 603.1 msec, mean Iraq. 114.5
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FilE; q.5.0 "Conference office?" duration = 634.6 msec, mean freq • 183.0
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SMOOTH~O........,
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Speaker 2

These contours are from speaker TMJ (female). Note the higher mean frequencies for
each corresponding contour. However. the normalized contours are quite similar.

FILE: 5.0.0 "Okay." duration", 336.6 msec. mean freq '" 182.2
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FILE: 5.1.0 "Right.- duration,. 408.8 msec, mean freq. 175.7
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FILE: q.1.0 "Right?"
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FILE: 5.2.0 "That's right."
1INS"OOTH~D

'-'
U

L'
L'••••L'
L>
1.1 •••••••••••••

•••o .•
o .•
o. ,
•••• •...•• •..,
o .•
0.'

duration. 489.7 msec, mean freq. 183.1

.. .
•

•

-~.0.' ••••••••••••
0.1 •••••••••••••••••••••••••••••••••
0.1 •••••••••

O.D •••••••••••••••••••••

FILE: q.2.0 "That's right?"
1INSIlOOTH~D

••
UL'..,,..
•••o .••• •
D.l •••••••••

••••• •
0.'•••..,
•••0.'

duration. 488.1 msec, mean freq. 224.7

. .
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-~.•• •..,
••••••••••••..,
0.1 ••••••••••••••••••••••••••••••••••••••••••••

•••

. .
.......



. .•

FILE: s.3.0 ~Youhave one.~
VN'OCOI'H~n

•••••••• ••••,..
L'..,..,
"1.0 •••••••••••••••

••••••••••••..,
•••..,

duration 565.6 msec, mean freq _ 204.9

~~.
0.4 ••••••••••
O.J ••••••••••••

0.: ••••••••
0.1 ••••••••••••••••••

0.0 •••••••••••••••••••••••••

FILE: q.3.0 "You have one?~ duration _ 627.6 msec. mean freq '" 273.8
1IlI5>1::lO'tll£D,..
•••..,
L'
•••
L•..,
•••
L',..
•••
0.' ••••••••

•• •
0.' ••••••••••••••••••••••••••••

••••••..,..,
•••
~~
••••••..,
•••..,..,..,
0.0 ••••••••••••••••••••••••••••••••••••••••••
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E: Pitch Experiment Data

FILE: s.4.0 "That's okay.~
U>lS""lOrMUl

••••••..'•••••••••..,
1.2 ••••••••••

'-'•••••••• •..,
••••••.....,..,..,
•••

duration e 594.4 msec, mean 1req .• 183.3

. .

~u •
•••..,..,
••••• •

...................
. .. .

. .
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FILE: q.4.0 "That's okay?- duration _ 639.7 msec, mean freq _ 221.9
""IJOOOTIII:O

•••••••••..,
•••
'-'•••••••••..,
•••••••••..,..,..,
•••
~
•••••••••..,
•••
0.1 ••••••••••••••••••••••••••••• • •••••
g.o •••••••••••••••••••



•

FILE: s.5.0 "Conference office."
\I1ISIlOOTH!D

•••,..,.,
'-'•••••••••
1.2 •••••••,.,
•••••••• •..,
••••• ••••..,..,
••••• •

duration == 703.1 msec, mean freq '" 194.3

. .

..............

aooooTlI!D
0.6 •••••••••••..,..,..,
•••

..............
. .

FILE: q.5.0 -Conference office?" duration _ 692.4 msec, mean freq • 225.8w_~
•••,.,
••••••,..,.,,.,..,
•••••••• •..,
••••• ••••..,..,..,
•••

•

-~..,
••••• ••• •..,..,
0.1 ••••••••••••••••
0.0 •••••••••••••••••

. ......................
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